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Abstract. In the mechanical verification of programs containing loops it is of-
ten necessary to provide loop invariants additionally to the specification in form 
of pre- and postcondition. In this paper we present a method for the mechanical 
generation of invariants for a class of FOR-loops. The invariant is derived from 
the postcondition and the final bound of the loop only. The method is applicable 
if the final bound of the FOR-loop is of a simple form. This is often the case in 
practice. The incorporation of this method into an automatic program verifier 
would make the task of the SW engineer easier, because he has only to provide 
a pre-post-specification for a FOR-loop. 
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1   Introduction 

Program verification involves a great amount of mechanical formula manipulation. If 
done by hand, this is tedious and, even worse, error prone. Most of the theorems (veri-
fication conditions (VC)), which have to be proved, are quite trivial and can therefore 
be proved automatically by an automatic theorem prover. If all VCs are generated and 
proved automatically we speak of automatic program verification. A tool which per-
forms automatic program verification is then called an automatic program verifier 
(APV). Examples of such tools are Boogie [BCD06], FPP [KW99a; Win97] and 
NPPV [Gumxx]. Other tools use a combination of automatic and interactive theorem 
proving and can therefore be called semi-automatic program verifiers (SAPV). Exam-
ples are KeY [ABB05], SPARK [Bar00] and Theorema [JKP03]. 

Most tools for the verification of concrete programs use the assertion based method 
(ABM) for the specification of the required behavior of the program (e.g. Boogie, 
FPP, KeY, NPPV, SPARK, Theorema). The specification is given by a pair (pre, 
post) of assertions which refer to entities of the program, and may also refer to entities 
which belong to the specification only. 

ABM allows also the verification of program fragments and therefore can be used 
by the SW engineer in a continuous manner during program development, and not 
only for the verification of a finished program in one big step. In this situation, the use 
of an APV is especially convenient. 



In ABM automatic verification on the basis of (pre, post) is rather straightforward 
for statements like declarations, assignment, IF, and CASE1. The verification of loops 
usually requires also an invariant [Dij76; Hoa72; Tur49; Win98], and for WHILE-
loops additionally a termination function [Dij76; Flo67; Tur49]. It would be easier if 
loops could also be verified by giving only (pre, post). This can be done in two ways: 
(1) by computing  wp(loop, post)   resp.  sp(pre, loop)  and use this in the general 
verification condition  pre ⇒ wp(loop, post)  resp. sp(pre, loop) ⇒ post, or (2) by 
computing an invariant (and in case of a WHILE-loop a termination function) and 
perform then the verification using the corresponding VCs. Automatic computation of 
invariants from the code is seen as difficult in the general case [Bac06: 3]. Stefan 
Kauer has developed methods for the mechanical verification of classes of loops 
which are only specified by (pre, post) [Kau99]. For FOR-loops his method is based 
on the heuristic “replacing a constant in the postcondition by a variable (RCPV)” for 
the computation of an invariant. For WHILE-loops his method computes  wp(loop, 
post).  In this paper we report about the method for the computation of invariants for 
FOR-loops. For the verification of FOR-loops we use the proof rule of [Win98] which 
is less restrictive than that of [Hoa72].  

An annotated FOR-loop (AFL) in Ada syntax looks like 
 -- PRE 
FOR i in LO..UP LOOP  BODY  END LOOP (1) 
 -- POST 

where i is the loop variable, the value of LO is the lower bound and the value of 
UP is the upper bound of the loop. (1) is an upwards counting loop. Many languages 
contain also downwards counting loops. In this paper we deal mainly with upwards 
counting FOR-loops. Downwards counting FOR-loops do not pose new problems and 
can be treated in an analogous manner [KW00; Win98]. 

