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SUMMARY

We describe some aspects of the implementation of a Prolog debugger for a refined box model
in which attempted unifications can also be observed. Our implementation of the ProTest
debugger is based on a meta-interpreter for Prolog. We start with an existing meta-interpreter
for Byrd’s box model (four-port debugger) and we transform it into one for the refined box
model (ten-port debugger). To explain the transformation we show several versions of the meta-
interpreter. In these versions we use the technique of changing the database to implement the
cut, but another possibility is also explained briefly. A simple notation for typing is used to
make Prolog programs more readable. In an appendix we give a listing of a simple prototype
of the extended meta-interpreter.
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INTRODUCTION

The purpose of this paper is to describe some aspects of the implementation of the
ProTest debugger for Prolog using a refined box model instead of the usual one as
defined by Byrd."? In the usual box model there is one box for each subgoal called in
the body of a clause and every box has four ports, CALL, EXIT, REDO and FAIL, through
which it may be entered or left. We may call such a box an AND box since the subgoals
within a clause body are connected by sequential* and.

Now the different clauses of a predicate definition are connected by sequential* or,
and the proposed refinement of the box model consists of placing OR boxes inside an
AND box: one OR box is created for each clause so that the OR boxes correspond one-
to-one to the clauses of the predicate. The OR boxes have six ports, TRYMATCH,
FAILMATCH, ENTERBODY, EXITBODY, REDOBODY and FAILBODY, corresponding to
fairly obvious states in the execution. ENTERBODY is an inner door separating a
compartment for unification from a second compartment of the OR box reserved for

execution of the body. This second compartment in turn will contain further AND

* Owing to the well-known depth-first left—right exccution strategy of Prolog the connectives and and or in Prolog

are not exactly the same as the corresponding logical connectives.
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boxes for the subgoals of the clause, and so on. In the next section we given some
more details. For a detailed discussion of the semantics of the refined box mode] see
Reference 3. Extended box models have also been used in References 4-§.

Our implementation is based on the concept of a meta-interprcter, l.e. an interpreter
of Prolog written in Prolog. We did not implement the meta-interpreter from scratch
but we started with an existing meta-interpreter which was working with Byrd’s box
model and transformed it to implement the refined box model. As this transformation
turned out to be very simple, it seems worth while to describe it here.

It was one of the experiences gained during the implementation that understanding
a Prolog program written by someone else could be helped if type information were
available (compare also Reference 9, p. 41). Perhaps this is especially true in mainten-
ance or similar work. In such situations it is not enough merely to glance over 3
program and get an intuitive understanding of what relations the various predicates
are supposed to represent. In most cases when one has to make changes to a predicate
definition precise knowledge is required as to the intended structure of the arguments
that will be accepted by the predicate.

We shall therefore present informally a typing concept and show predicate definitions
together with the type information required.

To explain the transformation of the four-port debugger according to Byrd’s box
model into our ten-port debugger we shall present five versions of a meta-interpreter,
The most basic interpreter is shown in Figure 2. It does not implement the cut and
does not have the appropriate structure suited for a debugger. The next stage in Figure
3 has the appropriate structure for the four-port debugger. It implements the cut using
the technique of changing the database dynamically but it has only the minimal data
structures required for its own control. Figure 4 shows the same program structure as
Figure 3 but more appropriate data structures for the purpose of debugging have been
added. The changes and extensions required to obtain our ten-port debugger are shown

in Figure 5. Finally we present a listing of a simple prototype of the extended meta-
interpreter in Figure 6.

THE REFINED BOX MODEL

Figure 1 shows the refined box model. In the refined box model there is an AND box
for each goal. It has four ports, CALL, EXIT, REDO and FAIL. Inside the AND box there

compartment of the OR box is left via the FAILMATCH port. In the next step the OR
box of the next clause (if there is one) is entered via the TRYMATCH port. If there are
no fu;the.r OR boxes the surrounding AND box s left via the FAIL port. That is to say,

TERGE
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Figure 1. The refined box model

A box model with ten ports similar to the one used here was first proposed in
Reference 5. In Reference 4 an execution model with eight ports is discussed and used
to describe the semantics of Prolog. Plummer’s CODA system uses a model which is
also very similar to the one that we have adopted but he omits so to speak the second
compartment of the OR boxes reserved for clause bodies. Consequently the EXITBODY,
REDOBODY and FAILBODY ports are not shown in his system.

The main advantage of the refined box model is that it allows a more complete
observation of the program. Bugs in clause heads are often hard to discover with a
debugger using the simpler model since the debugger never stops at any point ‘near
the bug’ (Reference 3, p. 3). This property of making the process of tried and failed
unifications observable is also shared by Plummer’s model with seven ports. We have
preferred the more complete model with a compartment of the OR box provided for
the clause body since it allows a complete representation of the AND-OR tree in terms
of boxes and of the inclusion relation between them. The disadvantage that may lie in
the greater number of ports and a certain redundancy in some situations is overcome
by the standard technique of allowing the user to switch ports on or off as he wishes.

Furthermore, ProTest offers other well-known techniques for debugging, such as
spy points, controlled jumps between ports of one box (and to the CALL port of the
parent box), and leap mode together with zooming. (More details are given in Reference
3). Usually a programmer will apply several of these techniques simultaneously. In
such situations the ten-port model offers better possibilities because of its completeness.
At the EXITBODY port a user might, for example, realize that the clause body should
have failed. With a controlled jump he can now force the exit of the clause at the
FAILBODY port. At the FAILBODY port a user might realize that the clause body should
have succeeded. In this case he can interrupt the debugging, modify the program and
jump back to the ENTERBODY port. In a ‘non-redundant’ model the FAILBODY port
would be missing and the equivalent action could not be performed in such a clear
way.

