The Integration of Version Control into Programming Languages

J FH Winkler

Siemens Corporate Laboratories
for Information Technology

D-8000 Munchen 83 Fed.Rep.Germany

Industrial program products are often families of large and modular
programs. Modern programming languages support the formulation of
such program families only partially. At the time being it is usually not
possible to describe different revisions, variants, and versions of single
program building blocks and whole ?rograms.

This paper presents a proposal for the formulation of such version
information as part of the program text. In a newly introduced CONFIG
part of a program building block the programmer can express: (1) to which
versions the building block belongs, and (2) which versions of other
building blocks it uses. In this new construct a version is defined as a pair
(revision, variant), and a variant as a vector of attributes. With these
language constructs the "knowledge” about the program versions can be
expressed by facts and rules. The representation of this knowledge is
adapted to the structure of the program, and the generation of specific
program versions can be done automatically.

1 Introduction

The development of programming languages in the last 35 years is characterized by a steady
increase of expressiveness. We understand expressiveness not in a purely theoretical sense,
but rather in a more practical sense. The first languages before 1960 contained elements for
the formulation of mathematical formulae, functions and procedures, and data of certain
basic types [Bac 78a; PS 59]. Ten years later Algol 68 and Pascal added the user-defined type,
enumeration, record and pointer types; and dynamic data structures [Wi 69a; Wir 71a]. Since

then, concepts for modular programming, separate compilation, and concurrency have been
added [CCI 85; MMS 79; Ref 83; Wir 80].

Industrial program products are often families of rather large programs. The features
incorporated into programming languages during the last ten years support especially the
construction of large and modular programs. But, contemporary programming languages do
not yet provide constructs for the formulation of program families with revisions and
variants, as they are mentioned in (Win 85]. Large and long-lived program products are
typically such families. During a long period of usage, such programs usually evolve into a
number of revisions [BL 76; Tic 85] (sometimes also called versions or releases [BL 76)).
Large program systems are often used for and adapted to a range of functionally different
purposes. Operating systems are often adapted to different machine configurations and/or

231

different user requirements [SW 80], and programs for switching systems are used for
different switches in different countries [Win 85; Win 86).

In this paper we propose language constructs to express the information that describes the
configurations of program families with revisions and variants, By revision we mean
different forms of a program that evolve in time during further development and
maintenance. By variants we mean different forms of a program, that coexist in time and
are rather functional alternatives. The distinction between revision and variant is somewhat
fuzzy [Loc 83], but it is typically made in practice. The language constructs proposed in this
paper describe

a) the revisions and variants a certain program building block belongs to, and

b) the revisions and variants of a building block B that is referenced by another building
block A. The revisions and variants of B may depend on those of A.

We use the term "building block” to refer to those entities that are called “compilation unit”
in Ada [Ref 83].

The information expressed by the descriptions mentioned above is sufficient for the
automatic configuration of arbitrary program versions. In this paper we deal with the
problem of program configuration at the building block level. [SW 80] reports about work on
configuration at the statement level using program generation techniques.

The paper is organized as follows. Section 2 deals with families of large programs and section
3 with approaches to configuration control. In section 4 we propose a formal model of
configuration descriptions. Section 5 deals with the incorporation of configuration descrip-
tions in programming languages. Some examples are given in section 6, and section 7 offers
some conclusions.

2 Families of Large Programs

As mentioned in the introduction, large program products are typically families of large
programs where the members of such a family are characterized by revisions and variants.

A typical example for such a program family is the EWSD system (electronic digital
switching system [Sie 81]). This is a family of CHILL programs for public telephone switches.

Itsmain characteristics with respect to the topic of this paper are:

cl) itis quite large (several Mio Loc and several thousand modules)

232

¢2) it is expected to be in use for several decades. This will lead to a number of

revisions.

¢3) it is used for functionally different switches as eg local switches and long distance
switches. This results in a number of functionally different variants.

c4) it will be installed in a number of different countries worldwide (21 up to now). This
results also in a number of functionally different variants.

The process of developing and maintaining such families of large programs has the following
three main characteristics:

pl) the programs are multi-module programs
p2) the development requires a multi-library system as the central database

p3) the projects for such developments are multi-person projects.

