Object CHILL - An Object Oriented Language for
Systems Implementation

Jurgen F. H. Winkler, Georg Diefl
Siemens AG, Corporate Research and Development
Otto-Hahn-Ring 6, W-8000 Munich 83, Germany

Object orientation is a programming paradigm that has gained
considerable attention during the last years, especially as a prin-
ciple for structuring large software systems that are typical for
the telecom field.

This paper reviews object oriented principles and describes
the main aspects of Object CHILL, an object oriented extension
of CHILL which has been developed and implemented at Sie-
mens. Apart from the elements of object oriented programming
i.e. classes and inheritance, Object CHILL contains concurrent
classes, generic classes and assertions for methods and
classes/objects. Object CHILL is currently being used for the im-
plementation of switching software in an ISDN-project.

1 Introduction

Object orientation is a programming paradigm that
has gained considerable attention during the last
years. It is a principle not only for programming-in-
the-small but - more important - for structuring
large software systems in order to control complex-
ity, to facilitate evolution, and to provide a basis for
reuse of software components. These topics are vital
in the application area of CHILL as well [KKM 91].

Within Siemens the OO paradigm is being used in
an ongoing pilot project for the development of an
ISDN switching system [GW 91].

For the implementation of this system we use Object
CHILL [DSW 90] an extension of the CCITT lan-
guage CHILL [ITU 8x; Rek 82; Win 86]. Object
CHILL contains the essential elements of OOP, and
furthermore other elements which support the con-
struction of SW systems with high complexity and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 089791-472-4/92/0002/0139 $1.50

139

reliability. These other elements are generic classes
and assertions. Additionally, the concept of concur-
rency has been fully integrated into the OO frame-
work making Object CHILL a concurrent object ori-
ented language.

CHILL has originated in the telecom field but it is
by no means limited to this field. It is a procedural
language similar to Ada and can be used for the
whole field of system implementation.

The paper is structured as follows. Chapter 2 re-
views the essential elements of OOP. Chapter 3 re-
views the main elements of CHILL and the limita-
tions of it in the area of OOP. In chapter 4 we de-
scribe the new language elements of Object CHILL
and how they have been integrated into the frame-
work of CHILL. In the appendix we show the appli-
cation of the OO features of Object CHILL by using
the popular example of simple geometric figures.

2 Object Oriented Principles

The basic idea of OOP is to break up a software sys-
tem into components or building blocks, which are
called objects. An object consists of data and meth-
ods to manipulate these data. Like a data abstrac-
tion, an object provides a well defined interface but
hides implementation details. Objects of the same
kind are grouped into classes, in the same way as
the integer numbers are grouped into the type IN-
TEGER. A class is a pattern used to define in-
stances of the class which are the objects.

Classes can be constructed incrementally using the
notion of inheritance: a class derived from another
class inherits all of its elements and features. The
inheritance mechanism enables the programmer to
efficiently reuse software components; he utilizes
existing classes as ancestors with the possibility to
modify and extend the heirs and without the neces-
sity to change the ancestors (which might be harm-
ful to other components using ancestor objects and
therefore relying on the stability of the ancestor
classes).

R¢

pre

ooy

an
ref
an:
(tk
ac(

go
the
the
gu
su
m:
ex
pa

Sir

Objects communicate with each other by exchang-
ing messages: a message sent to an object invokes
one of the methods provided by this object. Strictly
speaking, message passing does not impose a prefer-
ence on any of the usual communication mecha-
nisms. Due to the fact that many of currently avail-
able “object oriented” programming languages are
implemented in a procedural environment, message
passing has the flavor of procedure calling. We will
show that the realization of object oriented program-
ming in a CHILL based environment allows for a va-
riety of synchronous and asynchronous commu-
nication mechanisms to be subsumed under the
message passing concept. Thus object oriented prin-
ciples are naturally translated into a world of con-
currency.

Many of the principles described are already well
supported by the CHILL language, others require
some additional language features. Both are dis-
cussed in chapter 3.

