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Mechanical Program Verification Overview

Overview

• Historical Overview, Basic Concepts, Realistic Progr Verific

• Mechanical Program Verification (MPV)

• Comparison of 3 Automatic Program Provers (APP)

• The Frege Program Prover (FPP) in More Detail

• Mechanical Generation of Invariants for FOR-Loops

• Problems of FPP (and others)

• Towards Realistic Verification Conditions (VC)

• Summary
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Mechanical Program Verification Overview

Part 4

• Problems of FPP (and others)

• Towards More Realistic VCs

• Summary
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Mechanical Program Verification FPP is exp system

FPP is an Experimental System

small subset of Ada
arrays and subprograms are the elements most missed

somewhat naive verification conditions
e.g. assumption  integer = Ÿ

program developer must write longer assertions
=>  main problem:  no soundness

if FPP says “proved“ the program may be incorrect !!!
no completeness is a smaller problem

based on Mathematica (2.2) and Analytica
Mathematica is also not sound:  0x = 0:   0-1 = 1/01 ???  [CZ 92: 27]
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Mechanical Program Verification Correctness

Correctness - 1

AdaZ-Program =  Program + Specification + Comments  
(asserted program: ap)

Program  p =  non-comment part  of the AdaZ-program
Specification  q =  assertion-part of the AdaZ-program
Asserted prog ap = (p, q)
Comments =  the rest

Correctness ≡ p  conforms to q  (p ≤ q)
this is meant wrt to the two relations of  p  and  q 
we assume that these relations describe the behavior of
p  as specified by the Ada lang spec 

(e.g. finite domains for number types)
“ap is correct” or “ap is valid”

Incorrectness ≡ ¬correctness
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Mechanical Program Verification FPP not sound

Correctness - 2

FPP-correctness ≡ FPP says „proved“ 

FPP-Soundness   ≡ FPP-correctness  ⇒ Correctness

If FPP says „not proved“ there are two possibilities:
¬(p ≤ q)
p ≤ q  but  FPP cannot prove it

correct ap‘s

FPP-correct ap‘s incorrect ap‘s

all ap‘s
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Mechanical Program Verification Naive Counter

Integer = Ÿ

-- naive counter
--!pre: x = cx;

x := x+1;
--!post: x = cx+1;

--!pre       : (x = cx) 
--> wp       : (1 + x = 1 + cx) 
--> vc       : (x = cx => 1 + x = 1 + cx) 
--> Result: proved
x := x + 1; 
--!post      : (x = 1 + cx)

=>  spec is idealistic  ( suitable for Cantor’s Paradise)

Execution with

xc = integer’last

raised CONSTRAINT_ERROR : 
naive-count.adb:7 
overflow check failed
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Mechanical Program Verification Dangerous Consequence

Integer = Ÿ

That was the worst that can happen for an APP (the “deadly sin of PV”)

APP says  “proved”

=>  people feel secure and safe

but  the program (may be that which controls an air-plane)  crashes at runtime
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Mechanical Program Verification Semi-naive Counter

Integer = Ÿ
-- semi-naive counter
--!pre: x = cx and -100 <= x and x <= 100;

x := x+1;
--!post: x = cx+1 and -100 <= x and x <= 100;

--!pre : (x = cx AND -100 <= x AND x <= 100) 
--> wp : (1 + x = 1 + cx AND -100 <= 1 + x AND 1 + x <= 100) 
--> vc : (x = cx AND -100 <= x AND x <= 100) 
--> ==> (1 + x = 1 + cx AND -100 <= 1 + x AND 1 + x <= 100) 
--> Result: not proved
--> fc : (-99 + cx >= 1 AND 100 - cx >= 0 AND 100 + cx >= 0)
x := x + 1; 
--!post : (x = 1 + cx AND -100 <= x AND x <= 100) 

=>  spec is adequate   =>  program is not adequate

Type condition
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Mechanical Program Verification Semi-prof Counter

Integer = Ÿ
-- semi-professional counter
--!pre: x = cx and -100 <= x and x <= 100;

IF x<100
THEN x := x+1;
END IF;

--!post: ((cx<100 ∧ x=cx+1) or (cx=100 ∧ x=cx))  ∧ -100<=x ∧ x<=100;

--!pre      :   (x = cx AND -100 <= x AND x <= 100) 
--> wp     :   (100 >= 1 + x)  . . .
--> vc     :    (x = cx AND -100 <= x AND x <= 100)    ==>    (100 >= 1 + x) . . .
--> Result: proved
IF x < 100 THEN  

x := x + 1; 
END IF; 
--!post  (100 >= 1+cx  ∧ x = 1+cx OR cx = 100  ∧ x=cx)  ∧ (-100 <= x) ∧ (x <= 100)