3 Configuration Control

Programming language facilities that support the realization of program families must take
into account the properties and characteristics mentioned in the preceding section. We will
generally assume that the programming languages used for the realization of program
families allow the formulation of modular programs, like in Ada, CHILL, Mesa, and Modula-
2. Since the term "module” is used in some languages for a specific kind of program unit, we

will use the term "building block” for the textually self-contained program parts of a modular
program.

The set of building blocks of a modular program, or a family of such programs, is a structured
set in which certain relations between the elements hold. In the above languages some of
these relations are already expressed directly in the source text of the building blocks.
Examples of such relations are the relations expressed by the with-clauses in Ada, or the
export and import clauses in Modula-2. More details are given in [Win 85].

As mentioned, we use the concepts revision and variant to describe the versions of building
blocks and whole programs. A revision indication is usually a scalar entity, like a version
number or a time stamp. As variant indications we take tuples of attribute values where
such a tuple contains a value for some of the attributes that are used to span the space of
program variants. In our model a version indication is therefore a pair (revision indication,

variant indication) i.e. version = (revision,variant) . The formal details of this model are
given in the next section.

233

Contemporary programming languages do not contain facilities to express the version infor-
mation in a program family. Such facilities will be proposed in section 5.

From the point of programming languages we can distinguish between three different
aspects of program configuration:

¢1) Syntactic configuration: the programming language allows the description of the
syntax of the interface of building blocks. This is the situation in programming
languages like Ada, CHILL, and Modula-2.

¢2) Semantic configuration: here the interface semantics is also described by the
program text. This is not possible in contemporary programming languages [Win
82], but in the research area there are several approaches to this problem [GHW 85;
HKL 84].

¢3) Pragmatic configuration: the programming language allows additionally the de-
scription of the version information as already explained above.

Pragmatic configuration is the topic of this paper. We assume that a programming language
allows syntactic configuration as in Ada, CHILL, and Mesa.

4 The Model of the Configuration Language

The configuration language, which will be introduced in section 5, is based on a simple model

for the description of versions as pairs of revision and variant.
We assume a finite and nonempty set REV of revision indications:
REV := {ri,r2,...I'n}

REV is often totally ordered, like for time stamps or version numbers . An example is: {1.1,
1.6,1.8,2.1,2.12, 3.0}, where the order is that of the rational numbers.

REV may also be partially ordered as in [Tic 85], where some kind of hierarchically
structured revision indications is used, eg: { 1.2,1.2.1.1,1.3 }. The ordering is given by:1.2 <
1.2.1.1 and 1.2 < 1.3 (1.2.1.1 and 1.3 are incomparable). The ordering relation in [Tic 85]
expresses a true tree ordering. It is not possible to express the fact that a certain revision R
combines different earlier revisions. With a general partial ordering such a recombination
(merging [Apo 85: 2-12..2-15]) would also be possible.

234

A particular building block may belong to several revisions of a program. This is frequently
the case if the different versions of a program should be homogeneous with respect to the
revision indications [MTW 84]. Therefore, a revision description is defined as a subset of
REV. The set of revision descriptions RevD is therefore defined as follows:

RevD := Pow(REV)
where Pow(M) is the power set of a given set M.
The variant of a building block is characterized by the values of some of the attributes. We
assume a finite and nonempty set of attributes ATT that are used to characterize the
variants of a program family:

ATT := {aj, az,..,an}

Examples for attributes are "speed”, "country”, "kind”, or "type-of-exchange”.
For each attribute there is a finite and nonempty set of attribute values:

AV, AVg, ..., AV,

Examples for attribute values are "high”, "low”, "BRD”, "USA”, or "local”.

A variant indication is a partial mapping that maps attributes into the corresponding sets of
attribute values. The set of variants or variant indications VAR is therefore:

VAR := {f¢ ATT ~» AV | Va; ¢ dom(f) : fla;)cAV; }
where ~ denotes the set of partial mappings,and AV = |J AV;.