3 Facilities and Limitations of CHILL

As mentioned in chapter 2 there are mainly two con-
cepts which characterize the difference of object ori-
ented and classical programming languages, name-
ly:
- data abstraction
(classes are abstract types);
- inheritance
(subclasses are extensions of superclasses).

3.1 Data Abstraction

In an earlier paper one of the authors investigated
the facilities of CHILL for the realization of data ab-
stractions, and presented a proposal for including
genericity and assertions for data abstractions into
CHILL [Win 84]. This investigation shows that
CHILL contains some language constructs for the
realization of data abstractions, but that there are
also certain limitations.

CHILL allows for data abstraction by information
hiding; this can be easily achieved in a module or re-
gion by granting (i.e. exporting) the operations but
not the data components manipulated by these oper-
ations. This kind of abstraction allows the definition
of objects but not of classes (abstract types), because
a module is rather an object than a type. On the oth-
er hand, CHILL types could be a basis for abstract
types. Abstraction and information hiding, however,
are possible only for struct types: granted struct
types can be made opaque using the FORBID clause.

140

Remark: in CHILL typesare called "modes”. In
this paper we use consistently the term “type”
because it is more popular in the programming
language field.

This shows that a direct modeling of classes is not
possible because of limitations of CHILL. Therefore
it seems reasonable to consider an extension of
CHILL allowing the full definition of abstract types
within the language.

3.2 Inheritance

In a technical sense inheritance means the exten-
sion / modification of abstract data types. This can
be done in two dimensions:

- adding/ modifying operations;

- adding data components.
In CHILL operations are realized as procedures
where the type in question occurs as the type of one
or more parameters and/or the type of the result. It
is always possible to define further procedures with
arbitrary types. Therefore, addition and modifica-
tion of operations is possible in CHILL; however,
this requires a modification of the module defining
the original abstract data type.

Adding new components to an existing type (e.g. a
struct type) can only be achieved by modifying the
very definition of this type. Thus, the containing
module has to be recompiled and, even worse, com-
pletely retested. Additionally, this modification will
also affect the users of the original type. This situa-
tion is quite the same as in other classical program-
ming languages [Wir 88]. In object oriented lan-
guages, this kind of data extension is possible in a
way that the base type itself as well as the users of
the base type are not affected by such extensions.
This leads to software components that are both self-
contained (closed and stable for clients) and adapt-
able (open to changes for the programmer via in-
heritance). For these benefits is seems worthwhile
to consider the introduction of inheritance (type ex-
tension) into CHILL.

3.3 Concurrency

CHILL is well suited to handle the aspects of concur-
rency that are typical and critical in the telecom
field. Up to now, concurrency has not been fully ad-
dressed by object oriented languages. There are first
solutions, but there is also an ongoing discussion
how object oriented programming and concurrency
should be combined [AWY 89; OOP 90]. Therefore,
the introduction of object orientation into CHILL is

|-

Al] ~ o+ L U

_—0 VM W e

done in a way that retains the power of CHILL in
the area of concurrency.

4 From CHILL to Object CHILL

Object CHILL [DSW 901 has been developed by
adding language features to CHILL which support
object oriented programming as described above.

The idea to achieve this goal by introducing module
types and region types was considered but rejected
due to some problems concerning concurrency and
due to lack of inheritance mechanisms for types.

Consequently, classes have been introduced as the
basic program units, including the definition of in-
heritance relations between classes.

An Object CHILL program contains cLASS defini-
tions and at least one CHILL module which serves
as the main program; other modules may be includ-
ed, thereby facilitating the combination with exist-
ing CHILL software. This combination of classes
and modules facilitates the migration from CHILL
to Object CHILL

4.1 Classes and Inheritance

An Object CHILL class includes components which
may be CHILL variables or constants, types and
methods for manipulating the variables. Methods
are very similar to CHILL procedures. Syntactical-
ly, a class definition consists of two parts: class
specification and class body.