To sum up this discussion, we think that one should not underestimate the advantage
lying in the fact that the ten-port model corresponds more closely to the source
language. In Prolog we have clauses consisting conceptually of a clause hgad and a
clause body, so we should have OR boxes having a compartment corresponding to the
clause head and one corresponding to the clause body. Thus, inside the compartment
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of the body we then have the AND boxes of the goals of the body, and the nesting of
the boxes reflects directly the structure of the AND-OR tree.

META-INTERPRETERS FOR PROLOG

Basically, a meta-interpreter is a very simple recursive program. It tests the goal on
which it is applied to see whether it is composed from simple goals by means of the
and operator. If so, it decomposes the goal and applies itself recursively to the two
resulting components. If the goal is simple the meta-interpreter requires a test whether
the goal can be matched by a predefined predicate. In this case the goal is Just called.
Otherwise the predefined predicate clause/2 is called to find the body of the current
clause unifying with the goal. Thus a meta-interpreter might consist of three lines!'®
(see Figure 2).

interpret((G1, G2)) :- !, interpret(G1), interpret(G2).
interpret(GOAL) :- system_goal(GOAL), !, GOAL.
interpret(GOAL) :- clause(GOAL, BOOY), interpret(BODY).

Figure 2. A simple meta-interpreter

This meta-interpreter does not implement the cut-operator properly. Also it is not
easy to see where to insert predicates to provide for stopping at test points. Therefore
it seems useful to distinguish between interpreting a simple goal and a chain of goals
linked by sequential and. If we do this we arrive at the structure in Figure 3.

Here we have a structure in which it is obvious where to deal with the breaks that

arise when Byrd’s box model is adopted. The relevant predicates look roughly as
follows:

debug_break_before(GOAL) -

{ break(GOAL, ‘CALL’)

; break(GOAL, ‘FAIL’),
GOAL \== 1,
retract(Scut_executed),
fail).

debug_break_after(GOAL) -
( break(GOAL, ‘EXIT)
. break(GOAL, 'REDQ’),
fail).

points. With the predicates in their present shape we could only show the current goal
and the port. A data structure representing the actual state of the execution tree is

required as an argument in these predicates if we wish to be able to display more
detailed information.

THE CcUT IMPLEMENTATION

The technique of changing the database by adding a fact of the form $cut_executed is
used to implement the cut. Whenever a cut is met on backtracking the subgoal is !
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interpret_simplegoal(GOAL) :-
i clause(GOAL, BODY),
( true
; clause($cut_executed, true), !, fail),
interpret_body(BODY).

interpret_body((G1, MOREGOALS)) :- !,
interpret_subgoal(G1),
interpret_body(MOREGOALS).

interpret_body(GOAL) :-
interpret_subgoal(GOAL).

) 9 the first clause of interpret_subgoal deals with cases such as :
% gt, (g2, g3), g4,

interpret_subgoal((G1, MOREGOALS)) :- !,
interpret_body((G1, MOREGOALS)).

interpret_subgoal(GOAL) :-
test_goal(GOAL, NEW_GOAL),

' % breaks at CALL and FAIL ports may be dealt with here:
debug_break_before(GOAL),
NEW_GOAL,
% breaks at EXIT and REDO ports may be dealt with here:
debug_break_after(GOAL),

( true
; not_backtrackable(NEW_GOAL),
1, fail).

test_goal(GOAL, exec_cut) :-
GOAL == !, 1.
test_goal(GOAL, exec_goal(GOAL)) :-
system_goal(GOAL), !.
test_goal(GOAL, interpret_simplegoal(GOAL))

exec_cut.
exec_cut :- asserta($cut_executed), fail.
exec_goal(GOAL) :- GOAL.

Figure 3. Basic stiucture of the meta-interpreter for the four-port debugger

and therefore NEW_GOAL is exec_cut. The effect of backtracking on exec_cut 1s that
a fact Scut_executed will be added to the database. Backtracking to the left of the cut
operator will now be prevented by means of the call of not_backtrackable(NEW_GOAL)
in the second alternative of the last subgoal in interpret_subgoal/1. The added fact
is removed when the parent box is left finally through the FAIL port. The goal
clause($cut_executed, true) is equivalent to simply calling Scut_executed when a fact of
this form is present in the database, but when no fact 1s present most Prolog systems
' would react with an exception to the call of $cut_executed. Thus clause/2 is used to

prevent this exception:



990 A. SCHLEIERMACHER AND J. F. H. WINKLER

not_backtrackable(_) -
clause($cut_executed, true), |!.

not_backtrackable(exec_goal(GOAL)) -
not_backtrackable_system_goal(GOAL).

The second clause in not_backtrackable/1 serves to suppress useless attempts to get
more solutions on calls to predefined predicates which cannot be resatisfied.

This solution may be considered not quite satisfactory in that a debugger should not
alter the database. However, if a module concept 1s available in the particular Prolog
system at hand and if we can make sure that the added clauses are visible only to the
debugger, such a solution works in the correct manner. If 2 module concept with the
required properties is not available, one has to make suitable naming conventions to
ensure that the asserted or retracted facts do not collide with any predicate definitions
of the user’s program.

The meta-interpreter from which we have started uses a different technique which
consists of providing the possibility to cut all choice points up to a given one. This is
implemented by means of two internal predicates which cannot be written in Prolog
since they must have access to the choicepoint entries on the local Prolog stack:

read_choicept{CHOICEPT) % unifies CHOICEPT with a pointer to the
% last choice point entry on the stack.

cut_choicept(CHOICEPT) % effects a cut up to the choice point
% pointed to by CHOICEPT.