An example for a variant indication is: {(country, BRD), (speed, high)}. A certain building
block may belong to different variants and therefore the set of variant descriptions is

VarD := Pow(VAR)

A version is a combination of revision indication and variant indication and the set of
versions is therefore:

VERS := REVx VAR

An example of a version is: (2.12, {(country, BRD), (speed, high)}).
The set of version descriptions is:

235
VerD := Pow(VERS)

The building blocks of a program family reside in one or several libraries. If they reside in
more than one library, references to external building blocks must also indicate the library
the building block is supposed to reside in [Win 85]. In this paper we assume that the
building blocks of a certain program family reside all in one library, ie we do not treat the
problems that arise in a multi-library system. The library elements are identified in the
library by a name and a version description. Therefore, the set oflibrary elements LE is :

LE := NxVerD

where N is the set of names. The names may be simple identifiers, (eg "QuickSort”),
structured identifiers (eg "JFHW.QuickSort”), or may include the whole parameter and
result type profile [Ref 83: 6.6]. In the rest of the paper we use only simple identifiers .

A library element e= (n,v) determines a set of building block versions BBV(e), where a
building block version is a triple (name,revision,variant). For e =(n,v) BBV(e) is defined by:

BBV(e) := {(n,r,a)|(r,a) ¢ v}

Actriple (n,r,a) must uniquely identify a library element in a library. This leads to the library
consistency condition :

LCy(L) := (Va,b€L:a=b = BBV(a) n BBV(b) = @)

where L € LE is a library. In terms of data base technology this means that the triple (name,
revision, variant) is a primary key [Cod 70a] in L. In the rest of the paper we assume that for
all elements of libraries BBV(e) = @ holds.

A building block A may refer to (use) another building block B. These references define the
use-relation U € LE X LE. A library L C LE is called closed if the following library closure
condition holds :

LCI(L) := UCLXL

The configuration of a certain program version can be done automatically. This process starts
with the building block version that is the so-called main program (eg in the sense of Ada
(Ref 83: 10.1]). The rest of the program is selected automatically by the external references.
The set of building block versions belonging to the program to be configured is determined by

the transitive hull of the external references beginning in the main program.

236

An external reference is a reference between separate building blocks. An example are the
with-clauses in Ada [Ref 83]. Such references between building blocks exist also in
programming languages in which single entities are exported and imported, as eg in CHILL
and Modula-2. If entity Ea, that is contained in building block A, uses entity Eg, that is
exported by building block B, then A refers to B. Thus, the uses relation between building
blocks is obtained from the corresponding relation between entities by a factorization

process.

The configuration process is based on external references in such a way that external
references also indicate which version of the external building block is required. In this
selection process the version of the referenced building block may depend on the version of
the referencing one. Let A be a building block with version (rs,as) (the selecting building
block) and E be a building block with version (re, ae), that is referenced by A. The external
reference of A to E requires a certain version of E, which may depend on the actual version of
A. The following list gives some possible dependencies between (rs,as) and (re,ae).

a) (re,ae) = (rs,ag) E shall have the same version as A

b) (re,ae) = (R,ag) definite revision and same variant

¢) (re,ae) = (rs, A) same revision and definite variant

d) (re,ae) = (R,A) definite version required

e) (re,ae) = (flrg), asg) revision depends on rs and same variant
f) (re,ae) = (rg,flag) same revision and variant depends on ag
g) (re,ae) = f((rs,as)) versionisa function of (rg, ag)

5 Incorporationinto Programming Languages

In order to integrate the configuration descriptions into programming languages, we must
provide clauses to define

a) the versions a certain building block belongs to, and
b) the version that an externally referenced building block must have.

We will group this information in a new CONFIG part of a building block. This leads to the
following structure:

[<name>]
CONFIG

<configuration description >
<specor block>

237

According to the points a) and b} above the <configuration description> consists of two
parts:

<configuration description> =
<version definition > [<definition of externals>]

The <version definition> describes the versions which the actual building block belongs to.
The <definition of externals> describes other library elements that are used by the block.

From a theoretical point of view the formal configuration descriptions in sect. 4 would suffice.
In order to achieve good usability more convenient and efficient descriptions must be added.
Ife.g. a certain building block A belongs to all but one of the revisions of REV, this can be
expressed by listing explicitly all these revisions. If REV contains more than 10 - 20
elements, this enumeration will be tedious and error prone and the reader will not easily
grasp the fact that A belongs to all but one of the revisions. From a practical point of view, it
is therefore very useful to be able to express that a certain building block does not belong to
certain revisions. The same holds for the descriptions of variants and versions.

