
Mechanical Program Verification – Part 1

Jürgen F H Winkler
Institute of Informatics
Friedrich Schiller University
Jena, Germany

ELTE, Budapest, 6 - 10  Oct  2008

Material:  http://psc.informatik.uni-jena.de/teach/verific/course-MPV.htm



04.10.2008 © J F H Winkler, 2006}2008 2

Mechanical Program Verification Overview

Overview

• Historical Overview, Basic Concepts, Realistic Progr Verific

• Mechanical Program Verification (MPV)

• Comparison of 3 Automatic Program Provers (APP)

• The Frege Program Prover (FPP) in More Detail

• Mechanical Generation of Invariants for FOR-Loops

• Problems of FPP (and others)

• Towards Realistic Verification Conditions (VC)

• Summary



04.10.2008 © J F H Winkler, 2006}2008 3

Mechanical Program Verification Overview

Part 1

• Program Verification

• Historical Overview and Basic Concepts

• References



04.10.2008 © J F H Winkler, 2006}2008 4

Mechanical Program Verification Program Verification - 1

Program Verification

Program p  conforms to specification q    ≡ p ≤ q
aka:   p is correct (wrt q)

q  is given: specifies the required behavior  aka  “what the program shall do”

p  has been developed

Verification  tries to show that all possible 
executions of  p

conform to  Q 

=>  The ultimate goal of program development is program execution



04.10.2008 © J F H Winkler, 2006}2008 5

Mechanical Program Verification Goldstine/v.Neumann

Program correctness has been a concern from the very beginning

Goldstine and v. Neumann: 1 April, 1947  (“Planning and Coding Problems …”)

during the design phase of the EDVAC (built 1949 -1952, EDSAC 1949May06)

symbolic notation for machine instructions:  S(x) → AC
„clear accumulator and add number located at position x in the Selectrons into it”

flowchart notation for programs with some higher notations:

operation boxes, substitution boxes, assertion boxes



04.10.2008 © J F H Winkler, 2006}2008 6

Mechanical Program Verification Goldstine/v.Neumann



04.10.2008 © J F H Winkler, 2006}2008 7

Mechanical Program Verification Goldstine/v.Neumann

i:  program variable  (“bound variable”)  stored in variable storage

I:  program constant  (“free variable”)  stored in fixed storage

i=I:  an assertion that must hold whenever the computation reaches that 
point

“An assertion box never requires that any specific calculations be made, it 
indicates only that certain relations are automatically fulfilled whenever C 
gets to the region which it occupies.” [GN 47: 97]



04.10.2008 © J F H Winkler, 2006}2008 8

Mechanical Program Verification Goldstine/v.Neumann

looks very similar to: { i = I }  A(2) := g(I)3; Hoare

--!pre: i = I; FPP (Frege Program Prover)

A(2) := (g(I))**3;



04.10.2008 © J F H Winkler, 2006}2008 9

Mechanical Program Verification Goldstine/v.Neumann

Goldstine / v. Neumann:  

no discussion about the correctness of the implementation of the operation 
boxes



04.10.2008 © J F H Winkler, 2006}2008 10

Mechanical Program Verification Turing

Program correctness has been a concern from the very beginning

Turing 1949  (“Checking a Large Routine”)

“How can one check a routine in the sense of making sure that it is right?

In order that the man who checks may not have too difficult a task the

programmer should make a number of definite assertions

which can be 

checked individually, 

and from which the correctness of the whole programme easily follows.”  

[Tur 49: 70]



04.10.2008 © J F H Winkler, 2006}2008 11

Mechanical Program Verification Turing

Program correctness has been a concern from the very beginning

Turing 1949  (“Checking a Large Routine”)

“Finally the checker has to 

verify that the process comes to an end. 

Here again he should be assisted by the programmer giving a further definite 
assertion to be verified.

This may take the form of a 

quantity which is asserted to decrease continually 
and vanish when the machine stops.”  