It should be evident how this can be used to implement the cut. When a cut is met
on backtracking, all choice points must be cut up to the choice point at the beginning
of the interpretation of the parent goal of the cut. Then a fail will result in going back
to the FAIL port of the box associated with the parent goal. For more details see the
remark at the end of the section on the meta-interpreter for Byrd’s box model. Similar
predicates are described by Uchida.!" In ProTest we have used these internal predicates
to implement the cut. But since they are not generally available to the reader, in this
paper we replace them by the database technique which allows us to keep the structure
of the meta-interpreter almost unchanged. Further techniques for the implementation
of the cut are reported in References 12 and 13.

THE DATA STRUCTURES OF THE META-INTERPRETER AND TYPING

To describe Prolog data structures we adopt a simple notation which we hope is almost
self-explanatory. We write type definitions by means of type and subtype clauses which
syntactically resemble Prolog clauses. The type identifiers thus defined will be used
later in the program definition. We shall place them into the clause heads after each
first occurrence of a variable separated from the variable by ‘. To distinguish type
identifiers from ordinary literals we enclose the type identifiers in angular brackets,

e.g. (anq_box). There are two special type identifiers, namely (_) for the universal type
and (variable) for an uninstantiated variable.,
The syntax of a type clause is

T g
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type_clause---> type(type_identifier) :- typed_term

(> and | are meta-symbols, terminal symbols are printed in bold face).

The syntax of typed_term resembles that of ordinary Prolog terms except that
wherever a variable may occur in an ordinary Prolog term it is to be replaced by
typed_variable, which has the syntax

typed_variable ---> variable : type_indicator
| type_indicator
type_indicator ---> type_identifier
| typed_term
| type_union
type_union ---> type_indicators

| (type_indicators)

type_indicators ---> type_indicator ;; type_indicator
| type_indicator ;; type_indicators

The syntax of subtype clauses is somewhat simpler:

subtype_clause --->

subtype(subtype_identifier of type_identifier) - instantiations.
subtype_identifier ---> type_identifier
instantiations --> variable : type_indicator

| variable : type_indicator, instantiations

In the meta-interpreter we need the following type and subtype definitions written in
the notation just introduced:

type((and_box)) - and_box (GOAL . (legal_goal),
CONTEXT : {context),
PREVIOUS_BOX . {(and_box) ;; none),

LAST_CHILD_BOX : ().
type((context)) :— context (CURRENT_CLAUSE : ((clause) ;; {query)),

PARENT_BOX - {(and_box) ;; none)).
type((legal_goal)) :— (atom) ;; (structure).
type((clause)) ._ HEAD : (legal_goal) :— BODY : (body).
type((query)) - ?— (body).
type((body)) .~ (subgoal).
type((body)) .~ (subgoal), (body).
type((subgoal)) - {atom) ;; (structure) ;; (variable).

type((subgoal)) - ((body)).
subtype((and_box_with_child_boxes) of (and_box)) -
LAST_CHILD_BOX : (and_box).
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We use the special symbol ‘;;” to indicate alte.rnatives in type indicator§. Thus, for
example, the value of PREVIOUS_BOX can be either of type (and_box) or it can be the
literal none which indicates that no previous box is present. Another way of expressing
alternatives is of course to write several clauses for the same type definition.

Let us now turn to the description of how the types are to be used in procedure
definitions. In principle two type definitions are needed for each variable occurring in
an argument of a Prolog clause: the first one to describe the assumptions made on the
call and the second to describe the result. We reflect this in our notation by writing,
for instance,

X : (initial _type) => (final_type).

There are two special cases which deserve extra consideration. First, if X is a pure
input variable (final_type) is not really needed and writing X:(initial_type)=) (initial_type)
would be unnecessarily long. Besides, that approach is not precise enough. We shall
write X:(initial_type) instead in this special case. This indicates that in the call the
variable should have a value of type (initial_type) and that no further instantiations
take place, i.e. the variable is read-only. The second situation which needs special
consideration arises when (initial_type) and (final_type) are the same but further instanti-
ations may take place. We shall write X:(initial _type)=) to express this situation, which
is a shorthand denotation for X (initial_type)=)initial_type).

It should be obvious from the notation itself and from the above remarks that our
type declarations are to be considered as compatible with any further bindings which
are possible through unification and that the arrow between the two type names reflects
such further bindings. It will also be seen that our notation is flexible enough to express
the usual modes ‘pure input’ and ‘pure output’, i.e. our notation also covers some of
the mode annotations used in other approaches.'+'® The pure input mode has already
been mentioned and is denoted by

X (initial_type).

For a pure output variable there is no restriction on its form in the call. Hence the
output mode is denoted by X:()=Xfinal_type). But there is an alternative and more
stringent definition if we require the initial type to be (variable). Thus X:(variable)=)
(final_type) is a pure output variable in this stricter sense.

A different approach would consist of combining a type indicator with a mode tag.
This has been chosen, for instance, in the language Trilogy." However, it seems to
us that at least for the present largely explanatory purposes our approach of showing
an initial type and the precise degree of unification to take place is more suitable.

In the most general case when a variable is specified as X:(initial_type)=Xfinal_type)
it may often be desirable to declare (final_type) as a subtype of (initial_type). Subtype
declarations help to clarify hierarchical relations between.types, and they also help to
save space.

