
FSU M+I FPP

A C O M P A R I S O N O F T H E

P R O G R A M P R O V E R S

F P P , N P P V A N D S P A R K

Jürgen F H Winkler

Friedrich Schiller University

winkler@informatik.uni-jena.de

Course “Mechanical Program Verification”

ELTE, Budapest Oktober 2007

Program Provers 1 F-FPP-100 J.Winkler

FSU M+I FPP

O V E R V I E W

What is and what does a program prover?

FPP (= Frege Program Prover)

NPPV (= New Paltz Program Verifier)

SPARK (SPADE Ada Real-time Kernel)

Comparison Results

Some examples

Outlook

References

Program Provers 2 F-FPP-100 J.Winkler

FSU M+I FPP

W H A T I S A P R O G R A M P R O V E R ?

 PROG SPEC

Program
Prover

 OK / Not OK
(counterexample)

Program Provers 3 F-FPP-100 J.Winkler

FSU M+I FPP

S P E C : S P E C I F I E S W H A T T H E
P R O G R A M P S H A L L D O

Example1

 increment the value of X

 new / final value of X = old / initial value of X + 1

e.g. Hehner, Z X’ = X +1

 pre: X = Xk suitable for
practical program
development post: X = Xk+1

Program Provers 4 F-FPP-100 J.Winkler

FSU M+I FPP

E X A M P L E 1 I S T O O N A Ï V E

In real programs variables have a finite range

 i.e. at all points where the variable X can be ob-

served X ∈ Type(X) must hold: e.g. 0 ≤ X ≤ 100

 pre: X = Xk ∧ 0 ≤ X ≤ 100

 post: X = Xk+1 ∧ 0 ≤ X ≤ 100

 Xk is a constant and NOT a program variable

 (also called specification variable)

Program Provers 5 F-FPP-100 J.Winkler

FSU M+I FPP

T H E P R O G R A M P I S I N S E R T E D
B E T W E E N P R E A N D P O S T

 pre: X = Xk ∧ 0 ≤ X ≤ 100

 P

 post: X = Xk+1 ∧ 0 ≤ X ≤ 100

Often we find the naive Increment program X := X + 1;

 pre: X = Xk ∧ 0 ≤ X ≤ 100

 X := X + 1;

 post: X = Xk+1 ∧ 0 ≤ X ≤ 100

Let Xk=100

 pre: X = 100 ∧ 0 ≤ X ≤ 100

 X := X + 1;

 post: X = 100+1 ∧ 0 ≤ X ≤ 100 <=== !!!

===> P is NOT correct

Program Provers 6 F-FPP-100 J.Winkler

FSU M+I FPP

W H A T I S

P R O G R A M C O R R E C T N E S S ?

Total correctness: Start P in a state in which pre is true

 P terminates after finite time and then
 post is true

Partial correctness: Start P in a state in which pre is true

 After regular termination of P
 post is true

H O W T O C H E C K T H I S M E C H A N I C A L L Y ?

Program Provers 7 F-FPP-100 J.Winkler

FSU M+I FPP

V E R I F I C A T I O N C O N D I T I O N S (V C S)

The semantics of a language element E defines which pairs
 (pre, post) are consistent with E i.e.
 pre
 E
 post

is correct

This relation between pre, post and E is called a
verification condition (VC).

Weakest precondition (wp) and strongest postcondition (sp)
are two calculi for VCs.

All three tools use wp.

 VC for wp : (∀ Var : pre ⇒ wp(E, post))

Example : wp for assignment

 wp(’’X := e ;’’ , post) ≡ e ∈ Type(X) ∧ postX
e

This can be computed mechanically

Program Provers 8 F-FPP-100 J.Winkler

FSU M+I FPP

W H A T D O E S A N
A U T O M A T I C P R O G R A M P R O V E R ?