The class specification defines the essential inter-
faces of the class:

- The export interface which defines all methods,
constants and types accessible to program units
that declare and use objects of that class (cli-
ents); this interface is defined via GRANT state-
ments.

- The import interface which names entities
(classes, types, etc.) used within the specified
class; it is defined via SEIZE statements.

- The internal interface which defines additional
methods, variables, constants and types accessi-
ble to the class body and to subclasses.

The export and the internal interfaces where de-
signed to support separate compilation in an ef-
ficient manner: a client class / subclass can be
compiled as soon as the specifications of all of its
server / ancestor classes are available. It does
not need (and as a consequence, is not affected

by changes to) the bodies of its server / ancestor
classes.

141

The class body contains the implementation of
methods defined in the specification and may in-
clude further procedures, types , and constants that
arereserved for internal use.

A class is used as a pattern to define objects. In Ob-
Ject CHILL this definition (also called instantiation
in the object oriented world) resembles the declara-
tion of a CHILL variable:

DCL my_circle CIRCLE (10,-20,20);
or the allocation of a variable on the heap :

DCL my_ptr REF CIRCLE;
my—ptr := NEW CIRCLE (10,-20,20);

Object CHILL provides for inheritance as described
above. The language supports two kinds of inheri-
tance:

CIRCLE: MODULE CLASS IS_A FIGURE
and

UNIT_CIRCLE: MODULE CLASS INHERITS FIGURE

that differ in the properties subclasses inherit from
their superclass. Currently Object CHILL does not
support multiple inheritance; any class can inherit
from at most one ancestor class.

For internal use, i.e. for implementing the subclass
methods, all the components defined in the super-
class specification, i.e. in the export and internal in-
terfaces, are available. Additional components may
be defined as needed. This holds for both forms of in-
heritance.

The export interface is defined as follows:

An 1s_A-subclass inherits the export interface from
the ancestor class; extensions are possible, but dele-
tions are prohibited. As a consequence, a subclass
object provides at least the methods provided by a
superclass object. This enables the programmer to
access subclass objects via superclass pointers with-
out encountering the danger of inconsistencies - an
important feature of object oriented programming
languages known as polymorphism.

For an INHERITS-subclass, the export interface may
be defined independently of the ancestor class. Any
of the components, inherited from the ancestor class
or defined within the subclass, may be made avail-
able to clients as appropriate. Objects of INHERITS-
subclasses cannot be accessed in a polymorphic fash-
ion.

Methods are invoked by addressing an object, identi-
fying the desired method and providing appropriate
actual parameters:

my-circle.set_position (MyPoint);

The semantics of method invocation with respect to
concurrency and synchronization is defined along
with different class types that will be described in
the following section.

4.2 Concurrency

Object CHILL allows for concurrent execution of ob-
jects. Thus one or more objects of the same or differ-
ent classes can be active at the same time. Commu-
nication and synchronization are achieved with the
calling of methods.

- Communication: Parameters and results of
methods are the means for communication.

- Concurrency: Different objects can execute in
parallel. The activation of an object is achieved
by the elaboration of its declaration (DCL or
NEW). It is then ready to accept calls of its
methods. Whenever a method is called asyn-
chronously the calling object continues its ex-
ecution without waiting for the termination of
the method called. So both objects execute in
parallel.

- Consistency: Methods of one object operate on
the internal data of that object. Inconsistencies
are possible if several methods of an object ex-
ecute in parallel. Therefore, mechanisms are
provided to ensure that at most one method is
active at the same time.

With respect to concurrency Object CHILL provides
three kinds of classes :

- MODULE classes whose objects have the proper-
ties of CHILL modules:
MODULE CLASS objects are accessed procedurally
(no own thread of control), and concurrent meth-
od invocations are not synchronized.

- REGION classes whose objects have the proper-
ties of CHILL regions:
REGION CLASS objects are accessed in a procedural
way (noown thread of control), but concurrent
method invocations are synchronized. They are
a means for providing objects with mutually ex-
clusive access to their data. Therefore, a RE-
GION object behaves very much like a monitor
[Hoa 74].

