

FRIEDRICH-SCHILLER-
UNIVERSITÄT JENA
Fakultät für Mathematik und Informatik

Jenaer Schriften zur

Mathematik und Informatik

Eingang: 1999.11.09 Nr. Math / Inf / 99 / 28 Als Manuskript gedruckt

A COMPARISON OF THE PROGRAM PROVERS

 NPPV AND FPP

Stefan Kauer, Jürgen F H Winkler

Friedrich-Schiller University, Institute of Computer Science
D-07740 Jena, Germany

http://www1.informatik.uni-jena.de

Comparison of the program provers NPPV and FPP

 1

A COMPARISON OF THE PROGRAM PROVERS NPPV AND FPP

Stefan Kauer, Jürgen F H Winkler

Friedrich-Schiller University, Institute of Computer Science, D-07740 Jena, Germany
http://www1.informatik.uni-jena.de

This paper compares two experimental systems for the mechanical verification of small programs: NPPV (New
Paltz Program Prover) and FPP (Frege Program Prover). Both systems are based on the wp-semantics of the con-
structs they support. NPPV can also deal with partial correctness of loops, whereas FPP always tries to prove loop
termination. NPPV supports a subset of Pascal and FPP supports a subset of Ada. Both tools use automatic theorem
proving. NPPV uses a simple rewrite system, whereas FPP uses an extended version of the theorem prover Ana-
lytica.
The comparison is done by trying to prove 26 examples from various sources, but mainly from the NPPV distribu-
tion. 23 of the 26 examples are correct and can in principle be proved. The main result is that NPPV is able to prove
only one of the 22 examples which are appropriate for it. The essential limitation seems to be the theorem prover
used in NPPV. Since FPP only supports total correctness only 17 of the 24 correct examples are appropriate for
FPP. FPP proves 14 of those 17.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—assertion
checkers, correctness proofs; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning
about Programs—assertions, mechanical verification, pre- and post-conditions

General Terms: Verification

Additional Key Words and Phrases: program correctness, verification conditions, automatic program prover

1 Introduction
This paper compares two experimental systems for the mechanical verification of small programs: NPPV
(New Paltz Program Prover) and FPP (Frege Program Prover). Both systems are based on the wp-
semantics of the constructs they support. NPPV can also deal with partial correctness of loops, whereas
FPP always tries to prove loop termination. NPPV supports a subset of Pascal and FPP supports a subset
of Ada. Both tools use automatic theorem proving. NPPV uses a simple rewrite system, whereas FPP uses
an extended version of the theorem prover Analytica.

The comparison is done by trying to prove 26 examples from various sources, but mainly from the NPPV
distribution. 23 of the 26 examples are correct and can in principle be proved. The main result is that
NPPV is able to prove only one of the 22 examples which are appropriate for it. The essential limitation
seems to be the theorem prover used in NPPV. Since FPP only supports total correctness only 17 of the
23 correct examples are appropriate for FPP. FPP proves 14 of those 17.

The paper is organized as follows. Section 2 gives a very short introduction into program verification,
especially verification based on weakest preconditions. In section 3 we describe the main characteristics
of NPPV and in section 4 those of FPP. The results of the comparison based on 26 examples are pre-
sented in section 5. The appendix contains the verification protocols of all 26 examples for both NPPV
and FPP.

2 Program Verification
Software has become an important and often essential part of technical systems. It is used in small devices
as e.g. pacemakers up to big systems as e.g. airplanes. Both are examples of systems which require a high
degree of reliability and safety. This means that all parts of design must be checked whether they guaran-
tee these requirements. For electrical or mechanical designs there exist methods to check properties in an
exact manner: e.g. circuit analysis [Dor 93] or analysis of structure. Such methods are routinely applied
by electrical or civil engineers.

S Kauer, J F H Winkler

 2

In SW engineering such methods also exist but are not as mature as those in other fields of engineering
and are therefore neither taught nor used routinely during the development of programs. Whereas any
electrical engineer can perform the calculations necessary for the quantitative analysis of simple circuits it
is usually not the case that a software engineer can calculate the effect of a simple program or program
fragment in a quantitative way. Examples of such computations are:

- computing the weakest precondition for a given program fragment PF and a given postcondition Post

- computing the strongest postcondition for a given program fragment PF and a given postcondition Post

- checking whether a triple {Pre} PF {Post} is consistent

- computing counterexamples if a triple {Pre} PF {Post} is not consistent

The Frege Program Prover (FPP) and the New Paltz Program Verifier (NPPV) are experimental systems
to support the SW engineer in such calculations.

Program verification usually deals with the question whether a triple

 {Pre} PF {Post} (1)

 is consistent. This can be formally defined as:

 [Pre ⇒ wp(PF, Post)] (2)

if we use wp(weakest precondition) for the characterization of program semantics. The square brackets (
”[]“) are an abbreviation for the universal quantification over the program variables (”in all states“) [DS
90]. There exist similar mechanisms for the characterization of the semantics of programs e.g. the combi-
nation of wp and wlp (weakest liberal precondition) [DS 90] or pre- and post-sets [Win 96]. Since the two
tools, which are compared in this paper, both use wp for the characterization of semantics we use in the
discussion on verification also wp. It is not our intention to explain the theory of program verification in
this report; more details on program verification are given in [DS 90; Gri 83; KW 97; KW 99a; Win 97].
In general (2) is a theorem, and to show the consistency of (1) is the same as to try to prove (2). Such
theorems are often also called verification conditions (VC).

Examples:

 {v>0} v:=v+1; {v>4}
≡ [v>0 ⇒ wp(”v:=v+1;“, v>4)]
≡ [v>0 ⇒ v+1 ∈ type(v) ∧ v ≥ 4]
≡ False.

 {v>0 ∧ v+1 ∈ type(v) } v:=v+1; {v>1}

≡ [v>0 ∧ v+1 ∈ type(v) ⇒ wp(“v:=v+1;“, v>1)]
≡ [v>0 ∧ v+1 ∈ type(v) ⇒ v+1 ∈ type(v) ∧ v+1 > 1]
≡ True.

 { -127 ≤ x ≤ 127 ∧ x = x_i }
 IF x < 0 THEN x := -x; END IF;
 { 0 ≤ x ≤ 127 ∧ (x = x_i ∨ x = -x_i) }

 ≡ [-127 ≤ x ≤ 127 ∧ x = x_i ⇒
 wp(”IF x < 0 THEN x := -x; END IF;“, 0 ≤ x ≤ 127 ∧ (x = x_i ∨ x = -x_i))]

 ≡ [-127 ≤ x ≤ 127 ∧ x = x_i ⇒
 x < 0 ∧ 0 ≤ -x ≤ 127 ∧ (-x = x_i ∨ -x = -x_i) ∨
 0 ≤ x ∧ 0 ≤ x ≤ 127 ∧ (x = x_i ∨ x = -x_i)]

 ≡ [-127 ≤ x ≤ 127 ∧ x = x_i ⇒
 x < 0 ∧ -127 ≤ x ≤ 0 ∧ (x = x_i ∨ x = -x_i) ∨
 0 ≤ x ≤ 127 ∧ (x = x_i ∨ x = -x_i)]

Comparison of the program provers NPPV and FPP

 3

 ≡ [-127 ≤ x ≤ 127 ∧ x = x_i ⇒
 (-127 ≤ x < 0 ∨ 0 ≤ x ≤ 127) ∧ (x = x_i ∨ x = -x_i)]

 ≡ [-127 ≤ x ≤ 127 ∧ x = x_i ⇒
 (-127 ≤ x ≤ 127 ∧ x = x_i) ∨ (-127 ≤ x ≤ 127 ∧ x = -x_i)]

 ≡ True.

In general the assertions (i.e. precondition and postcondition) contain two kinds of variables: (1) program
variables which occur also in the program, and (2) specification variables, which occur in the assertions
only. Such variables are called ”ghost variables“ in [Bac 86: 86]. The specification variables are typically
used to refer in the postcondition to the initial value of a program variable, or vice versa. In this paper we
use the convention that the identifiers of such specification variables are obtained by appending the suffix
”_i“ for the initial value or the suffix ”_f“ for the final value to the identifier of the corresponding
program variable. x_i denotes the initial value of the program variable x and abc_f the final value of the
program variable abc. It may even be better to use uppercase letters or such identifiers for specification
variables which are syntactically not allowed for program variables, e.g. in Ada identifiers containing ‘\’.
Examples of such specification variables are ”X_i\“, ”X\i“, which could denote the initial value of X and
”X_f\“, ”X\f“ for the final value of X.

The use of these specification variables leads to somewhat clumsier assertions. In informal treatment they
are therefore often not used [Bac 86: 150 f.; Gri 83: 100]. Quite often authors use very weak specifi-
cations in the verification of much stronger programs. A typical case is that the specification does not
state that certain variables are not to be changed. This leads generally to positive verification results.
Nevertheless, we think that such weak specifications are not appropriate in general. In program develop-
ment the specification is typically developed first and then used as an input to program development. If
the specification allows also for a very simple program, why should we then develop a more complicated
program at all ?

As we see in these examples, verification leads to a lot of formula manipulation. It is rather tedious and
error prone to do this by hand. As with numeric computations the computer can also perform symbolic
computations very much better than human beings. Such tools can be called ”program verifiers“ or ”pro-
gram provers“. If we give the third example to the Frege Program Prover (FPP) we obtain the following
result:

Input to FPP

 --!Pre: -127 <= x and x <= 127 and x = x_i;
IF x < 0 THEN x := -x; END IF;
 --!Post: x >= 0 and x <= 127 and (x = x_i or x = -x_i);

Output from FPP (simplified):

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.08.30, 16:04
The answer to your query is:

--!pre: (-127 <= x AND x <= 127 AND x = x_i)
--> wp: -127 <= x AND x <= 127 AND x = x_i OR
--> -127 <= x AND x <= 127 AND x = -x_i
--> vc: -127 <= x AND x <= 127 AND x = x_i)
--> ==>
--> -127 <= x AND x <= 127 AND x = x_i OR
--> -127 <= x AND x <= 127 AND x = -x_i
--> Result: proved
IF x < 0 THEN
 x := -x;
END IF;
--!post: (x >= 0 AND x <= 127 AND (x = x_i OR x = -x_i))

S Kauer, J F H Winkler

 4

The automatic verification of such an annotated program consists of two main steps:
- generation of the VCs. This is a straightforward task.
- the automatic proof of the VCs generated in the first step.
If such proofs are done by a tool T this tool contains as one of its components an automatic theorem
prover. The capabilities of this theorem prover then limit the capabilities of T. The ATP tries to prove the
VCs which are formally theorems in a first order predicate logic. Theorem proving is not as straightfor-
ward as the generation of the VCs. Therefore, the ATP is the hard part of program proving.
The last example in this section shows the verification of a FOR-loop using FPP [KW 97].

Input to FPP:

--!pre : r = 1 AND 0 <= n AND n <= 20 AND n = n_i;
--!post: r = Factorial(n) AND -2**63 <= r AND r <= 2**63-1 AND n = n_i;
--!inv : r = Factorial(i) AND 0 <= n AND n <= 20 AND n = n_i;
for i in 1 .. n loop
 r := r * i;
end loop;

Output from FPP (simplified):

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.08.30, 16:24
The answer to your query is:

--!pre : r = 1 AND 0 <= n AND n <= 20 AND n = n_i
--!post : r = Factorial(n) AND -2**63 <= r AND r <= 2**63-1 AND n = n_i
--!inv : r = Factorial(i) AND 0 <= n AND n <= 20 AND n = n_i
-->functionality ---
-->func : (initial AND induction AND final AND null loop)
-->initial : 1 <= n AND r = 1 AND 0 <= n AND n <= 20 AND n = n_i
--> ==> r = 1 AND 0 <= n AND n <= 20 AND n = n_i
-->Result : proved
-->induction : r = Factorial(i-1) AND 1 <= n AND n <= 20 AND n = n_i
--> ==> i*r = Factorial(i) AND 0 <= n AND n <= 20 AND n = n_i
-->Result : proved
-->final : r = Factorial(n) AND 1 <= n AND n <= 20 AND n = n_i
--> ==> r = Factorial(n) AND -2**63 <= r AND r <= 2**63-1 AND n = n_i
-->Result : proved
-->null loop : n = 0 AND r = 1 AND n = n_i
--> ==> r = Factorial(n) AND -2**63 <= r AND r <= 2**63-1 AND n = n_i
-->Result : proved
FOR i IN 1 .. n LOOP
 r := r * i;
END LOOP;

3 NPPV: The New Paltz Program Verifier
NPPV [GS 98, Gum 99b] is an automatic program verifier for a subset of Pascal. The input consists of a
program with assertions. NPPV generates the VCs and tries to prove them. The VCs are generated using
the wp calculus (for assignment, if and sequence) [Gri 83]. The VCs for WHILE-loops and for FOR-
loops are generated as described in [Gri 83; Hoa 72]. No range checks are generated. The output consists
of the VCs and the result of the prover. If the proof succeeds, the output says ”succeeded“, otherwise it
says ”Remains to prove“ and lists the VCs which could not be proved. A program is consistent with its
specification, if the proofs of all verification conditions succeed. Unfortunately, in the examples in the
Appendix (see also Table 5.2) most of the interesting VCs remain to be proved. The output can be saved
in a log file called ”session.log”, i.e. the name of the output file is independent of the name of the input
file.
The programming language supported contains the types integer with range -32768..32767 and array and
the statements assignment, IF, FOR-loop and WHILE-loop. The assertions are Boolean expressions of

Comparison of the program provers NPPV and FPP

 5

Pascal, which implies that quantifiers and implication are not allowed. Loops require an invariant. Asser-
tions and invariants are comments. WHILE-loops may be annotated with a termination function. The
termination function occurs immediately after the keyword ”DO“ and is enclosed in square brackets.
Without such a function only partial correctness can be proved.
Identifiers starting with small letters are variables. Identifiers starting with capital letters are constants.
That means that for example n:=5 is allowed, whereas N := 5 (i.e. assignment in general) is not allowed.
This is checked by NPPV. There is no explicit distinction between program and specification variables,
but these constants have the essential properties of specification variables and are used as such in the
examples in the appendix.

Example:
Input to NPPV:

{v > 0}
BEGIN
 v := v+1
END
{v > 4}

Output from NPPV:

Generating verification conditions...
O.K.

=====================================
=== Verification Condition No.: 1 ===

v>0
 ==>
 v+1>4

--------- Remains to prove ---------
0<v
 ==>
 4<v+1
=====================================

NPPV can be obtained from http://www.mathematik.uni-marburg.de/~gumm/NPPV/nppv.html. It runs on
DOS or in a DOS window of WindowsNT or OS/2.

4 FPP: The Frege Program Prover
The Frege Program Prover (FPP; http://www1.informatik.uni-jena.de/FPP/FPP-main.htm) is a tool to
perform calculations in the area of program analysis (see sect. 1). It is based on the wp-calculus and a
small subset of Ada (types integer and Boolean; assignment, IF, CASE, FOR and WHILE). Assertions are
written as special comments (--! . . .) and are essentially Boolean expressions; additionally to Ada
quantifiers and the implication are allowed. The syntax of the input language is given in
http://www1.informatik.uni-jena.de/FPP/fpp-synt.htm. For FOR-loops an invariant has to be given and
for WHILE-loops an invariant and a termination function. Therefore, FPP deals only with total correct-
ness of loops and not with partial correctness.