=>  professional counter ???  =>  exercise for the audience
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Mechanical Program Verification Problematic Expressions

Problematic expressions - 1
--!pre: true;

b := 0/0 = 0/0;
--!post: b;

Ada-compilation

undef01.adb:6:10: division by zero

undef01.adb:6:10: static expression raises 
„Constraint_Error“

Java

compilation successful
Exception in thread "main" 
java.lang.ArithmeticException: / by zero

at Undef01.main(Undef01.java:5)

1): „Rules of Logic“:  http://cerebro.xu.edu/csci370/00f/Assignments/LogicOverheads/
RulesOfLogic.pdf#search=%22logical%20laws%20equivalence%20reflexivity%22

2006.Sep.29

1. Reflexivity of equivalence:   E ≡ E 1)

--!pre       : (True) 
--> wp       : (True) 
--> vc       : (True) 
--> Result: proved
b := 0 / 0 = 0 / 0; 
--!post      : (b)
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Mechanical Program Verification Idealism

Problematic expressions - 2

=> mechanical program verification means that the APP must deal
in a sensible and SOUND manner with ANY INPUT

=> same situation as with  naïve counter

In mathematics division by zero is just “forbidden” or at least evaded:

“At first sight we can't add a symbol to express 1/x, since all the named functions have to be defined 
on the whole domain of the structure, and there is no such real number as 1/0. But on second 
thoughts this is not a serious problem; any competent mathematician puts the condition ‘x is not zero’ 
before dividing by x, and so it never matters what the value of 1/0 is, and we can harmlessly take it to 
be 42. 
But most model theorists are uncomfortable with any kind of division by zero, so they 
stick with plus, times and minus.”

http://plato.stanford.edu/entries/modeltheory-fo/        2005.Jan.30

That is no solution here
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Mechanical Program Verification Problematic Expressions

Problematic expressions - 4
X: integer;
. . .

--# assert True;
X := 1/(X-X);

--# assert 1/(X-X) = 1/(X-X);
X := 1;

--# assert X=1;

SPARK95  5.01  Examiner + Simplifier:

“all conclusions proved”

2004.Jul.13
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Mechanical Program Verification Tertium non datur?

Problematic expressions - 3

let  a and b  be two numerical variables

What is the value of:

(a < b)  ∨ (a >= b)      ???

where  “<“ and  “>=“ are predeclared operations in some programming 
language.
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Mechanical Program Verification Realism

Towards realistic semantics and VCs
Semantics is specified by wp-rules
VC:  pre ⇒ wp(progr, post)

schema for loops
adaptation rule for procedure calls

Assumptions
ap is syntactically legal
ap is legal wrt static context conditions of the resp language

all entities properly defined
legal typing
accessibility

no function calls in expressions

Must also be checked by APP but are not expressed in the VCs
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Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs
Assignment

variable  :=  expression; -- let v be scalar

v := e;

wp(“v := e;”, post)   ≡ ec(‘e)  |∧ (e ∈ Type(v)  ∧ postve)

ec(‘e) :  e can be effectively computed (eg no exceptions)
this includes also the eff computation of all intermediary results
‘e means: no evaluation or simplification of  e

|∧ :  evaluate from left to right
stop if value is definitely true or false

Type(v) :  the value set of the type of  v
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Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs
ec(‘v)  ≡ true

ec(‘literal)  ≡ literal  ∈ Type(literal)

v := v; -- Type(v) = [1, 10]

wp(“v := v;”, true)  ≡ ec(‘e)  |∧ (e ∈ Type(v)  ∧ postve) 

≡ ec(‘v) |∧ (v ∈ [1, 10] ∧ truev
v) 

≡ true  |∧ (v ∈ [1, 10]  ∧ truev
v) 

≡ v ∈ [1, 10]  ∧ truev
v

≡ v ∈ [1, 10] ∧ true

≡ v ∈ [1, 10]

=>  this solves the Pascal example
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Mechanical Program Verification Realistic Division

Towards realistic semantics and VCs

ec(‘(e1/e2))  ≡ -- integer division 

ec(‘e1) |∧ ec(‘e2) |∧ (e2 ≠ 0 ∧ e1 ∈ Type(/.lo) ∧ e2 ∈ Type(/.ro))

wp(“x := 1/(x-x);”, true)

≡ -- assg rule:   ec(‘e)  |∧ (e ∈ Type(v)  ∧ postve)

ec(‘(1/(x-x))) |∧ (1/(x-x) ∈ Type(x)  ∧ truex
1/(x-x))

≡ [ec(‘1) |∧ ec(‘(x-x)) |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [1 ∈ Int |∧ ec(‘(x-x)) |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [ [ec(‘x) |∧ ec(‘x) |∧ (x ∈ Type(-.lo) ∧ x ∈ Type(-.ro))] 
|∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))
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Mechanical Program Verification Realistic Division