- CONCURRENT classes whose objects have the
properties of CHILL processes :
CONCURRENT CLASS objects are accessed in an asyn-
chronous way (own thread of control), and con-
current method invocations are synchronized.

142

4.3 Genericity

Genericity, which is sometimes also called “para-
metric polymorphism” [CW 85], is a concept for gen-
eral parameterization of program components
where the possible parameters also include types.
This concept, the most elaborate version of which
has been incorporated into Ada [Ref 83], is especial-
ly suited for strongly typed languages [Weg 87].

Genericity is typically applied in situations where a
concept can be used with different types. An exam-
ple is the parameterization of a data abstraction
with the type of a component, as e.g. a stack type
which may be parameterized with the type for the
stack elements. The basic algorithms for the oper-
ations on a stack do not depend on the element type.
Therefore, the same algorithms can be used for a
stack of integers or a stack of structures. In lan-
guages without genericity stack operations must be
repeated for each different element type. This leads
to an unnecessary duplication of code with the well
known negative effects on maintainability.

Genericity does not violate strong typing. The con-
cept for Ada and the proposal given in [Win 84]
guarantee that generic instantiations of a correct
generic construct are strongly typed and type cor-
rect.

In Object CHILL genericity is incorporated on the
level of the classes: a class may be parameterized by
constants, types, and other classes.

A generic class for a general stack may look as fol-
lows:

StackType: GENERIC
SYNMODE ElemType
SYN Length

REGION CLASS

GRANT Push, Pop, Empty PREFIXED StackType;
Push: PROC (Elem ElemType); END Push;
Pop: PROC (); END Pop;
Empty: PROC (); RETURNS (Bool) END Empty;
StackType: CONSTR (); END StackType;

/* Begin of internal part */
OCL Stack ARRAY (1:Length) ElemType;

DCL TopOfStack RANGE (O:Length);
END StackType;

ANY_ASSIGN;
RANGE (1:255);

v

There are several kinds of generic types: ANY,
ANY_ASSIGN, ANY_DISCRETE, and ANY_INT . The kind of
a formal generic type determines which types can be
substituted as actual types, and on the other hand
which properties may be assumed inside the generic
class. For the kind anY_AssIGN any type for which the
assignment operator is defined can be substituted as
actual generic parameter, and inside the generic
class the assignment operator can be used for vari-

ables of this formal generic type. Apart from the
comparison and result operation, which are typical-
ly associated with assignability, no other operations
are available for entities of the kind ANY ASSIGN.

A generic instantiation of a generic class is obtained
by substituting the formal generic parameters by
actual ones:

IntStack : REGION CLASS = StackType
SYNMODE ElemType = Integer;
SYN Length = 127:

END IntStack;

“IntStack” is a nongeneric class and can therefore be
used as follows:

DCL MyStack IntStack();
MyStack.Push(10);
MyStack.Push(999);
MyStack.Pop();

As observed by Meyer [Mey 86] genericity is an al-
ternative mechanism to obtain extensible and reus-
able program components. In strongly typed lan-
guages like CHILL it is a necessary complement to
classes and inheritance. This has been shown in de-
tail in [Mey 86].

4.4 Assertions

Extending the CHILL ASSERT action, Object CHILL
supports the definition of assertions in the following
way.

Invariants are boolean expressions connected to an
Object CHILL class; they can be used to express the
consistency of objects of that class in terms of inter-
nal data values.

Preconditions and postconditions are boolean ex-
pressions connected to class methods; preconditions
can be used to define restrictions on parameter val-
ues (possibly depending on the object's state), and
postconditions are a means to describe the result of
methods and the final state of an obeject after com-
pletion of a method call.

Used properly, assertions provide an elegant way to
express certain aspects of the semantics of a class
and its methods [Mey 88].