 
Basic idea. RCPV tries to derive an invariant INV from the postcondition POST 

and the final bound of the FOR-loop only; the final bound of a FOR-loop is the upper 
bound for upwards counting loops and is the lower bound for downwards counting 
loops. Especially, BODY is not used for the derivation of INV, but it is used to check 
whether INV is really an invariant of the loop. By not using BODY we avoid the 
problem that a loop with an incorrect BODY may lead to the generation of invalid 
invariants resulting in redundant work for the APV. Another aspect of only using 
POST and the final bound is that nested loops have not to be treated as a special case 
as e.g. in [Weg74], but can be treated in a recursive manner. The method for the gen-
eration of hypothetical invariants is formulated as an algorithm which can be used in 
an APV. 

 
Related work. Soon after the seminal work on program verification by Floyd and 

Hoare [Flo67; Hoa69] began a phase of intensive work on developing methods for the 
determination of loop invariants [e.g. Weg74; Cap75; KM76; MW77; Mis78; Bas80; 
Tam80; Ell81; Gri82; BD84; GDM85; Pai86; CEG99; Kau99; CEG00; BMM01; 
FQ02].  More recently several methods have been presented to determine especially 

                                                           
1 This refers primarily to the generation of the VCs. The verification proper may still be rather 

difficult even for very simple statements:  {True} skip; {Goldbach’s conjecture}. 



polynomial invariants [MS03; MSS04; JK05; PS05; KR06]. Some methods are for 
application by hand [e.g. Cap75; Mis78], some work in a semi-mechanized manner 
[e.g. Weg74; Tam80; BMM01; FQ02] and some are fully mechanized [e.g. Kau99; 
PS05; JK05; KR06]. 

The different approaches exploit the annotated loop in different ways:  
Some methods use the loop only, i.e. derive invariants from the code [e.g. KM76; 

Bas80; Tam80; Ell81; GDM85; Pai86; MS03; MSS04; JK05; PS05; KR06]. In 
[CEG99, CEG00] the loop is instrumented in order to output interesting variables 
(“trace variables”). The method then tries to infer an invariant from the values of the 
trace variables for several executions of the loop. This is a special case of deriving an 
invariant from the loop, because the values of the trace variables are determined by 
the loop.  

Another approach is to derive the invariant from the specification [Mis78; Gri82]. 
Misra [Mis78] mentions two approaches: “A loop invariant could be a proposition 
about “what has been done” or a proposition about “what remains to be done” ”. Gries 
[Gri81, Gri82] derives an invariant of the kind “what has been done” from POST. 
Gries attributes this methodology to Dijkstra [Dij76]. Whereas Misra uses the invari-
ant for the verification of an existing loop, Gries uses the invariant for the develop-
ment of the loop itself.  

Wegbreit [Weg74] and Kauer [Kau99] derive INV from POST and the loop-
condition. The method of Kauer is inspired by [Gri82], but is mechanized, and is 
tailored to FOR-loops and to the verification of an existing loop. The details are the 
topic of this paper. 

Most methods work with WHILE-loops. Since FOR-loops can be transformed into 
WHILE-loops these methods can also be applied to FOR-loops. If e.g. the method of 
[Weg74] is applied to the WHILE-loop corresponding to example (4) in sect. 3.1 no 
loop invariant seems to be produced, despite the fact that the candidates are also de-
rived from POST and the loop-condition. 

 
The rest of the paper is organized as follows. In section 2 we present the verifica-

tion scheme for FOR-loops. Section 3 contains the method for the computation of an 
invariant and some examples of its application. Section 4 concludes the paper.  

2   An Improved Proof Rule for FOR-loops 

The proof rule for FOR-loops in [Win98] is based on that in [Hoa 72]. The main dif-
ferences are that [Win98] does not require  I([ ])  to hold before the first execution of 
the loop body. The invariant  I([LO .. i])  must only hold after executions of the loop 
body. Secondly, the loop variable may occur in the invariant, and thirdly, the proof 
rule also works for loops with zero repetitions. The strategy for the handling of the 
invariant is based on the following observations: 

(1)  the invariant is intended to be an assertion which is established by any execu-
tion of the loop body, especially the last one; therefore, it seems not necessary that the 
invariant holds before the FOR-loop. Collins calls such an invariant a “post-invariant” 
[Col88]; 



(2)  the invariant of a FOR-loop is typically an inductive assertion which involves 
the loop variable. In [Hoa72] the loop variable must not occur in the invariant; 