5.1 Definition of the Versions of a Building Block

The <version definition> describes the versions a building block A belongs to. The
following grammar defines the syntax of the <version definition>.

<version definition> =
VERS = <version description> [, <version description>]*;

<version description > <revision list>: <variantindication>

<revision list> = <list>

<list> = <poselems>|<negelems>

<poselems> = <poselem> [, <poselem>]* | ALL

<poselem> = <value>[..<value>]

<negelems> = NOT <value> |NOT (<pos elems>)

<variantindication> = <variantdescription> [,<variantdescription>]* | ALL

<variantdescription> = {<attr> = <set>[,<attr>= <set>]*}

<set> = <poselem> | <negelems>|{<list>} | ALL
Examples:

VERS = 1: {Speed = {High, Low}};
VERS = 1: {Kind = QuickSort};

238

The following remarks hold for constructs that contain no <neg elems>. Negation will be

treated later.

With respect to the versions a building block B belongs to the <revision list> and the
<variant description> are treated differently. B belongs exactly to those revisions
mentioned in the <revision list>. If on the other hand a certain attribute aj is not mentioned
in a <variant description> this attribute is treated as a don't care, i.e. B belongs to all
values of AVj. This strategy is necessary for an efficient an convenient building process.
During this process the version information is propagated from the building block, that is
designated as the main program, to all building blocks belonging to the program to be build.
If the information given in a build command mentions a certain attribute aj that is not
directly mentioned in the <version definition> of the main program but in that of any
dependent building block D, the information about ajmust be propagated to D.

A <list> defines a set of values, ie the <list> "p1, ..., p1”, where the pj are all <pos elem>s
of the form <value>, defines the set { p1, ..., p1 }. The keyword ALL represents the set of all
values that are possible at the resp. position. If ALL is a <revision list>, it represents the set
REV. IfALL is a <variant indication>, it represents the set VAR, and if it is a <list> after
<attr>, it represents the set AV <attr>. The interval notation <value>..<value> can be
used in case the corresponding set is totally ordered. The descriptions defined by the
grammar depicted above are slightly more general than those in section 4. A <variant
description> denotes a variant description in the following way. Let v={attri =1y, ...,
attrq=1q} be a <variantdescription> and s; the sets denoted by the <list>s1;. Fori = 1(1)q
$i € AV attr, must hold. Then v denotes the variant description VarSet(v):

VarSet(v) := {f¢ VAR|dom(f) = {attry, ..., attrq } A (Va; € dom(D: fla) € s) }

If a <variant indication> vi contains several <variant description>s vy, ..., Vp, the
resulting variant description is:

p
VarSet(vi) := U VarSet(vj)
=1

A <version description > denotes a version description in an analogous way. Letvd =r:a
be a <version description> and RevSet(r) be the set of revisions denoted by r and VarSet(a)
be the set of variants denoted by a. Then the set of versions denoted by vd is:

VerSet(vd) := RevSet(r) X VarSet(a)

If a <version definition> vd contains several <version description>s vy,
resulting version description is:

vp, the

ceny

239

p
VerSet(vd) : = U VerSet(v;)
i=1
The incorporation of NOT into the descriptive framework above leaves us with two problems
to be solved:

pl) whatis the semantics of this construct, and
p2) in case we choose a semantics where inconsistencies are possible, to check a
<version definition> for such inconsistencies.

There are at least three different semantics for NOT possible:

NOT-1

NOT is interpreted in a set theoretical sense as complement operator. In this case it is not
guaranteed that a specific version is really excluded from the set of versions of a building
block. This can be seen in the next example where a <variantindication> is given:

{Country ={BRD, USA}, Speed =High},
{Country=USA, Speed=NOT (High) };

If AVspeed = { Low, Medium, High } the resulting variant description is:

{{(Country, BRD), (Speed, High)},
{(Country, USA), (Speed, High)},
{(Country, USA), (Speed, Low)},
{(Country, USA), (Speed, Medium)} }

because NOT(High) = {Low, Medium}.