[Tur 49: 71]

modern:  termination function



04.10.2008 © J F H Winkler, 2006}2008 12

Mechanical Program Verification Turing

u:  initial value of variable  u
u’: final value of variable  u (“at the end of the process represented by the box”)

s = content of line 27 of store

…

v = content of line 31 of store



04.10.2008 © J F H Winkler, 2006}2008 13

Mechanical Program Verification Turing

s
r
n
u
v

s = r

v := u;  { C  d≡ v = r! ∧ …}



04.10.2008 © J F H Winkler, 2006}2008 14

Mechanical Program Verification Turing

Turing: the operations in the boxes are very near to single machine 
instructions



04.10.2008 © J F H Winkler, 2006}2008 15

Mechanical Program Verification PV History

Program Verification: History

1947 Goldstine / v. Neumann : flow diagrams + assertions

1949 Turing : flow diagrams + assertions

1967 Floyd : flow diagrams + assertions

1969 Hoare : derivation system for valid triples
formalization

1976 Dijkstra : function (wp) and schemas for valid triples
mechanization

2003 Hoare : Verifying compiler as a grand challenge



04.10.2008 © J F H Winkler, 2006}2008 16

Mechanical Program Verification Conformity Relation-1

The Conformity Relation  p ≤ q

p and q  are relations between program states      p, q  ⊆ ΣâΣ

Σ = Var → Val the set of all mappings 
from the set of all variables Var into the set of values Val

Examples:      x, y: int32;

Sem(x := 10;)  =  { ( {(x, xi), (y, yi)} , {(x, xf), (y, yi)} ):  xi, yi ∈ int32 ∧ xf = 10} 
= { ( {(x, xi), (y, yi)} , {(x, 10), (y, yi)} ):  xi, yi ∈ int32 }

--! pre:  x ∈ int32 ∧ y ∈ int32 ∧ y = Cy
x := 10;

--! post:  x = 10 ∧ y ∈ int32 ∧ y = Cy



04.10.2008 © J F H Winkler, 2006}2008 17

Mechanical Program Verification Conformity Relation-2

Determinism-1

x := 10;   is deterministic, 

i.e. Sem(x := 10;)  is right-unique

{(x, 0), (y, 0)}  # {(x, 10), (y, 0)}

{(x, 0), (y, 1)}  # {(x, 10), (y, 1)}

…
{(x, 1), (y, 0)}  # {(x, 10), (y, 0)}

In this special case   Sem(x := 10;)  is a mapping   Σ → Σ



04.10.2008 © J F H Winkler, 2006}2008 18

Mechanical Program Verification Conformity Relation-3

Determinism-2

{(x, 0), (y, 0)} {(x, 10), (y, 0)}

{(x, 0), (y, 1)} {(x, 10), (y, 1)}

. . .

{(x, 1), (y, 0)}

{(x, 1), (y, 1)}  

. . .



04.10.2008 © J F H Winkler, 2006}2008 19

Mechanical Program Verification Conformity Relation-4

Determinism-3

read(x);   is nondeterministic: 

{(x, 0), (y, 0)}  # {(x, -2147483648), (y, 0)}

{(x, 0), (y, 0)}  # {(x, -2147483647), (y, 0)}

. . .
{(x, 0), (y, 0)}  # {(x, 2147483647), (y, 0)}

{(x, 0), (y, 1)}  # {(x, -2147483648), (y, 1)}

. . .



04.10.2008 © J F H Winkler, 2006}2008 20

Mechanical Program Verification Conformity Relation-5

Determinism-4

{(x, 0), (y, 0)} {(x, -2147483648), (y, 0)}
{(x, -2147483647), (y, 0)}
. . .
{(x, 2147483647), (y, 0)}

{(x, 0), (y, 1)} {(x, -2147483648), (y, 1)}

. . .