(3)  in some programming languages the loop variable is declared locally in the 
loop and does not exist outside the loop [e.g. Algol 68, Ada, C#]. If the invariant 
contains the loop variable and must hold before the loop, this could lead to illegal 
uses of the loop variable; 

(4)  there are examples in which it seems difficult to derive  I([ ])  mechanically 
from  I([LO .. i]). One example for this is [Win 98: 9]: 

         v := 5; 
             -- v=5 
         FOR i IN 1 .. 10 
         LOOP  v := i;  (1a) 
             --  inv ??? 
         END LOOP; 
             -- v=10 

It is easy to see that   I([1..i])  ≡  v = i   is an invariant which fulfills (1a).  
I([1..i])i

10  ≡  I([1..10])  ≡  v=10   is sufficient to establish the postcondition. We 
then have to determine  I([ ])  such that  
 [ v=5  ⇒  I([ ]) ]  ∧  [ I([ ])   ⇒  wp(“v:=1;“, v=1 ] (1b)  

holds. If we try   I([ ])  ≡  I([1..i])i
pred(1)  ≡  v=0   we observe that it does not work: 

because   [v=5  ⇒  v=0]   ≡   False.  On the other hand,  I([ ])  ≡  true  does the trick; 
it is maximal in that it is the weakest solution of (1b).  But it is not derived mechani-
cally from  I([1..i]) . 

Apart from these differences, the verification scheme is expressed in a form suit-
able for automatic verification using ABM, whereas the proof rule in [Hoa72] is for-
mulated as a logical derivation rule. 

The verification scheme for FOR-loops used in this paper is: 

 [ PRE  ⇒  LO, UP ∈ Ti ]   ∧ 
 [ PRE  ∧   LO > UP  ⇒   POST ]   ∧ 
 [ PRE  ∧   LO ≤ UP  ⇒  wp( BODYi

LO, INVi
LO ) ]   ∧  (2) 

 [ LO ≤ i < UP  ∧  INV   ⇒  wp( BODYi
i+1, INVi

i+1 ) ]   ∧ 
 [ LO ≤ UP  ∧  INVi

UP   ⇒  POST ] 
where 

PRE  is the precondition 
POST  is the postcondition 
INV  is the invariant 
Ti  is the value set of the type of the loop variable i 
[...] denotes universal quantification over the program variables and the specifi-

cation variables 
 
This form of the verification scheme assumes that 
(r1)  the evaluation of LO and UP has no side effects 
(r2)  any evaluation of LO, UP or any of their subexpressions at any point in the 

FOR-loop yields the same value as in the initial evaluation at the beginning of the 



execution of the FOR-loop. This means especially that LO and UP are not written to 
in BODY and that they do not contain calls of functions which are not referentially 
transparent. 

Both restrictions hold for many loops used in practice. Restriction (r2) is not se-
vere; [Win98; KW00] contain a scheme which does not require restriction (r2) by 
introducing two fresh variables vlo and vup which are assigned the values of LO and 
UP before beginning the repetitions of the loop body. Since the method for the com-
putation of the invariant does not depend on the exact form of the loop verification 
scheme, we use the simpler form of the verification scheme for the examples in this 
paper. 

In [KW00] we show that (2) implies the correctness of the loop (1) and that the 
correctness of (1) implies the existence of an invariant INV, which satisfies (2). 

3   A Method for Computing Invariants of FOR-Loops 

3.1   Basic Idea  

The general wp-rule for a FOR-loop cannot always be solved exactly. Usually, 
some weaker form of correctness is used which uses a loop invariant [Gri81; Win98]. 
This means that the engineer has to determine a suitable invariant. If such an invariant 
can be computed mechanically the task of the engineer will be easier. In this section 
we present a method for the mechanical generation of invariants of FOR-loops, which 
are annotated by PRE and POST only.   