Since we are not working in automatic theorem proving FPP uses a theorem prover from another party:
Analytica [CZ 92] with some modifications and extensions implemented by S. Kauer. Due to the diffi-
culty of automatic theorem proving the user of FPP may encounter a situation in which FPP cannot prove
a certain VC, runs out of memory during proving or runs for a very long time. Such behavior is not com-
pletely different from that of a human theorem prover who may also not be able to prove a certain theo-
rem. The capabilities of FPP just reflect the capabilities of the built-in ATP.

One example for such a behavior is example 8 (fastmultty). The prover transforms the VC into DNF (dis-
junctive normal form) and splits this transformed VC into an equivalent conjunction of clauses. A clause
is an implication of a conjunction of atoms and a single atom, similar to a clause in PROLOG. But unlike

S Kauer, J F H Winkler

 6

in PROLOG, the clauses here may contain quantifiers. In the worst case, the transformation into DNF is
of exponential complexity, in space as well as in time [Sch95: 30].

A further limitation lies in the state of the wp-calculus. For loops e.g. a correctness proof is usually done
using an invariant and (for the WHILE loop) a termination function. Invariant and termination function
usually are provided by the user. If the invariant is too sharp it may not be possible to prove the consis-
tency of [Pre ⇒ wp(PF, Post)] even if it is consistent. Therefore, tools for proving the consistency of
specified programs can be improved by developing new rules for the computation of wp. This has been
done in [Kau 99], which contains two new methods for the computation of wp for loops. The first method
computes for certain FOR-loops automatically an invariant, and the second computes automatically the
weakest precondition of certain WHILE-loops.

FPP is implemented as a WWW application, i.e. it can be used interactively over the net.

FPP can essentially do two things:

a) Compute the weakest precondition: wp(PF, Post). Compute the weakest precondition for a given
program (fragment) PF and a given postcondition Post.

 Example 4.1: wp(”v:=v+1;“, v>4)
 ≡ v+1 ∈ type(v) ∧ v+1 > 4
 ≡ v+1 ∈ type(v) ∧ v ≥ 4.

 type(v) is the value set of v, i.e. the set of admissible values as defined by the type of v.

b) Check the correctness of a program (fragment) wrt a specification (Pre, Post): i.e. check whether a
given program (fragment) PF satisfies a given specification (Pre,Post). This is usually expressed as a
Hoare triple {Pre} PF {Post}. If PF satisfies the specification the triple is called consistent. As men-
tioned in sect. 2, this consistency is defined as [Pre ⇒ wp(PF, Post)]

 Example 4.2: {v>0} v:=v+1; {v>4}
 ≡ [v>0 ⇒ wp(”v:=v+1;“, v>4)]
 ≡ [v>0 ⇒ v+1 ∈ type(v) ∧ v ≥ 4]
 ≡ False.

If we apply the FPP to these examples we obtain:

Example 4.1 Input to FPP:
v := v+1;
 --!Post: v > 4 and -100 <= v and v <= 100;

Since FPP currently knows nothing about value sets of variables the range constraint on v is expressed
explicitly in the postcondition (-100 <= v and v <= 100).

 Output from FPP:
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1998.03.06, 14:48

The answer to your query is:

--> wp : (1+v >= 5 AND -100 <= 1+v AND 1+v <= 100)
v := v + 1;
--!post : (v >= 5 AND -100 <= v AND v <= 100)

The lines containing results computed by FPP begin with the character combination ”-->“. In the output
we see that FPP has computed the weakest precondition and that the postcondition had been given by the
user.

Comparison of the program provers NPPV and FPP

 7

Example 4.2 Input to FPP:

 --!Pre: v > 0;
v := v+1;
 --!Post: v > 4 and -100 <= v and v <= 100;

 Output from FPP (simplified):
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1998.03.06, 15:00
The answer to your query is:

--!pre : (v >= 1)
--> wp : (1 + v >= 5 AND -100 <= 1 + v AND 1 + v <= 100)
--> vc : (v >= 1 ==> 1+v >= 5 AND -100 <= 1+v AND 1+v <= 100)
--> Result: not proved
--> Incorrectness condition: (3 >= v AND v >= 1)
v := v + 1;
--!post: (v >= 5 AND -100 <= v AND v <= 100)

In this example the program fragment and the given specification are not consistent. Therefore, FPP gives
the answer ”not proved“. It gives further an ”incorrectness condition“ which characterizes those states
which fulfill the precondition but from which the program is not guaranteed to finish in a state of the
postcondition.

In such a case it is additionally useful if the user is presented a concrete counterexample. A method to
compute counterexamples in certain cases has been developed in [Kau 99]. Up to now, this method has
not been incorporated into FPP. In this very simple example we see that v=1 is a counterexample; but
in more complicated cases it is not so easy to derive a counterexample from the incorrectness condition.

The following example shows how loops are annotated i.e. especially how the invariant and the termina-
tion function are specified by the user. The program computes the gcd of two numbers using Euclid’s
algorithm..

Example 4.3 Input to FPP:

 --!pre: i>0 and j>0 and i=i_i and j=j_i;
 --!post: i=j and i=GGT(i_i,j_i);
 --!inv: i>0 and j>0 and GGT(i,j) = GGT(i_i,j_i);
 --!term: i+j;
WHILE i /= j LOOP
 IF i>j
 THEN i := i-j;
 ELSE j := j-i;
 END IF;
END LOOP;

For loops all annotations are given before the beginning of the loop. In this example precondition, post-
condition, invariant and termination function are given. FPP then tries to show the validity of

[pre ⇒ inv] ∧ [cond ∧ inv ⇒ wp(body, inv)] ∧ [¬cond ∧ inv ⇒ post] ∧
[cond ∧ inv ⇒ term > 0] ∧ [cond ∧ inv ⇒ wp(”T:=term; body“, term < T)]

which is the classical consistency condition for WHILE-loops.

 Output from FPP (slightly edited):

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.01, 16:39
The answer to your query is:

S Kauer, J F H Winkler

 8

--!pre : (i >= 1 AND j >= 1 AND i = i_i AND j = j_i)
--!post : (i = j AND i = GGT(i_i,j_i))
--!inv : (i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
--!term : (j + i)
-->functionality ---------------------------
-->initial : (i >= 1 AND j >= 1 AND i = i_i AND j = j_i)
--> ==> (i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
-->Result : proved
-->induction : (i /= j AND i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
--> ==> (i > j) AND (j >= 1) AND (GGT(i,j) = GGT(i_i,j_i))
--> OR (i < j) AND (i >= 1) AND (GGT(i,j) = GGT(i_i,j_i))
-->Result : proved
-->final : (i = j AND i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
--> ==> (i = j AND i = GGT(i_i,j_i))
-->Result : proved
-->termination ---------------------------
-->initial : (i /= j AND i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
--> ==> (j + i >= 1)
-->Result : proved
-->induction : (i /= j AND i >= 1 AND j >= 1 AND GGT(i,j) = GGT(i_i,j_i))
--> ==> (i >= 1 + j AND j + i >= 1 + i OR i < 1 + j AND j + i >= 1 + j)
-->Result : proved
WHILE i /= j LOOP
 IF i > j THEN
 i := i - j;
 ELSE
 j := j - i;
 END IF;
END LOOP;

All five conjuncts of the consistency condition have been proved and therefore, the LOOP and the speci-
fication are consistent.

In two cases auxiliary variables are generated during the proof process. Auxiliary variables are neither
program nor specification variables.

The first case occurs with nested loops. The inner loop is treated as a procedure call. Hence it is proved
by a proof rule for procedure calls [Kau 99]. This proof rule generates a formula with a universal quanti-
fier. The bound variables of these quantifiers are auxiliary variables. The following example shows a
nested loop:

 --!pre: a>=0 and b>=0;
p := 0;
 --!pre: p=0 and a>=0 and b>=0;
 --!post: p=b*a;
 --!inv: p=i*a and a>=0;
for i in 1..b loop
 --!pre: p = (i-1)*a and a>=0;
 --!post: p = i*a;
 --!inv: p = (i-1)*a+j;
 for j in 1..a loop
 p := p mod 1;
 end loop;
end loop;

This nested loop computes the product of a and b by multiple addition. The addition is computed by mul-
tiple application of the successor function.

The output from FPP is:

--!pre : (a >= 0 AND b >= 0)
--> wp : (a >= 0 AND b >= 0)
--> vc : (True)
--> Result: proved
p := 0;
--!pre : (p = 0 AND a >= 0 AND b >= 0)
--!post : (p = a*b)
--!inv : (p = a*i AND a >= 0)

Comparison of the program provers NPPV and FPP

 9

-->functionality ---------------------------
-->func : (initial AND induction AND final AND null loop)
-->initial :(1 <= b AND p = 0 AND a >= 0 AND b >= 0 ==> p = 0 AND a >= 0)
--> Result : proved
-->induction : (1 <= b AND p = a*(-1 + i) AND a >= 0)
--> ==> (1 <= a)
--> AND (p = a*(-1 + i))
--> AND (a >= 0)
--> AND (forall(($0)),
--> (p = a*(-1 + i) AND a >= 0 ==> $0 = a*i)
--> ==> ($0 = a*i AND a >= 0))
--> OR (1 >= 1 + a AND p = a*i AND a >= 0)
--> Result : proved
-->final :(1 <= b AND p = a*b AND a >= 0 ==> p = a*b)
--> Result : proved
-->null loop :(1 >= 1 + b AND p = 0 AND a >= 0 AND b >= 0 ==> p = a*b)
--> Result : proved
FOR i IN 1 .. b LOOP

 --!pre : (p = a*(-1 + i) AND a >= 0)
 --!post : (p = a*i)
 --!inv : (p = j + a*(-1 + i))
 -->functionality ---------------------------
 -->func : (initial AND induction AND final AND null loop)
 -->initial :(1 <= a AND p = a*(-1 + i) AND a >= 0 ==> p = a*(-1 + i))
 --> Result : proved
 -->induction :(1<=a AND p= -1 + j + a*(-1 + i) ==> 1 + p = j + a*(-1 + i))
 --> Result : proved
 -->final :(1 <= a AND p = a + a*(-1 + i) ==> p = a*i)
 --> Result : proved
 -->null loop :(1 >= 1 + a AND p = a*(-1 + i) AND a >= 0 ==> p = a*i)
 --> Result : proved
 FOR j IN 1 .. a LOOP
 p := p + 1;
 END LOOP;
END LOOP;

The induction part of the outer loop contains

(forall(($0)), (p = a*(-1 + i) AND a >= 0 ==>
 $0 = a*i) ==> ($0 = a*i AND a >= 0))

The variable $0 is an auxiliary variable and starts with a ‘$’ in order to prevent a clash between program
or specification variables and auxiliary variables.

The second case, in which auxiliary variables occur, is through skolemization during the generation of
falsification conditions (FC). FCs are generated, whenever a VC cannot be proved. Example:

Input to FPP:
--!pre: (exists x:0 <= x and x <10: x<y);
y := y-1;
 --!post: y>0;

Output from FPP:
--!pre : ((exists x: 0 <= x AND 10 >= 1 + x AND y >= 1 + x))
--> wp : (-1 + y >= 1)
--> vc : ((exists x: 0 <= x AND 10 >= 1 + x AND y >= 1 + x) ==> -1 + y >= 1)
--> Result: not proved
--> fc : (2 - y >= 1 AND 9 - $07 >= 0 AND -1 + y - $07 >= 0 AND $07 >= 0)
y := y - 1;
--!post : (y >= 1)

The example program is not correct and therefore, its correctness cannot be proved. FPP then generates
an FC, which contains the auxiliary variable $07. The FC is a system of equalities and inequalities. The
solution of an FC is a counterexample, which explicitly shows, that the program is incorrect [Kau 99].
The computation of the solution of the FC is not yet implemented. In this example one (and the only)

S Kauer, J F H Winkler

 10

solution is y = 1 and $07 = 0, which yields the counterexample y = 1 and x = 0 as an initial state. A larger
example, in which both kinds of auxiliary variables occur, is example 7 (fastmult) in the appendix.

5 Comparison of NPPV and FPP
NPPV and FPP are similar systems. Both are based on a subset of an imperative programming language
extended by assertions (pre- and post-conditions, invariants and termination functions). Both consist of a
verification condition generator (VCG) and an automatic theorem prover. The input of both consists of a
program with assertions, and the output of both contains the VCs generated by the VCG and the result of
the ATP.

The differences between NPPV and FPP lie in the details, which are listed in table 5.1.

 NPPV FPP
programming language subset of Pascal subset of Ada
assertion language subset of Pascal expressions,

enclosed in { }; true is ex-
pressed by {}

subset of Ada expressions extended with
quantifiers, implication and the additional
functions abs, min, max, ggt, sum, facto-
rial, fib

form of assertions {}comments special comments: --!
multiline assertions supported supported
supported types integer,

array with integer index type
and integer component type

integer and Boolean

supported statements assignment, IF, FOR- and
WHILE loop

NULL, assignment, IF, CASE, FOR and
WHILE loop

proof of loops only invariant required, ter-
mination function for WHILE
loops optional, so that also
partial correctness can be
proved

precondition, postcondition, invariant and
for WHILE loops termination function
necessary, so that only total correctness
can be proved

output optional in a file: session.log;
output contains only verifica-
tion conditions and results

in a file that has the same name as the
input file, but a different extension; output
contains the statements, the VCs and the
result together

usage local local or via WWW
pretty printing not supported supported
simplification of expressions not performed performed to a certain extent
computing wp not possible possible
theorem proving possible e.g. with x := x possible e.g. with null statement
implementation language Visual Prolog Ada, C and Mathematica
proving power only trivial higher than NPPV
automatic theorem prover simple rewrite system mexana, an extension of Analytica

Table 5.1. Properties of NPPV and FPP

Table 5.2 contains the results, that were obtained when trying to verify a series of examples with both
NPPV and FPP. The 23 examples come from two sources. Those with the indication ”Gumm“ in the
column ”Source“ are delivered with the NPPV system and those with the indication ”Kauer“ have been
created by S. Kauer. The complete results for the 23 examples are contained in the Appendix of this re-
port.

Comparison of the program provers NPPV and FPP

 11

The right part of Table 5.2 contains the essential results when both provers try to prove the examples.
There are examples which are not appropriate for one of the program provers; e.g. example 2 (”array“) is
not appropriate for FPP, because FPP does not (yet) support the data type ”array“. Example 16 (”lin-
search“) is not appropriate for NPPV, because NPPV does not support the use of quantifiers. For such
inappropriate examples no results can be given. For the appropriate examples we give three results:
- whether it could be proved (all examples are consistent)
- the number of VCs which have been generated
- the number of VCs which have been proved

No.