In Object CHILL assertions are not only included as
“semantic comments” but are optionally trans-
formed into runtime checks:

- invariant and precondition are checked
prior to execution of any method;

- postcondition and invariant are checked
following the execution of any method.

Every violation of assertions will cause an exception
to be raised.

143

Assertions are taken care of in connection with the
inheritance mechanisms described in section 3.1 to
make sure that semantic constraints connected to
an ancestor class are adequately transferred to sub-
classes.

The program in the annex contains several exam-
ples for the assertion mechanism.

5 Summary

Object CHILL is described as an extension of CHILL
to support object oriented programming of large and
concurrent software systems. Object CHILL may be
roughly characterized by the following “equation”:

Object CHILL CHILL
+ Classes
+ Inheritance
+ Genericity
+ Assertions

The design of Object CHILL has been influenced by
Ada [Ref 83], C+ + [ES 90] and Eiffel [Mey 88].
Other object oriented extensions of CHILL are pro-
posed in [KKM 91; Sco 90]. Neither of these exten-
sions includes all language elements mentioned
above.

An Object CHILL programming environment, in-
cluding a compiler, a source level debugger, a class
library and a testsystem for objects, is currently be-
ing developed. Object CHILL is used for the imple-
mentation of switching software in an ISDN project
[GW 91].

Acknowledgments

We are very grateful to G. Schulz for his collabora-
tion during the first phase of the language develop-
ment. We thank E Ritter for very helpful comments
on an earlier version of the paper. Many thanks are
also due to the people who helped Object CHILL into
real existence by building the first compiler: B.
Dehm, S. Eichholz, W. Friedel, K. Gieselmann,
J.Hauser, S.Itzenplitz, R.Miiller, Z.Nagy, J.Peifer,
E.Ritter, N.Schlager, G.Schramm, B.Schwarz,
E.Sigl, M.Stadel, G.-Walter, W.Walfel, and W.Wolff.
We are also very grateful to the first users of Object
CHILL, of whom we may especially mention
W.Ginther and G.Wackerbarth, whose enthusiasm
for the application of OOP to switching systems ini-
tiated the whole Object CHILL project.

[NN o 2B L R I IR

References

AWY 89

CwW 85

DSW 90

ES 90

GW 91

Hoa 74

ITU 8x

KKM91

Mey 86

Mey 88

OOP 90

Ref 83

Rek 82

Sco 90

Weg 87

Win 84

Win 86

Wir 88

Agha, G.; Wegner, P; Yonezawa, A.: Proceedings of the
ACM SIGPLAN Workshop on Object-Based Concurrent
Programming. SIGPLAN Notices, 24, 4 (1989).

Cardelli, L.; Wegner, P. : On Understanding Types,
Data Abstraction, and Polymorphism. Computing
Surveys, 17, 4(1985) 471-522.

DieBl, G.; Schulz, G.; Winkler, J.F.H.: Object CHILL -
The Road to Object-Oriented Programming with
CHILL. In: Palma, A. (Ed): Proc. 5th CHILL
Conference, Rio 1990. Elsevier 1991,135..142.

Ellis, Margaret A.; Stroustrup, Bjarne: The Annotated
C+ + Reference Manual. Addison-Wesley Publ. Conp.,
Reading etc., 1990.

Gunther, Wolfgang; Wackerbarth, Gerd: Vorgehen und
Ergebnisse bei der objektorientierten Strukturierung
von Vermittlungssoftware. Softwaretechnik-Trends
11,4(1991) 44 .. 57 (in German).

Hoare, C.A.R.. Monitors: An Operating System
Structuring Concept. CACM 17,10 (1974) 549..557.

International Telecommunication Union (ed.): CCITT
High Level Language (CHILL). Recommendation
2.200, Geneva 1980, 1984, 1988.

Maruyama, Katsumi; Watanabe, Nobuyuki; Koyanagi,
Keiich; Kai, Toshihiro; Tomita, Shuji: A Concurrent
Object-Oriented Switching Program in Chill. IEEE
Communications Magazine, Jan. 1991, 60..68.