The method is based on the heuristic “replacing a constant  in the postcondition by 
a variable(RCPV)“ [Gri81: 199], where in our case the variable is always the loop 
variable. The heuristic RCPV is typically applied by replacing the final bound in 
POST by the loop variable. For upwards counting loops the final bound is UP, and for 
downwards counting loops it is LO. In the following we show the derivation of the 
method for upwards counting loops. How it works for downwards counting loops is 
presented in [KW00]. 

The method works in two steps: 
(1) try to derive a predicate HI (hypothetical invariant) from the AFL. There are cases 

in which the method does not generate a predicate HI, e.g. if UP is a non-linear 
expression. From a practical point of view those cases are rare. A check of [BG91] 
gave the following result: in most FOR-loops UP  has one of the forms: (a) vari-
able, (b) sum of two variables, or (c) sum of a variable and a constant. The Fortran 
program RWPL (= Randwertproblemlöser = boundary value problem solver), 
written by M. Hermann and D. Kaiser of our department, contains 1015 FOR-
loops (DO-loops in Fortran), of which 998, i.e. almost all, are appropriate for our 
method. 

(2) try to prove (FOR-rule)INV
HI . There are three possible answers: 

a)  the proof succeeds, i.e.  HI is an invariant and the loop is correct. 
b)  the refutation succeeds. This can be due to the following reasons: 

b1)  the loop is correct, but HI is not an invariant. 
b2)  the loop is not correct. In this case HI may or may not be an invariant. 



 c)  neither proof nor refutation succeed, i.e. the prover “gives up” or does not termi-
nate. In this case it is unknown whether the loop is correct or incorrect, or 
whether HI is or is not an invariant. 

Only in case a) does the method say that the loop is correct. 

The idea behind this method is that most FOR-loops compute their final result by 
computing a sequence of partial intermediate results which approximate the final 
result better and better. The final result is described by POST and often depends on a 
characteristic constant or variable which usually is UP. POSTUP

i , which then depends 
on i, often characterizes these partial results.  

A very simple example is a loop for the summation of the first 100 natural num-
bers: 

 -- PRE: s = 0  ∧  s ∈ int32 
FOR i in 1..100 LOOP s := s+i; END LOOP (3) 
 -- POST: s = 〈Σj: 1..100: j〉  ∧  s ∈ int32 

In (3) we assume that the type of  s  is int32. In (3) RCPV can be applied directly 
and gives the HI 

 HI  ≡  POST100
i  ≡  (s = 〈Σj: 1..100: j〉  ∧  s ∈ int32)100

i   
   ≡  s = 〈Σj: 1..i: j〉  ∧  s ∈ int32  

The loop (3) with the invariant HI satisfies (2) and therefore, HI is an invariant of 
(3) and (3) is correct. Since  〈∀i ∈ 0..100: 〈Σj: 1..i: j〉 ∈ int32〉  holds,  we could have 
ommitted   s ∈ int32   in (3). We included it for documentation purposes.   

(3) is a very special loop because the upper bound is the fixed number 100. Often 
the upper bound will be a program variable whose value is constant in the FOR-loop. 
Such a more general FOR-loop is given in (4). 

 -- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N 
FOR i in 1..n LOOP s := s+i; END LOOP (4) 
 -- POST: s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N 

We assume that  s  and  n  are of type int32. N is a specification variable which is 
used to guarantee that the value of  n  after the loop is the same as before the loop. If 
we compute HI mechanically as POSTn

i we obtain 
HI   ≡  POSTn

i  ≡  (s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N)n
i  

 ≡  s=〈Σj: 1..i: j〉 ∧ 0≤i≤65535 ∧ i=N  
We observe immediately that HI is not an invariant of (4) because  i  has not al-

ways the value  N (if N > 1). 
A strategy for avoiding this problem is to apply the substitution  (n # i) only to 

those conjuncts of POST which are not also a conjunct of PRE. In the example this 
results in   

HI   ≡  ( s=〈Σj: 1..n: j〉 )n
i ∧  0≤n≤65535 ∧ n=N   

 ≡  s=〈Σj: 1..i: j〉  ∧  0≤n≤65535 ∧ n=N     
The loop (4) with HI as invariant satisfies (2). 
A method for the identification of common conjuncts is given in sect. 3.3. 