Program Remark Source FPP

proved #VC #proved
NPPV

proved #VC #proved
1 abs no abs func-

tion in NPPV
Kauer YES 1 1 NO 2 1

2 array assignment to
arrays not
supported in
FPP

Gumm n.a. NO 1 0

3 assrek no termina-
tion function

Gumm n.a. NO 4 1

4 factfor Gumm YES 5 5 NO 5 2

5 factforty Gumm / Kauer YES 6 6 NO 5 1

6 fastmul no termina-
tion function

Gumm n.a. NO 6 4

7 fastmult Gumm NO 10 7 NO 14 7

8 fastmultty too many
clauses1

Gumm / Kauer NO 11 7 NO 14 7

9 fibo no termina-
tion function

Gumm n.a. NO 4 2

10 fibot Gumm YES 6 6 NO 6 4

11 fibotty Gumm / Kauer NO 6 5 NO 6 3

12 gauss no termina-
tion function

Gumm n.a. NO 4 3

13 gausst Gumm YES 6 6 NO 6 5

14 gausstty Gumm / Kauer YES 6 6 NO 6 4

15 linrek no termina-
tion function

Gumm n.a. NO 7 2

16 linsearch no quantifiers
allowed in
NPPV’s as-
sertions

Kauer YES 5 5 n.a.

17 nested_for Kauer YES 9 9 NO 8 5

19 quad Kauer YES 5 5 NO 5 3

20 root Kauer YES 5 5 NO 5 4

1 In this case no output was generated after 24 hours computing time. A closer look into the execution of
the theorem prover revealed, that too many clauses were generated (see sect. 4).

S Kauer, J F H Winkler

 12

21 swap1 Gumm YES 1 1 NO 1 1

22 swap2 Gumm YES 1 1 YES 1 1

24 swap2ty2 Gumm / Kauer YES 3 3 NO 3 1

26 cube [GH 99] YES 4 4 NO 5 3

 14 (17) 90 82 1 (22) 118 64

Table 5.2. Results for 23 Programs

The last line of Table 5.2 contains a quantitative summary of the 23 examples. It is somewhat surprising
that NPPV is not able to prove those examples which are delivered with the distribution of the system.
FPP proves 14 of the 17 examples which are appropriate and NPPV proves 1 example of the 22 appropri-
ate ones. This is the example 22 (swap2) which consists of three rather simple assignment statements.
NPPV is able to generate the necessary VCs, even rather complicated ones as e.g. in example 2 (array).
But in almost all examples it is not able to perform the necessary proofs. The reason for this is that NPPV
uses only a simple rewrite system as theorem prover [Gum 99c]. Examples of very simple theorems
which NPPV cannot prove are:

Example 12, VC4: x < 0 ⇒ x+1 ≤ 0

Example 17, VC6: 0 ≤ a ⇒ (i-1)*a+a = a*i

Example 19, VC5: 0 ≤ i ∧ i+1 ≤ k ⇒ 2*i+1 = i+i+1

For WHILE-loops FPP only uses the proof rule for total correctness which uses both an invariant and a
termination function. Due to this reason those examples, which contain a WHILE-loop and no termina-
tion function (examples 3, 6, 9, 12) are not appropriate for FPP. On the other hand, those examples are
appropriate for NPPV. But NPPV cannot prove them.

In one case FPP is not able to complete the proof, because too many clauses are generated during the
proof (example 8).

The appendix contains three more examples which are not contained in Table 5.2. Example 23 (swap2ty)
is not correct, i.e. the specification and the program are not consistent. Therefore it is correct that none of
the tools can prove swap2ty. In the examples 18 (proof) and 25 (swap3) the program provers are used to
do formula manipulation only; the goal of the example is to generate the verification condition. The
specification does not contain enough information to prove the example. Example 18 is not appropriate
for FPP.

6 Conclusion and Outlook
We have presented a comparison of two automatic program provers, NPPV and FPP. Both provers use a
similar approach to the program proving and support a similar language. The main difference is the power
of the theorem prover. That of NPPV is rather weak because it cannot prove almost all of the consistent
examples. FPP uses a somewhat stronger theorem prover and can therefore prove 14 of those 17 examples
which are appropriate for FPP.

Improvements to FPP are possible in different directions:

a) Use of a larger language. Currently FPP uses a quite small subset of Ada. Work is underway on FPP-2
which will support a larger subset of Ada. New elements are declarations, arrays, records and proce-
dures. FPP-2 will especially check the type conditions automatically and therefore simplify the task of
the user.

b) Use of more methods for the generation of verification conditions. FPP-2 will support a new proof rule
for the FOR-loop [Win 98], a method for the automatic determination of an invariant for FOR-loops

Comparison of the program provers NPPV and FPP

 13

[Kau 99; KW 99b], a method for the computation of a concrete counterexample for a verification con-
dition which could not be proved [Kau 99], and a method for the direct verification of certain WHILE-
loops, which does not require an invariant [Kau 99].

c) Use of a stronger theorem prover. Since we are not working in the area of theorem proving, we can
only use those provers which are available. In the beginning FPP-2 will use the same theorem prover
as FPP-1.

d) Adding an interactive mode in which the user can give additional hints to the theorem prover.

7 References
Bac 86 Backhouse, Roland C.: Program Construction and Verification. Prentice Hall, New York etc., 1986.

0-13-729146-9
CZ 92 Clarke, E.; Zhao, X.: Analytica - A Theorem Prover in Mathematica. International Conference on Artifi-

cial Intelligence and Symbolic Mathematical Computation. AISM C-3, Steyr 1996, 21 - 37
Dor 93 Dorf, Richard C. (ed): The Electrical Engineering Handbook. CRC Press , Boca Raton, etc., 1993.

0-8493-0185-8
DS 90 Dijkstra, Edsger W.; Scholten, Carel S.: Predicate Calculus and Program Semantics. Springer, New York

etc., 1990. 0-387-96957-8
GH 99 Hehner, Eric C. R.; Gravell, Andrew M.: Refinement Semantics and Loop Rules. In: FM’99, Vol. II,

1497..1510. LNCS 1709, Springer, Berlin etc., 1999. 3-540-66588-9
Gri 83 Gries, David: The Science of Programming. Springer, New York. etc., 1983. 0-387-90641-X
GS 98 Gumm, Heinz-Peter; Sommer, Manfred: Einführung in die Informatik. R. Oldenbourg Verlag. München

1998. 3-486-24422-1
Gum 99a Gumm, Heinz-Peter: Generating algebraic laws from Imperative Programs. Theoretical Computer

Science 217(2): 385-405 (1999)
Gum 99b http://www.mathematik.uni-marburg.de/~gumm/NPPV/nppv.html, 10 Mar. 1999
Gum 99c Gumm, Heinz-Peter: Letter to J F H Winkler. 1999.Oct.26
Hoa 72 Hoare, C.A.R.: A Note on the FOR Statement. BIT 12,3 (1972) 334..341
Kau 99 Kauer, Stefan: Automatische Erzeugung von Verifikations- und Falsifikationsbedingungen sequentieller

Programme. Dissertation, Friedrich-Schiller-Universität Jena, 1999.
KW 97 Winkler, Jürgen F. H.; Kauer, Stefan: Proving Assertions is also Useful. SIGPLAN Notices 32,3 (1997)

38..41
KW 99a Kauer, Stefan; Winkler, Jürgen F. H.: FPP: An Automatic Program Prover for Ada Statements. GI FG

2.1.5. Ada: Workshop ”Objektorientierung und sichere Software mit Ada“. Karlsruhe 1999.Apr.21-22
KW 99b Kauer, Stefan; Winkler, Jürgen F. H.: Automatic Genaration of Invariants for FOR-Loops Based on a

New Proof Rule. (in preparation)
NW 89 Winkler, J.F.H.; Nievergelt, J.: Wie soll die Fakultätsfunktion programmiert werden? Informatik-

Spektrum 12,4 (1989) 220..221.
Sch95 Schöning, Uwe: Logik für Informatiker. Spektrum Akademischer Verlag. Heidelberg 1995.

3-86025-684-x
Win 90 Winkler, J F H: Functions not equivalent. Letter to the editor, IEEE Software 7, 3 (1990) 10
Win 96 Winkler, Jürgen F. H.: Some Properties of the Smallest Post-Set and the Largest Pre-Set of Abstract Pro-

grams, Friedrich Schiller University, Dept. of Math. & Comp. Sci., Report Math / Inf / 96 / 32
1996.Oct.23

Win 97 Winkler, J. F. H.: The Frege Program Prover FPP. 42. Internationales Wissenschaftliches Kolloquium,
TU Ilmenau, 1997, 116 .. 121

Win 98 New Proof Rules for FOR-loops. Friedrich Schiller University, Dept. of Math. & Comp. Sci., Report
Math / Inf / 98 / 13 1998.Nov.07

S Kauer, J F H Winkler

 14

Appendix

The appendix contains the listings of the 26 examples. For each example we give a short explanation
what the effect of the program should be and the listings of the verification with NPPV and with FPP.

As can be seen in Table 5.2 most of the examples are taken from the NPPV distribution. Since NPPV runs
under DOS the file names which are the same as the names of the examples are limited to 8 characters.
This leads sometimes to rather terse names.

The examples are ordered alphabetically and numbered. Every example contains a very short informal
description, the program in NPPV syntax with Output of NPPV and the equivalent program in FPP syntax
with Output of FPP. We also give an explanation for the conversion from NPPV to FPP, if the conversion
is possible. If the conversion is not possible, we also give a reason. When type checking is possible, we
sometimes repeat the example with type checking assertions. We omit comments to save space. The input
files for NPPV require the extension “ver”. Since NPPV runs under DOS, the file names must be at most
8 characters long and therefore they may be somewhat cryptic.

The NPPV examples in table 5.2, which are marked with “Gumm“, are from the original NPPV distribu-
tion. In these examples the specifications are sometimes rather weak (e.g. 1, 4, 5, 12).

1. abs Compute y as the absolute value of the given value x.

Input to NPPV

There is no abs function in NPPV, therefore the abs condition is expressed explicitely.

{-127 <=x and x <= 127}
BEGIN
if x<0 then y := -x else y := x
END
{ y <= 127 and (x <= 0 and y = -x or x >= 0 and y = x) }

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

-127<=x AND x<=127 AND x<0
 ==>
 -x<=127 AND (x<=0 AND -x=-x OR x>=0 A
ND -x=x)

--------- Remains to prove ---------
-127<=x AND x<=127 AND x<0
 ==>
 -x<=127 AND x<=0 OR x=-x AND -x<=127
AND 0<=x
=====================================
=====================================
=== Verification Condition No.: 2 ===

-127<=x AND x<=127 AND NOT x<0
 ==>
 x<=127 AND (x<=0 AND x=-x OR x>=0 AND
 x=x)

========= Proof succeeded =========
=====================================

NPPV generates two VCs but can prove only one of them.

Comparison of the program provers NPPV and FPP

 15

Input to FPP
 --!pre: -127 <= x and x <= 127 and x = x_i;
IF x<0
THEN y := -x;
ELSE y := x;
END IF;
 --!post: y <= 127 and y = Abs(x) and x = x_i;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.02, 8:21
The answer to your query is:

--!pre : (-127 <= x AND x <= 127 AND x = x_i)
--> wp : (0 >= 1 + x AND -x <= 127 AND -x = Abs(x) AND x = x_i)
--> OR (0 <= x AND x <= 127 AND x = Abs(x) AND x = x_i)
--> vc : (-127 <= x AND x <= 127 AND x = x_i)
--> ==> (0 >= 1 + x AND -x <= 127 AND -x = Abs(x) AND x = x_i)
--> OR (0 <= x AND x <= 127 AND x = Abs(x) AND x = x_i)
--> Result: proved
IF x < 0 THEN
 y := -x;
ELSE
 y := x;
END IF;
--!post : (y <= 127 AND y = Abs(x) AND x = x_i)

2. array Somewhat complicated assignment to an array component.

Input to NPPV
{ a[1] = 1 and a[5] = X }
 a[a[1]] := 5
{ a[a[1]] = 5 }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

a[1]=1 AND a[5]=X
 ==>
 a{a[1] --> 5}[a{a[1] --> 5}[1]]=5
--------- Remains to prove ---------
X=5
=====================================

FPP: assignment to array elements is not yet supported. Therefore, this example cannot be done by FPP.

3. assrek assrek computes iteratively the recursively defined function

 f(x) := if P(x) then g(x) else f(r(x)) [Gum 99b]

S Kauer, J F H Winkler

 16

Input to NPPV
{ }
BEGIN
 x := A;
 y := N;
 WHILE not P(y) DO { s(x,f(y)) = f(N) }
 BEGIN
 x := s(x,y);
 y := r(y)
 END;
 x := s(x,h(y))
END
{ x = f(N) }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

TRUE
 ==>
 s(A,f(N))=f(N)
--------- Remains to prove ---------
s(A,f(N))=f(N)
=====================================

=====================================
=== Verification Condition No.: 2 ===

s(x,f(y))=f(N)
 ==>
 s(x,f(y))=f(N)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

s(x,f(y))=f(N) AND NOT (NOT P(y))
 ==>
 s(x,h(y))=f(N)
--------- Remains to prove ---------
s(x,f(y))=f(N) AND P(y)
 ==>
 s(x,h(y))=f(N)
=====================================

=====================================
=== Verification Condition No.: 4 ===

s(x,f(y))=f(N) AND NOT P(y)
 ==>
 s(s(x,y),f(r(y)))=f(N)
--------- Remains to prove ---------
s(x,f(y))=f(N) AND NOT P(y)
 ==>
 s(s(x,y),f(r(y)))=f(N)
=====================================

FPP: in this abstract example it is not possible to give a termination function for the WHILE-loop. Since

FPP requires such a termination function the example is not appropriate for FPP.

4. factfor The factorial function is computed using a FOR-loop.

Comparison of the program provers NPPV and FPP

 17

Input to NPPV
{ N >= 0}
BEGIN
 prod := 1; { prod = 1}
 FOR i := 1 TO N DO
 { prod = fact(i-1) }
 prod := prod * i
END
{ prod = fact(N) }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

N>=0
 ==>
 1=1
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

prod=1
 ==>
 prod=fact(1-1)
--------- Remains to prove ---------
1=fact(0)
=====================================

=====================================
=== Verification Condition No.: 3 ===

prod=fact(N+1-1)
 ==>
 prod=fact(N)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

prod=1 AND N<1
 ==>
 prod=fact(N)
--------- Remains to prove ---------
N<1
 ==>
 1=fact(N)
=====================================

=====================================
=== Verification Condition No.: 5 ===

prod=fact(i-1) AND 1<=i AND i<=N
 ==>
 prod*i=fact(i+1-1)
--------- Remains to prove ---------
1<=i AND i<=N
 ==>
 i*fact(i-1)=fact(i)
=====================================

Input to FPP:

In FPP a FOR-loop requires a precondition, a postcondition and an invariant. In FPP, as in NPPV, the
loop variable occurs in the invariant.