 --!pre: X =Xk ∧ 0 ≤ X ≤ 100
X := X+1;
 --!post: X = Xk+1 ∧ 0 ≤ X ≤ 100

(FPP)

 --! FC: X=100
X := X+1;
 --!post: X = Xk+1 ∧ 0 ≤ X ≤ 100

 --!VC: X =Xk ∧ 0 ≤ X ≤ 100 ⇒ X = Xk ∧ -1 ≤ X ≤ 99
 --! not proved

 --!pre: X =Xk ∧ 0 ≤ X ≤ 100
 --!wp: X+1 = Xk+1 ∧ 0 ≤ X+1 ≤ 100

1) Generate VCs

2) Try to prove VCs

3) If no success

generate FCs

SPEC + PROG
(legal Ada)

FC: Falsification
 Condition

Program Provers 9 F-FPP-100 J.Winkler

FSU M+I FPP

F P P - 1

Programming Language
 Subset of Ada: integer and Boolean
 null, assg, IF, CASE, WHILE, FOR

Assertion Lang: Ada Boolean expressions
 + quantifiers (forall, exists)
 + implication (=>)
 + predefined functions (min, sum, ...)
 --!pre: x >= 0;

Functionality compute wp
 compute and prove VC
 compute FC

Application in the WWW

Input : Spec + Prog in one “file“ (legal Ada)

Output: Spec + Prog + Result in one “file“

Authors: Knappe/Kauer/Winkler

 Friedrich Schiller Univ Jena
http://psc.informatik.uni-jena.de/FPP/FPP-main.htm

Intention: experimental system for
 educational purposes

Program Provers 10 F-FPP-100 J.Winkler

http://psc.informatik.uni-jena.de/FPP/FPP-main.htm

FSU M+I FPP

N P P V

Programming Language
 Subset of Pascal integer and integer array
 assg, IF, WHILE, FOR

Assertion Language Pascal Boolean expressions
 { x >= 0 }

Functionality compute and prove VC

Standalone application

Input Spec + Prog in one “file“

 may be illegal Pascal

Output Result in one “file“

Author: P. Gumm

 State Univ of New York at New Paltz
 (now: Univ of Marburg)

http://www.mathematik.uni-marburg.de/~gumm/NPPV/nppv.html

Program Provers 11 F-FPP-100 J.Winkler

FSU M+I FPP

N P P V

 { x = xk and 0<=x and x<=100 }
BEGIN x:=x+1 END
{ x=xk+1 and 0<=x and x<=100 }

(NPPV)

x=xk AND 0<=x AND x<=100
 ==> x+1=xk+1 AND 0<=x+1 AND x+1<=100
--------- Remains to prove ---------
0<=xk AND xk<=100
 ==>
 0<=xk+1 AND xk+1<=100
=====================================
 FINISHED

=====================================
=== Verification Condition No.: 1 ===

Trying to prove : work.ver
Generating verification conditions... O.K.

1) Generate VCs

2) Try to prove VCs

SPEC + PROG
(legal Pascal)

Program Provers 12 F-FPP-100 J.Winkler

FSU M+I FPP

S P A R K

Programming Language
 Subset of Ada quite large subset

Assertion Language Ada Boolean expressions
 + quantifiers
 + implication
 --# assert x >= 0 ;

Functionality compute and prove VCs

Standalone application

Input Spec + Prog in one file

 legal Ada

Output after Examiner: 6 output files
 (.fdl, .lst, .out, .rep, .rls, .vcg)
 after Simplifier: 2 additional outp. files
 (.slg, .siv)

Supplier Praxis Critical Systems Ltd.

 System from CD in [Bar 2000]

Program Provers 13 F-FPP-100 J.Winkler

FSU M+I FPP

S P A R K

 --# assert X=Xk and 0<=x and x<=100;
 X := X+1;
 --# assert X=Xk+1 and 0<=x and x<=100;

(SPARK)

H1 ∧ H2 ⇒ C1 H2: xk <= 100 .
 ->
C1: xk <= 99 .

procedure_ex_a15vc_2.
H1: 0 <= xk .

