2 Suspending, Resuming, and Terminating of
Actors

Introduction

This chapter is divided into two parts. The first considers language-defined constructs for
asynchronous suspending and resuming of actors; that means, the ability of an actor to hold
and continue other actors. The second part deals with the termination of actors in the three
languages. The Ada section starts with a consideration of task dependence and difficulties
that might occur when nesting of tasks is allowed. Throughout this part, we will see, that
there are several kinds of termination that may be safe or unsafe. (We call the termination
of an actor A safe if there is the possibility for A to perform some cleanup action before A is
terminated. Otherwise — if no cleanup action can be performed — we regard the termination
to be unsafe.)

For a better illustration, some useful examples together with diagrams showing the exe-
cution of the examples are given.

2.1 Suspending and Resuming of Actors

2.1.1 Suspending and Resuming of Ada Tasks
2.1.1.1 The delay Statement

The delay statement is used to block further execution of a task until a specified expiration
time is reached. The delay statement is always applied to the task executing it; it is not
possible to block any other task by using a delay statement. The expiration time can be
specified either as a particular point in time (delay until _statement) or in seconds from the
current time (delay relative statement). The syntax of the delay statement is as follows:

delay statement ::= delay until statement | delay relative statement
delay until statement ::= DELAY UNTIL delay expression;
delay relative statement ::= DELAY delay expression;

The expected type for the delay expression in a delay relative statement is the predefined
type Duration. The delay expression in a delay until statement is expected to be of a time
type — either the type Time declared in the language-defined package Calendar or some
other implementation-defined time type.

The task executing a delay statement is blocked until the expiration time is reached, at
which point it becomes running again. That means, resuming is done automatically. If the
expiration time has already passed, the task is not blocked.

delay time
running blocked

A

time has expired

Figure 2.1: Using the delay statement

23

2.1.1.2 Asynchronous Task Control

To enable asynchronous suspending and resuming of tasks, Ada provides the language-defined
package Ada.Asynchronous_Task_Control, the specification of which reads:

with Ada.Task_Identification;
package Ada.Asynchronous_Task_Control is
procedure Hold (T : in Ada.Task_Identification.Task_ID);
procedure Continue (T : in Ada.Task_Identification.Task_ID);
function Is_Held (T : in Ada.Task_Identification.Task_ID)
return Boolean;
end Ada.Asynchronous_Task_Control;

Continue Hold

Hold
non-held held

Continue

Y

Figure 2.2: Using Asynchronous_Task_Control to change the state of an Ada task

After the operation Hold has been applied to a task, the state of that task is set to “held”.
To continue the task, the Continue operation resets the state of that task to “non-held”.
The function Is_Held returns true if and only if the task is in the held state. Calling Hold
on a held task or Continue on a non-held task has no effect. The ALRM does not specify
whether the procedures Hold and Continue are atomic to each other.

The procedures Hold and Continue are defined as follows: For each processor there is
a conceptual idle task, which is always ready. The base priority of the idle task is below
System.Any_Priority’First. If Hold is performed on a task T, then T’s active priority is
set to a value below the base priority of the idle task. As a consequence of the priority rules
(see Chapter 6), the held task cannot be dispatched on any processor since its active priority
is below the priority of any idle task. The Continue operation simply changes the active
priority of T back to the former value.

It should be mentioned that a call to Hold or Continue is not equivalent to a call to
Ada.Dynamic_Priorities.Set_Priority with the corresponding priority as argument. The
difference is that Ada.Dynamic_Priorities.Set_Priority changes the base priority and not
the active priority of a given task. As mentioned in Chapter 1, only the active priority of a
given task T is used when T competes for processing resources.

An Ada implementation need not support Asynchronous_Task_Control if it is infeasible
to support it in the target environment.

The combination of the delay statement and the procedures of Ada.Asynchronous_Task_
Control leads to the following state diagram:

24

. delay time
running il blocked
and and

non-held fime has expired non-held

) ()
c

IS 3

blocked

time has expired held

Figure 2.3: Combination of the delay statement and Asynchronous_Task_Control

2.1.2 Suspending and Resuming of CHILL Processes and Tasks

CHILL has no possibilities for explicit suspending and resuming of tasks or process instances.
There are, in fact, the operations DELAY, DELAY CASE and CONTINUE. But these are
only used together with events for the synchronization of actors. Chapter 5 will discuss that.