There is a certain number of basic types such as (integer), (atom), (structure), (variable)
etc., which will not be explained further. In these cases there 1s always a well-defined

Prolog notion corresponding to the type and even a predefined predicate for the
corresponding type check.
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In the case of non-basic types, predicates for type checks at run-time can be derived
automatically from the corresponding type clauses. Initial and final checks may then
be inserted optionally at the beginning and at the end of each clause. The predicate
for checking the type (context) would, for instance, be

type((context), CXT) -
functor(CXT, F, A), F == context, A == 2,
arg(1, CXT, CURRENT_CLAUSE),
( typel(clause), CURRENT_CLAUSE)
- typel(query), CURRENT_CLAUSE)} ),
arg(2, CXT, PARENT_BOX),
( typel(and_box), PARENT_BOX)

PARENT_BOX == none).

The final check for a pure input variable X:(initial_type) is somewhat more complicated,
since we would have to save the initial value of X somehow, for instance in the database.
An elegant solution would consist of putting marks into tag fields for all the variables
inside the term X which must not be further instantiated and take this into account in
the unification algorithm.

It should be noted that our notation cannot be regarded as some kind of discipline
to be enforced on programmers. One may always give the type of a variable X as
X:(_)=), and we make the convention that this may be omitted.

It is often argued that in the presence of good tools for type inference explicit
typing is not necessary in Prolog. But although type inference methods may become
more and more perfected there are still good reasons for providing explicit type
information in Prolog programs.

From a human engineering point of view, explicit type declarations have the advan-
tage that they can be tailored by the programmer, for instance with respect to the degree
of detail provided or the choice of (suggestive) names. Names created automatically are
usually not very suggestive.

Besides that, automatically-derived types may reflect program bugs. They can there-
fore not be used for type checks or in correctness proofs, nor can they be relied upon
in debugging situations. If on the other hand, type information is provided explicitly
by the programmer it reflects the programmer’s proper intentions and this may be
checked against the actual program text. 2"’

It is therefore our view that the existence of type inference algorithms should not
be used as an argument against explicit typing. Rather, tools for type inference shpgld
be considered as a means to check explicit type information against the remaining
information contained in the program. 7obel observes that explicit type declarations
can improve the effectiveness of algorithms for type derivation.”® .

The type notation described above ‘s similar to others already described 1in the
literature.'%-29-3! The unique feature of our approach seems to be the distinction of
initial and final type.

20-25

THE META-INTERPRETER FOR BYRD’S BOX MODEL

We are now in a position to show the essential ideas of the program which was the
starting-point of our implementation (see Figure 4). The predicate interpret_simplegoal-
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interpret_simplegoal(BOX : <¢and_box> =>
<and_box_with_child_boxes>) -
get_arg(1, BOX, GOAL),
clause(GOAL, BODY),

( true ;
; clause($cut_executed, true), !, fail),
CXT = context(GOAL :- BODY, BOX),

interpret_body(BODY, CXT, none, LAST_CHILD),
set_arg(4, BOX, LAST_CHILD).

interpret_body((G1 : <legal_goal> =>, MOREGOALS : <body> =>),
CXT : <context> =>,
PREVIOUS_BOX : (<and_box> => ;; none),
LAST_BOX : <_> => <and_box>) e
!, !
interpret_subgoal(G1, CXT, PREVIOUS_BOX, NEW_BOX),
interpret_body(MOREGOALS, CXT, NEW_BOX, LAST_BOX).

interpret_body(GOAL : <legal_goal> =>, CXT : <context> =>,
PREVIOUS_BOX : (<and_box> => ;; none ),
LAST_BOX : < > => <and_box>) :-

interpret_subgoal(GOAL, CXT, PREVIOUS_BOX, LAST_BOX).

interpret_subgoal((G1 : <legal_goal> =>, MOREGOALS : <body> =>),
CXT : <context> =),
PREVIOUS_BOX : (<and_box> => ;; none ).
LAST_BOX : <_> => <and_box>) -
t

interpret_body((G1, MOREGOALS), CXT, PREVIOUS BOX, LAST BOX).

interpret_subgoal(GOAL : <legal_goal> =>, CXT : <context) =),
PREVIOUS_BOX : (<and_box> => ;: none),
NEW_BOX : <_> => <and_box)) -
NEW_BOX = and_box(GOAL, CXT, PREVIOUS_BOX, _),
test_goal(NEW_BOX, NEW_GOAL),
debug_break_before(NEw_BOX),
NEW_GOAL,
debug_breakﬁafter(NEU_BOX),
( true
H not_backtrackab]e(NEw_GOAL),
I, fail).
not_backtrackable(_) e
clause($cut_executed, true), !, j
not_backtrackable(exec_goal(BOX : <and_box>)) : |
get_arg(1, BOX, GOAL),
not~backtrackab1e_system_goal(GOAL).

Figure 4. Continued
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test_goal(BOX : <and_box>, exec_cut) -
get_arg(1, BOX, GOAL),
GOAL == 1, I.

test_goal(BOX : <and_box>, exec_goal(BOX)) -
get_arg(1, BOX, GOAL),
system_goal(GOAL), !.

test_goal(BOX : <and_box>, interpret_simplegoal(BOX))

exec_cut.
exec_cut :- asserta($cut_executed), fail.

exec_goal(BOX : <and_box> =>) -
get_arg(1, BOX, GOAL),
GOAL.
Figure 4. The four-port debugger

(BOX) is defined on any argument of type (and_box). It can only succeed if there 1s a
predicate definition in the database matching GOAL, the goal contained as the first
argument in BOX. It does succeed if GOAL succeeds, and in that case it produces the
corresponding answer substitution in GOAL. On backtracking interpret_simplegoal/1
succeeds as long as GOAL would continue producing further solutions. Instantiations
may occur also in the other arguments of BOX. In particular, the last argument is
bound to the AND box of the last subgoal of the current clause that produced the
solution to GOAL.