For path(s) from assertion of line 10 to assertion of line 12:

1) Generate VCs (Examiner)

2) Try to prove VCs (Simplifier)

SPEC + PROG
(legal Ada)
(only fragment of
 input)

Program Provers 14 F-FPP-100 J.Winkler

FSU M+I FPP

Comparison between FPP, NPPV and SPARK

FPP is an experimental program prover

supports only some language elements

contains errors

 we wanted to know where we stand

first comparison FPP vs NPPV in 1999
 (Kauer / Winkler [KW 99])

second comparison FPP, NPPV, SPARK in 2002

 (Freining / Kauer / Winkler [FKW 2002])

How to compare ?

 functional and usability aspects

 26 examples: 20 from the NPPV distribution
 5 from Kauer
 1 from Gravell and Hehner [GH 99]

Program Provers 15 F-FPP-100 J.Winkler

Property FPP NPPV SPARK-aut
programming language subset of Ada; FRAGMENTS subset of Pascal FRAGMENTS subset of Ada; COMPLETE PROGRAMS
assertion language subset of Ada expressions extended

with quantifiers, implication and the
additional functions abs, min, max, ggt,
sum, factorial, fib

subset of Pascal expressions,
enclosed in { }; true is expressed
by {}

subset of Ada expressions extended with quan-
tifiers, implication, equivalence, proof vari-
ables and functions, and update of structured
objects

form of assertions special comments: --! {}comments and [...] special comments: --#
multiline assertions supported supported supported
supported types integer and Boolean integer, array with integer index

type and integer component type
all, except tagged, access, task, and exception

supported statements NULL, assignment, IF, CASE, FOR
and WHILE loop

assignment, IF, FOR- and WHI-
LE loop

all, except goto and tasking

proof of loops precondition, postcondition, invariant
and for WHILE loops a termination
function has to be supplied

only invariant required, termina-
tion function for WHILE loops
optional

invariant can be inserted in body, termination
has to be expressed by assertions

output in a file that has the same name as the
input file, but a different extension;
output contains the statements, the VCs
and the result together

optional in a file: session.log;
output contains only verification
conditions and results

in up to 8 different files

usage local or via WWW local local
pretty printing supported not supported not supported
simplification of expr. performed to a certain extent not performed performed to a certain extent
explicit comp. of wp possible not possible not possible
theorem proving possible e.g. with null statement possible e.g. with x := x possible e.g. with null statement
implementation langua-
ge

Ada, C and Mathematica Visual Prolog SPARK, Prolog

proving power higher than NPPV and SPARK-aut only trivial rather limited
automatic theorem pro-
ver

mexana, an extension of Analytica simple rewrite system automatic Simplifier

Merkmale von FPP, NPPV und SPARK-aut

No.