This variant description contains that very variant that we intended to exclude: {(Country,
USA), (Speed, High)}. We therefore call this interpretation of NOT a weak negation.

NOT-2

A second interpretation preserves the idea of complementary sets, which was originally the
motivation for the incorporation of NOT, but avoids such inconsistencies as shown above.
According to the grammar given above a <version description> has the following form:
rvary, varg, This is merely a shorthand for r: vary, r: varg, ... Therefore we may restrict
the discussion to the simple normalized form where a <version description> is of the form

r:{attr; = vi,..., attrq = v¢} forsomeq = 1.

240

r is either rg or NOT r; for some set rs < REV, and the vj are either avj_ or NOT avj, for some
set avj, € AVaytr,. We call an element negative if it begins with NOT and positive otherwise, A
<version description> of this simple form, that contains positive elements only, is a positive
version, and one containing at least one negative element is called a negative version. The
version set VS of a simple <version description> vd is defined as follows :

VS(vd) := IF vdispositive = VerSet(vd)
(0 vdisnegative = Compl(vd) FI
Compl(r:v) := Comp(r) x Comp(v)
Comp(r) := IF rispositive = r

[0 risnegative = REV-r FI

Comp({a1=vy,...,aq=vq}) :=
{fe VAR|dom(f) = {ay,..., ag} A (Vi € {1, ..., q} :
IF vi is positive THEN f{a;) € vi ELSE f(a;) ¢ v; FI) }

(We assume that both vi and AV;-v; are nonempty.)
Note that Comp is overloaded on revisions and variants.

ExclSet(vd) := IF vdispositive = @
O vdisnegative = VS(Pos(vd)) FI

Here is Pos(vd) = vd', where vd'is obtained from vd by eliminating all NOTs.

With these definitions we can define the consistency of a <version definition>. Let vd be a

<version definition> and let vd'=vy,....vs be its normalized form. Then vd is called
consistent iff

(vi€{l,...,s} : viisnegative = Vje¢ {1,...,;s} : ExclSet(v;) N VS(vj) = @))

It is easy to see that any <version definition > containing the <variant indication> given in
the paragraph NOT-1 would not be consistent.

s
If vd is consistent the version set determined by vdis given by [J VS(vj).
i=1

An example for a consistent <version definition> is :

VERS = 1.2: {Country={BRD, USA}, Speed= High},
{Country=USA, Speed= NOT (Medium)};

241

NOT-3

A third interpretation of NOT is a strong (strict) interpretation, in which a negative version
is always excluded, even in such cases that are inconsistent in the sense of NOT-2. For such a
strict NOT two different definitions are possible. Let vd be a <version definition> and
vd'=V1,...,Vs,Vs + 1,...,V¢ be its normalized form, where V1,...,Vs are all positive and vg41,...,v¢
are all negative. For the first definition of a strict NOT we obtain :

S t
VS(vd) := |J VerSet(vi) - |J ExclSet(vy)
i=1 i=s+1
and for the second one
t t
VS(vd) := U VS(v;) = U ExclSet(vy)
i=1 i=s+1

In the rest of the paper we will use the semantics of NOT-2 for NOT.

5.2 VERSIONS OF EXTERNAL BUILDING BLOCKS

The selection process starts at the building block that plays the role of the main program.
The complete information about the required version of the program to be configured is given
in the form of a single version. This information is transitively propagated along the external
references in order to select the building block versions that belong to the program to be
configured. The information in the variant part of the version description is usually split and
distributed over the program. An example of the splitting of the variant part is given in the
following Ada example.

with A, B;
-- Ais selected by the attribute ay, and
-- Bisselected by the attribute ag of the
-- version of C

procedure C is
-- the versionof Cis (1.2,{(a;=vy),(ag=v2)})

In a specific situation ay may stand for "Device” and ag for "Speed”.

The example above can be represented by the following program graph:

242

(€, 1.2, {(ar,v1), (a2,v2)})

(A,1.2, {(a1,V‘|)}) o [} (B: 12! {(aZ:VZ)})

The variant part of the selecting building block need not be split into disjoint parts; in the
general case an external building block may be selected by a subset of the attribute values of
the selecting building block.