S Kauer, J F H Winkler

 18

 --!pre: n >= 0 and n = n_i;
prod := 1;
 --!pre : prod = 1 and n >= 0 and n = n_i;
 --!post: prod = factorial(n) and n = n_i;
 --!inv : prod = factorial(i) and n = n_i;
FOR i IN 1 .. n LOOP
 prod := prod * i;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.02, 8:29
The answer to your query is:

--!pre : (n >= 0 AND n = n_i)
--> wp : (n >= 0 AND n = n_i)
--> vc : (True)
--> Result: proved
prod := 1;

--!pre : (prod = 1 AND n >= 0 AND n = n_i)
--!post : (prod = Factorial(n) AND n = n_i)
--!inv : (prod = Factorial(i) AND n = n_i)
-->functionality ---------------------------
-->func : (initial AND induction AND final AND null loop)
-->initial :(1 <= n AND prod = 1 AND n >= 0 AND n = n_i ==> prod = 1 AND n = n_i)
--> Result : proved
-->induction : (1 <= n AND prod = Factorial(-1 + i) AND n = n_i)
--> ==> (i*prod = Factorial(i) AND n = n_i)
--> Result : proved
-->final : (1 <= n AND prod = Factorial(n) AND n = n_i)
--> ==> (prod = Factorial(n) AND n = n_i)
--> Result : proved
-->null loop : (1 >= 1 + n AND prod = 1 AND n >= 0 AND n = n_i)
--> ==> (prod = Factorial(n) AND n = n_i)
--> Result : proved
FOR i IN 1 .. n LOOP
 prod := prod * i;
END LOOP;

5. factforty The same example as the last one (factfor) but with assertions which express the type
constraints applicable.

 In factfor both provers assume integer = Z, i.e. they do not take into account that on the
computer we have limited ranges for the integer types [NW 89; KW 97].

Input to NPPV
{ 0 <= N and N <= 7}
BEGIN
 prod := 1; { prod = 1 and 0 <= N and N <= 7}
 FOR i := 1 TO N DO { prod = fact(i-1) and 0 <= i and i-1 <= 7 and N <= 7 }
 prod := prod * i
END
{ prod = fact(N) and prod <= 32767}

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

0<=N AND N<=7
 ==>
 1=1 AND 0<=N AND N<=7
========= Proof succeeded =========
=====================================

=====================================

Comparison of the program provers NPPV and FPP

 19

=== Verification Condition No.: 2 ===

prod=1 AND 0<=N AND N<=7
 ==>
 prod=fact(1-1) AND 0<=1 AND 1-1<=7 AND N<=7
--------- Remains to prove ---------
0<=N AND N<=7
 ==>
 1=fact(0)
=====================================

=====================================
=== Verification Condition No.: 3 ===

prod=fact(N+1-1) AND 0<=N+1 AND N+1-1<=7 AND N<=7
 ==>
 prod=fact(N) AND prod<=32767
--------- Remains to prove ---------
0<=N+1 AND N<=7
 ==>
 fact(N)<=32767
=====================================

=====================================
=== Verification Condition No.: 4 ===

prod=1 AND 0<=N AND N<=7 AND N<1
 ==>
 prod=fact(N) AND prod<=32767
--------- Remains to prove ---------
0<=N AND N<=7 AND N<1
 ==>
 1=fact(N)
=====================================

=====================================
=== Verification Condition No.: 5 ===

prod=fact(i-1) AND 0<=i AND i-1<=7 AND N<=7 AND 1<=i AND i<=N
 ==>
 prod*i=fact(i+1-1) AND 0<=i+1 AND i+1-1<=7 AND N<=7
--------- Remains to prove ---------
0<=i AND i<=8 AND N<=7 AND 1<=i AND i<=N
 ==>
 i*fact(i-1)=fact(i) AND 0<=i+1 AND i<=7
=====================================

Input to FPP
 --!pre: n >= 0 and n <= 7 and n = n_i;
prod := 1;
 --!pre :prod = 1 and n >= 0 and n <= 7 and n = n_i;
 --!post: prod = factorial(n) and prod <= 32767 and n = n_i;
 --!inv : prod = factorial(i) and 1 <= i+1 and n <= 7 and n = n_i;
FOR i IN 1 .. n LOOP
 prod := prod * i;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.01, 16:00
The answer to your query is:

--!pre : (n >= 0 AND n = n_i)
--> wp : (n >= 0 AND n = n_i)
--> vc : (True)
--> Result: proved
prod := 1;

S Kauer, J F H Winkler

 20

--!pre : (prod = 1 AND n >= 0 AND n = n_i)
--!post : (prod = Factorial(n) AND n = n_i)
--!inv : (prod = Factorial(i) AND n = n_i)
-->functionality ---
-->func : (initial AND induction AND final AND null loop)
-->initial :(1 <= n AND prod = 1 AND n >= 0 AND n = n_i ==> prod = 1 AND n = n_i)
-->Result : proved
-->induction : (1 <= n AND prod = Factorial(-1 + i) AND n = n_i)
--> ==> (i*prod = Factorial(i) AND n = n_i)
-->Result : proved
-->final : (1 <= n AND prod = Factorial(n) AND n = n_i)
--> ==> (prod = Factorial(n) AND n = n_i)
-->Result : proved
-->null loop : (1 >= 1 + n AND prod = 1 AND n >= 0 AND n = n_i)
--> ==> (prod = Factorial(n) AND n = n_i)
-->Result : proved
FOR i IN 1 .. n LOOP
 prod := prod * i;
END LOOP;

6. fastmul A fast multiplication algorithm.

Input to NPPV
{ }
 BEGIN
 x := A;
 y := B;
 s := 0; /* { s=0 and x = A and y = B } */
 WHILE x <> 0 DO { x*y + s = A*B }
 BEGIN
 WHILE x mod 2 = 0 DO { x*y + s = A*B }
 BEGIN
 y := 2*y;
 x := x div 2
 END ;
 s := s + y;
 x := x - 1
 END
 END
{ s = A*B }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

TRUE
 ==>
 A*B+0=A*B
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

x*y+s=A*B
 ==>
 x*y+s=A*B
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

x*y+s=A*B AND NOT x<>0
 ==>
 s=A*B
========= Proof succeeded =========
=====================================

Comparison of the program provers NPPV and FPP

 21

=====================================
=== Verification Condition No.: 4 ===

x*y+s=A*B AND x<>0
 ==>
 x*y+s=A*B
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 5 ===

x*y+s=A*B AND NOT x mod 2=0
 ==>
 (x-1)*y+s+y=A*B
--------- Remains to prove ---------
x*y+s=A*B AND x mod 2<>0
 ==>
 (x-1)*y+s+y=A*B
=====================================

=====================================
=== Verification Condition No.: 6 ===

x*y+s=A*B AND x mod 2=0
 ==>
 x div 2*2*y+s=A*B
--------- Remains to prove ---------
x*y+s=A*B AND x mod 2=0
 ==>
 x div 2*2*y+s=A*B
=====================================

FPP: WHILE-loops must always have a termination function. This example does not contain a termina-
tion function and is therefore not appropriate for FPP.

7. fastmult The fastmul algorithm (previous example) with a termination function.

Input to NPPV
{ A >= 0 }
 BEGIN
 x := A;
 y := B;
 s := 0;
 WHILE x <> 0 DO [x] { x*y + s = A*B and x >= 0 }
 BEGIN
 WHILE x mod 2 = 0 DO [x]{ x*y + s = A*B and x > 0 }
 BEGIN
 y := 2*y;
 x := x div 2
 END ;
 s := s + y ;
 x := x - 1
 END
 END
{ s = A*B }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

A>=0
 ==>
 A*B+0=A*B AND A>=0

S Kauer, J F H Winkler

 22

========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

x*y+s=A*B AND x>=0
 ==>
 x*y+s=A*B AND x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

x<>0 AND x*y+s=A*B AND x>=0
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

x*y+s=A*B AND x>=0 AND NOT x<>0
 ==>
 s=A*B
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 5 ===

x<>0 AND x*y+s=A*B AND x>=0 AND x>=0
 ==>
 x*y+s=A*B AND x>0
--------- Remains to prove ---------
x<>0 AND x*y+s=A*B AND 0<=x
 ==>
 0<x
=====================================

=====================================
=== Verification Condition No.: 6 ===

x mod 2=0 AND x<>0 AND x*y+s=A*B AND x>=0 AND x>=0
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 7 ===

x*y+s=A*B AND x>0 AND NOT x mod 2=0
 ==>
 (x-1)*y+s+y=A*B AND x-1>=0 AND x-1>=0
--------- Remains to prove ---------
x*y+s=A*B AND 0<x AND x mod 2<>0
 ==>
 (x-1)*y+s+y=A*B AND 1<=x
=====================================

=====================================
=== Verification Condition No.: 8 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND x>=0
 ==>
 x div 2*2*y+s=A*B AND x div 2>0 AND x div 2>=0
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x
 ==>
 x div 2*2*y+s=A*B AND 0<x div 2
=====================================

Comparison of the program provers NPPV and FPP

 23

=====================================
=== Verification Condition No.: 9 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND x=x
 ==>
 x div 2<x
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x
 ==>
 x div 2<x
=====================================

=====================================
=== Verification Condition No.: 10 ===

x<>0 AND x*y+s=A*B AND x>=0 AND x=x
 ==>
 x*y+s=A*B AND x>0
--------- Remains to prove ---------
x<>0 AND x*y+s=A*B AND 0<=x
 ==>
 0<x
=====================================

=====================================
=== Verification Condition No.: 11 ===

x mod 2=0 AND x<>0 AND x*y+s=A*B AND x>=0 AND x=x
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 12 ===

x*y+s=A*B AND x>0 AND NOT x mod 2=0
 ==>
 x-1<x
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 13 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND x>=0
 ==>
 x div 2*2*y+s=A*B AND x div 2>0 AND x div 2>=0
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x
 ==>
 x div 2*2*y+s=A*B AND 0<x div 2
=====================================

=====================================
=== Verification Condition No.: 14 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND x=x
 ==>
 x div 2<x
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x
 ==>
 x div 2<x
=====================================

Input to FPP

In FPP a WHILE-loop requires a precondition and a postcondition. Since in the NPPV example only an
invariant is provided, we must generate the missing assertions. The precondition for the outer loop is sim-

S Kauer, J F H Winkler

 24

ply the conjunction of the precondition of the program and the postcondition of the initializations. The
postcondition of the outer loop is the postcondition of the program. The precondition of the inner loop is
the same as the invariant of the inner loop. The postcondition of the inner loop is the conjunction of the
invariant and the negation of the condition of the inner loop.

 -- Example 7
 --!pre : x_i>=0 and x=x_i and y=y_i and s=0;
 --!post: s = x_i * y_i;
 --!inv : x*y + s = x_i * y_i and x>=0;
 --!term: x;
WHILE x /= 0 LOOP
 --!pre : x*y + s = x_i * y_i and x>0;
 --!post: x*y + s = x_i * y_i and x>0
 --!post: and x mod 2 /= 0;
 --!inv : x*y + s = x_i * y_i and x>0;
 --!term: x;
 WHILE x mod 2 = 0 LOOP
 y := 2*y;
 x := x / 2;
 END LOOP;
 s := s + y;
 x := x - 1;
END LOOP;

Output from FPP
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.10.12, 11:45
The answer to your query is:

--!pre : (x_i >= 0 AND x = x_i AND y = y_i)
--!post : (0 = x_i*y_i)
--!inv : (x*y = x_i*y_i AND x >= 0)
--!term : (x)
-->functionality ---------------------------
-->initial :(x_i >= 0 AND x = x_i AND y = y_i ==> x*y = x_i*y_i AND x >= 0)
--> Result : proved
-->induction : (x /= 0 AND 1 + x*y = x_i*y_i AND x >= 0)
--> ==> ((exists x_i,y_i: 2 + x*y = x_i*y_i AND x >= 1))
--> AND (forall(($2,$3)),
--> (forall((x_i,y_i)),
--> (2 + x*y = x_i*y_i AND x >= 1)
--> ==> (2 + $2*$3 = x_i*y_i)
--> AND ($2 >= 1) AND ($2 mod 2 /= 0))
--> ==> (2 + $3 + (-1 + $2)*$3 = x_i*y_i AND -1 + $2 >= 0))
--> Result : proved
-->final :(x = 0 AND x*y = x_i*y_i AND x >= 0 ==> 0 = x_i*y_i)
--> Result : proved
-->termination ---------------------------
-->initial :(x /= 0 AND x*y = x_i*y_i AND x >= 0 ==> x >= 1)
--> Result : proved
-->induction : (x /= 0 AND 1 + x*y = x_i*y_i AND x >= 0)
--> ==> ((exists x_i,y_i: 2 + x*y = x_i*y_i AND x >= 1))
--> AND (forall(($2,$3)),
--> (forall((x_i,y_i)),
--> (2 + x*y = x_i*y_i AND x >= 1)
--> ==> (2 + $2*$3 = x_i*y_i)
--> AND ($2 >= 1) AND ($2 mod 2 /= 0))
--> ==> (x >= $2))
--> Result : not proved
--> fc : (1 + x*y - x_i*y_i = 0) AND (-(x*y) + $03*$04 = 0)
--> AND ($03 >= 1 + x) AND ($03 >= 1) AND (x /= 0)
--> AND ($03 mod 2 /= 0) AND (x >= 0)

WHILE x /= 0 LOOP

 --!pre : (x*y = x_i*y_i AND x >= 1)
 --!post : (x*y = x_i*y_i AND x >= 1 AND x mod 2 /= 0)
 --!inv : (x*y = x_i*y_i AND x >= 1)
 --!term : (x)
 -->functionality ---------------------------
 -->initial :(True)

Comparison of the program provers NPPV and FPP

 25

 --> Result : proved
 -->induction : (x mod 2 = 0 AND 1 + x*y = x_i*y_i AND x >= 1)
--> ==> (2 + x*y = x_i*y_i AND x/2 >= 1)
 --> Result : not proved
--> fc : (x*y - x_i*y_i = 0 AND 1 - x/2 >= 1 AND -1 + x >= 0 AND x mod 2 = 0)

 -->final : (x mod 2 /= 0 AND 1 + x*y = x_i*y_i AND x >= 1)
--> ==> (2 + x*y = x_i*y_i AND x >= 1 AND x mod 2 /= 0)
 --> Result : proved
 -->termination ---------------------------
 -->initial :(x mod 2 = 0 AND x*y = x_i*y_i AND x >= 1 ==> x >= 1)
 --> Result : proved
 -->induction :(x mod 2 = 0 AND x*y = x_i*y_i AND x >= 1 ==> x >= 1 + x/2)
 --> Result : not proved
--> fc : (x*y - x_i*y_i = 0 AND 1 - x/2 >= 1 AND -1 + x >= 0 AND x mod 2 = 0)

 WHILE x MOD 2 = 0 LOOP
 y := 2 * y;
 x := x / 2;
 END LOOP;

 s := s + y;
 x := x - 1;
END LOOP;

This is the first example in which auxiliary variables are generated.
In this example we observe furthermore that the theorem prover is pushed to its limits, because it is not
able to prove all verification conditions. If we look at the last induction condition we see that it holds
because x mod 2 = 0 AND x >= 1 ==> x >= 1 + x/2. We see also easily that the FC cannot be
fulfilled because of x <= 0 AND x >= 1.

8. fastmultty This is the same as example 7 (fastmult) but additionally with assertions which ex-

press limitations for the ranges of the variables.