Note that interpret_simplegoal(BOX) is never called when GOAL is ! or when GOAL
is matched by another predefined predicate. It is the purpose of the predicate test_goal/
2 to ensure this.

The function of the predicate interpret_body(BODY, CXT, PREVIOUS_BOX, LAST_BOX)
is to interpret the composed goal given by BODY. It succeeds if, and on backtrack as
long as, BODY itself would succeed. The assumptions made on the form of BODY are
described by the data type (body). We have deliberately simplified the situation by not
admitting alternatives (A; B) within clause bodies. To implement ;" one would need
another clause in test_goal and a corresponding predicate interpret_alternative to be
called in this case.

Another simplification consists of the assumption that no illegal goals may be called
either directly or indirectly. Although uninstantiated variables are allowed as subgoals
in the data structure (body) they must be properly instantiated when it is their turn to
be interpreted. Thus a variable that remains uninstantiated would lead to an infinite
loop owing to the fact that the variable is split up by unification into (G1, MOREGOQOALS)
in the first clause of interpret_subgoal, etc.

The predicate interpret_subgoal(GOAL, CXT, PREVIOUS_BOX, NEW_BOX) effects the
interpretation of the current subgoal and as a side-effect it causes the breaks at the
four ports of Byrd’s box model. The first clause deals with bracketed subgoals of the
form (G1, G2) which must be decomposed into simple goals by calling interpret_body
(G1, G2), ...). The second clause deals with a simple goal GOAL. A new box NEW_BOX
is formed, and a new goal NEW_GOAL which may either be exec_cut when GOAL ==
or exec_goal(NEW_BOX) when GOAL is matched by a predeﬁned predicate or else
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finally interpret_simplegoal(NEW_BOX). The breaks are treated immediately before and
after the call to NEW_GOAL. The goal interpret_subgoal(GOAL, . . .) succeeds whenever
GOAL would succeed, because NEW_GOAL has that property.

The predicate break/2 will now have a box passed as its first parameter. Therefore
all information available in the current execution tree can be shown either by default
or on the user’s request. We shall not go into details here about the predicate break/2.
But it should be obvious that it involves the dialogue interface with the user. (The
user interface of ProTest is based on windows and menus.?):

debug_break_before(BOX : (and_box)) -
( break(BOX, 'CALL’)
. break(BOX, ‘FAIL’),
get_arg(1, BOX, GOAL),
GOAL \== 1,
retract{$cut_executed),
fail).

debug_break_after(BOX : (and_box)) -
( break(BOX, 'EXIT)
. break(BOX, ‘REDO’),
fail).

Only one of the components in the data structure (and_box) is needed for controlling
the meta-interpreter itself, namely the GOAL component defining the current goal. The
remaining components provide for all the information that one might wish to display
at breakpoints. The component named CURRENT_CLAUSE in the substructure CON-
TEXT may be used to show the current clause. The PREVIOUS_BOX link may be used
to identify the current goal within the current clause. The upward link may be used
to establish the calling history. But as we have linked the data structure (and_box)
upwards and downwards, the complete actual state of the execution tree may be shown
at each breakpoint.

Remark

We wish to indicate briefly how to use the internal predicates cut_choicept/1 and
read_choicept/1 to implement the cut. At the beginning of the clause body of interpret_
simplegoal/1 we insert the subgoal read_choicept(CUTCPT). In the data type (context) we
need an additional argument CUTCPT to store the value determined by read_choicept-
(CUTCPT). All the statements changing and restoring the database and inspecting
whether a fact $cut_executed is present become obsolete. Thus the first clause of
not_backtrackable/1 is no longer needed. The body of the second clause of exec_cut/0
consists only of fail and interpret_simplegoal/1 the alternative subgoal  (true ;
clause($cut_executed, true), !, fail) is no longer needed. In the second part of the
alternative subgoal of debug_break before if GOAL == | the value of CUTCPT is
extracted from BOX and used as argument in a call to cut_choicept(CUTCPT). The
subsequent fail then causes the parent goal to fail.

The internal predicates cut_choicept/1 and read_choicept/1 may also be used for other
purposes apart from the cut implementation which we have not shown here. One might
for instance wish to go back to the CALL port of the current box or of the parent box
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or the previous box. Or one might wish to force a jump to the EXIT or FAIL port. In
ProTest such jumps are implemented by a cut up to an appropriately-chosen choice
point and subsequent fail.

THE META-INTERPRETER FOR THE REFINED BOX MODEL

We now describe the changes that are required to obtain a meta-interpreter which
serves our refined box model. (For a complete listing see the Appendix).

The changes are remarkably simple. In fact most of the meta-interpreter can be left
unchanged and the changes are concentrated in interpret_simplegoal/2. Before a user-
defined predicate is called we collect all the clauses of the predicate that are currently
in the database and put them into a list. This list will be part of the data structure
(and_box). The meta-interpreter then uses this list exclusively to interpret the goal.
That is to say, changes to the database affecting the called predicate will only become
effective when the particular call is no longer active.