Meyer, B.: Genericity versus Inheritance. OOPSLA'86,
SIGPLAN Notices, Vol. 21, No. 11 (1986) 391-405

Meyer, B.: Object-Oriented Software Construction.
Prentice Hall, New York, 1988.

OOPSLA / ECOOP '90 Proceedings. SIGPLAN Notices
25,10 (1990) and Special Issue 1991.

Reference Manual for the Ada Programming Language
ANSI/MIL-STD 1815 A, February 1983,

Rekdal, Kristen: CHILL-The Standard Language for
Programming SPC Systems. IEEE-COM 30,6 (1982)
1318..1328.

Scortesse, A.: OO_CHILL: Integrating the Object
Paradigm Into CHILL. In: Palma, A. (Ed.): Proc. 5th
CHILL Conference, Rio 1990. Elsevier 1991, 127..133.

Wegner, P.: Dimensions of Object-Based Language
Design. OOPSLA'87, SIGPLAN Notices, 22, 12 (1987)
168-182.

Winkler, J.F.H.: The Realization of Data Abstractions
in CHILL. Third CHILL Conference, Cambridge,
September 23-28, 1984, 175-181

Winkler, J.F.H.: The Programming Language CHILL.
Automatisierungst. Praxis 28,5 (1986) 252..258 and
28,6(1986) 290..294 (in German).

Wirth, N.: Type Extensions. ACM TOPLAS 10, 2(1988)
204-214.

144

Annex: Example

The example given below is part of the well known
application to handle graphical objects like circles
and triangles. Basic types for the definition of co-
ordinates are included in the class Point for conve-
nience and simplicity only; it might be reasonable to
collect these declarations in another class. The ex-
ample has the following structure:

Point [¢---~------ - Figure :

A
[}
|
|
1
[}
1 [
. . I . .
. Circle ; 1 . Rectangle :
leoaoat : feceoosansa
. 4
\ : ’l
. \
<= : inheritance Y !]
- \\‘ : II
<----: import V! !
\) 1
D : MODULE
CLASS MainProgram
1°°% : REGION
te-1 CLASS

Static Program Structure

Specification of the class Point

Point: MODULE CLASS
GRANT set_pos, check, position_x, position_y,
move, draw,
coordinate_value, relative_value,
lower_bound, upper_bound,
lower_value, upper_value PREFIXED Point;

SYN Tower_bound = -100;
SYN upper_bound = 100;
SYN lower_value = -200;
SYN upper_value = 200;

SYNMODE coordinate_value =

RANGE (lower_bound : upper_bound);
SYNMODE relative_value =

RANGE (lower_value : upper_value);

DCL x coordinate value;
DCL y coordinate_value;

Point : CONSTR (); END Point;
Point : CONSTR (px, Py coordinate_value);
PRE px >= lower_bound AND
px <= upper_bound AND
Py >= lower_bound AND
py <= upper_bound;
END Point;

set_pos : CONSTR (px, py coordinate_value);
PRE px >= lower_bound AND
px <= upper_bound AND
py >= lower_bound AND
py <= upper_bound
END set_pos;

check : PROC (px, py coordinate_value)
RETURNS (bool); END check;

position_x : PROC ()
RETURNS (coordinate_value); END;

position_y : PROC ()
RETURNS (coordinate_value); END;

move : proc (px, py relative_value);
PRE (x + px >= lower_bound) AND
(x + px <= upper_bound) AND
(y + py >= lower_bound) AND
(y + py <= upper_bound);
END move;

draw : PROC (); END draw;
END Point;

Body of the class Point

Point: MODULE BODY
Point : CONSTR ();
X : .