3.2   Bound Transformation  

The method developed so far works only if UP is a constant or a variable. This is a 
severe restriction. One idea is to insert the assignment   “vup := UP;”   immediately 
before the loop, where  vup  is a fresh variable, and then use  vup  as the upper bound. 
But this does not work in general, since vup does not occur in POST. Replacing a 
nonoccurring variable does not change POST, so that POST itself had to be consid-
ered as an invariant, which does not work in most cases. 

In the loop (5) UP is not a variable but a more complicated expression. 
 -- PRE: s = 0  
FOR i in 1..n+m LOOP s := s+i; END LOOP (5) 
 -- POST: s = 〈Σj: 1..n+m: j〉  

In (5) we have omitted the type constraints on  s, n and m  because they are not 
significant for the current discussion. In general, the value of  n+m  is constrained by 
the type of  s:  in (4) the constraint for  n  guarantees that  s ∈ int32. 

The introduction of  vup  and the application of RCPV results in 
vup := n+m; 
 -- PRE: s = 0 ∧ vup = n+m 
FOR i in 1..vup LOOP s := s+i; END LOOP (6) 
 -- POST: s = 〈Σj: 1..n+m: j〉  

Since  vup does not occur in POST we obtain   
HI   ≡   POSTvup

i    ≡   s = 〈Σ j: 1..n+m: j〉vup
i    ≡   s = 〈Σj: 1..n+m: j〉   ≡   POST.  

It is easy to see that HI is not an invariant. 
It seems therefore better to try to transform the given loop L1 into an equivalent 

loop L2 with upper bound UP2, such that  UP2  =  v and v ∈ free(UP1) ∩ free(POST)  
holds.  

In the following we distinguish between expressions such as  LO  and  UP  and 
their value, which we denote by  s1(LO)  and  s1(UP)  where s1 is the state just before 
the first execution of BODY. 

In this paper we use transformations  t  which induce a translation of the range  
s1(LO1) .. s1(UP1) by a constant  k = s1(e),   where  e is some arithmetic expression. 
The resulting range is then   s1(LO1)+s1(e) .. s1(UP1)+s1(e)  =  s1(LO2) .. s1(UP2). 

This means that the number of executions of BODY is the same in the transformed 
loop L2. If we use a suitable transformation  t*  in BODY, which compensates for the 
translation  t  of the values of the loop variable, we obtain a loop which is semanti-
cally equivalent to the given loop L1. This leads to the following scheme (for upward 
counting loops): 

L1:  -- PRE 
 FOR i in LO1..UP1 LOOP BODY END LOOP 
    -- POST  

L2:  -- PRE 
 FOR i in t(LO1)..r(t(UP1))  
 LOOP BODY(i # t*(i)) END LOOP 
    -- POST  



r(•) is a function which reduces (simplifies) arithmetic expressions.  
In L2  a translation  t(•)  is applied to LO and UP and a second translation  t*(•)  to 

all occurrences of the loop variable  i  in BODY. The idea is that  t*(•)  neutralizes  
t(•)  and that therefore the BODY of L2 is executed for the same values of the loop 
variable  i  as the BODY of L1. That this is really the case is shown below. 

We apply the loop transformations only in such cases in which  r(t(UP1)) has the 
form “v” or “–v”. Since  UP2 = r(t(UP1))   has this simple form we get the hypotheti-
cal invariant    
HI = POSTv

i ,  if  r(t(UP1))  has the form  “v “,  or   
HI = POSTv

(-i) ,  if  r(t(UP1))  has the form  “-v”  .  
L2 is never really executed but is only used to determine HI and a corresponding 

proof rule. On the level of proof rule and proof we assume the usual mathematical 
sets of numbers, i.e. when applying t and t* we do not have to watch for range viola-
tions and can apply the usual laws of arithmetic. 

The transformation t depends on  UP and  v  and is a mapping  E × Var → (E → 
E),  i.e.  t(UP,v) ∈ E → E , where E is the set of arithmetic expressions. When UP and 
v are known from the context we also write t(e) instead of t(UP,v)(e). t(UP,v) is ap-
plied to both LO1 and UP1. In order to find  t  for a given expression UP1 and a given 
variable  v  we determine the syntactic transformation necessary to semantically neu-
tralize all terms apart from  v  or  -v.  