{(x, 2147483647), (y, 1)}



04.10.2008 © J F H Winkler, 2006}2008 21

Mechanical Program Verification Conformity Relation-6

The Conformity Relation  p ≤ q

p and q  are relations between program states      p, q  ⊆ ΣâΣ
dom(p) ⊂ Σ or  dom(q) ⊂ Σ may hold, 

i.e. specs or programs need not be lefttotal

q = { ( {(x, xi), (y, yi)} , {(x, xf), (y, yi)} ):  
xi, yi ∈ int32 ∧ xi > 0 ∧ (xf = √xi ∨ xf = }√xi) } 

The spec  q  is not lefttotal and  is nondeterministic: 
the final value of  x  may be √xi or may be }√xi (completely arbitrary choice)

If a program p1 computes always }√xi then this is OK:

p1 = { ( {(x, xi), (y, yi)} , {(x, xf), (y, yi)} ):  xi, yi ∈ int32 ∧ xi > 0 ∧ xf = }√xi }
i.e.  p1 ≤ q   in this case  p1 ⊂ q,     p1 is less nondeterministic than q



04.10.2008 © J F H Winkler, 2006}2008 22

Mechanical Program Verification Conformity Relation-7

The Conformity Relation p ≤ q

q: {(x, 4), (y, 0)} {(x, 2), (y, 0)}

{(x, -2), (y, 0)}

p1: {(x, 4), (y, 0)} 

{(x, -2), (y, 0)}

p1 ⊂ q         p1 is less nondeterministic than q



04.10.2008 © J F H Winkler, 2006}2008 23

Mechanical Program Verification Conformity Relation-8

The Conformity Relation  p ≤ q

On the other hand, 

another program  p2  may work for more initial values of x:

p2 = { ( {(x, xi), (y, yi)} , {(x, xf), (y, yi)} ):  
xi, yi ∈ int32 ∧ xi ≥ 0 ∧ (xf = √xi ∨ xf = }√xi) }

Again we say that  p2 ≤ q    i.e.  p2 conforms to  q

In this case we have        dom(p2) ⊃ dom(q) 



04.10.2008 © J F H Winkler, 2006}2008 24

Mechanical Program Verification Conformity Relation-9

Definition of the Conformity Relation  p ≤ q

p conforms to q

p ≤ q d≡ p|dom(q) ⊆ q    ∧ less-equal nondeterministic

dom(p) ⊇ dom(q) may work for more i-states

p3 = { ( {(x, xi), (y, yi)} , {(x, xf), (y, yi)} ):  
xi, yi ∈ int32 ∧ xi ≥ 0 ∧ xf = }√xi } again:  p3 ≤ q

Liberal conformity  

(more strict:  p ≤ q  d≡ dom(p) = dom(q)  ∧ p ⊆ q ) 



04.10.2008 © J F H Winkler, 2006}2008 25

Mechanical Program Verification Conformity Relation-10

Definition of the Conformity Relation  p ≤ q

p conforms to q

p ≤ q d≡ p|dom(q) ⊆ q    ∧ less-equal nondeterministic

dom(p) ⊇ dom(q) may work for more i-states

applies generally to specs and programs:

q1 ≤ q2

p1 ≤ p2

≤ is transitive  p ≤ q ∧ q ≤ r  ⇒ p ≤ r 



04.10.2008 © J F H Winkler, 2006}2008 26

Mechanical Program Verification Serious Progr Verif

Program Verification (serious viewpoint)

Program p : typically means high-level source-program  ps
(Ada, C#, Fortran, etc.)