The final form of the data structure (and_box) is therefore:

type((and_box)) -

and_box{ SIMPLE_GOAL . (legal_goal),
CONTEXT . (context),
PREVIOUS_BOX . {(and_box) ;; none),
LAST_CHILD_BOX c (),
PROCEDURE ().

type((procedure)) -
procedure(CLAUSE_INDEX : (), CLAUSE_LIST : (clause_list)).

typel(clause_list)) -
[ ]:: [CLAUSE : (clause) | CLAUSE_LIST : (clause_list)].

subtype((andﬁbox_with_procedure_definition) of (and_box)) -
PROCEDURE : (procedure).

subtype((procedure_with_selected_clause) of (procedure)) -
CLAUSE_INDEX : (integer).

subtype((and_box_with_selected_clause) of
(and_box_with_procedure_definition)) -
PROCEDURE : (procedure_with_selected_c|ause).

subtype((and_box_with_child_boxes) of { and_box_with_selected_clause)) -
LAST_CHILD_BOX : (and_box).

type({context)) -
context(CURRENT_CLAUSE : ((clause) ;; ( query)),

% the current clause could now also be accessed via the

% PROCEDURE entry in the parent box. But we would have to

% process the list of clauses 10 find its N-th entry.

9% The alternative (query) is needed on the top level.

% (compare debug-goal/1 in the listing in the Appendix).
PARENT_BOX : ((and_box_with_selected_clause) ;; none) ).
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Of course the first goal in the second clause of intepret_subgoal/3 has to be adapted to
the new form of the data structure (and_box):

NEW_BOX = and_box(GOAL, CXT, PREVIOUS_BOX, _,_)),
Collecting all the clauses is achieved by means of the predicate:

collect_clauses(BOX : (and_box) => (and_box_with_predicate_definition)) -
get_arg(1, BOX, GOAL),
functor(GOAL, F, Arity),
functor(T, F, Arity),
findall(T :- Body, clause(T, Body), CLAUSE_LIST),
set_arg(5, BOX, procedure(_, CLAUSE_LIST) ).

The call to collect_clauses/1 has to be placed into the last clause of test_goal/2. The
other clauses of test_goal/2 remain unchanged.

test_goal (BOX : (and_box) =) (and_box_with_procedure_definition>,
interpret_simplegoal(BOX)) :— '
collect_clauses(BOX).

All the other changes required are in interpret_simplegoal/1 whose final form is shown
in Figure 5.

In nextin_list/3 the backtrack behaviour of append/3 is used to produce successively
all elements of CLAUSE_LIST. Therefore when backtracking reaches the predicate
next_matching_clause/2 we get the next clause from CLAUSE_LIST. The meta-interpreter
stops at the TRYMATCH port to show the clause, Then the head is tested whether it
matches the actual goal. If it matches the ENTERBODY port will be entered. If it does
not match the break at the FAILMATCH port will be treated and backtracking in the
predicate next_matching_clause will be repeated. This may go on until CLAUSE_LIST
1s exhausted.

It may be noted that OR boxes are not present explicitly in the data structure defined
for the meta-interpreter. They exist only implicitly in the substructure PROCEDURE
which could be viewed as the collection of all possible OR boxes with one actually
chosgq by CLAUSE_INDEX. The decision to collect all clauses (i.e. the procedure
definition) before stopping at the first breakpoint does not have as its primary objective
control of the meta-inter.preter. The meta-interpreter could be controlled equally well

at each breakpoint. ProTest uses two windows to display the state of the program
.execution. In one window it shows the current clause, i.e. that clause whose body 1s
being executed. Within the body the current subgoal is highlighted. In another window
ProTest shows the clause heads of the procedure definition belonging to the current
subgoal. In this window the clause head to be tried next is highlighted.? Collecting all
the clauses in advance also accords with the static (logical) view of the predicates

modifying the database which has been favoured by the various standardization bodies
involved in the standardization of Prolog.3?
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interpret_simplegoal(BOX : <and_box_with_procedure_definition> =>
<and_box_with_child_boxes>) e
get_arg(1, BOX, GOAL),
next_matching_clause(BOX, BODY),
( true
; clause($cut_executed, true), !, fail), % Stop backtrack after cut.
( break(BOX, 'ENTERBODY')
:  break(BOX, 'FAILBODY'),
fail),
CXT = context(GOAL :- BODY, BOX),
interpret_body(BODY, CXT, none, LAST_CHILD),
set_arg(4, BOX, LAST_CHILD),
( break(BOX, 'EXITBODY')
;  break(BOX, 'REDOBODY'),
fail).

next_matching_clause(BOX : <and_box_with_procedure_definition> =>
<and_box_with_selected_clause>,
, BODY : <_> => <body>) -
get_arg(5, BOX, procedure(N, CLAUSE_LIST)),
next_in_tist(CLAUSE_LIST, N, HEAD :- BODY),
test_clause(BOX, HEAD :- BODY).

next_in_list(CLAUSE_LIST : <clause_list>,

N : <> => (integer>,

HEAD : <> => <legal_goal> :- BODY: <_> => <body>) :-
append(BEGINNING, HEAD :- BODY | TAIL], CLAUSE_LIST),
length(BEGINNING, L),

N is L+1.

test_clause(BOX : <and_box_with_selected_clause> =>,
HEAD : <legal_goal> => :- BODY : <body> =>) H
get_arg(1l, BOX, GOAL),
( break(BOX, 'TRYMATCH'),
HEAD = GOAL, !
; break(BOX, 'FAILMATCH'}),
! fail).

Figure 5. The changes required to obtain a ten-port debugger

This describes on a certain level of abstraction the meta-interpreter required for the

, refined box model and the changes required to transform a meta-interpreter for Byrd.’s

box model into one for the refined box model. It has been our aim to show that this
transformation is very simple.

Of course, the meta-interpreter is only one out of several components of the debugger.