Towards realistic semantics and VCs

≡ [ [ec(‘x) |∧ ec(‘x) |∧ (x ∈ Int ∧ x ∈ Int)] 
|∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [ x ∈ Int  |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [ x ∈ Int  |∧ (0 ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [ x ∈ Int  |∧ (False ∧ 1 ∈ Int ∧ x-x ∈ Int)]  
|∧ (1/(x-x) ∈ Type(x)  ∧ truex

1/(x-x))

≡ [ x ∈ Int  |∧ False]  |∧ (1/(x-x) ∈ Type(x)  ∧ truex
1/(x-x))  

≡ False

=>  better than  FPP  and  SPARK
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Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs

wp(“v := e;”, post)   ≡ ec(‘e)  |∧ (e ∈ Type(v)  ∧ postve)

everything OK now ?

what about problematic expressions in assertions ?
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Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs
--!pre: y >= 0;

x := 0;
--!post: y/y > 0;

Sometimes  people (and tools) apply naively:  y/y = 1
--!pre: y >= 0;

x := 0;
--!post: 1 > 0;

wp(“x := 0;”, True) ≡ ec(‘0)  |∧ (0 ∈ Type(x)  ∧ Truex
0)

≡ True  |∧ (0 ∈ Type(x)  ∧ Truex
0)

≡ 0 ∈ Type(x)  ∧ Truex
0

≡ True

pre  ⇒ wp(“x := 0;”, True)
≡ y>=0  ⇒ True  
≡ True



12.10.2007 © J F H Winkler, 2006 22

Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

Assume:  y has a proper value:  y=0 ∨ y≠0

Then     (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ≡ True

--!pre: y >= 0;
x := 0;

--!post: y/y > 0;

wp(“x := 0;”, y/y > 0)
≡ ec(‘0) |∧ (0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ (y/y > 0)x

0)
≡ True  |∧ (0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ (y/y > 0)x

0)
≡ 0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0
≡ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0
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Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

〈∀x, y: pre  ⇒ wp(“x := 0;”, y/y > 0) 〉
≡ 〈∀x, y: y >= 0 ⇒ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0 〉

≡ 〈y >= 0 ⇒ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0 〉y0 ∧ R
≡ 0 >= 0 ⇒ (0=0 ⇒ 0/0 = NaN) ∧ (0≠0 ⇒ 0/0 = 1) ∧ 0/0 > 0 ∧ R
≡ True ⇒ (True ⇒ 0/0 = NaN) ∧ (False ⇒ 0/0 = 1) ∧ 0/0 > 0 ∧ R
≡ 0/0 = NaN ∧ True ∧ 0/0 > 0 ∧ R
≡ 0/0 = NaN ∧ NaN > 0 ∧ R
≡ -- C#, Java:  NaN > 0 ≡ False
≡ 0/0 = NaN ∧ False ∧ R
≡ False

This is more realistic
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Mechanical Program Verification Division in IEC 60 559

Towards realistic semantics and VCs

For floating point division  x/y  in C# (IEC 60 559) :
x, y  means proper value ≠ 0
(Table from  ECMA-334 June 2006)

+y –y +0 –0 +∞ –∞ NaN 

+x +z –z +∞ –∞ +0 –0 NaN 
–x –z +z –∞ +∞ –0 +0 NaN 
+0 +0 –0 NaN NaN +0 –0 NaN 
–0 –0 +0 NaN NaN –0 +0 NaN 
+∞ +∞ –∞ +∞ –∞ NaN NaN NaN 
–∞ –∞ +∞ –∞ +∞ NaN NaN NaN 
NaN NaN NaN NaN NaN NaN NaN NaN 
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Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

Sometimes  people (and tools) naively apply:  (a*c)/(b*c) = a/b

--!pre: a>0 and b>0 and c=0;
cond := (a*c)/(b*c) = a/b;

--!post: cond;

User: 141.35.12.27       At: 2006.09.22, 8:59

--!pre       : (a >= 1 AND b >= 1 AND c = 0) 
--> wp       : (True) 
--> vc       : (True) 
--> Result: proved !!!!!
cond := (a * c) / (b * c) = a / b; 
--!post      : (cond)
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Mechanical Program Verification Realistic IF

FPP:  AdaZ: wp

d) if-statement

wp(“if Cond Then S1 Else S2 End If;”, post)  ≡

Cond ∧ wp(“S1”, post)  ∨ ¬Cond ∧ wp(“S2”, post)

Cond must also be effectively computable

wp(“if Cond Then S1 Else S2 End If;”, post)  ≡

ec(‘Cond) |∧ [Cond ∧ wp(“S1”, post)  ∨ ¬Cond ∧ wp(“S2”, post)]