2.1.3 Suspending and Resuming of Java Threads

To realize suspending and resuming of threads, Java has the following methods defined in
the class java.lang.Thread:

e suspend()
A thread may invoke its own suspend() method and it may invoke the suspend()
method of any other thread.

e resume()
A thread may invoke its own resume () method and it may invoke the resume () method
of any other thread.

e sleep()
A thread may only invoke the sleep () method of class java.lang.Thread; this method
is always applied to the thread calling it.

e join()
A thread may invoke its own join() method and it may invoke the join() method of
any other thread.

Figure 2.4 illustrates how these methods are applied to change the state of a thread from
runnable to blocked and vice versa.

25

suspend()

resume()

sleep (time)

runnable blocked

Thread waiting for has died

resume() suspend()

wait()

notify() / notifyAll()

Figure 2.4: Changing the state of a Java thread

Now these methods will be described in more detail.
public final void suspend() throws SecurityException

If the thread whose suspend() was invoked is alive (i.e., it is runnable or blocked), it is
suspended and makes no further progress until it is resumed. It is permitted to suspend a
thread that is already suspended; it remains suspended. If a thread is suspended several
times, only one call to resume () is required to resume it.

public final void resume() throws SecurityException

If the thread whose resume () was invoked is alive but suspended, then it is resumed. It is
permitted to resume a thread that has never been suspended or has already been resumed.
If a thread is resumed several times, only one call to suspend() is required to suspend it.

public static void sleep(long millis) throws
InterruptedException

This method causes the thread calling sleep() to yield and not to be scheduled for further
execution until a certain amount of time has elapsed. This amount of real time measured in
milliseconds is given by millis.

There is another version of sleep that measures the amount of time in nanoseconds.

public final void join() throws InterruptedException

This method causes the thread containing the invocation of join() to wait until the thread
whose join() was invoked is no longer alive. If a thread invokes its own join() method,
then this thread will be deadlocked.

There are 3 other methods that can be used to suspend and resume threads: wait(),
notify() and notifyA11(). Since these methods are used together with synchronization of
objects, they will be described later.

We finish this section with an example showing the use of the above methods.

26

class actor extends Thread {

private String s;
public actor (String s) {
this.s = s;

}

public void run() {
for (int i=0; i<10000; i++) {
System.out.println (s);
}

}
public class resuming_and_suspending_threads {
public static void main (String args[]) throws
InterruptedException {
actor al = new actor("Actor 1");
actor a2 = new actor("Actor 2");
al.start();
a2.start();
Thread.sleep(200);
al.suspend();
a2.suspend() ;
Thread.sleep(2000)
al.resume();
a2.resume() ;
al.joinQ);
a2.join();

Example 2.1: Suspending and resuming of threads

27

al.start();

az2.start();

Thr ead. sl eep(200);

al. suspend();

a2. suspend();

Thr ead. sl eep(2000) ;

al.resune();

a2.resune();

al.join();

a2.join();

al

Figure 2.5: A possible execution for Example 2.1

28

2.2 Termination of Actors

2.2.1 Termination of Ada Tasks
2.2.1.1 Task Dependence and Termination

For better understanding of task termination in Ada, we first have to talk about dependency
of Ada tasks.

Since an Ada task is not a compilation unit, it is always nested within other program
units. That is why it always depends on one or more masters. A master is the execution of a
construct that includes the finalization of local objects after it is complete (and after waiting
for any local tasks), but before leaving. There are 2 possibilities how a task can depend on
its master:

1. If the task is created by the evaluation of an allocator for a given access type, it depends
on each master that includes the elaboration of the declaration of the ultimate ancestor
of the given access type.

2. If the task is created by the elaboration of an object declaration, it depends on each
master that includes this elaboration.

running

completing execution

Y

completed

performing finalization

Y

terminated

Figure 2.6: Termination of an Ada task

As illustrated in Figure 2.6, termination of an Ada task occurs in 2 stages. The first stage
is completion of the task, the second stage is termination. A task is said to be completed
when the execution of its corresponding task body is completed; that is, when it reaches its
final end. A task is said to be terminated when any finalization of the task body has been
performed. The first step of finalizing a master that includes a task body is to wait for the
termination of any tasks dependent on the master. The task executing the master is blocked
until all the dependents have terminated. Any remaining finalization is then performed and
the master continues.