Other important components are a command interpreter and I/0 modules working on

the basis of a window system.
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CONCLUSIONS ,

At the present time most of the debuggers that are available for Prolog still use Byrd’s
box model which does not allow the user to follow the details of attempts at unification,
We have shown here a simple way to implement a more complete box model in which
attempted and failed unifications are also shown. In this model the nested structure of
boxes corresponds closely to the AND-OR tree.

In our presentations of Prolog programs or pieces of programs a simple notation for
type definitions is employed. The type information significantly improves the readability
and understandability of Prolog programs.®® Usually, if one wants to know, for example,
which values a variable X in a head p(X,Y) may ever assume, one has to read ‘backwards’
through the body of the clause and follow all calls which may affect X, both in a
transitive manner. With typing, this information is given in the head and can be used
when reading the body.

In this paper we have used the typing notation mainly for explanatory purposes.
Besides its obvious advantages for such purposes we think that explicit typing is useful
in the further areas of maintenance, testing and debugging. Finally, explicit typing is
required in correctness proofs, since formal or informal correctness proofs must be
based on specifications of some sort in which typing information given explicitly by
the programmer has to play an important part.”” In our special situation of transforming
an existing program the typing information had to be extracted from the sources in
the complicated way hinted at above. We hope to have shown through the examples
presented in this paper that Prolog programs with explicit typing do in fact become
more readable and are easier to understand.

The debugger of a new Siemens Prolog system is based on the refined box model
described in Reference 3 and in this paper.
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APPENDIX: PROTOTYPE LISTING

The predicates read_choicept/1 and cut_choicept/1 are not readily available for a reader
wh‘o yvxshes to experiment with the refined box model. We therefore give in Figure 6
a llstmg'of a prototype version, which uses the technique of changing the database.
To obtain a simple experimental debugger it is only necessary to copy this program,
-remove the type definitions from it, provide for the definitions of some predicates that

we assume to be predefined (such as system_goal/1, length/2, etc.) and load everyth?ng
into the database.
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% The following predicate serves as a convenient entry point.

debug_goal(GOAL : <body> =>) t-
CXT = context(?- exec(GOAL), none),
( interpret_body(GOAL, CXT, none, _)
; cut_in_query).

% Restores the data-base when there has been a cut in GOAL.

cut_in_query -
retract($cut_executed ),
fail.

interpret_simplegoal(BOX : <and_box_with_procedure_definition> =>

<¢and_box_with_child_boxes>) i-
get_arg(1, BOX, GOAL),
next_matching_clause(BOX, BODY),
( true

; clause($cut_executed, true), !, fail), % Stop backtrack after cut.

( break(BOX, 'ENTERBODY')
; break(BOX, 'FAILBOOY'),
fail),
CXT = context({GOAL :- BODY, BOX),
interpret_body(BODY, CXT, none, LAST_CHILD),
set_arg(4, BOX, LAST_CHILD),
( break(BOX, 'EXITBODY')
; break(BOX, 'REDOBODY'),
fail).

next_matching_clause(BOX : <and_box_with_procedure_definition> =>

<and_box_with_selected_clause>,
BODY : <_> => <body>) -
get_arg(5, BOX, procedure(N, CLAUSE_LIST)),
next_in_1ist(CLAUSE_LIST, N, HEAD :- BODY),
test_clause(BOX, HEAD :- BODY).

next_in_1ist(CLAUSE_LIST : <clause_list>,
N : <> => Cinteger>,

HEAD : < > => <1egal_§og1) :- BODY : <_> => <body>)

append(BEGINNING, [HEAD :- BODY | TAIL], CLAUSE_LIST),
length(BEGINNING, L),
N is L+1.

test_clause(BOX : <and_box_with_selected_clause> =,

HEAD : <legal_goal> => :- BODY : <body> => ) -

get_arg(1, BOX, GOAL),

( break(BOX, 'TRYMAICH’),
HEAD = GOAL, !

; break(BOX, 'FAILMATCH'),
fail).

Continued

1001



1002 A. SCHLEIERMACHER AND J. F. H. WINKLER

interpret_body((G1 : <legal_goal> =>, MOREGOALS : <body> =>), ?
CXT : <context> =),
PREVIOUS_BOX : (<and_box> => ;; none),
LAST_BOX : <_> => <and_box>) -
1,
interpret_subgoal(G1l, CXT, PREVIOUS_BOX, NEW_BOX),
interpret_body(MOREGOALS, CXT, NEW_BOX, LAST_BOX).

interpret_body(GOAL : <legal_goal> =>, CXT : <context> =>,
PREVIOUS_BOX : (<and_box> => ;; none),
LAST_BOX : <_>=> <and_box>) -
interpret_subgoal(GOAL, CXT, PREVIOUS_BOX, LAST_BOX).

interpret_subgoal((G1 : <legal_goal> =>, MOREGOALS : <body> =>),
CXT : <context)> =),
PREVIOUS_BOX : (<and_box> => ;; none),
LAST_BOX : <_> => <and_box>) -
!,
interpret_body((G1, MOREGOALS), CXT, PREVIOUS_BOX, LAST_BOX).

interpret_subgoal(GOAL : <legal_goal> =>, CXT : <context) =),
PREVIOUS_BOX : (<and_box> => ;; none),
NEW_BOX : <_> => <and_box>) -
NEW_BOX = and_box(GOAL, CXT, PREVIOUS_BOX, _, _),
test_goal(NEW_BOX, NEW_GOAL),
debug_break_before(NEW_BOX),
NEW_GOAL,
debug_break_after(NEW_BOX),
i ( true ¢
I i not_backtrackable(NEW_GOAL),
v, fail).