Input to NPPV
{ A >= 0 and -32767 <= A*B and A*B <= 32767 and -32767 <= B and B <= 32767}
 BEGIN
 x := A;
 y := B;
 s := 0;
 WHILE x <> 0 DO [x] { x*y + s = A*B and x >= 0 and -32767 <= A*B and

 A*B <= 32767}
 BEGIN
 WHILE x mod 2 = 0 DO [x]{ x*y + s = A*B and x > 0 and -32767 <=

 A*B and A*B <= 32767}
 BEGIN
 y := 2*y;
 x := x div 2
 END ;
 s := s + y ;
 x := x - 1
 END
 END
{ s = A*B and -32767 <= s and s <= 32767}

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

A>=0 AND -32767<=A*B AND A*B<=32767 AND -32767<=B AND B<=32767
 ==>
 A*B+0=A*B AND A>=0 AND -32767<=A*B AND A*B<=32767
========= Proof succeeded =========
=====================================

=====================================

S Kauer, J F H Winkler

 26

=== Verification Condition No.: 2 ===

x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767
 ==>
 x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

x<>0 AND x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767 AND NOT x<>0
 ==>
 s=A*B AND -32767<=s AND s<=32767
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 5 ===

x<>0 AND x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767 AND x>=0
 ==>
 x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767
--------- Remains to prove ---------
x<>0 AND x*y+s=A*B AND 0<=x AND -32767<=A*B AND A*B<=32767 AND 0<=x
 ==>
 0<x
=====================================

=====================================
=== Verification Condition No.: 6 ===

x mod 2=0 AND x<>0 AND x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767 AND x>=0
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 7 ===

x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND NOT x mod 2=0
 ==>
 (x-1)*y+s+y=A*B AND x-1>=0 AND -32767<=A*B AND A*B<=32767 AND x-1>=0
--------- Remains to prove ---------
x*y+s=A*B AND 0<x AND -32767<=A*B AND A*B<=32767 AND x mod 2<>0
 ==>
 (x-1)*y+s+y=A*B AND 1<=x
=====================================

=====================================
=== Verification Condition No.: 8 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND x>=0
 ==>
 x div 2*2*y+s=A*B AND x div 2>0 AND -32767<=A*B AND A*B<=32767 AND x div

2>=0
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x AND -32767<=A*B AND A*B<=32767 AND 0<=x
 ==>
 x div 2*2*y+s=A*B AND 0<x div 2 AND 0<=x div 2
=====================================

=====================================
=== Verification Condition No.: 9 ===

Comparison of the program provers NPPV and FPP

 27

x mod 2=0 AND x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND x=x
 ==>
 x div 2<x
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x AND -32767<=A*B AND A*B<=32767
 ==>
 x div 2<x
=====================================

=====================================
=== Verification Condition No.: 10 ===

x<>0 AND x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767 AND x=x
 ==>
 x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767
--------- Remains to prove ---------
x<>0 AND x*y+s=A*B AND 0<=x AND -32767<=A*B AND A*B<=32767
 ==>
 0<x
=====================================

=====================================
=== Verification Condition No.: 11 ===

x mod 2=0 AND x<>0 AND x*y+s=A*B AND x>=0 AND -32767<=A*B AND A*B<=32767 AND x=x
 ==>
 x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 12 ===

x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND NOT x mod 2=0
 ==>
 x-1<x
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 13 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND x>=0
 ==>
 x div 2*2*y+s=A*B AND x div 2>0 AND -32767<=A*B AND A*B<=32767 AND x div

2>=0
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x AND -32767<=A*B AND A*B<=32767 AND 0<=x
 ==>
 x div 2*2*y+s=A*B AND 0<x div 2 AND 0<=x div 2
=====================================

=====================================
=== Verification Condition No.: 14 ===

x mod 2=0 AND x*y+s=A*B AND x>0 AND -32767<=A*B AND A*B<=32767 AND x=x
 ==>
 x div 2<x
--------- Remains to prove ---------
x mod 2=0 AND x*y+s=A*B AND 0<x AND -32767<=A*B AND A*B<=32767
 ==>
 x div 2<x
=====================================

Input to FPP

s := 0;
 --!pre : s=0 and x=x_i and y=y_i and x_i>=0 and -32767<=y_i and y_i<=32767 and
 --!pre : -32767<=x_i*y_i and x_i*y_i<=32767;
 --!post: s = x_i*y_i and -32767<=s and s<=32767;

S Kauer, J F H Winkler

 28

 --!inv : x*y + s = x_i*y_i and x>=0 and -32767<=x_i*y_i and x_i*y_i<=32767;
 --!term: x;
WHILE x /= 0 LOOP
 --!pre : x*y + s = x_i*y_i and x>0 and -32767<=x_i*y_i and x_i*y_i<=32767;
 --!post: x*y + s = x_i* y_i and x>0 and -32767<=x_i*y_i and x_i*y_i<=32767
 --!post: and x mod 2 /= 0;
 --!inv : x*y + s = x_i*y_i and x>0 and -32767<=x_i*y_i and x_i*y_i<=32767;
 --!term: x;
 WHILE x mod 2 = 0 LOOP
 y := 2*y;
 x := x / 2;
 END LOOP;
 s := s + y;
 x := x - 1;
END LOOP;

Output from FPP

As in example 7 we observe that the theorem prover is pushed to its limits, because it is not able to prove
all verification conditions. With the preceding input it did not give an answer within 24 h. For an input
with smaller ranges it gave an answer which shows that it cannot prove all VCs.

9. fibo Iterative computation of the Nth Fibonacci number.

Input to NPPV
{ N >= 1 }
BEGIN
 previous := 0;
 current := 1;
 count := 1;
 WHILE count < N DO { count >= 1 and count <= N and
 previous = fibo(count-1) and
 current = fibo(count) }
 BEGIN
 x := current;
 current := current + previous;
 previous := x;
 count := count+1
 END
END
{ current = fibo(N) }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

N>=1
 ==>
 1>=1 AND 1<=N AND 0=fibo(1-1) AND 1=fibo(1)
--------- Remains to prove ---------
1<=N
 ==>
 0=fibo(0) AND 1=fibo(1)
=====================================

=====================================
=== Verification Condition No.: 2 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count)
 ==>
 count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

Comparison of the program provers NPPV and FPP

 29

count>=1 AND count<=N AND previous=fibo(count-1) AND
current=fibo(count) AND NOT count<N
 ==>
 current=fibo(N)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count) AND count<N
 ==>
 count+1>=1 AND count+1<=N AND current=fibo(count+1-1) AND cur-
rent+previous=fibo(count+1)
--------- Remains to prove ---------
1<=count AND count<N
 ==>
 1<=count+1 AND count+1<=N AND fibo(count)+fibo(count-1)=fibo(count+1)
=====================================

FPP: WHILE-loops must always have a termination function. This example does not contain a termina-
tion function and is therefore not appropriate for FPP.

10. fibot The same as example 9 but with a termination function.

Input to NPPV
{ N >= 1 and N <= 23}
BEGIN
 previous := 0;
 current := 1;
 count := 1;
 WHILE count < N DO [N-count] { count >= 1 and count <= N and
 previous = fibo(count-1) and
 current = fibo(count) and fibo(N) <= 32767 }
 BEGIN
 x := current;
 current := current + previous;
 previous := x;
 count := count+1
 END
END
{ current = fibo(N) and current <= 32767 }

¦ previous := x;
 count := count+1
 END
END
{ current = fibo(N) }

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

N>=1 AND N<=23
 ==>
 1>=1 AND 1<=N AND 0=fibo(1-1) AND 1=f
ibo(1) AND fibo(N)<=32767

--------- Remains to prove ---------
1<=N AND N<=23
 ==>
 0=fibo(0) AND 1=fibo(1) AND fibo(N)<=
32767
=====================================

S Kauer, J F H Winkler

 30

=====================================
=== Verification Condition No.: 2 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND
current=fibo(count) AND fibo(N)<=32767
 ==>
 count>=1 AND count<=N AND previous=fi
bo(count-1) AND current=fibo(count) AND fibo(N)<=3276
7

========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

count<N AND count>=1 AND count<=N AND previous=fibo(c
ount-1) AND current=fibo(count) AND fibo(N)<=32767
 ==>
 N-count>=0

========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND
current=fibo(count) AND fibo(N)<=32767 AND NOT count<
N
 ==>
 current=fibo(N) AND current<=32767

--------- Remains to prove ---------
1<=count AND count<=N AND fibo(N)<=32767 AND N<=count

 ==>
 fibo(count)=fibo(N) AND fibo(count)<=
32767
=====================================

=====================================
=== Verification Condition No.: 5 ===

count<N AND count>=1 AND count<=N AND previous=fibo(c
ount-1) AND current=fibo(count) AND N-count>=0
 ==>
 count+1>=1 AND count+1<=N AND current
=fibo(count+1-1) AND current+previous=fibo(count+1) A
ND N-(count+1)>=0

--------- Remains to prove ---------
count<N AND 1<=count AND count<=N
 ==>
 1<=count+1 AND count+1<=N AND fibo(co
unt)+fibo(count-1)=fibo(count+1) AND count+1<=N
=====================================

=====================================
=== Verification Condition No.: 6 ===

count<N AND count>=1 AND count<=N AND previous=fibo(c
ount-1) AND current=fibo(count) AND fibo(N)<=32767 AN
D N-count=N-count
 ==>
 N-(count+1)<N-count

========= Proof succeeded =========
=====================================

Comparison of the program provers NPPV and FPP

 31

Input to FPP

In FPP a WHILE-loop requires a precondition and a postcondition. Since in the NPPV example only an
invariant is provided, we must provide the missing assertions. The precondition for the loop is simply the
precondition of the program conjunctively connected with the postcondition of the initializations. The
postcondition of the loop is the postcondition of the program.

 --!pre: n >= 1 and n <= 23 and n = n_i;
previous := 0;
current := 1;
count := 1;
 --!pre : n >= 1 and n <= 23 and n = n_i and previous = 0 and current = 1
 --!pre: and count = 1;
 --!post: current = fib(n) and n = n_i;
 --!inv : count >= 1 and count <= n and previous = fib(count-1) and
 --!inv : current = fib(count) and n = n_i;
 --!term: n-count;
WHILE count < n LOOP
 x := current;
 current := current + previous;
 previous := x;
 count := count+1;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.02, 9:31
The answer to your query is:

--!pre : (n >= 1 AND n <= 23 AND n = n_i)
--> wp : (n >= 1 AND n <= 23 AND n = n_i)
--> vc : (True)
--> Result: proved
previous := 0;
current := 1;
count := 1;

--!pre : (n >= 1) AND (n <= 23) AND (n = n_i) AND (previous = 0)
--> AND (current = 1) AND (count = 1)
--!post : (current = (-(1 - Sqrt(5))**n + (1 + Sqrt(5))**n)/(2**n*Sqrt(5)))
--> AND (n = n_i)
--!inv : (count >= 1) AND (count <= n) AND (previous) = Fib((-1 + count))
--> AND (current) = Fib((count)) AND (n = n_i)
--!term : (-count + n)
-->functionality ---------------------------
-->initial : (n >= 1) AND (n <= 23) AND (n = n_i) AND (previous = 0)
--> AND (current = 1) AND (count = 1)
--> ==> (count >= 1) AND (count <= n) AND (previous) = Fib((-1 + count))
--> AND (current) = Fib((count)) AND (n = n_i)
-->Result : proved
-->induction : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count))
--> AND (current) = Fib((count)) AND (n = n_i)
--> ==> (1 + count >= 1) AND (1 + count <= n)
--> AND (current) = Fib((count))
--> AND (current + previous) = Fib((1 + count)) AND (n = n_i)
-->Result : proved
-->final : (n <= count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND (n = n_i)
--> ==> (current) = ((-(1 - Sqrt(5))**n + (1 + Sqrt(5))**n)/(2**n*Sqrt(5)))
--> AND (n = n_i)
-->Result : proved
-->termination ---------------------------
-->initial : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND (n = n_i)
--> ==> (-count + n >= 1)
-->Result : proved

S Kauer, J F H Winkler

 32

-->induction : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND (n = n_i)
--> ==> (-count + n >= -count + n)
-->Result : proved
WHILE count < n LOOP
 x := current;
 current := current + previous;
 previous := x;
 count := count + 1;
END LOOP;

11. fibotty The same as example 10 but with type checking assertions.

Input to NPPV
{ N >= 1 and N <= 23}
BEGIN
 previous := 0;
 current := 1;
 count := 1;
 WHILE count < N DO [N-count] { count >= 1 and count <= N and
 previous = fibo(count-1) and
 current = fibo(count) and fibo(N) <= 32767 }
 BEGIN
 x := current;
 current := current + previous;
 previous := x;
 count := count+1
 END
END
{ current = fibo(N) and current <= 32767 }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

N>=1 AND N<=23
 ==>
 1>=1 AND 1<=N AND 0=fibo(1-1) AND 1=fibo(1) AND fibo(N)<=32767
--------- Remains to prove ---------
1<=N AND N<=23
 ==>
 0=fibo(0) AND 1=fibo(1) AND fibo(N)<=32767
=====================================

=====================================
=== Verification Condition No.: 2 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count) AND

fibo(N)<=32767
 ==>
 count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count)

AND fibo(N)<=32767
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

count<N AND count>=1 AND count<=N AND previous=fibo(count-1) AND

current=fibo(count) AND fibo(N)<=32767
 ==>
 N-count>=0
========= Proof succeeded =========
=====================================

Comparison of the program provers NPPV and FPP

 33

=====================================
=== Verification Condition No.: 4 ===

count>=1 AND count<=N AND previous=fibo(count-1) AND current=fibo(count) AND

fibo(N)<=32767 AND NOT count<N
 ==>
 current=fibo(N) AND current<=32767
--------- Remains to prove ---------
1<=count AND count<=N AND fibo(N)<=32767 AND N<=count
 ==>
 fibo(count)=fibo(N) AND fibo(count)<=32767
=====================================

=====================================
=== Verification Condition No.: 5 ===

count<N AND count>=1 AND count<=N AND previous=fibo(count-1) AND

current=fibo(count) AND fibo(N)<=32767 AND N-count>=0
 ==>
 count+1>=1 AND count+1<=N AND current=fibo(count+1-1) AND cur-

rent+previous=fibo(count+1) AND fibo(N)<=32767 AND N-(count+1)>=0
--------- Remains to prove ---------
count<N AND 1<=count AND count<=N AND fibo(N)<=32767 AND count<=N
 ==>
 1<=count+1 AND count+1<=N AND fibo(count)+fibo(count-1)=fibo(count+1) AND

count+1<=N
=====================================

=====================================
=== Verification Condition No.: 6 ===

count<N AND count>=1 AND count<=N AND previous=fibo(count-1) AND

current=fibo(count) AND fibo(N)<=32767 AND N-count=N-count
 ==>
 N-(count+1)<N-count
========= Proof succeeded =========
=====================================

Input to FPP
--!pre: n >= 1 and n <= 23 and n = n_i;
 previous := 0;
 current := 1;
 count := 1;
--!pre : n >= 1 and n <= 23 and n = n_i and previous = 0 and current = 1
--!pre: and count = 1;
--!post: current = fib(n) and current <= 32767 and n = n_i;
--!inv : count >= 1 and count <= n and previous = fib(count-1) and
--!inv : current = fib(count) and fib(n) <= 32767 and n = n_i;
--!term: n-count;
 WHILE count < n LOOP
 x := current;
 current := current + previous;
 previous := x;
 count := count+1;
 END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.23, 13:05
The answer to your query is:

--!pre : (n >= 1 AND n <= 23 AND n = n_i)
--> wp : (n >= 1 AND n <= 23 AND n = n_i)
--> vc : (True)
--> Result: proved
previous := 0;
current := 1;
count := 1;

S Kauer, J F H Winkler

 34

--!pre : (n >= 1) AND (n <= 23) AND (n = n_i) AND (previous = 0)
--> AND (current = 1) AND (count = 1)
--!post : (current = (-(1-Sqrt(5))**n + (1 + Sqrt(5))**n)/(2**n*Sqrt(5)))
--> AND (current <= 32767) AND (n = n_i)
--!inv : (count >= 1) AND (count <= n) AND (previous) = Fib((-1 +

count)) --> AND (current) = Fib((count))
--> AND ((-(1 - Sqrt(5))**n + (1 + Sqrt(5))**n)/(2**n*Sqrt(5)) <= 32767)
--> AND (n = n_i)
--!term : (-count + n)
-->functionality ---------------------------
-->initial : (n >= 1) AND (n <= 23) AND (n = n_i) AND (previous = 0)
--> AND (current = 1) AND (count = 1)
--> ==> (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> Result : not proved
--> fc : (count = current) AND (-32767) + (2**(-n_i)) * (1/Sqrt(5)) *
--> (-(-Sqrt(5) + current)**n_i + (Sqrt(5) + current)**n_i) > (0)
--> AND (23-n_i >= 0) AND (-current + n_i >= 0) AND (current = 1)
-->induction : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> ==> (1+count >= 1) AND (1+count <= n) AND (current) =

Fib((count)) --> AND (current + previous) = Fib((1 + count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> Result : proved
-->final : (n <= count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> ==> (current) = ((-(1-Sqrt(5))**n+

(1+Sqrt(5))**n)/(2**n*Sqrt(5))) --> AND (current <= 32767) AND (n = n_i)
--> Result : proved
-->termination ---------------------------
-->initial : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current) = Fib((count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> ==> (-count + n >= 1)
--> Result : proved
-->induction : (n >= 1 + count) AND (count >= 1) AND (count <= n)
--> AND (previous) = Fib((-1 + count)) AND (current)= Fib((count))
--> AND ((-(1-Sqrt(5))**n + (1+Sqrt(5))**n)/(2**n*Sqrt(5))) <=

(32767) --> AND (n = n_i)
--> ==> (-count + n >= -count + n)
--> Result : proved
WHILE count < n LOOP
 x := current;
 current := current + previous;
 previous := x;
 count := count + 1;
END LOOP;

12. gauss Summing up the first n non negative integers.

Input to NPPV
{ N > 0 }
BEGIN
 x := 0;
 sum := 0;
 WHILE x < N DO { sum=x*(x+1) div 2 and x <= N}
 BEGIN
 x := x+1 ;
 sum := sum + x
 END

Comparison of the program provers NPPV and FPP

 35

END
{ sum = N*(N+1) div 2 }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

N>0
 ==>
 0=0*(0+1) div 2 AND 0<=N
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

sum=x*(x+1) div 2 AND x<=N
 ==>
 sum=x*(x+1) div 2 AND x<=N
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

sum=x*(x+1) div 2 AND x<=N AND NOT x<N
 ==>
 sum=N*(N+1) div 2
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

sum=x*(x+1) div 2 AND x<=N AND x<N
 ==>
 sum+x+1=(x+1)*(x+1+1) div 2 AND x+1<=N
--------- Remains to prove ---------
x<N
 ==>
 x+1<=N
=====================================

FPP: WHILE-loops must always have a termination function. This example does not contain a termina-
tion function and is therefore not appropriate for FPP.

13. gausst The same as example 12 but with a termination function.

Input to NPPV
{ N > 0 }
BEGIN
 x := 0;
 sum := 0;
 WHILE x < N DO [N-x] { sum = x*(x+1)/2 and x <= N }
 BEGIN
 x := x+1;
 sum := sum + x
 END
END
{ sum = N*(N+1)/2 }

Output from NPPV

S Kauer, J F H Winkler

 36

=====================================
=== Verification Condition No.: 1 ===

N>0
 ==>
 0=0*(0+1) div 2 AND 0<=N
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

sum=x*(x+1) div 2 AND x<=N
 ==>
 sum=x*(x+1) div 2 AND x<=N
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

x<N AND sum=x*(x+1) div 2 AND x<=N
 ==>
 N-x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

sum=x*(x+1) div 2 AND x<=N AND NOT x<N
 ==>
 sum=N*(N+1) div 2
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 5 ===

x<N AND sum=x*(x+1) div 2 AND x<=N AND N-x>=0
 ==>
 sum+x+1=(x+1)*(x+1+1) div 2 AND x+1<=N AND N-(x+1)>=0
--------- Remains to prove ---------
x<N
 ==>
 x+1<=N
=====================================

=====================================
=== Verification Condition No.: 6 ===

x<N AND sum=x*(x+1) div 2 AND x<=N AND N-x=N-x
 ==>
 N-(x+1)<N-x
========= Proof succeeded =========
=====================================

Input to FPP

In FPP the identifier sum is reserved for the 4-place function sum(e,v,l,u), where v is a variable and e, l
and u are expressions. The meaning of sum(e,v,l,u) is the sum of all values of e, where v runs through
the values from l to u. sum(e,v,l,u) is only allowed in assertions.

-- Example 13
--!pre: 0 < n and n = n_i;
 x := 0;
 summe := 0;
--!pre : n > 0 and x = 0 and summe = 0 and n = n_i;
--!post: summe = n*(n+1)/2 and n = n_i;
--!inv : summe = x*(x+1)/2 and x <= n and 0 < n and n = n_i;

Comparison of the program provers NPPV and FPP

 37

--!term: n-x;
 WHILE x < n LOOP
 x := x+1;
 summe := summe + x;
 END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.23, 14:03
The answer to your query is:

--!pre : (n >= 1 AND n = n_i)
--> wp : (n >= 1 AND n = n_i)
--> vc : (True)
--> Result: proved
x := 0;
summe := 0;

--!pre : (n >= 1 AND x = 0 AND summe = 0 AND n = n_i)
--!post : (summe = n*(1 + n)/2 AND n = n_i)
--!inv : (summe = x*(1 + x)/2 AND x <= n AND n >= 1 AND n = n_i)
--!term : (n - x)
-->functionality ---------------------------
-->initial : (n >= 1 AND x = 0 AND summe = 0 AND n = n_i)
--> ==> (summe = x*(1 + x)/2 AND x <= n AND n >= 1 AND n = n_i)
--> Result : proved
-->induction : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n = n_i)
--> ==> (1 + summe + x = (1 + x)*(2 + x)/2) AND (1 + x <= n)
--> AND (n >= 1) AND (n = n_i)
--> Result : proved
-->final : (n <= x AND summe = x*(1 + x)/2 AND x <= n AND n >= 1 AND n = n_i)
--> ==> (summe = n*(1 + n)/2 AND n = n_i)
--> Result : proved
-->termination ---------------------------
-->initial : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n = n_i)
--> ==> (n - x >= 1)
--> Result : proved
-->induction : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n = n_i)
--> ==> (n - x >= n - x)
--> Result : proved
WHILE x < n LOOP
 x := x + 1;
 summe := summe + x;
END LOOP;

14. gausstty The same as example 13 but with type checking assertions.

Input to NPPV
{ 0 < N and N <= 10}
BEGIN
 x := 0;
 sum := 0;
 WHILE x < N DO [N-x] { sum = x*(x+1)/2 and x <= N and 0 < N and N <= 10 }
 BEGIN
 x := x+1;
 sum := sum + x
 END
END
{ sum = N*(N+1)/2 and sum <= 60}

Output from NPPV

S Kauer, J F H Winkler

 38

=====================================
=== Verification Condition No.: 1 ===

0<N AND N<=10
 ==>
 0=0*(0+1) div 2 AND 0<=N AND 0<N AND N<=10
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10
 ==>
 sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

x<N AND sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10
 ==>
 N-x>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10 AND NOT x<N
 ==>
 sum=N*(N+1) div 2 AND sum<=60
--------- Remains to prove ---------
x<=N AND 0<N AND N<=10 AND N<=x
 ==>
 (x*x+x) div 2=(N*N+N) div 2 AND (x*x+x) div 2<=60
=====================================

=====================================
=== Verification Condition No.: 5 ===

x<N AND sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10 AND N-x>=0
 ==>
 sum+x+1=(x+1)*(x+1+1) div 2 AND x+1<=N AND 0<N AND N<=10 AND N-(x+1)>=0
--------- Remains to prove ---------
x<N AND 0<N AND N<=10 AND x<=N
 ==>
 x+1<=N
=====================================

=====================================
=== Verification Condition No.: 6 ===

x<N AND sum=x*(x+1) div 2 AND x<=N AND 0<N AND N<=10 AND N-x=N-x
 ==>
 N-(x+1)<N-x
========= Proof succeeded =========
=====================================

Input to FPP
-- Example 14
--!pre: 0 < n and n <= 10 and n_i;
 x := 0;
 summe := 0;
--!pre : n > 0 and n <= 10 and x = 0 and summe = 0 and n_i;
--!post: summe = n*(n+1)/2 and summe <= 60 and n_i;
--!inv : summe = x*(x+1)/2 and x <= n and 0 < n and n <= 10 and n_i;
--!term: n-x;

Comparison of the program provers NPPV and FPP

 39

 WHILE x < n LOOP
 x := x+1;
 summe := summe + x;
 END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 8:11
The answer to your query is:

--!pre : (n >= 1 AND n <= 10 AND n_i)
--> wp : (n >= 1 AND n <= 10 AND n_i)
--> vc : (True)
--> Result: proved
x := 0;
summe := 0;

--!pre : (n >= 1 AND n <= 10 AND x = 0 AND summe = 0 AND n_i)
--!post : (summe = n*(1 + n)/2 AND summe <= 60 AND n_i)
--!inv : (summe = x*(1 + x)/2 AND x <= n AND n >= 1 AND n <= 10 AND n_i)
--!term : (n - x)
-->functionality ---------------------------
-->initial : (n >= 1 AND n <= 10 AND x = 0 AND summe = 0 AND n_i)
--> ==> (summe = x*(1 + x)/2 AND x <= n AND n >= 1 AND n <= 10 AND n_i)
--> Result : proved
-->induction : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n <= 10) AND (n_i)
--> ==> (1 + summe + x = (1 + x)*(2 + x)/2) AND (1 + x <= n)
--> AND (n >= 1) AND (n <= 10) AND (n_i)
--> Result : proved
-->final : (n <= x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n <= 10) AND (n_i)
--> ==> (summe = n*(1 + n)/2 AND summe <= 60 AND n_i)
--> Result : proved
-->termination ---------------------------
-->initial : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n <= 10) AND (n_i)
--> ==> (n - x >= 1)
--> Result : proved
-->induction : (n >= 1 + x) AND (summe = x*(1 + x)/2) AND (x <= n)
--> AND (n >= 1) AND (n <= 10) AND (n_i)
--> ==> (n - x >= n - x)
--> Result : proved
WHILE x < n LOOP
 x := x + 1;
 summe := summe + x;
END LOOP;

15. linrek Iterative solution of a linear recursive function f(x) = if P(x) then g(x) else

h(f(r(x)),x),using a stack [Gum 99a].

Input to NPPV
{ x = A }
BEGIN
 s := Empty ;
 WHILE not P(x) do { p(x,s) = f(A) }
 BEGIN
 s := push(x,s) ;
 x := r(x)
 END;
 z := g(x) ;
 WHILE s <> Empty do { p(z,s) = f(A) }
 BEGIN
 z := h(z,top(s)) ;
 s := pop(s)
 END

S Kauer, J F H Winkler

 40

END
{ z = f(A) }

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

x=A
 ==>
 p(x,Empty)=f(A)
--------- Remains to prove ---------
p(A,Empty)=f(A)
=====================================

=====================================
=== Verification Condition No.: 2 ===

p(x,s)=f(A)
 ==>
 p(x,s)=f(A)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

p(x,s)=f(A) AND NOT (NOT P(x))
 ==>
 p(g(x),s)=f(A)
--------- Remains to prove ---------
p(x,s)=f(A) AND P(x)
 ==>
 p(g(x),s)=f(A)
=====================================

=====================================
=== Verification Condition No.: 4 ===

p(x,s)=f(A) AND NOT P(x)
 ==>
 p(r(x),push(x,s))=f(A)
--------- Remains to prove ---------
p(x,s)=f(A) AND NOT P(x)
 ==>
 p(r(x),push(x,s))=f(A)
=====================================

=====================================
=== Verification Condition No.: 5 ===

p(z,s)=f(A)
 ==>
 p(z,s)=f(A)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 6 ===

p(z,s)=f(A) AND NOT s<>Empty
 ==>
 z=f(A)
--------- Remains to prove ---------
p(z,Empty)=f(A)
 ==>
 z=f(A)
=====================================

=====================================
=== Verification Condition No.: 7 ===

p(z,s)=f(A) AND s<>Empty
 ==>
 p(h(z,top(s)),pop(s))=f(A)
--------- Remains to prove ---------

Comparison of the program provers NPPV and FPP

 41

p(z,s)=f(A) AND s<>Empty
 ==>
 p(h(z,top(s)),pop(s))=f(A)
=====================================

FPP: in this abstract example it is not possible to give a termination function for the WHILE-loop.
Since FPP requires such a termination function the example is not appropriate for FPP.

16. linsearch Computation of the index of the first occurrence of the value of x in the array b.

NPPV: quantifiers are not supported in NPPV, and therefore this example is not appropriate for NPPV.

Input to FPP
-- Example 16
--!pre : ind=1 and len>=1 and (exists j: 1<=j and j<=len: b(j) = x)
--!pre : and x = x_i and len = len_i;
--!post : 1<=ind and ind<=len and b(ind) = x
--!post : and not((exists j: 1<=j and j<=ind-1:b(j)=x))
--!post : and x = x_i and len = len_i;
--!inv : 1<=ind and ind <=len and not((exists j:1<=j and j<=ind-1:b(j) = x))
--!inv : and (exists j:1<=j and j<=len:b(j) = x) and x = x_i and len = len_i;
--!term : len+1-ind;
WHILE b(ind) /= x LOOP
 ind := ind+1;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 8:48
The answer to your query is:

--!pre : (ind = 1) AND (len >= 1)
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--!post : (1 <= ind) AND (ind <= len) AND (b(ind) = x)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--!inv : (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--!term : (1 - ind + len)
-->functionality ---------------------------
-->initial : (ind = 1) AND (len >= 1)
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> ==> (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> Result : proved
-->induction : (b(ind) /= x) AND (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> ==> (1 <= 1 + ind) AND (1 + ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> Result : proved

S Kauer, J F H Winkler

 42

-->final : (b(ind) = x) AND (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> ==> (1 <= ind) AND (ind <= len) AND (b(ind) = x)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> Result : proved
-->termination ---------------------------
-->initial : (b(ind) /= x) AND (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> ==> (1 - ind + len >= 1)
--> Result : proved
-->induction : (b(ind) /= x) AND (1 <= ind) AND (ind <= len)
--> AND (Not(exists j: 1 <= j AND j <= -1 + ind AND b(j) = x))
--> AND ((exists j: 1 <= j AND j <= len AND b(j) = x))
--> AND (x = x_i) AND (len = len_i)
--> ==> (1 - ind + len >= 1 - ind + len)
--> Result : proved
WHILE b(ind) /= x LOOP
 ind := ind + 1;
END LOOP;

17. nested_for Computing the product of the natural numbers a and b by repeated addition using

two nested FOR-loops.