E.g. if  UP = m+10   we obtain   t(UP, m)(e) = e -10   and for  UP = n*a +b   we 
obtain  t(UP, n)(e) = (e-b)/a   and   t(UP, b)(e) = e - n*a  . We obtain the correspond-
ing  t*  by  modifying   t(e)  analogously   wrt  e. 

Not all such transformations lead to a translation of  s1(LO1) .. s1(UP1). For  UP1 
= 2*n   we obtain t(UP1,n)(e) =  e/2 . If LO1 =  0  then the original range is  0..2*n   
and the transformed range is  0..n   whose lengths are different for n >0. On the other 
hand, if we rewrite  2*n  as  n+n, we could transform the range  0..2*n  into  -n..n  
which has the same length. 

This means that the transformation of the range is only possible if UP1 has a suit-
able form. In this paper we limit the possible transformations to the cases in the fol-
lowing table: 

Table 1.  Definition of the mappings t and t* 

 Form of UP 
  o1 v e1 o2  v o1 v  o2  e1 e1 o2  v  o3  e2 
 t(UP,v)(e) e e - e1 e  o2-1 e1 e - e1 o3-1 e2 
 r(t(UP,v)(UP)) o1 v o2  v o1  v o2  v 
 t*(UP,v)(e) e e + e1 e  o2  e1 e + e1 o3  e2 
 t*(UP,v)(t(UP,v)(e)) e e - e1 + e1 e  o2-1  e1  o2  e1 e - e1 o3-1 e2 + e1 o3  e2 

 
where  v ∉  free(e1) ∪ free(e2),  o1 ∈ {+, -, ε},  o2, o3 ∈ {+, -},  +-1 = - ,  --1 = + ,  

and  e1 and e2 are parenthesized expressions. If e.g.  UP = v-a+b  we assume that UP 
has been transformed into   v-(a-b)  or an equivalent parenthesized form. As already 
mentioned in sect. 3.1 these restrictions seem not severe from a practical point of 
view. 



Since the expressions in table 1 operate over the mathematical sets of numbers the 
usual algebraic rules apply. It is easy to see that the last row implies that   
t*(UP,v)(t(UP,v)(e))   is semantically equivalent to e. 

In order to show the equivalence of L1 and L2 we need one last property: 
t(UP,v)(•)  and  t*(UP,v)(•)  must be constant throughout the FOR-loop. This is guar-
anteed by the restriction (r2) in sect. 2.  A consequence of this is: there is a  k ∈ Ÿ  
such that  s(t(UP,v)(e))  =  s(e) + k  for any arithmetic expression  e  and for any state  
s  during the execution of the loop, where k can be derived from table 1. Analogously, 
we have  s(t*(UP,v)(e))  =  s(e) - k . 

With these properties we can now show that in L1 and in L2  BODY is executed 
for the same sequence of values of the iteration expression. For L1 we obtain  
BODYs1(LO1)..s1(UP1) .  For L2 we obtain  

  {BODYi
t*(i)}s1(t(LO1))..s1(t(UP1))  

 = BODYs1(t*(s1(t(LO1)))) .. s1(t*(s1(t(UP1)))) --  s(t(e))  =  s(e) + k 
 = BODYs1(t*(s1(LO1)+k)) .. s1(t*(s1(UP1)+k)) --  s(t*(e))  =  s(e) – k 
 = BODYs1(s1(LO1)+k)-k .. s1(s1(UP1)+k)-k --  s(a+b) = s(a) + s(b),  s(s(e)) = s(e) 
 = BODYs1(LO1) .. s1(UP1) 

3.3   Determination of Common Conjuncts  

According to the observation in (4) we present a refinement of the basic strategy by 
exempting common invariant conjuncts from RCPV. Common conjuncts often occur 
in programs with nested loops. One example is example 17 in [FKW02; KW99b]. A 
second example is the algorithm (7), which computes the ∞-norm p of the matrix a of 
size m×n, which is defined as:     p = 〈Max k: 1≤k≤m: 〈Σ c: 1≤c≤n: |a(k,c)| 〉 〉  [GL89]. 