test_goal(BOX : <and_box>, exec_cut) e
get_arg(1, BOX, GOAL),
GOAL == 1, I,
test_goal(BOX : <and_box>, exec_goal(B0OX)) H
get_arg(1, BOX, GOAL),
system_goal(GOAL), .
test_goal(BOX : <and_box> =) <and_box_with_procedure_definition>,
interpret_simplegoal(B0OX)) He

.

collect_clauses(BOX),

exec_cut.
exec_cut :-

X Insert a fact $cut_executed to prevent backtrack to the left of cut.
asserta($cut_executed), fail.

exec_goal(BOX : <and_box> =>) :-
get_arg(1, BOX, GOAL),
GOAL.

collect_clauses(BOX : <and_box> =)
(and_box_u1th_procedure_definition)) H

Continued



7L 533 s

THE IMPLEMENTATION OF PROTEST 1003

get_arg(1, BOX, GOAL),

functor(GOAL, F, Arity),

functor(T, F, Arity),

findall(T :- Body, clause(T, Body), CLAUSE_LIST),
set_arg(5, BOX, procedure(_, CLAUSE_LIST )).

debug_break_before(BOX : <and_box>) H
( break(BOX, 'CALL")
;. break(BOX, 'FAIL'),

get_arg(1, BOX, GOAL), % remove any clause
GOAL \== 1, % added previously on
retract($cut_executed), % backtracking across
fail). % a cut operator.

debug_break_after(BOX : <and_box>) e
‘ ( break(BOX, 'EXIT')
! : break(BOX, 'REDO'),
fail).

not_backtrackable(_) :-
% Test whether backtrack is tried across a cut operator.
clause($cut_executed, true), !.
not_backtrackab1e(exec_goal(BOX : <and_box>)) :-
get_arg(1, BOX, GOAL),
not_backtrackabIe_system_goa1(GOAL).

type(<port> ) :- ('CALL';;'EXIT';;'REDO';;'FAIL‘;;
/ "TRYMATCH' ; ; *FAILMATCH' ;; 'ENTERBODY';;
'EXITBODY';;'REDOBODY’;;’FAILBODY').

% The reader may replace this rough and ready definition of break/2 by
% a more complete definition which suits his own taste and requirements.
break(BOX : <and_box>, PORT : <Cport> ) :-

tel1ing(CURRENT_STREAM), tell(user), nl,

get_parent_goal(BOX, PARENT_GOAL),

write('parent : '), write(PARENT_GOAL), write(' :- ... '), o},

mark_goal(PORT), % insert AND port

get_arg(1, BOX, GOAL), write(GOAL), nl,

write_clauses(BOX, PORT),

write('to continue press return key '),

get0(_),
tel1(CURRENT_STREAM).

get_parent_goal(BOX : <and_box>,
PARENT_GOAL : <_> => <legal_goal>) :-
get_arg(2, BOX, CXT),
( get_arg(l, CXT, PARENT_GOAL :- IR
; get_arg(1, CXT, ?- PARENT_GOAL)).

mark_goal(PORT : <port> ) :-
member(PORT, ['CALL', *EXIT', 'REDO', 'FAIL'] ), b
write(PORT), write(' ). % eight blanks
Continued
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Figure 6. Listing of a prototype of the ten-port debugger with the database technique to implement the ct
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mark_goal(PORT : <port> ) :-
write(' ). % twelve blanks

write_clauses(BOX : <and_box>, _) :-
get_arg(5, BOX, PROCEDURE),
var(PROCEDURE), !,
write('predefined predicate 1'), nl.
write_clauses(BOX : <and_box_with_procedure_definition>, _) :-
get_arg(5, BOX, procedure(_, [ 1)), !,
write('undefined predicate !'), nl.
write_clauses(BOX : <and_box_with_procedure_definition>,
PORT : <port>) e
write('procedure definition : '), nl,
get_arg(5, BOX, procedure(N, CLAUSE_LIST)),
write_clauses(1l, procedure(N, CLAUSE_LIST), PORT).

write_clauses(INDEX : <integer),
procedure(N : < >,
[CLAUSE : <clause>| REST : <clause_listd>]),

PORT : <portd) -
( INDEX == N,
mark_current_clause(PORT) % insert OR port
; write(' ). % twelve blanks

write(CLAUSE), n1,

I1 is INDEX + 1,

write_clauses(I1, procedure(N, REST), PORT).
write_clauses(INDEX : Cinteger)>, procedure(N : <>, [ D). ).

mark_current_clause(PORT) :-
port_with_blanks(PORT, PWB),
write(PwB).

port_with_blanks('CALL® ! !
port_with_blanks('EXIT' ! .
port_with_blanks('REDO' ! .
port_with_blanks('FAIL' ' !
port_with_blanks('TRYMATCH' » 'TRYMATCH !
port_with_blanks('FAILMATCH' » 'FAILMATCH
port_with_blanks('ENTERBODY' » 'ENTERBODY '

N N N N N e e e e

port_with_blanks('EXITBODY' , 'EXITBODY
port_with_blanks('REDOBODY' , 'REDOBODY
port_with_blanks('FAILBODY" , 'FAILBODY

% To improve readability we use the two predicates get_arg/3 and set_arg/3
% instead of the usual arg/3 wherever appropriate.

get_arg(N : Cinteger>, S : (structured, A : <> =>) :- arg(N, S, A).
set_arg(N : <Cinteger>, S : {structured =, A< > ) :- arg(N, S, A).
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