The splitting and selection strategies mentioned at the end of section 4 lead to the following
structure of the <definition of externals>.

<definition of externals> = <use clause>*
<use clause > = USE <id>
VERS = (<revision selection> : <variantselection> |
<version pair> [, <version pair>] *
-- the list of <version pair>s must define a mapping VERS ~* VERS

[, ELSE = (SAME | <version>)1]) ;
<version> = <version>
<revision value> : <variant>

<version pair>

<version>

<revision selection > = SAME | <revision value> |
<revision pair> [, <revision pair>]*

-- the list of <revision pair>s must define a mapping REV ~» REV
[, ELSE = (SAME | <revision>)]
<revision value> = <revision value>
SAME
<variant> |

<revision pair>

<variantselection>

<variant pair> [, <variant pair>]*
-- the list of <variant pair>s must define a mapping VAR ~* VAR
[, ELSE = (SAME | <variant>)]
<variant> = <variant>
{<attr>=<value> [, <attr> = <value>]* [, ELSE =SAME] }

<variant pair>
<variant>

Note that(,),[,] are characters of the metalanguage.

243

The <use clause > describes which version of an external building block E is required by the
building block S containing the <use clause> in its <configuration description>. The
<id> after USE is the name of the external building block that is being referenced by the
<use clause>.

There are two ways to define the version of E that is required by S:

(1) by a pair <revision selection> : <variant selection> where each of the elements
may denote a specific revision resp. variant or a mapping in REV resp. VAR;
(2) by a mapping in VERS.

The semantics of the constructs used in the <definition of externals> will be explained
together with the building process in the next section.

The USE clause can also be used to select different bodies of packages. The package name
used in the CONFIG part of the package specification refers automatically to the corres-
ponding package bodies.

5.3 The building process

The building blocks in the program library are identified by triples (name, revision, variant).
The building process starts with a build command of the following form:

BUILD <name> VERS = <revision> : <variant>

The <name> is the name of the main program. <revision> and <variant> determine the
exact version of the program to be built. After the exact version of the main program has
been selected from the library the <use clause>s in the main program are used to select
further building block versions of this program. This process works in a transitive manner
until all <use clause>sin the program have been satisfied.

The basic step in the building process is that of the selection of the building block version of a
building block E referred to by a <use clause> in building block S. For the following
discussion we assume that the actual version of S is (ra,va). This version is transformed in a
version (rs,vs) by means of the <use clause>, and (rs,vs) is then used to select the actual
version of E.

We describe the selection process for revisions first. Depending on the different forms of
<revision selection > ryis defined as follows:

244

(a) <revision selection>=SAME: rs:=ra
(b) <revision selection> =ry: rg:=Try
(¢) <revision selection> is a (partial) mapping f ¢ REV ~REV :

IFr, € dom(f) = rg:= f{ry)
[] ra ¢ dom(f) => undefined FI

A library element with name E may belong to a set of revisions Rg. The building process
selects that library element with name E for which rs ¢ R holds. If there is no such library
element an error is reported.

In the case of REV being totally ordered we assume a special <revision value> LAST. LAST
denotes always the last value of any subset of REV under discussion. In a <use clause >

USE P VERS = LAST: {Country=Norway}; it indicates that for P the latest (newest, most
recent) revision of the variant for Norway is to be selected.

For variants the selection step is a little bit more complicated because a variant is a whole
tuple of values. Depending on the different forms of <variant selection> vs is defined as
follows:

(a) <variantselection> = SAME: vg:= vy

(b) <variantselection> = {a1=x1,a2=X2, ..., aq=Xq} =:Vy:
if vy does not contain SAME then vg:= vy.
if vy contains SAME as attribute value the values for these attributes are taken from
va. If v5 does not contain values for those attributes an error is reported. If no error is
reported vs:= vy', where v, is obtained from vy by replacing SAME.
If ELSE is used in vy it stands for all attributes mentioned in v, but not mentioned in
vu.