Example Remark Source FPP
proved #VC #OK

NPPV
proved #VC #OK

SPARK-aut
proved #VC #OK

1 abs no abs function in NPPV Kauer PROV 1 1 NOP 2 1 NOP 2 0

2 array no arrays in FPP Gumm n.a. SOLV 1 1 NOS 1 0

3 assrek no termination function Gumm NOS 0 0 SOLV 4 4 SOLV 4 4

4 factfor Gumm PROV 5 5 NOP 5 2 NOP 4 1

5 factforty Gumm / Kauer PROV 5 5 NOP 5 1 NOP 4 1

6 fastmul no termination function Gumm NOP 6 5 NOP 6 4 NOP 9 7

7 fastmult Gumm NOP 10 7 NOP 14 7 NOP 9 7

8 fastmultty too many clauses (FPP) Gumm / Kauer NOP 0 0 NOP 14 7 NOP 10 7

9 fibo no termination function Gumm PROV 3 3 NOP 4 2 NOP 4 2

10 fibot Gumm PROV 6 6 NOP 6 3 NOP 5 3

11 fibotty Gumm / Kauer NOP 6 5 NOP 6 3 NOP 5 2

12 gauss no termination function Gumm PROV 4 4 NOP 4 3 NOP 4 3

13 gausst Gumm PROV 6 6 NOP 6 5 NOP 5 4

14 gausstty Gumm / Kauer PROV 6 6 NOP 6 4 NOP 5 3

15 linrek no termination function Gumm SOLV 7 7 SOLV 7 7 SOLV 8 8

16 linsearch no quantifiers in NPPV Kauer PROV 5 5 n.a. NOP 4 1

17 nested_for Kauer PROV 9 9 NOP 8 5 NOP 9 7

18 proof Gumm SOLV 4 4 SOLV 4 4 SOLV 4 4

19 quad Kauer PROV 5 5 NOP 5 4 NOP 5 4

20 root Kauer PROV 5 5 NOP 5 4 NOP 4 3

21 swap1 Gumm PROV 1 1 PROV 1 1 PROV 1 1

22 swap2 infinite ranges Gumm PROV 1 1 PROV 1 1 PROV 1 1

23 swap2ty fin ranges, prog incorrect Gumm NOP 3 0 NOP 3 0 NOP 3 0

24 swap2ty2 Gumm / Kauer PROV 3 3 NOP 3 1 PROV 3 3

FSU M+I FPP

No.

Example Remark Source FPP
proved #VC #OK

NPPV
proved #VC #OK

SPARK-aut
proved #VC #OK

25 swap3 Gumm SOLV 1 1 SOLV 1 1 SOLV 1 1

26 cube [GH 99] PROV 5 5 NOP 5 3 NOP 5 3

 Summary 19 (25) 107 99 7 (25) 126 78 7 (26) 119 80

 Summary 76 % 93 % 28 % 62 % 27 % 67 %

Tabelle 6.2. Ergebnisse für die 26 Beispiele

.

Program Provers 18 F-FPP-100 J.Winkler

FSU M+I FPP

E X A M P L E - 2 1

21. swap1 Swapping the values of two variables using an auxiliary variable.

Input to NPPV

{ x = A and y = B }
BEGIN
 temp := x ;
 x := y ;
 y := temp
END
{ x = B and y = A }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

x=A AND y=B
 ==>
 y=B AND x=A
========= Proof succeeded =========
=====================================

Program Provers 19 F-FPP-100 J.Winkler

FSU M+I FPP

21. swap1 Swapping the values of two variables using an auxiliary variable.

Input to FPP
 -- Example 21
 --!pre: x = x_i and y = y_i;
temp := x ;
x := y ;
y := temp;
 --!post: x = y_i and y = x_i;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:24
The answer to your query is:

--!pre : (x = x_i AND y = y_i)
--> wp : (y = y_i AND x = x_i)
--> vc : (x = x_i AND y = y_i ==> y = y_i AND x = x_i)
--> Result: proved
temp := x;
x := y;
y := temp;
--!post : (x = y_i AND y = x_i)

Program Provers 20 F-FPP-100 J.Winkler

FSU M+I FPP

21. swap1 Swapping the values of two variables using an auxiliary variable.

Input to SPARK

 -- ex_21vc Examiner: verification = vc

 --# main_program;
procedure ex_21vc (X: in out integer; Y: in out integer)
 --# derives X, Y from X, Y;
is
 temp: integer := 0;
 x_i : integer := 0;
 y_i : integer := 0;
begin
 x_i := x;
 y_i := y;

 --# assert x = x_i and y = y_i;
 temp := x ;
 x := y ;
 y := temp;
 --# assert x = y_i and y = x_i;

end ex_21vc;

Program Provers 21 F-FPP-100 J.Winkler

FSU M+I FPP

Output from SPARK examiner

Ex_21vc.lst

 Listing of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 5.01 / 08.00
 Demonstration Version

 DATE : 02-JAN-2002 09:40:21.22

Line
 1 -- ex_21vc Examiner: verification = vc
 2
 3 --# main_program;
 4 procedure ex_21vc (X: in out integer; Y: in out integer)
 5 --# derives X, Y from X, Y;
 6 is
 7
 8 temp: integer := 0;

!!! (1) Flow Error : 54: The initialization at declaration
of temp is ineffective.

 9 x_i : integer := 0;

!!! (2) Flow Error : 54: The initialization at declaration
of x_i is ineffective.