   -- PREo: {m,n} ≥ 1 ∧ p = 0  
FOR i IN 1..m LOOP 
   s := 0; 
   -- PREi: s = 0 ∧  
      --      p = 〈Max k: 1..i-1: 〈Σ c: 1..n: |a(k,c)|〉〉 
   FOR j IN 1..n LOOP  
      s := s+abs(a(i,j)); (7) 
   END LOOP; 
      -- POSTi: s = 〈Σ c: 1..n: |a(i,c)|〉 ∧ 
      --        p = 〈Max k: 1..i-1: 〈Σ c: 1..n: |a(k,c)|〉〉 
   IF s>p THEN p := s; END IF; 
      -- p = 〈Max k: 1..i: 〈Σ c: 1..n: |a(k,c)|〉〉 
END LOOP; 
   -- POSTo: p = 〈Max k: 1..m: 〈Σ c: 1..n: |a(k,c)|〉〉 

PREi and POSTi have one conjunct in common, in which the upper bound must 
not be replaced by the loop variable to obtain an HI. This HI is an invariant of the 
inner loop. 



We determine common conjuncts as follows 
(a) transform PRE and POST into normal form NF 
(b) determine the syntactically common conjuncts C  =  C1 ∧  …  ∧ Cn 
(c) determine those Ci for which     

 noWrite(BODY, free(Ci))  ∨  [Ci ⇒ wp(BODY, Ci)]   holds;  
 noWrite(S, M) means that no variable in the set of variables  M  is written to 
  in the statement  S.  
 Let Ccom be the conjunction of these Ci.  

The condition in (c) seems to be unnecessarily complex because, from a theoretical 
point of view,  trans(BODY, Ci)  ≡  [Ci ⇒ wp(BODY, Ci)]  is necessary and suffi-
cient. From a practical point of view we have to bear in mind that a theorem prover 
may not be able to prove a theorem. On the other hand,  noWrite(BODY, free(Ci)) 
can often be checked  more easily, especially in the absence of function calls. Fur-
thermore it is sufficient but not necessary. Therefore, using the combination of both 
conditions may classify more Ci as an invariant versus using either one alone. 

The details of the normal form are given in [KW00]. 
If the method finds any invariant common conjuncts the normalized POST can be 

written as   POST’ ∧ Ccom , where  POST’ does not contain any conjunct of Ccom.  The 
hypothetical invariant is then   

 HI  ≡  POST’r(t(UP))
i  ∧ Ccom     or    

 HI  ≡  POST’r(-t(UP))
(-i)  ∧ Ccom. 

 

3.4   Adaptation of the Proof Rule  

The bound transformation and the common conjuncts must now be considered in 
the proof rule for the FOR-loop. There are four factors which influence the adaptation 
of the proof rule: 

a) direction of the loop:  upwards / downwards 
b) bound modification in BODY:  bounds are modified / bounds are not modified 
c) form of the transformed final bound:  v / -v 
d) occurrence of the loop variable in POST:  i ∈ free(POST) / i ∉ free(POST) 
The proof rule for the case  
 (upwards, not modified, v, i ∉ free(POST))  
is given in (8). 

[ PRE  ⇒  LO, UP ∈ Ti ]   ∧  
[ PRE  ∧   LO > UP  ⇒   POST’ ]   ∧   (8) 
[ PRE  ∧   LO ≤ UP  ⇒  wp( BODYi

LO, POST’r(t(UP))
t(LO) ) ]   ∧ 

[ t(LO) ≤ i < t(UP)  ∧  POST’r(t(UP))
i  ∧ Ccom ⇒  wp( BODYi

t*(i)+1, POST’r(t(UP))
i+1 ) ]   

The proof rules for the other cases are given in [KW00]. 



3.5   Algorithm for the Application of the Method  

We are now ready to put the pieces together and present the application of the 
method as an algorithm, which works for both upwards and for downwards counting 
AFLs. 