3

y = 0;
END Point;
Point : CONSTR (px, py coordinate_value);
X 1= px;
y i= py;
END Point;
set_pos : CONSTR (px, py coordinate_value);
X 1= px;
y = py;
END set_pos;
check : PROC (px, py coordinate_value)
RETURNS (bool); END;

RESULT (px = x AND py = y);
END check;

position_x : PROC ()
RETURNS (coordinate_value);
RESULT «x;
END position_x;

position_y : PROC ()
RETURNS (coordinate_value);
RESULT y;
END position_y;

move : proc (px, py relative_value);

X 1= X + px;
E Yy topy;
END move;

draw : PROC ();
/* some implementations for draw */
END draw;

END Point

Specification of the class Figure

Figure: REGION CLASS VIRTUAL

SEIZE CLASS Point;

GRANT position, set_position,
move, move_to, draw,
coordinate_value, relative_value, length
PREFIXED figure;

SYN Tower_bound = point!lower_bound;
SYN upper_bound = point!upper_bound;

SYNMODE coordinate_value =
pointicoordinate_value;

SYNMODE relative_value =
point!relative_value;

SYNMODE length = RANGE(1:Point!upper_value);
DCL p Point;

Figure: CONSTR () END Figure;
/* default value constructor */

Figure: CONSTR (px, py coordinate_value)
/* constructor overloading ! */
POST p.position_x() = px AND

p.position_y() = py

END Figure;

position: PROC () RETURNS (Point) INLINE;
/* read current position */
result p;

END position;

set_position: PROC (pp Point);
POST pp = p;
END set_position;

move_to: PROC (pp Point); END;

move: PROC (px, py relative_value)

/* relative motion */

PRE p.position_x()+px >= lower_bound AND
p.position_x{)+px <= upper_bound AND
p.position_y()+py >= lower_bound AND
p.position_y()+py <= upper_bound;

POST p.position_x() = OLD(p.position_x())+px

AND
p.position_y() = OLD(p.position_y{())+py;
END move;

draw: PROC () VIRTUAL; END draw;
/* display figure: virtual method,
to be implemented in subclasses */

END Figure;

Body of the class Figure

Figure: REGION BODY

Figure: CONSTR ();
p.set_pos (0,0);
END Figure;

Figure: CONSTR (px, py coordinate_value);

p.set_pos (px,py):
END Figure;

N rem o

e
1
¢
(
‘

— n ma rA fem e e P

set_position: PROC (pp Point);
p = PP;
END set_position;
move: PROC (px, Py relative_value);
p.move (px, PY);
END move;
move_to: PROC (pp Point); o
p.set_pos (pp.position_x(),pp.pos1t1on_y());
END move_to;

/* no implementation for draw */

END Figure;

Specification of the class Circle

Circle: REGION CLASS IS-A Figure
GRANT diameter, set_diameter, draw
PREFIXED Circle;

DCL 1 _diameter length;

Circle: CONSTR (px, py coordinate_value,
diam length);

/* constructor method */

POST p.position_x() = px AND
p.position_y() = py AND
1_diameter = diam;

END Circle;
diameter: PROC () RETURNS (length) INLINE;
result 1_diameter;

/* read current diameter */

END diameter;

set_diameter: PROC (diam length);
POST diameter() = diam;

END set_diameter;

draw: PROC () END draw;
/* display circle: no longer virtual */

/* Point p inherited from Figure
is used as center of the circle */

END Circle;

Body of the class Circle

Circle: REGION BODY

Circle: CONSTR (px, py coordinate_value,
diam length);
figure (px, py):
/* call parent constructor */
1_diameter := diam;
END Circle;

set_diameter: PROC (diam length);
1_diameter := diam;
END set_diameter;

draw: PROC ();
/* some implementation */

END draw;

END Circle;

Specification of the class Rectangle

Rectangle: REGION CLASS IS-A figure;

GRANT width, height,
set_width, set_height,
draw PREFIXED Rectangle;

Recangle: CONSTR(px, Py coordinate_value,
width, height length);
/¢ constructor method */

PRE p.position_x() + px <= upper_bound AND
p.position_x() + px >= lower_bound AND
p.position_y() + py <= upper_bound AND
p.position_y() + py >= lower_bound ;