Input to NPPV
{ a >= 0 and b >= 0 }
BEGIN
p := 0;
{ a >= 0 and p = 0 and b >= 0 }
for i := 1 to b do { p = (i-1)*a and a >= 0 } +++ FOR
 for j := 1 to a do { p = (i-1)*a+j-1 and a >= 0 }
 p := p+1
END
{ p = b*a }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

a>=0 AND b>=0
 ==>
 a>=0 AND 0=0 AND b>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

a>=0 AND p=0 AND b>=0
 ==>
 p=(1-1)*a AND a>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

p=(b+1-1)*a AND a>=0
 ==>
 p=b*a
========= Proof succeeded =========
=====================================

Comparison of the program provers NPPV and FPP

 43

=====================================
=== Verification Condition No.: 4 ===

a>=0 AND p=0 AND b>=0 AND b<1
 ==>
 p=b*a
--------- Remains to prove ---------
0<=a AND 0<=b AND b<1
 ==>
 0=a*b
=====================================

=====================================
=== Verification Condition No.: 5 ===

p=(i-1)*a AND a>=0 AND 1<=i AND i<=b
 ==>
 p=(i-1)*a+1-1 AND a>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 6 ===

p=(i-1)*a+a+1-1 AND a>=0
 ==>
 p=(i+1-1)*a AND a>=0
--------- Remains to prove ---------
0<=a
 ==>
 (i-1)*a+a=a*i
=====================================

=====================================
=== Verification Condition No.: 7 ===

p=(i-1)*a AND a>=0 AND 1<=i AND i<=b AND a<1
 ==>
 p=(i+1-1)*a AND a>=0
--------- Remains to prove ---------
0<=a AND 1<=i AND i<=b AND a<1
 ==>
 (i-1)*a=a*i
=====================================

=====================================
=== Verification Condition No.: 8 ===

p=(i-1)*a+j-1 AND a>=0 AND 1<=j AND j<=a
 ==>
 p+1=(i-1)*a+j+1-1 AND a>=0
========= Proof succeeded =========
=====================================

Input to FPP
 -- Example 17
 --!pre: a>=0 and b>=0 and a = a_i and b = b_i;
p := 0;
 --!pre : p=0 and a>=0 and b>=0 and a = a_i and b = b_i;
 --!post: p=b*a and a = a_i and b = b_i;
 --!inv : p=i*a and a>=0 and a = a_i and b = b_i;
FOR i IN 1..b LOOP
 --!pre : p = (i-1)*a and a>=0;
 --!post: p = i*a;
 --!inv : p = (i-1)*a+j;
 FOR j IN 1..a LOOP
 p := p+1;
 END LOOP;
END LOOP;

S Kauer, J F H Winkler

 44

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 9:14
The answer to your query is:

--!pre : (a >= 0 AND b >= 0 AND a = a_i AND b = b_i)
--> wp : (a >= 0 AND b >= 0 AND a = a_i AND b = b_i)
--> vc : (True)
--> Result: proved
p := 0;

--!pre : (p = 0 AND a >= 0 AND b >= 0 AND a = a_i AND b = b_i)
--!post : (p = a*b AND a = a_i AND b = b_i)
--!inv : (p = a*i AND a >= 0 AND a = a_i AND b = b_i)
-->functionality ---------------------------
-->func : (initial AND induction AND final AND null loop)
-->initial : (1 <= b AND p = 0 AND a >= 0 AND b >= 0 AND a = a_i AND b = b_i)
--> ==> (p = 0 AND a >= 0 AND a = a_i AND b = b_i)
--> Result : proved
-->induction : (1 <= b AND p = a*(-1 + i) AND a >= 0 AND a = a_i AND b = b_i)
--> ==> (1 <= a) AND (p = a*(-1 + i)) AND (a >= 0)
--> AND (forall(($0)),
--> (p = a*(-1 + i) AND a >= 0 ==> $0 = a*i)
--> ==> ($0 = a*i AND a >= 0 AND a = a_i AND b = b_i))
--> OR (1 >= 1 + a AND p = a*i AND a >= 0 AND a = a_i AND b = b_i)
--> Result : proved
-->final : (1 <= b AND p = a*b AND a >= 0 AND a = a_i AND b = b_i)
--> ==> (p = a*b AND a = a_i AND b = b_i)
--> Result : proved
-->null loop : (1 >= 1 + b) AND (p = 0) AND (a >= 0) AND (b >= 0)
--> AND (a = a_i) AND (b = b_i)
--> ==> (p = a*b AND a = a_i AND b = b_i)
--> Result : proved
FOR i IN 1 .. b LOOP

 --!pre : (p = a*(-1 + i) AND a >= 0)
 --!post : (p = a*i)
 --!inv : (p = j + a*(-1 + i))
 -->functionality ---------------------------
 -->func : (initial AND induction AND final AND null loop)
 -->initial :(1 <= a AND p = a*(-1 + i) AND a >= 0 ==> p = a*(-1 + i))
 --> Result : proved
 -->induction :(1 <= a AND p = -1 + j + a*(-1 + i) ==> 1 + p = j + a*(-1 + i))
 --> Result : proved
 -->final :(1 <= a AND p = a + a*(-1 + i) ==> p = a*i)
 --> Result : proved
 -->null loop :(1 >= 1 + a AND p = a*(-1 + i) AND a >= 0 ==> p = a*i)
 --> Result : proved
 FOR j IN 1 .. a LOOP
 p := p + 1;
 END LOOP;

END LOOP;

18. proof An example that shows that program verification is as difficult as theorem proving [Gum

99a]. P(n) is a property of the natural numbers. P(n) is true, if and only if the following
program ”proof“ never terminates. In this example the program provers are used for for-
mula manipulation. Since P(k) and I(k) are only abstract functions no proof is possible
but the program prover generates the conditions which P(k) and I(k) must fulfill.

Input to NPPV
{ true }
BEGIN
 k := 0;
 WHILE P(k) DO { I(k) }

Comparison of the program provers NPPV and FPP

 45

 k := k+1
END
{ false }

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

TRUE
 ==>
 I(0)
--------- Remains to prove ---------
I(0)
=====================================

=====================================
=== Verification Condition No.: 2 ===

I(k)
 ==>
 I(k)
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

I(k) AND NOT P(k)
 ==>
 FALSE
--------- Remains to prove ---------
I(k)
 ==>
 P(k)
=====================================

=====================================
=== Verification Condition No.: 4 ===

I(k) AND P(k)
 ==>
 I(k+1)
--------- Remains to prove ---------
I(k) AND P(k)
 ==>
 I(k+1)
=====================================

FPP: in this abstract example it is not possible to give a termination function for the WHILE-loop.
Since FPP requires such a termination function the example is not appropriate for FPP.

19. quad Computing the square n of a positive integer k as the sum of the first k odd numbers .

Input to NPPV
{ k >= 1}
BEGIN
n := 0; { k >= 1 AND n = 0 }
FOR i := 0 TO k-1 DO { n = i*i }
 BEGIN
 j := 2*i+1;
 n := n+j
 END
END
{ n = k*k }

S Kauer, J F H Winkler

 46

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

k>=1
 ==>
 k>=1 AND 0=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

k>=1 AND n=0
 ==>
 n=0*0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

n=(k-1+1)*(k-1+1)
 ==>
 n=k*k
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

k>=1 AND n=0 AND k-1<0
 ==>
 n=k*k
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 5 ===

n=i*i AND 0<=i AND i<=k-1
 ==>
 n+2*i+1=(i+1)*(i+1)
--------- Remains to prove ---------
0<=i AND i+1<=k
 ==>
 2*i+1=i+i+1
=====================================

Input to FPP
 -- Example 19
 --!pre: n >= 0 and n = n_i;
s := 0;
 --!pre : n >= 0 and s = 0 and n = n_i;
 --!post: s = n**2 and n = n_i;
 --!inv : s = (i+1)**2 and n = n_i;
FOR i IN 0 .. n-1 LOOP
 j := 2*i+1;
 s := s+j;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:01
The answer to your query is:

--!pre : (n >= 0 AND n = n_i)
--> wp : (n >= 0 AND n = n_i)

Comparison of the program provers NPPV and FPP

 47

--> vc : (True)
--> Result: proved
s := 0;

--!pre : (n >= 0 AND s = 0 AND n = n_i)
--!post : (s = n**2 AND n = n_i)
--!inv : (s = (1 + i)**2 AND n = n_i)
-->functionality ---------------------------
-->func : (initial AND induction AND final AND null loop)
-->initial :(0 <= -1 + n AND n >= 0 AND s = 0 AND n = n_i ==> s = 0 AND n = n_i)
--> Result : proved
-->induction : (0 <= -1 + n AND 1 = i**2 AND n = n_i)
--> ==> (3 + 2*i = (1 + i)**2 AND n = n_i)
--> Result : proved
-->final :(0 <= -1 + n AND s = n**2 AND n = n_i ==> s = n**2 AND n = n_i)
--> Result : proved
-->null loop :(0 >= n AND n >= 0 AND s = 0 AND n = n_i ==> s = n**2 AND n = n_i)
--> Result : proved
FOR i IN 0 .. n - 1 LOOP
 j := 2 * i + 1;
 s := s + j;
END LOOP;

20. root Computing the floor of the square root of a nonnegative integer.

Input to NPPV
{ a = 0 and n >= 0 }
WHILE (a+1)*(a+1) <= n DO [n-a] { a*a <= n }
 a := a+1
{ (a+1)*(a+1) > n and n >= a*a }

Output of NPPV

=====================================
=== Verification Condition No.: 1 ===

a=0 AND n>=0
 ==>
 a*a<=n
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

(a+1)*(a+1)<=n AND a=0 AND n>=0
 ==>
 n-a>=0
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 3 ===

a*a<=n AND NOT (a+1)*(a+1)<=n
 ==>
 (a+1)*(a+1)>n AND n>=a*a
========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

(a+1)*(a+1)<=n AND a*a<=n AND n-a>=0
 ==>
 (a+1)*(a+1)<=n AND n-(a+1)>=0
--------- Remains to prove ---------
a*a+a+a+1<=n AND a*a<=n AND a<=n

S Kauer, J F H Winkler

 48

 ==>
 a+1<=n
=====================================

=====================================
=== Verification Condition No.: 5 ===

(a+1)*(a+1)<=n AND a*a<=n AND n-a=n-a
 ==>
 n-(a+1)<n-a
========= Proof succeeded =========
=====================================

Input to FPP
 -- Example 20
 --!Pre : a=0 and n>=0 and n = n_i;
 --!Post: (a+1)**2>n and n>=a**2 and n = n_i;
 --!Inv : a**2<=n and n = n_i;
 --!term: n-a;
WHILE (a+1)**2 <= n LOOP a := a+1; END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:13
The answer to your query is:

--!pre : (a = 0 AND n >= 0 AND n = n_i)
--!post : ((1 + a)**2 >= 1 + n AND n >= a**2 AND n = n_i)
--!inv : (a**2 <= n AND n = n_i)
--!term : (-a + n)
-->functionality ---------------------------
-->initial :(a = 0 AND n >= 0 AND n = n_i ==> a**2 <= n AND n = n_i)
--> Result : proved
-->induction : ((1 + a)**2 <= n AND a**2 <= n AND n = n_i)
--> ==> ((1 + a)**2 <= n AND n = n_i)
--> Result : proved
-->final : ((1 + a)**2 >= 1 + n AND a**2 <= n AND n = n_i)
--> ==> ((1 + a)**2 >= 1 + n AND n >= a**2 AND n = n_i)
--> Result : proved
-->termination ---------------------------
-->initial :((1 + a)**2 <= n AND a**2 <= n AND n = n_i ==> -a + n >= 1)
--> Result : proved
-->induction :((1 + a)**2 <= n AND a**2 <= n AND n = n_i ==> -a + n >= -a + n)
--> Result : proved
WHILE (a + 1) ** 2 <= n LOOP
 a := a + 1;
END LOOP;

21. swap1 Swapping the values of two variables using an auxiliary variable.

Input to NPPV
{ x = A and y = B }
BEGIN
 temp := x ;
 x := y ;
 y := temp
END
{ x = B and y = A }

Comparison of the program provers NPPV and FPP

 49

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

x=A AND y=B
 ==>
 y=B AND x=A
========= Proof succeeded =========
=====================================

Input to FPP
 -- Example 21
 --!pre: x = x_i and y = y_i;
temp := x ;
x := y ;
y := temp;
 --!post: x = y_i and y = x_i;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:24
The answer to your query is:

--!pre : (x = x_i AND y = y_i)
--> wp : (y = y_i AND x = x_i)
--> vc : (x = x_i AND y = y_i ==> y = y_i AND x = x_i)
--> Result: proved
temp := x;
x := y;
y := temp;
--!post : (x = y_i AND y = x_i)

22. swap2 Tricky but unsafe version of swapping the values of two variables without an auxiliary

variable.

Input to NPPV
{ x = M and y = N }
BEGIN
 x := x - y;
 y := x + y;
 x := y - x
END
{ x = N and y = M }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

x=M AND y=N
 ==>
 x-y+y-(x-y)=N AND x-y+y=M
========= Proof succeeded =========
=====================================

Input to FPP
 -- Example 22
 --!pre : x = x_i and y = y_i;

S Kauer, J F H Winkler

 50

x := x - y;
y := x + y;
x := y - x;
 --!post: x = y_i and y = x_i;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 10:31
The answer to your query is:

--!pre : (x = x_i AND y = y_i)
--> wp : (y = y_i AND x = x_i)
--> vc : (x = x_i AND y = y_i ==> y = y_i AND x = x_i)
--> Result: proved
x := x - y;
y := x + y;
x := y - x;
--!post : (x = y_i AND y = x_i)

Since neither NPPV nor FPP take the limited ranges of integer types into account both say that the pro-
grams are correct. In typical implementations of Pascal and Ada the programs are not correct, because the
difference in ”x := x-y;“ cannot be computed for all legal combinations of x and y [Win 90].

23. swap2ty The same as example 22 but with type checking assertions.