-- INPUT: PRE, POST, i, LO, UP, BODY, UpwardsCounting? 
AFLCorrect?: enum(proof, open) := open; 
FinalBound: expression; 

IF UpwardsCounting?  
THEN FinalBound := UP; ELSE FinalBound := LO; END IF; 

IF FinalBound is suitable (see table 1)  
THEN  Ccom: expression := true; 
      HI: expression; 
      Post’: expression := POST; 

      IF there is a common conjunct c with  
         noWrite(BODY, free(c)) ∨ [c ⇒ wp(BODY,c)] 
      THEN Ccom := 〈Ÿ c: c is common conjunct:  
                       noWrite(BODY, free(c)) ∨  
                       [c ⇒ wp(BODY, c)]〉;  
           POST’ := con(set(POST) - set(Ccom));  
      END IF; 

   -- create the set T of all possible translations  
   -- t(FinalBound,v),  
   -- where v ∈ free(FinalBound) ∩ free(POST); 
   FOR EACH t ∈ T DO 
      -- r(t(FinalBound)) = v  ∨ r(t(FinalBound))= -v 
      IF r(t(FinalBound))= v 
      THEN POST’ := POST’vi;  
      ELSE POST’ := POST’v(-i);  
      END IF; 
      IF the AFL can be proved using POST’ and Ccom in the  
         appropriate rule in sect. 3.4   
      THEN AFLCorrect? := proof; EXIT; 
      END IF; 
   END FOR; 
END IF; 

-- OUTPUT: AFLCorrect?  

The functions con(⋅) and set(⋅) are defined as follows:  
 set(C1 ∧ … ∧ Cn)   =   { C1 , … , Cn },  
 con({ C1 , … , Cn }) =   C1 ∧ … ∧ Cn 
The meaning of the three possible outcomes (proof, open, nontermination) has al-

ready been explained in section 3.1. 



3.6   Examples  

In the following example (9) the natural numbers in the range  m .. m-n  (for n≤0) 
are summed up. 

   -- PRE: s = 0 ∧ m ≥ 0 ∧ n≤0 
FOR i IN m .. m-n LOOP 
   s := s + i;       (9) 
END LOOP; 
   -- POST: s = 〈Σ j: m..m-n: j〉 

UP is suitable, Ccom ≡ true, free(UP) ∩ free(POST) = {m, n},  
2 transformations are possible:  
t1(m-n, m)(e) = e+n    and    t2(m-n, n)(e) = e-m.    
t1 does not yield an invariant, but  t2 gives  
 HI   ∫   s = 〈Σ j: m..m+i: j〉   
which is an invariant of the transformed loop.  The transformed loop and HI satisfy 

(8). 
The second example is from [PS05] and computes the sum of squares of the first n 

natural numbers. An equivalent AFL is (10). 

   -- PRE: n≥0 ∧ n≤1860 ∧ n=N ∧ x=0 
FOR y IN 0..n LOOP 
   x := y*y + x;     (10) 
END LOOP; 
   -- POST: x=(2n3+3n2+n)/6 ∧ x∈int32 ∧ n≥0 ∧ n≤1860 ∧ n=N 

Additionally to [PS05] we assume that  x ∈ int32  and use  n  in POST instead of y, 
which may not be in scope. Since UP is a simple variable we obtain directly  

HI  ≡  x = (2y3 + 3y2 + y)/6  ∧  x ∈ int32  ∧  n ≥ 0  ∧  n ≤ 1860  ∧  n = N 
HI is an invariant and the loop (10) together with HI satisfies (8). 

4   Conclusion 

We have developed a method for the mechanical generation of invariants for a 
practically relevant class of FOR-loops. The method can be incorporated into auto-
matic program provers and would lead to a simplification of program verification 
using such a tool. By extending the suitable forms of the final bound the applicability 
of the method could be extended to further classes of FOR-loops. 
 
Acknowledgments. We are grateful for the very useful hints of an anonymous referee 
which led to a number of improvements of the paper. 
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