POST p.position_x() = px AND

p.position_y() = py AND
Rectanglelwidth() = width AND
Rectangletheight() = height;

END Rectangle;

width: PROC () RETURNS (length); END width;
/* read current horizontal side */

height: PROC () RETURNS (length); END height;
7* read current vertical side */

set_width: PROC (width length);
POST Rectangle!width() = width;
END set_width;

set_height: PROC (heigth length) END;
POST Rectangle!height() = height;
END set_height;

draw: PROC () END draw;
/* display rectangle: no longer virtual */

DCL top_right_corner Point;

END Rectangle;

Body of the class Rectangle

Rectangle: REGION BODY

146

Rectanglie: CONSTR(px, py coordinate_value,
width, height length);
Figure (px, py):
/* call parent constructor */
top_right_corner.set_pos
(p.position_x() + width,
p.position_y() + height);
END Rectangle;

width: PROC () RETURNS (length);
RESULT ABS(top_right_corner.position_x() -
p.position_x());
END width;

height: PROC () RETURNS (length);
RESULT ABS(top_right_corner.position_y() -
p.position_y());
END height;

set_width: PROC (width length);
top_right_corner.setpos
(p.position_x()+width, p.position_y());
END set_width;

set_height: PROC (height length);
top_right_corner.setpos
(p.position_x(), p.position_y()+height);
END set_height;

draw: PROC ();
/* some implementation */

éﬁb draw;
END Rectangle;

MainProgram

MainProgram: MODULE

SEIZE CLASS Figure;
SEIZE CLASS Circle;
SEIZE CLASS Rectangle;

DCL my_circle Circle (1,2,20);
DCL my rectangle Rectangle (0,0,10,30);

/* create circle and rectangle
objects with parameters given */

DCL my_ref REF Figure;
DCL area INT;

my_circle.draw ();

/* display object my_circle */
my circle.set_position (0,0);
my_circle.set_diameter (10);

/* move and resize object my_circle */
my_circle.draw ();

my_ref := ADDR (my_circle);
/* my_ref refers to object my_circle */
my_ref->.draw ();
/* display object referenced by
my_ref (here: my_circle) */

my_ref := ADDR (my_rectangle);
my_ref->.draw ();
/* display object referenced by
my ref (here: my_rectangie) */

area := my_rectangle.width()
* my_rectangle.height();

END MainProgram;

147

20th ANNUAL
COMPUTER SCIENCE CONFERENCE
March 3-5, 1992 ?

KANSAS CITY CONVENTION CENTER
KANSAS CITY, MISSOURI

1992/ ACM COMPUTER SCIENCE CONFERENCE
— March 3 - 5, l1992 T
Kansas City Conve tion enter
Kansas City, Missouri

02 Q2 B 124 |

IR j.

COMMUNICATIONS

PROCEEDINGS

EDITORS

Jagan P. Agrawal, Program Co-Chair
University of Missouri-Kansas City

Vijay Kumar, Proceedings Chair
University of Missouri-Kansas City

Virgil Wallentine, Program Co-Chair
Kansas State University

ASSOCIATION FOR COMPUTING MACHINERY, INC.
1515 Broadway
New York, NY 10036-9998

The Association for Computing Machinery, Inc.
1515 Broadway
New York, NY 10036-9998

Copyright © 1992 by the Association for Computing Machinery, Inc. Copying without fee
is permitted provided that the copies are not made or distributed for direct commercial
advantage, and credit to the source is given. Abstracting with credit is permitted. For
other copying of articles that carry a code at the bottom of the first page, copying is per-
mitted provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 27 Congress Street, Salem, MA 01970. For permission to republish,
write to : Director of Publications, Association for Computing Machinery. To copy oth-
erwise, or republish, requires a fee and/or specific permission.

ISBN 0-89791-472-4

Additional copies may be ordered prepaid from:

ACM Order Department
P. O. Box 64145
Baltimore, MD 21264

ACM Order Number: 404920