Cond ∈ Boolean seems guaranted (at least in IEC 60559)
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Mechanical Program Verification Realistic FOR

Towards realistic semantics and VCs
f) FOR-loop:  VC  (based on [Hoa 72])

-- pre
FOR  id  IN  e1 .. e2
LOOP 

-- e1≤e2 ∧ invid
pred(id)

statm-sequence (ss)
-- inv

END LOOP;
-- post

init ≡ e1≤e2 ∧ pre  ⇒ invid
pred(e1)

null ≡ e1>e2 ∧ pre  ⇒ post

ind ≡ e1≤e2 ∧ invid
pred(id) ⇒ wp(ss, inv)

final ≡ e1≤e2 ∧ invid
e2 ⇒ post

VC ≡ init ∧ null ∧ ind ∧ final

e1 and e2 must also be effectively computable

=>  VC   ≡ ec(‘e1) |∧ ec(‘e2) |∧ e1,e2 ∈ Type(id) ∧ init ∧ null ∧ ind ∧ final 
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Mechanical Program Verification Realistic WHILE

Towards realistic semantics and VCs
f) WHILE-loop:  VC 

-- pre
-- inv

WHILE  cond
LOOP 

-- inv ∧ term>0 ∧ term=T
statm-sequence (ss)

-- inv ∧ term<T
END LOOP;

-- post

initf ≡ pre  ⇒ inv 
nullf ≡ inv ∧ ¬cond ⇒ post

initt ≡ cond ∧ inv  ⇒ term>0
indf ≡ cond ∧ inv  ⇒ wp(ss, inv)
indt ≡ cond ∧ inv  ⇒ [wp(ss, term<T)]Tterm

finalf ≡ inv ∧ ¬cond ⇒ post

VC ≡ initf ∧ indf ∧ finalf ∧ initt ∧ indt

cond must also be effectively computable

=>  VC   ≡ ec(‘cond) |∧ initf ∧ indf ∧ finalf ∧ initt ∧ indt
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Mechanical Program Verification Summary

Summary
• Historical overview:  GvN, Turing, Floyd, Hoare, Dijkstra

• Serious Program Verification

• Mechanical Verification of real programs
APP computes and tries to prove  VC

• Comparison of APPs (FPP, NPPV, SPARK-aut)

• Mechanical generation of invariants for FOR-loops
• No Soundness due to idealistic APPs  (e.g. integer = Ÿ )

• Towards more realistic VCs
how do real programs work ?    (  (a < b) ∨ (a ≥ b) )

• Undefined expressions have to be tackled   ( (a*c)/(b*c) = a/b )

• More logic at school and university necessary  ( e ⇒ true )
especially: more practice in logical calculations
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Mechanical Program Verification PV History

Program Verification: History

1947 Goldstine / v. Neumann : flow diagrams + assertions

1949 Turing : flow diagrams + assertions

1967 Floyd : flow diagrams + assertions

1969 Hoare : derivation system for valid triples

1976 Dijkstra : function (wp) and schemas for valid triples

2003 Hoare : Verifying compiler as a grand challenge

2006 Hoare (Budapest*)) : Program Verifier as 
Grand Challenge of Informatics

*): http://www.cs.bme.hu/~szeredi/ae-is-budapest/symp.html#SECTION00031000000000000000
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Mechanical Program Verification Serious Progr Verif

Program Verification (serious viewpoint)

ps ≤ (pre, post)  is not sufficient

po ≤ (pre, post) is the really important thing

po ≤ ps ∧ ps ≤ (pre, post)  ⇒ po ≤ (pre, post)

Correctness of the compiler

{pre} ps {post}

Comp

po

And you gave the hint:  correctness of the OS, Processor, Loader, …

And we all forgot: correctness of the APP

was the first question to Hoare after his talk on 2006.Sep.19
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Mechanical Program Verification No Soundness

Correctness - 2

Soundness:   FPP-correctness  ⇒ Correctness

--!pre       : (a >= 1 AND b >= 1 AND c = 0) 
--> wp       : (True) 
--> vc       : (True) 
--> Result: proved !!!!!
cond := (a * c) / (b * c) = a / b; 
--!post      : (cond)

correct ap‘s

FPP-correct ap‘s incorrect ap‘s

all ap‘s
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Mechanical Program Verification Conclusion

Conclusion

Mechanical Program Verification

• promises great advantages

• is still in its infancy

• requires a realistic logic and realistic VCs

• is a whole new technology  (as e.g. compiling)

• a “Great Challenge”

=>  a lot of work to do   (beginning at school)

and … don’t be afraid of heuristics
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Mechanical Program Verification

Thank  you very much

I hope you‘ve learnt something

Good Bye
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Rest
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