Input to NPPV

{ x = M and y = N and -100 <= x and x <= 100 and -100 <= y and y <= 100 }
BEGIN
 x := x - y;
{ -100 <= x and x <= 100 and -100 <= y and y <= 100 }
 y := x + y;
{ -100 <= x and x <= 100 and -100 <= y and y <= 100 }
 x := y - x

END
{ x = N and y = M and -100 <= x and x <= 100 and -100 <= y and y <= 100 }

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

x=M AND y=N AND -100<=x AND x<=100 AND -100<=y AND y<
=100
 ==>
 -100<=x-y AND x-y<=100 AND -100<=y AN
D y<=100

--------- Remains to prove ---------
-100<=M AND M<=100 AND -100<=N AND N<=100
 ==>
 -100+N<=M AND M<=100+N
=====================================

=====================================
=== Verification Condition No.: 2 ===

-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>
 -100<=x AND x<=100 AND -100<=x+y AND
x+y<=100

--------- Remains to prove ---------
-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>

Comparison of the program provers NPPV and FPP

 51

 -100<=x+y AND x+y<=100
=====================================

=====================================
=== Verification Condition No.: 3 ===

-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>
 y-x=N AND y=M AND -100<=y-x AND y-x<=
100 AND -100<=y AND y<=100

--------- Remains to prove ---------
-100<=x AND x<=100 AND -100<=y AND y<=100
 ==>
 y=M AND y-x=N AND -100+x<=y AND y<=10
0+x
=====================================

Input to FPP
 -- Example 23
 --!pre : x=x_i and -100 <= x and x <= +100 and
 --!pre : y=y_i and -100 <= y and y <= +100;
x := x - y;
 --!post: -100 <= x and x <= +100 and -100 <= y and y <= +100;
y := x + y;
 --!post: -100 <= x and x <= +100 and -100 <= y and y <= +100;
x := y - x;
 --!post: x=y_i and -100 <= x and x <= +100 and
 --!post: y=x_i and -100 <= y and y <= +100;

Output from FPP
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.24, 12:28
The answer to your query is:

--!pre : (x = x_i) AND (-100 <= x) AND (x <= 100)
--> AND (y = y_i) AND (-100 <= y) AND (y <= 100)
--> wp : (-100 <= x - y AND x - y <= 100 AND -100 <= y AND y <= 100)
--> vc : (x = x_i) AND (-100 <= x) AND (x <= 100)
--> AND y <= 100) AND (y = y_i) AND (-100 <= y) AND (y <= 100)
--> ==> (-100 <= x - y AND x - y <= 100 AND -100 <= y AND y <= 100)
--> Result: not proved
--> fc : (-100 + x_i - y >= 1) AND (100 - x_i >= 0) AND (100 + x_i >= 0)
--> AND (100 + y >= 0) AND (100 - y >= 0)

x := x - y;
--!post : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> wp : (-100 <= x AND x <= 100 AND -100 <= x + y AND x + y <= 100)
--> vc : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> ==> (-100 <= x AND x <= 100 AND -100 <= x + y AND x + y <= 100)
--> Result: not proved
--> fc : (-100 - x - y >= 1) AND (100 + x >= 0) AND (100 - y >= 0)
--> AND (100 + y >= 0) AND (100 - x >= 0)

y := x + y;
--!post : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> wp : (-x + y = y_i) AND (-100 <= -x + y) AND (-x + y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> vc : (-100 <= x AND x <= 100 AND -100 <= y AND y <= 100)
--> ==> (-x + y = y_i) AND (-100 <= -x + y) AND (-x + y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> Result: not proved
--> fc : (100 - x >= 0) AND (100 + x >= 0) AND (100 + y >= 0)
--> AND (y /= x_i) AND (100 - y >= 0)

x := y - x;
--!post : (x = y_i) AND (-100 <= x) AND (x <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)

S Kauer, J F H Winkler

 52

When the limited domains of integer types are checked both provers say that the programs are not correct.
The first falsification condition in the output from FPP is equivalent to

-100 ≤ x ≤ +100 ∧ -100 ≤ y ≤ +100 ∧ x - y ≥ 101
which is satisfied by e.g. x = 100 ∧ . y = -1 which is a legal pair of values for x and y.

24. swap2ty2 The same as example 23 but with sufficiently strong preconditions.

Input to NPPV
{ x = M and y = N and -100 <= x-y and x-y <= 100 and -100 <= x and x <= 100 and -100
<= y and y <= 100 }
BEGIN
 x := x - y;
{ x = M-N and y = N and -100 <= x+y and x+y <= 100 and -100 <= x and x <= 100 and -100
<= y and y <= 100 }
 y := x + y;
{ x = M-N and y = M and -100 <= y-x and y-x <= 100 and -100 <= x and x <= 100 and -100
<= y and y <= 100 }
 x := y - x
END
{ x = N and y = M and -100 <= x and x <= 100 and -100 <= y and y <= 100 }

Output from NPPV
=== Verification Condition No.: 1 ===

x=M AND y=N AND -100<=x-y AND x-y<=100 AND -100<=x AN
D x<=100 AND -100<=y AND y<=100
 ==>
 x-y=M-N AND y=N AND -100<=x-y+y AND x
-y+y<=100 AND -100<=x-y AND x-y<=100 AND -100<=y AND
y<=100

========= Proof succeeded =========

=====================================
=== Verification Condition No.: 2 ===

x=M-N AND y=N AND -100<=x+y AND x+y<=100 AND -100<=x
AND x<=100 AND -100<=y AND y<=100
 ==>
 x=M-N AND x+y=M AND -100<=x+y-x AND x
+y-x<=100 AND -100<=x AND x<=100 AND -100<=x+y AND x+
y<=100

--------- Remains to prove ---------
-100<=M AND M<=100 AND -100+N<=M AND M<=100+N AND -10
0<=N AND N<=100
 ==>
 -100<=M+N+N-M-N AND M+N+N-M-N<=100
=====================================

=====================================
=== Verification Condition No.: 3 ===

x=M-N AND y=M AND -100<=y-x AND y-x<=100 AND -100<=x
AND x<=100 AND -100<=y AND y<=100
 ==>
 y-x=N AND y=M AND -100<=y-x AND y-x<=
100 AND -100<=y AND y<=100

--------- Remains to prove ---------
-100+M-N<=M AND M<=100+M-N AND -100+N<=M AND M<=100+N
 AND -100<=M AND M<=100
 ==>
 M+N-M=N
=====================================

Comparison of the program provers NPPV and FPP

 53

Input to FPP
 -- Example 24a
 --!pre : x = x_i and y = y_i and -100 <= x-y and x-y <= +100 and
 --!pre : -100 <= x and x <= +100 and -100 <= y and y <= +100;
x := x - y;
 --!pre : x = x_i-y_i and y = y_i and -100 <= x+y and x+y <= +100 and
 --!pre : -100 <= x and x <= +100 and -100 <= y and y <= +100;
y := x + y;
 --!pre : x = x_i-y_i and y = x_i and -100 <= y-x and y-x <= +100 and
 --!pre : -100 <= x and x <= +100 and -100 <= y and y <= +100;
x := y - x;
 --!post: x = y_i and -100 <= x and x <= +100 and
 --!post: y = x_i and -100 <= y and y <= +100;

Output fromFPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.25, 9:04
The answer to your query is:

--!pre : (x = x_i) AND (y = y_i) AND (-100 <= x - y) AND (x - y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> wp : (x - y = x_i - y_i) AND (y = y_i) AND (-100 <= x) AND (x <= 100)
--> AND (-100 <= x - y) AND (x - y <= 100) AND (-100 <= y) AND (y <= 100)
--> vc : (x = x_i) AND (y = y_i) AND (-100 <= x-y) AND (x-y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> ==> (x-y = x_i-y_i) AND (y = y_i) AND (-100 <= x) AND (x <= 100)
--> AND (-100 <= x-y) AND (x-y <= 100) AND (-100 <= y) AND (y <= 100)
--> Result: proved
x := x - y;
--!pre : (x = x_i - y_i) AND (y = y_i) AND (-100 <= x+y) AND (x+y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> wp : (x = x_i - y_i) AND (x + y = x_i) AND (-100 <= y) AND (y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= x + y) AND (x + y <= 100)
--> vc : (x = x_i - y_i) AND (y = y_i) AND (-100 <= x+y) AND (x+y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> ==> (x = x_i - y_i) AND (x + y = x_i) AND (-100 <= y) AND (y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= x + y) AND (x + y <= 100)
--> Result: proved
y := x + y;
--!pre : (x = x_i - y_i) AND (y = x_i) AND (-100 <= -x+y) AND (-x+y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> wp : (-x + y = y_i) AND (-100 <= -x+y) AND (-x+y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> vc : (x = x_i - y_i) AND (y = x_i) AND (-100 <= -x+y) AND (-x+y <= 100)
--> AND (-100 <= x) AND (x <= 100) AND (-100 <= y) AND (y <= 100)
--> ==> (-x + y = y_i) AND (-100 <= -x + y) AND (-x + y <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)
--> Result: proved
x := y - x;
--!post : (x = y_i) AND (-100 <= x) AND (x <= 100)
--> AND (y = x_i) AND (-100 <= y) AND (y <= 100)

25. swap3 This example is a generalization of the examples 22 - 24. As in example 18 the program

provers are used for formula manipulation to generate the conditions, which the three
function s, g and h must fulfill, for the program to be correct [Gum 99a]. It is not
checked, whether the results of these functions lie in the types of the variables.

Input to NPPV
{ x = M and y = N }
BEGIN
 y := s(x,y);

S Kauer, J F H Winkler

 54

 x := g(x,y);
 y := h(y,x)
END
{ x = N and y = M }

Output from NPPV

=====================================
=== Verification Condition No.: 1 ===

x=M AND y=N
 ==>
 g(x,s(x,y))=N AND h(s(x,y),g(x,s(x,y)))=M
--------- Remains to prove ---------
g(M,s(M,N))=N
--- and also ---
h(s(M,N),g(M,s(M,N)))=M
=====================================

Input to FPP
 -- Example 25
 --!pre: x = x_i and y = y_i;
x := f(x,y);
y := g(x,y);
x := h(x,y);
 --!post: x = y_i and y = x_i;

Output from FPP
FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.09.25, 9:59
The answer to your query is:

--!pre : (x = x_i AND y = y_i)
--> wp : (h(f(x,y),g(f(x,y),y)) = y_i AND g(f(x,y),y) = x_i)
--> vc : (x = x_i AND y = y_i)
--> ==> (h(f(x,y),g(f(x,y),y)) = y_i AND g(f(x,y),y) = x_i)
--> Result: not proved
--> fc : (Not(g(f(x_i,y),y) = x_i AND h(f(x_i,y),g(f(x_i,y),y)) = y))

x := f(x, y);
y := g(x, y);
x := h(x, y);
--!post : (x = y_i AND y = x_i)

26. Cube Compute the cube of the nonnegative integer n using additions only [GH 99].

Input to NPPV
{ N >= 0 and N = N_i}

BEGIN
 x := 0;
 y := 1;
 z := 6;
 { N >= 0 and N = N_i and x=0 and y=1 and z=6 }
 FOR i := 1 to N DO { x = (i-1)*(i-1)*(i-1) and y = 3*(i-1)*(i-1)+3*(i-1)+1
 and z = 6*(i-1)+6 and N = N_i }
 BEGIN
 x := x+y;
 y := y+z;
 z := z+6
 END
END
{ x = N*N*N and N = N_i }

Comparison of the program provers NPPV and FPP

 55

Output from NPPV
=====================================
=== Verification Condition No.: 1 ===

N>=0 AND N=N_i
 ==>
 N>=0 AND N=N_i AND 0=0 AND 1=1 AND 6=6

========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 2 ===

N>=0 AND N=N_i AND x=0 AND y=1 AND z=6
 ==>
 x=(1-1)*(1-1)*(1-1) AND y=3*(1-1)*(1-
1)+3*(1-1)+1 AND z=6*(1-1)+6 AND N=N_i

========= Proof succeeded =========
=====================================

=====================================

=== Verification Condition No.: 3 ===

x=(N+1-1)*(N+1-1)*(N+1-1) AND y=3*(N+1-1)*(N+1-1)+3*(
N+1-1)+1 AND z=6*(N+1-1)+6 AND N=N_i
 ==>
 x=N*N*N AND N=N_i

========= Proof succeeded =========
=====================================

=====================================
=== Verification Condition No.: 4 ===

N>=0 AND N=N_i AND x=0 AND y=1 AND z=6 AND N<1
 ==>
 x=N*N*N AND N=N_i

--------- Remains to prove ---------
0<=N AND N=N_i AND N<1
 ==>
 0=N*N*N
=====================================

=====================================
=== Verification Condition No.: 5 ===

x=(i-1)*(i-1)*(i-1) AND y=3*(i-1)*(i-1)+3*(i-1)+1 AND
 z=6*(i-1)+6 AND N=N_i AND 1<=i AND i<=N
 ==>
 x+y=(i+1-1)*(i+1-1)*(i+1-1) AND y+z=3
(i+1-1)(i+1-1)+3*(i+1-1)+1 AND z+6=6*(i+1-1)+6 AND
N=N_i

--------- Remains to prove ---------
N=N_i AND 1<=i AND i<=N
 ==>
 (i-1)*i*i+(1-i)*i+(3*i-3)*i+3+3*i+1-3
*i-3-((i-1)*i+1-i)=i*i*i AND (3*i-3)*i+3+3*i+1+6*i-3-
3*i=3*i*i+3*i+1
=====================================

S Kauer, J F H Winkler

 56

Input to FPP
 -- Example 26
 --!pre: n >= 0 and n = n_i;
x := 0;
y := 1;
z := 6;
 --!pre : n >= 0 and n = n_i
 --!pre : and x=0 and y=1 and z=6;
 --!post: x=n**3 and n = n_i;
 --!inv : x=i**3 and y=3*i**2+3*i+1
 --!inv : and z=6*i+6 and n = n_i;
FOR i IN 1 .. n LOOP
 x := x+y;
 y := y+z;
 z := z+6;
END LOOP;

Output from FPP

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1999.10.05, 8:46
The answer to your query is:

--!pre : (n >= 0 AND n = n_i)
--> wp : (n >= 0 AND n = n_i)
--> vc : (True)
--> Result: proved
x := 0;
y := 1;
z := 6;

--!pre : (n >= 0 AND n = n_i AND x = 0 AND y = 1 AND z = 6)
--!post : (x = n**3 AND n = n_i)
--!inv : (x = i**3 AND y = 1 + 3*i + 3*i**2 AND z = 6 + 6*i AND n = n_i)
-->functionality ---------------------------
-->func : (initial AND induction AND final AND null loop)
-->initial : (1 <= n AND n >= 0 AND n = n_i AND x = 0 AND y = 1 AND z = 6)
--> ==> (x = 0 AND y = 1 AND z = 6 AND n = n_i)
--> Result : proved
-->induction : (1 <= n) AND (x = (-1 + i)**3)
--> AND (y = 1 + 3*(-1 + i) + 3*(-1 + i)**2)
--> AND (z = 6 + 6*(-1 + i)) AND (n = n_i)
--> ==> (x + y = i**3) AND (y + z = 1 + 3*i + 3*i**2)
--> AND (6 + z = 6 + 6*i) AND (n = n_i)
--> Result : proved
-->final : (1 <= n) AND (x = n**3)
--> AND (y = 1 + 3*n + 3*n**2)
--> AND (z = 6 + 6*n) AND (n = n_i)
--> ==> (x = n**3 AND n = n_i)
--> Result : proved
-->null loop : (1 >= 1 + n AND n >= 0 AND n = n_i AND x = 0 AND y = 1 AND z =

6) --> ==> (x = n**3 AND n = n_i)
--> Result : proved
FOR i IN 1 .. n LOOP
 x := x + y;
 y := y + z;
 z := z + 6;
END LOOP;