Specification q : typically refers to the IO-behavior: q = (pre, post)
(high-level = low-level)

Program execution: refers to the object-program po produced by a compiler
(sometimes also execution by an interpreter)

ps ≤ (pre, post)  is not sufficient

po ≤ (pre, post) is the really important thing

po ≤ ps ∧ ps ≤ (pre, post)  ⇒ po ≤ (pre, post)

{pre} ps {post}

Comp

po



04.10.2008 © J F H Winkler, 2006}2008 27

Mechanical Program Verification Serious Progr Verif

Program Verification (serious viewpoint) - 2

po ≤ ps refers to compiler correctness:

〈∀ ps ∈ PL: Comp(ps) ≤ ps〉

Instead of proving  po ≤ ps each time

prove once that  Comp  is correct     

{pre} ps {post}

Comp

po

12 Test the system to ensure that your compiler, linker etc. have not introduced
errors and to make sure the required performance has been achieved. If
improved performance is still needed in some areas, repeat from step 8.

http://www.eschertech.com/products/step_by_step_guide.php (2006.Aug.31)



04.10.2008 © J F H Winkler, 2006}2008 28

Mechanical Program Verification Serious Progr Verif

Program Verification (serious viewpoint) - 3 

Further aspects

Finiteness : value sets of types are finite

Several sorts : real programs often use several types
also: user defined types
also:  complex types  (e.g. class, task)
also:  pointers

Definedness : real programs may contain undefined expressions
1/0,  X := 1/(X-X);

Exceptions :  real programs may contain exception handling

Concurrency :  becomes more important in practice (e.g. multi-core)



04.10.2008 © J F H Winkler, 2006}2008 29

Mechanical Program Verification Theoretical Progr Verif

Program Verification (in the literature)

Program p : typically means high-level source-program fragment  ps
(e.g. guarded commands [Gri 83])

Specification q : typically refers to the values of program variables
(pre, post)

Verification :  shows that   ps ≤ (pre, post) holds

Program execution: no execution takes place

Usually not done : qIO ≤ (pre, post) IO-oriented spec  qIO

pPL ≤ qIO program in real progr lang pPL

po ≤ pPL

po ≤ pPL ≤ qIO ≤ (pre, post)  ⇒ po ≤ (pre, post) 

surprising observation:  ps ≤ (pre, post)  seems to be superfluous



04.10.2008 © J F H Winkler, 2006}2008 30

Mechanical Program Verification Theoretical Progr Verif

Program Verification (in the literature) - 2

If the spec  q  refers to  I/O  we obtain:

Verification :  shows that   ps ≤ (pre, post) = qIO holds

Usually not done : pPL ≤ ps program in real progr lang pPL

po ≤ pPL

po ≤ pPL ≤ ps ≤ (pre, post)  ⇒ po ≤ (pre, post) 



04.10.2008 © J F H Winkler, 2006}2008 31

Mechanical Program Verification Theoretical Progr Verif

Program Verification (in the literature) - 3 

Further aspects

Finiteness : typically:  integer = Ÿ
“the numerical size of MAXINT does not belong to a 
language definition” [TZ 88: 7]

Several sorts : typically:  integer and Boolean

Definedness : typically: only well-defined expressions
e.g. no division operation in [TZ 88]

Exceptions :  typically: no exception handling

Concurrency :  typically: only simple sequential commands



04.10.2008 © J F H Winkler, 2006}2008 32

Mechanical Program Verification Idealism vs Realism

Why this Confrontation of Theory and Practice ?

NOT to blame any theoretician !!!

remind us of our ultimate goal

show that we are a far cry from this goal

indicate which path we should follow in our work
towards (mechanical) program verification



04.10.2008 © J F H Winkler, 2006}2008 33

Mechanical Program Verification Essentials of MPV

Turing mentioned already the essential aspects

correctness:  “routine … is right?”

interspersed assertions to ease verification
compositionality of the verification of the whole program

initial and final values of program variables
very variable nature of program variables

finite value ranges     <======

termination function

Missing:

formal semantics   (the semantics of the operations was quite obvious)

specification as a formal object

calculus for verification



04.10.2008 © J F H Winkler, 2006}2008 34

Mechanical Program Verification References

References
Bar 2000 Barnes, John G. P.: High integrity Ada: the SPARK approach. Addison-