(c) <variantselection> isa (partial) mapping f¢ VAR ~» VAR :

IF v4 € dom(f) = vg:= flvy)
[va ¢ dom(f) = undefined FI

Let As=dom(vs). The library elements with name E belong to certain variants ve;. Let Ave; =
dom(ve;). If there is one of these variants for which |As n Ave;] is maximal and ve; is unique
in this respect, and if the common attributes have the same values in vg and ve; , then the
library element, to which ve; belongs, is selected with the variant ve = vs U ve; ; otherwise an
error is reported.

245

5.3 EXAMPLES

The first example shows a main program MainProgram that uses different variants of a
subprogram Sort.

MainProgram
CONFIG VERS = 1 : {Speed = {High, Low }};
USE Sort VERS = SAME: {Speed = High} = {Kind = QuickSort},
{Speed = Low} = {Kind = BubbleSort};
PROC MainProgram IS

;Sort(A, B);

END MainProgram;

Sort
CONFIG VERS = 1:{Kind = QuickSort};
PROC Sort(...) IS

-- QuickSort algorithm
END Sort;

Sort
CONFIG VERS = 1:{Kind = BubbleSort};
PROC Sort(...) IS

-- BubbleSort algorithm
END Sort;

We can also use the name of a building block as one of the attributes in the variant part of a
version. This would be a predefined attribute whereas attributes like "Speed” or "Country”
may be freely chosen by the user. The example depicted above then reads like this:

MainProgram
CONFIG VERS = 1 : {Speed = {High, Low}};
USE Sort VERS = SAME : {Speed = High} = { Name = QuickSort},
{Speed = Low } = {Name = BubbleSort};
PROC MainProgram IS

Sort(A, B);

END MainProgram;

QuickSort BubbleSort
CONFIG VERS = 1 : {Speed = High} CONFIG VERS = 1 : {Speed = Low}
PROC QuickSort(...) IS PROC BubbleSort(...) IS

-- QuickSort algorithm -- BubbleSort algorithm

END QuickSort; END BubbleSort;

246

In the next example we see that it is very easy to distinguish between a baseline and a

maintenance variant.

CONFIG VERS = 1:ALL;
USE P VERS = SAME : SAME;

PROC Main ...

CONFIG VERS = 1:{Kind = Baseline},
PROC P ...

CONFIG VERS = 1:{Kind = Maintenance};
PROC P ...

With the command
BUILD Main VERS = 1:{Kind = Maintenance}

we can build that version of Main that contains the maintenance variants of all building
blocks for which such a variant exists.

The version information in a program can be used by other components of the programming
environment, too. In order to achieve this some attributes must be predefined as already
mentioned in the second example above for the attribute "Name”. Another predefined
attribute could be "Debug” which could be used to convey information to the compiler. It
would then be possible to build a program variant for debugging purposes:

BUILD Main VERS = 1:{Kind = BaselLine, Debug = Yes};

6 Comparison with other Work

Program configuration has up to now been carried out by means outside the programming
language. The means for program configuration are typically based on facilities provided by
operating systems: files and commands for compilation and linking.

The use of files instead of building blocks has the drawback that there is usually no
guaranteed correspondence between a file name and the name of the building block
contained in that file [Win 85]. Furthermore the operating system based facilities are usually
used for languages that do not contain constructs for programming-in-the-large. If those
facilities are applied to languages like Ada or CHILL, that contain constructs for
programming-in-the-large, this may lead to structural clashes.

247

The Make facility [Fel 79] is based on the Unix® operating system. A Makefile is a kind of
command file and contains two different kinds of elements: (1) elements that describe
dependencies between building blocks, and (2) commands that must be executed in order to
make (build) the program system. Make is used for C and similar languages, that do not
provide constructs for programming-in-the-large. The dependency descriptions allow the
description of some aspects of programming-in-the-large, but there remains the problem of
the consistency between the source text of the building blocks and the text of the Makefile,
e.g. with respect to external references in the source text of the building blocks [Wal 84]. The
question of different versions of a program is addressed in Build [EP 84], that is build on top
of Make. Different versions of a program are realized in Build by different file directories.
There is no facility to characterize the versions by attributes or version numbers. SCCS [Roe
75] and RCS [Tic 85] concentrate on the aspect of storing similar versions of texts efficiently
using different kinds of deltas. RCS furthermore uses a state attribute to indicate different
variants of a building block.