This formal description reflects the important rule that a unit cannot be left until all
tasks that depend on it are terminated. For a better understanding why such a rule is useful,
consider Example 2.2:

29

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO0;
procedure P is

count : Integer := 1;

task type Read_Count;

task body Read_Count is

begin
delay 10.0;
Put (count) ;
end;
T1, T2 : Read_Count;
begin
null;
end P;

Example 2.2: Termination of local tasks

Example 2.2 shows a procedure P that includes the definition of a local variable (count)
and the definition of two local tasks T1 and T2 accessing count. If P did not wait for T1 and
T2 to terminate, then the local variable count would disappear and the execution of the two
tasks would be erroneous. This situation is shown in Figure 2.7.

T2

T1
del ay 10.0; I
null; T del ay 10.0;

|
|
|
!
|
-- Pisterminated and |
-- count does not exist |

|

|

|

|
|
|
!
|
|
!
Put (count); }
-- €rroneous Put (count); -
-- erroneous
Figure 2.7: An erroneous execution of Example 2.2

The correct execution is given in Figure 2.8. Although P is completed, it must not terminate.
P has to wait until T1 and T2 are terminated. After termination of T1 and T2, P may
terminate, too.

30

B

T1 T2

nul l; T

-- Pis completed but
-- may not terminate
--sinceTland T2

-- have not terminated

Put (count); -

Put (count); -

-- After termination
--of TLland T2, P may
-- terminate, too

Figure 2.8: A correct execution; P has to wait for its dependent tasks to terminate

After describing how an Ada task terminates, we have to consider how a task may reach
its final end. There are the following ways of completion:

1. The Ada task reaches the final end of its body (after normal execution)

2. Control is transferred out of the task due to a requeue statement

R

Control is transferred out of the task due to selection of a terminate _alternative
4. Control is transferred out of the task due to raising of an exception
5. Control is transferred out of the task due to an abort statement

In the first 3 cases completion is called normal, otherwise completion is called abnormal.
The requeue statement will be explained in Chapter 4.

If a task is blocked at a select statement (see Chapter 4) with an open terminate alternative,
the open terminate alternative is selected if and only if the following conditions are satisfied:

e The task depends on some completed master M.

e Each task that depends on M is either already terminated or similarly blocked at a
select statement with an open terminate _alternative.

When both conditions are satisfied, the task considered becomes completed together with
any tasks that depend on M and that are not yet completed.

If an exception is propagated by the elaboration of the declarative part of a task T,
the activation of T is defined to have failed and T becomes completed. In such a case the
predefined exception Tasking_Error is raised in the unit containing the activation of T. This
is due to the fact that exceptions raised in a declarative part of a body are not handled by
the exception _handler of that body.

On the other side, if an exception is raised by the execution of a task _body the execution
is not propagated further. That means, if an exception is not handled by a task at all the task
is abandoned and the exception is lost. To avoid such “silent death” of tasks, all significant
tasks should have a general exception handler at the outermost level.

31

2.2.1.2 Aborting a Task

The abort _statement unconditionally terminates one or more tasks. The syntax is as follows:
abort statement ::= ABORT task_name {, task_name}

An abort statement causes one or more tasks to become abnormal, thus preventing any
further interaction with such tasks. For the execution of an abort statement, the given
task names are evaluated in an arbitrary order. Then each task is aborted. That consists
of making the task abnormal and aborting the execution of the corresponding task body
unless it is already completed. The order in which tasks become abnormal is not specified
by the language. If a task is aborted, all dependent tasks are also aborted except for tasks
executing an abort-deferred operation. Abort-deferred operations are operations that cannot
be aborted; their execution continues to completion.
The following are abort-deferred operations:

e a protected action (see Chapter 5)

the execution of an accept statement (see Chapter 4) after calling the corresponding
entry

waiting for the termination of dependent tasks

the execution of an Initialize procedure of a controlled object

the execution of a Finalize procedure as part of the finalization of a controlled type

e an assignment to an object with a controlled part

A task is allowed to abort any task it can name, including itself. If we abort a task T
that is currently blocked and that is outside an abort-deferred operation, then T completes
immediately. These immediate effects occur before the execution of the abort statement
completes. Other than for these immediate cases, the execution of a construct that is aborted
does not necessarily complete before the abort statement completes.

However, the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation. Abort comple-
tion points are:

e the point where the execution initiates the activation of another task
e the end of the activation of a task

e the start or end of the execution of an entry call, accept statement, delay statement,
or abort statement

e the start of the execution of a select statement or of the sequence of statements of an
exception handler

The use of the abort statement is illustrated by Example 2.3 and Figure 2.9.