Wesley, Harlow etc., 2000.  
0-201-17517-7

Bou 2006 Boute, Raymond T.: Calculational Semantics: Deriving Programming 
Theories from Equations by Functional Predicate Calculus. ACM TOPLAS 
28, 4 (2006) 747..793

CZ 92 Clarke, Edmund; Zhao, Xudong: Analytica − A Theorem Prover for 
Mathematica. School of Computer Science, Carnegie Mellon University, 
Report CMU-CS-92-117, September 1992

Fei 2005 Feinerer, Ingo: Formal Program Verification: a Comparison of Selected 
Tools and Their Theoretical Foundations. Master Thesis, Vienna Univ. of 
Technology, Institute of Computer Languages, Jan. 2005

FKW 2002 Freining, Carsten; Kauer, Stefan; Winkler, Jürgen F. H.: Ein Vergleich der 
Programmbeweiser FPP, NPPV und SPARK. In: Winkler, Jürgen F. H.; 
Dencker, Peter; Keller, Hubert B.; Tonndorf, Michael (Hrsg): Ada 
Deutschland Tagung 2002 - Software für sicherheitskritische Systeme -
Shaker Verlag, Aachen, 2002. 3-8265-9956-X, S. 127..145 



04.10.2008 © J F H Winkler, 2006}2008 35

Mechanical Program Verification References

References
GH 99 Hehner, Eric C. R.; Gravell, Andrew M.: Refinement Semantics and Loop 

Rules. In: FM’99, Vol. II, 1497..1510. LNCS 1709, Springer, Berlin etc., 
1999.   3-540-66588-9

GN 47 Goldstine, Herman H.; Neumann, John von: Planning and Coding 
Problems for an Electronic Computing Instrument – Part II, Volume 1. In: 
Taub, A. H. (gen. ed.): John von Neumann – Collected Works – Volume 
V. Pergamon Press, Oxford etc. 1961, repr. 1976, 0-08-009571-2, pp. 
80..151

Gri 83 Gries, David: The Science of Programming. Springer, New York etc., 2nd 
pr. 1983, 0-387-90641-X

Hoa 72 Hoare, C. A. R.: A Note on the FOR-Statement. BIT 12, 3 (1972) 334..341
Kau 99 Kauer, Stefan: Automatische Erzeugung von Verifikations- und 

Falsifikationsbedingungen sequentieller Programme. Dissertation, 
Friedrich Schiller University, 1999.Jan.27 

KW 99 Kauer, Stefan; Winkler, Jürgen F. H.: A Comparison of the Program 
Provers NPPV and FPP.  Friedrich Schiller University, Institute of  
Computer Science, Report Math / Inf / 99 / 28



04.10.2008 © J F H Winkler, 2006}2008 36

Mechanical Program Verification References

References
KW 2007 Kauer, Stefan; Winkler, Jürgen F. H.: Mechanical Generation of Invariants 

for FOR-Loops. WING 2007,  1st Int. Workshop on Invariant Generation, 
Linz/Hagenberg,  2007Jun25-26

Tur 49 Turing, A.: Checking a Large Routine. In: Williams, L. R.; Campbell-Kelly, 
Martin (eds.): The Early British Computer Conferences. MIT Press, 
Cambridge/London, Tomash Publ., Los Angeles/San Francisco, 1989, 0-
262-23136-0, pp. 70..72

TZ 88 Tucker, J. V.; Zucker, J: I.: Program Correctness over Abstract Data 
Types, with Error-State Semantics. CWI Monograph 6. North-Holland, 
Amsterdam etc, 1988. 

Win 90 Winkler Jürgen F. H.: Functions not equivalent. Letter to the editor, IEEE 
Software 7,3 (1990)10.

Win 98 Winkler, Jürgen F. H.: New Proof Rules for FOR-Loops. Friedrich Schiller 
University, Dept. of Math. & Comp. Sci., Report Math / Inf / 98 / 13 
1998.Nov.07