 10 y_i : integer := 0;

!!! (3) Flow Error : 54: The initialization at declaration
of y_i is ineffective.

 11
 12 begin
 13 x_i := x;
 ^4
!!! (4) Flow Error : 10: Ineffective statement.

 14 y_i := y;
 ^5

Program Provers 22 F-FPP-100 J.Winkler

FSU M+I FPP

!!! (5) Flow Error : 10: Ineffective statement.

 15
 16 --# assert x = x_i and y = y_i;
 17 temp := x ;
 18 x := y ;
 19 y := temp;
 20 --# assert x = y_i and y = x_i;
 21
 22 end ex_21vc;

!!! (6) Flow Error : 33: The variable x_i is neither ref-
erenced nor
 exported.
!!! (7) Flow Error : 33: The variable y_i is neither ref-
erenced nor exported.
!!! (8) Flow Error : 50: The imported value of X is not
used in the derivation of X.
!!! (9) Flow Error : 50: The imported value of Y is not
used in the derivation of Y.

--End of file--

Program Provers 23 F-FPP-100 J.Winkler

FSU M+I FPP

Ex_21vc.siv

 Semantic Analysis of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release 5.01 / 08.00
 Demonstration Version

CREATED 02-JAN-2002, 09:40:21 SIMPLIFIED 02-JAN-2002,
09:40:29
 (Simplified by SPADE Simplifier, Version 1.4)

 procedure ex_21vc

For path(s) from start to assertion of line 16:

procedure_ex_21vc_1.
*** true . /* all conclusions proved */

For path(s) from assertion of line 16 to assertion of line 20:

procedure_ex_21vc_2.
*** true . /* all conclusions proved */

For path(s) from assertion of line 20 to finish:

procedure_ex_21vc_3.
*** true . /* all conclusions proved */

Program Provers 24 F-FPP-100 J.Winkler

FSU M+I FPP

E X A M P L E - 2 2

22. swap2 Tricky but unsafe version of swapping the values of two variables

without an auxiliary variable.

Input to NPPV
{ x = M and y = N }
BEGIN
 x := x - y;
 y := x + y;
 x := y - x
END
{ x = N and y = M }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

x=M AND y=N
 ==>
 x-y+y-(x-y)=N AND x-y+y=M
========= Proof succeeded =========
=====================================

Program Provers 25 F-FPP-100 J.Winkler

FSU M+I FPP

22. swap2 Tricky but unsafe version of swapping the values of two variables

without an auxiliary variable.

Input to FPP
 -- Example 22
 --!pre : x = x_i and y = y_i;
x := x - y;
y := x + y;
x := y - x;
 --!post: x = y_i and y = x_i;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:31
The answer to your query is:

--!pre : (x = x_i AND y = y_i)
--> wp : (y = y_i AND x = x_i)
--> vc : (x = x_i AND y = y_i ==> y = y_i AND x = x_i)
--> Result: proved
x := x - y;
y := x + y;
x := y - x;
--!post : (x = y_i AND y = x_i)

Since neither NPPV nor FPP take the limited ranges of integer types into account both
say that the programs are correct.
In typical implementations of Pascal and Ada the programs are not correct, because the
difference in ”x := x-y;“ cannot be computed for all legal combinations of x and y [Win
90].

Program Provers 26 F-FPP-100 J.Winkler

FSU M+I FPP

22. swap2 Tricky but unsafe version of swapping the values of two variables

without an auxiliary variable.