32

with Ada.Text_Io;

use Ada.Text_Io;

procedure Aborting_Tasks is
task type Delayed_Increasing;
task body Delayed_Increasing is

a : Integer :=1;
begin
for T in 1 .. 10 loop
a = a+1;
delay 0.5;
end loop;

end Delayed_Increasing;

Taskl

Task?2
begin

Put_Line ("Start");

delay 2.0;

Put_Line ("Abort");

abort Taskl, Task2;
end Aborting_Tasks;

: Delayed_Increasing;
: Delayed_Increasing;

Example 2.3: Using the abort statement

Aborting_Tasks
Put_Line ("Start"); ar=a+l
delay 0.5;
delay 2.0

i a:=a+l;

i delay 0.5;

3 a=a+1;

i delay 0.5;

i a=a+1l

Put_Line ("Abort"); 717 delay 0.5

Q0N TaskL, TAK; v

Figure 2.9: A possible execution for Example

33

2.3

a=a+1;

delay 0.5;

a=a+1l;

delay 0.5;

a:=a+1l;

delay 0.5;

2.2.2 Termination of CHILL Process Instances and Tasks
2.2.2.1 Termination of CHILL Process instances

There are the following possibilities for a CHILL process instance to terminate:
e reaching the end of the body of the process instance
e executing a stop action

The stop action has the following syntax:

<stop action> ::=
STOP

The stop action is always applied to the process instance invoking it; it is not possible to
invoke the stop action for another process instance. A stop action terminates the process
instance executing it. That means, a process instance can only terminate itself but it is not
able to terminate other process instances.

If an exception is caused and the handler specified at the end of the process definition
is appropriate for this exception, then the handler is entered. The syntax of a handler is as
follows:

<handler> ::=
ON {<on-alternative>}* [ELSE <action statement list>] END
<on-alternative> ::=
(<exception list>) : <action statement list>

If an exception is mentioned in an exception list in an on-alternative in the handler, the corres-
ponding action statement list is entered; otherwise ELSE is specified and the corresponding
action statement list is entered.

When the end of the chosen action statement list is reached, the handler and the construct
(e.g. a process) to which the handler is appended are terminated.

Since nesting of processes is not allowed, the earlier mentioned problem of task dependence
can only occur at the outermost program level. In such a case — if the imaginary outermost
process executes a stop action or reaches the end of its body — the termination will be
completed when and only when all other tasks in the program are terminated.

2.2.2.2 Termination of CHILL Tasks

A CHILL task is terminated if its task mode location is destroyed, i.e., if the lifetime of the
location ends. The block containing the definition of the task mode location may only be
left if the task is not running; otherwise the block must not be left.

If the task mode location was created by a declaration without the attribute STATIC,
then its lifetime ends when the block where it was declared is left.

If the task mode location was created by a declaration with the attribute STATIC, then
its lifetime ends when the imaginary outermost process terminates.

If the task mode location was created by executing a GETSTACK built-in routine call, its
lifetime ends when the directly enclosing block terminates.

If the task mode location was created by an ALLOCATE built-in routine call, its lifetime
ends when the location cannot be accessed anymore by any CHILL program. This is always
the case if the TERMINATE built-in routine is applied to an allocated reference value that
references the location.

34

2.2.3 Termination of Java Threads

An activated Java thread T can terminate because of one of the following reasons:

1. The initial invocation of the run() method of T completes normally through a normal
return from the run() method.

2. The initial invocation of the run() method of T completes abruptly because an excep-
tion was thrown.

3. T invokes its own stop() method.

4. Some other thread invokes the stop() method of T.

5. T invokes its own destroy() method.

6. Some other thread invokes the destroy() method of T.

7. Some thread invokes the exit () method of class Runtime or class System.

stop()

run() completes normally

run() completes abruptly
because an exception was raised

\//'

destroy()

runnable dead

exit()
Figure 2.10: Changing the state of a Java thread from runnable to dead

When an exception is thrown, control is transferred from the code that caused the excep-
tion to the nearest dynamically-enclosing catch clause of the try statement that handles the
exception.

If the current thread T contains a catch clause handling the exception, the block of the
catch clause is executed. The code that caused the exception is never resumed.

If T contains no catch clause handling the exception, then T is terminated and the
exception is propagated further to the dynamically-enclosing block.

The stop() method reads as follows:
public final void stop() throws SecurityException

First, the checkAccess () method of the thread whose stop() was invoked is called with no
arguments. This checks whether the stop() operation is permitted.

If the caller is not permitted to execute the stop() method, a SecurityException is
thrown.