Input to SPARK
Ex_22vc.ada
 -- ex_22vc Examiner: verification = vc

 --# main_program;
procedure ex_22vc (X: in out integer; Y: in out integer)
 --# derives X, Y from X, Y;
is
 x_i: integer := 0;
 y_i: integer := 0;
begin
 x_i := x;
 y_i := y;

 --# assert x = x_i and y = y_i;
 x := x - y;
 y := x + y;
 x := y - x;
 --# assert x = y_i and y = x_i;

end ex_22vc;

Program Provers 27 F-FPP-100 J.Winkler

FSU M+I FPP

Output from SPARK

Ex_22vc.siv

 Semantic Analysis of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release 5.01 /
08.00
 Demonstration Version

CREATED 02-JAN-2002, 09:44:01 SIMPLIFIED 02-JAN-2002,
09:44:09
 (Simplified by SPADE Simplifier, Version 1.4)

 procedure ex_22vc

For path(s) from start to assertion of line 15:

procedure_ex_22vc_1.
*** true . /* all conclusions proved */

For path(s) from assertion of line 15 to assertion of line
19:

procedure_ex_22vc_2.
*** true . /* all conclusions proved */

For path(s) from assertion of line 19 to finish:

procedure_ex_22vc_3.
*** true . /* all conclusions proved */

Program Provers 28 F-FPP-100 J.Winkler

FSU M+I FPP

E X A M P L E - 2 3

23. swap2ty The same as example 22 but with type checking assertions.

Input to NPPV

{ x=M and y=N and -100<=x and x <= 100 and -100 <= y and y <= 100 }
BEGIN
 x := x - y;
{ -100 <= x and x <= 100 and -100 <= y and y <= 100 }
 y := x + y;
{ -100 <= x and x <= 100 and -100 <= y and y <= 100 }
 x := y - x
END

{ x=N and y=M and -100<=x and x <= 100 and -100 <= y and y <= 100 }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

x=M AND y=N AND -100<=x AND x<=100 AND -100<=y AND y<
=100 ==>
 -100<=x-y AND x-y<=100 AND -100<=y AND y<=100

--------- Remains to prove ---------
-100<=M AND M<=100 AND -100<=N AND N<=100 ==>
 -100+N<=M AND M<=100+N
=====================================

=====================================
=== Verification Condition No.: 2 ===

-100<=x AND x<=100 AND -100<=y AND y<=100 ==>
 -100<=x AND x<=100 AND -100<=x+y AND x+y<=100

--------- Remains to prove ---------
-100<=x AND x<=100 AND -100<=y AND y<=100 ==>
 -100<=x+y AND x+y<=100
=====================================

Program Provers 29 F-FPP-100 J.Winkler

FSU M+I FPP

=====================================
=== Verification Condition No.: 3 ===

-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>
 y-x=N AND y=M AND -100<=y-x AND y-x<=
100 AND -100<=y AND y<=100

--------- Remains to prove ---------
-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>
 y=M AND y-x=N AND -100+x<=y AND y<=10
0+x
=====================================

Program Provers 30 F-FPP-100 J.Winkler

FSU M+I FPP

23. swap2ty The same as example 22 but with type checking assertions.

Input to FPP
 -- Example 23
 --!pre : x=x_i and -100 <= x and x <= +100 and
 --!pre : y=y_i and -100 <= y and y <= +100;
x := x - y;
 --!post: -100 <= x and x <= +100 and -100 <= y and y <= +100;
y := x + y;
 --!post: -100 <= x and x <= +100 and -100 <= y and y <= +100;
x := y - x;
 --!post: x=y_i and -100 <= x and x <= +100 and
 --!post: y=x_i and -100 <= y and y <= +100;

Output from FPP
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 12:28
The answer to your query is:

--!pre : (x = x_i) AND (-100 <= x) AND (x <= 100)
--> AND (y = y_i) AND (-100 <= y) AND (y <= 100)
--> wp : (-100 <= x - y AND x - y <= 100 AND -100 <= y AND y <= 100)
--> vc : (x = x_i) AND (-100 <= x) AND (x <= 100)
--> AND y <= 100) AND (y = y_i) AND (-100 <= y) AND (y <= 100)
--> ==> (-100 <= x - y AND x - y <= 100 AND -100 <= y AND y <= 100)
--> Result: not proved
--> fc : (-100+x_i-y >= 1) AND (100-x_i >= 0) AND (100+x_i >= 0)
--> AND (100 + y >= 0) AND (100 - y >= 0)

x := x - y;
--!post : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> wp : (-100 <= x AND x <= 100 AND -100 <= x + y AND x + y <=
100)
--> vc : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> ==> (-100 <= x AND x <= 100 AND -100 <= x+y AND x+y <= 100)
--> Result: not proved
--> fc : (-100 - x - y >= 1) AND (100 + x >= 0) AND (100 - y >= 0)
--> AND (100 + y >= 0) AND (100 - x >= 0)

y := x + y;

Program Provers 31 F-FPP-100 J.Winkler

FSU M+I FPP

--!post : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> wp : (-x + y = y_i) AND (-100 <= -x + y) AND (-x + y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> vc : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> ==> (-x + y = y_i) AND (-100 <= -x + y) AND (-x + y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> Result: not proved
--> fc : (100 - x >= 0) AND (100 + x >= 0) AND (100 + y >= 0)
--> AND (y /= x_i) AND (100 - y >= 0)

x := y - x;
--!post : (x = y_i) AND (-100 <= x) AND (x <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)

When the limited domains of integer types are checked both provers cannot prove the
program. The program is not correct, i.e. the falsification conditions are true. The first
falsification condition in the output from FPP is equivalent to

-100 ≤ x ≤ +100 ∧ -100 ≤ y ≤ +100 ∧ x - y ≥ 101
which is satisfied by e.g. x = 100 ∧ . y = -1 which is a legal pair of values for x and y.

Program Provers 32 F-FPP-100 J.Winkler

FSU M+I FPP

23. swap2ty The same as example 22 but with type checking assertions.

Input to SPARK

Ex_23vc.ada
 -- ex_23vc Examiner: verification = vc

 --# main_program;
procedure ex_23vc (X: in out integer; Y: in out integer)
 --# derives X, Y from X, Y;
is
 x_i : integer := 0;
 y_i : integer := 0;
begin
 x_i := x;
 y_i := y;

 --# assert x = x_i and -100 <= x and x <= +100 and
 --# y = y_i and -100 <= y and y <= +100;
 x := x - y;

--# assert -100<=x and x<=+100 and -100<=y and y<=+100;
 y := x + y;

--# assert -100<=x and x<=+100 and -100<=y and y<=+100;
 x := y - x;

 --# assert x = y_i and -100 <= x and x <= +100 and
 --# y = x_i and -100 <= y and y <= +100;

end ex_23vc;

Program Provers 33 F-FPP-100 J.Winkler

FSU M+I FPP

Output from SPARK

Ex_23vc.siv

 Semantic Analysis of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release
5.01/08.00
 Demonstration Version

CREATED 02-JAN-2002, 09:45:55 SIMPLIFIED 02-JAN-2002,
09:46:03
 (Simplified by SPADE Simplifier, Version 1.4)

 procedure ex_23vc

For path(s) from start to assertion of line 16:

procedure_ex_23vc_1.
H1: x >= integer__first .
H2: x <= integer__last .
H3: y >= integer__first .
H4: y <= integer__last .
 ->
C1: - 100 <= x .
C2: x <= 100 .
C3: - 100 <= y .
C4: y <= 100 .

For path(s) from assertion of line 16 to assertion of line
20:

procedure_ex_23vc_2.
H1: - 100 <= x_i .
H2: x_i <= 100 .

Program Provers 34 F-FPP-100 J.Winkler

FSU M+I FPP

H3: - 100 <= y_i .
H4: y_i <= 100 .
 ->
C1: - 100 <= x_i - y_i .

false

C2: x_i - y_i <= 100 .

For path(s) from assert. of line 20 to assert. of line 23:

procedure_ex_23vc_3.
H1: - 100 <= x .
H2: x <= 100 .
H3: - 100 <= y .
H4: y <= 100 .
 ->

false

C1: - 100 <= x + y .
C2: x + y <= 100 .

For path(s) from assert. of line 23 to assert. of line 26:

procedure_ex_23vc_4.
H1: - 100 <= x .
H2: x <= 100 .
H3: - 100 <= y .
H4: y <= 100 .
 ->

false

C1: y - x = y_i .
C2: - 100 <= y - x .
C3: y - x <= 100 .
C4: y = x_i .