If the caller is permitted to execute the stop() method, the thread whose stop() was
invoked is forced to complete abnormally whatever it was doing and to throw a ThreadDeath
object as an exception. For this purpose, this thread is resumed if it had been suspended, and

35

it is awakened if it had been asleep. If there is no catch clause handling ThreadDeath (as in
Example 2.4), all finally clauses are executed. (In Example 2.4, the message ‘“‘Something
went wrong !’ is printed in those executions where al is still runnable while al.stop() is
executed.). After this the thread is terminated.

This kind of termination has 2 advantages:

1. The execution of the finally clauses allows some cleanup action to be performed.

2. All synchronization locks held by the thread object are released.

Normally, user code should not try to catch ThreadDeath unless some extraordinary cleanup
operation is necessary. If a catch clause catches a ThreadDeath object, then it is important
to rethrow the object so that the thread will actually die.

It is permitted to stop a thread that has not yet been started. If the thread is eventually
started, it will immediately terminate.

The destroy method is as follows:
public final void destroy() throws SecurityException

First, the checkAccess() method of the thread whose destroy() was invoked object is
called. This may result in a SecurityException being thrown in the thread invoking
destroy(). Then the thread whose destroy () was invoked is destroyed without any cleanup.
Any monitors this thread has locked remain locked.

This method is not implemented in early versions of Java, through 1.1. (That is why we
did not use this method in Example 2.4.)

Finally, we have the exit () method of class Runtime:
public void exit(int status) throws SecurityException

First, if there is a security manager, its checkExit () method is called with the status value
as its argument. (A running Java program may have a security manager, which is an instance
of class SecurityManager. The security manager contains a large number of methods that
check whether certain sensitive operations are permitted.) The checkExit () method checks
whether the thread is permitted to execute the exit() operation.

The exit() method terminates the currently running Java Virtual Machine M. This
stops every thread being run by M. The argument serves as a status code; by convention, a
nonzero status code indicates abnormal termination. This method never returns normally.

The problem of task dependence (like in Ada) does not arise in Java. If the scope of a
thread variable is left, then only the reference to the thread object ceases to exist but the
thread object may still be running. The only restriction is that the JVM may not terminate
until all threads are terminated.

We conclude this section with an example showing the use the methods described above.

class actor extends Thread {
private String s;
public actor (String s) {
this.s = s;

3

36

public void run() {
try {
for (int i=0; i<10000; i++)
System.out.println (s);
finally {
System.out.println (‘“Something went wrong !’’);

}

}

public class exiting_threads {
public static void main (String args([])
throws InterruptedException {
actor al = new actor("Actor 1");
actor a2 = new actor("Actor 2");
actor a3 = new actor("Actor 3");
al.start(Q);
a2.start();
a3.start();
al.stop(Q);
Thread.sleep (20);
a2.join();
a3.join();
System.exit(-1);
//This code will never be executed
Thread.sleep (1000000000) ;

Example 2.4: Termination of Java threads

37

al.start(); —f— s o

a2.start(); —— R

a3d.start(); [e T

al.stop(); T T —

Thr ead. sl eep(20) ; -

a3.join(); I

Systemexit(-1); i

Figure 2.11: A possible execution of Example 2.4

Summary and Comparison

Our intention was to examine the constructs for suspending, resuming, and termination of
actors.

Suspending and Resuming

When considering suspending and resuming of actors, we conclude that Java provides us
with the most features.

A Java thread may suspend and resume any other threads that are visible to it and it
can delay itself until a certain amount of time has elapsed by invoking the sleep() method
of class Thread. Finally, a Java thread may wait for another thread to terminate by calling
the join() method of that thread.

Ada has the package Ada.Asynchronous_Task_Control containing the procedures Hold
and Continue. But there is the limitation that its support depends on the target environ-
ment.

CHILL has no features for suspending and resuming of process instances or tasks.

38

Termination

In each language, an actor can terminate by reaching its final end after normal execution or
by causing an exception.
Now we consider the features for explicit termination of actors.

Again, Java contains the richest set of capabilities. Java allows threads to

e safely terminate other threads by invoking the stop() method that allows performing
of cleanup and releasing of synchronization locks

e abruptly destroy other threads without any cleanup and without releasing synchroniz-
ation locks by invoking the destroy() method

e exit the whole program by invoking the exit () method, which terminates the currently
running Java Virtual Machine

Ada provides the ABORT statement that allows a task to terminate all other tasks it can name
by making them abnormal. This kind of termination can be considered as safe termination
and is similar to the stop() method in Java.

CHILL has no possibilities that allow an actor to terminate other actors. A CHILL process
instance may only terminate itself by calling the STOP method.

39

40