For path(s) from assertion of line 26 to finish:

procedure_ex_23vc_5.
*** true . /* all conclusions proved */

Program Provers 35 F-FPP-100 J.Winkler

FSU M+I FPP

O U T L O O K : F P P - 2

Programming Language
 Subset of Ada: integer and Boolean
 user defined types
 array, record, procedure
 null, assg, IF, CASE, WHILE, FOR

Assertion Lang: Ada Boolean expressions
 + quantifiers (forall, exists)
 + implication (=>)
 + predefined functions (min, sum, ...)
 --!pre: x >= 0;

Functionality compute wp with range checks
 compute and prove VC
 compute FC

Application in the WWW

Input : Spec + Prog in one “file“ (legal Ada)

Output: Spec + Prog + Result in one “file“

Program Provers 36 F-FPP-100 J.Winkler

FSU M+I FPP

O U T L O O K : M P V I N P R A C T I C E

Often people working in program verification complain that PV is

no used in the SW industry

What are reasons for this deplorable situation?

• current results in PV too theoretical

• SW engineers do not have the suitable training / education

• no tools available

• education in school and university does not contain
enough logic and discrete mathematics

(logic courses at the university mainly are mostly about
 logic systems but do not lead to fluency in manipulation
 of logic formulas
 as compared with the skills students have in the
 manipulation of arithmetic formulas)

Program Provers 37 F-FPP-100 J.Winkler

FSU M+I FPP

Experiment to support this last point:

x+y>x-y ∨ y<2x ⇒ true

x, y ∈Ÿ (let us (for a moment) be in Cantor’s Paradise)

Program Provers 38 F-FPP-100 J.Winkler

FSU M+I FPP

If you look at:

(x+2y+x*y)*0

it is much more easier (currently for most people)

Program Provers 39 F-FPP-100 J.Winkler

FSU M+I FPP

a ⇒ true ≡ true

a*0 = 0

(a ∨ b) ⇒ c (a + b) * c

c ⇒ (a ∨ b) c * (a + b)

Reason: there is much more training in arithmetic formula

 manipulation than in logic formula manipulation

 until the end of university education (diploma/master)

 Arithmetic: ca 14 years

 Logic: ca 1-2 years

 (Figures for Germany)

Program Provers 40 F-FPP-100 J.Winkler

FSU M+I FPP

R E F E R E N C E S

FPP

Freining, Carsten; Kauer, Stefan; Winkler, Jürgen F. H.
Ein Vergleich der Programmbeweiser FPP, NPPV und
SPARK.
Ada-Deutschland Tagung 2002. Shaker Verlag, Aachen, 2002.
S. 127..145

http://psc.informatik.uni-jena.de/FPP/FPP-main.htm

NPPV
Gumm, Heinz-Peter; Sommer, Manfred: Einführung in die
Informatik. R. Oldenbourg Verlag. München 2002.
3-486-25635-1

http://www.mathematik.uni-
marburg.de/~gumm/NPPV/nppv.html
 (visited 2001.Sep.04)

SPARK
Barnes, John: High Integrity Ada - The SPARK Approach -.
Addison-Wesley, Harlow etc., 2000. 0-201-17517-7

Program Provers 41 F-FPP-100 J.Winkler

FSU M+I FPP

R E S T

A C O M P A R I S O N O F T H E

P R O G R A M P R O V E R S

F P P , N P P V A N D S P A R K

Jürgen F H Winkler

Friedrich Schiller University

winkler@informatik.uni-jena.de

Course “Mechanical Program Verification”

ELTE, Budapest September 2006

Program Provers 42 F-FPP-100 J.Winkler

	program Provers
	Overview
	 E
	FPP - 1
	NPPV
	NPPV

	SPARK
	SPARK

	Example-21
	Outlook: FPP-2
	Outlook: MPV in Practice
	 Arithmetic: ca 14 years

	References

	FPP
	NPPV
	SPARK
	program Provers