DSEE (Domain Software Engineering Environment) of Apollo [Apo 85] is one of the most
sophisticated configuration tools based on Unix. It distinguishes between a system model and
a configuration thread. The system model describes the structure of the program in the large
as a block structure in the classical sense, and provides for this a quite elaborated syntax.
The configuration thread describes the versions of the building blocks of a corresponding
system model. The versions are characterized by version numbers and by version names that
are similar to the elements of an enumeration type. These version indications do not provide
attributes as they are used in this paper.

The GANDALF system [Hab 85; Not 85] also contains some facilities for version control.
There successive versions and parallel versions are distinguished where the former
correspond to our revisions and the latter to the variants. The parallel versions are
characterized by simple values instead of the tuples used herein. The term "version” is also
used with a somewhat different meaning: to distinguish between source, object,
documentation etc. belonging to one program unit. Similar as in DSEE a syntax for
programming-in-the-large has been developed which is based on boxes and modules [HP 80,
80a] and uses some sort of Module Interconnection Language similar to MIL76 [DK 76].

In the Cedar programming environment [HSZ 85] a system modeller has been built that
allows for the description of program configurations [LS 83a]. A system model is a hierarchy
of lists of system components, or to be more exact of lists of references to system components.
The references refer to the files containing the source text of the building blocks. The file
versions are identified by a pair consisting of a name and a time stamp. The models may be
parameterized by interfaces as they are defined in Mesa [MMS 79]. There are no further

facilities for the description of revisions or variants.

248

In the Adéle programming environment [Est 85, 86] building blocks are identified by a
quadruple (family name, family id, version id, revision number), where the family name
corresponds to the usual name, the family id selects a variant in the set of alternatives of the
family, the version id identifies a version, and the revision number determines a revision of
the version. Version and revision are very similar in this approach: a new version is
established after a "major” modification, especially a modification of an interface, and a

"small” modification yields a new revision.

The approaches taken in different systems use two different strategies for the organization of
the version information: (1) a centralized approach e.g. in Make and DSEE, and (2) a
decentralized approach as in Adéle and in our proposal. The main advantage of the
decentralized approach is that the representation of the version information is adapted to the
program structure. The main advantage of the centralized approach is that the coarse
structure of the program can be recognized more easily when inspecting the (centralized)
configuration description. But this can also be achieved by a decentralized organization. It is
easy to provide a (zooming) function in the programming environment that only displays the
CONFIG part of the building blocks.

The main disadvantages of the centralized approach are:

(1) it separates information that belongs together;

(2) it implies the duplication of some information. In the centralized approach the central
configuration description must refer to the source modules of the program building blocks.
Let B be a program building block that exists in several versions vy, v,...,vn. For reasons
of identification the source modules representing the different versions must have
different names. If the names are chosen arbitrarily and do not resemble B it is difficult to
recognize that they all are versions of B. Thus the names should indicate in some form the
identifier B. A similar argument holds for the versions: it would be very useful if the name
also contained some hint to the version. The consequence of this is that the name of the
source modules should contain some of the version information, i.e. it is quite inevitable
that at least part of the version information is repeated in some decentralized
representation.

7 Conclusions

The approach in this paper is source oriented. We want to describe different configurations of
modular programs using constructs that are integrated into the programming language. We
assume that the host language already provides constructs for programming-in-the-large
like Ada or CHILL. This distinguishes our approach from most other approaches, that are
usually oriented towards languages like C or Pascal. We add to a language with constructs
for programming-in-the-large constructs to express versions as pairs of revisions and
variants. For the description of variants we provide a very general concept based on tuples of

249

attributes. The information for program configuration is given where it is used and needed:
in the building blocks and the references between building blocks. The constructs described
in this paper can be characterized as follows

o the language used to express the version information is a "natural” extension of the
programming language;

e aversionisa pair (revision,variant);

o the "knowledge” about the program configurations is represented explicitly by facts
and rules;

o the representation of this knowledge is adapted to the structure of the program;

e the construction of program versions can be done automatically.

For practical applications it could be useful to define the sets REV, ATT, and AVj in a central
package VERSION.INFO in order to have some control over them. The definition of those
sets could be done using appropriate data types like range types and enumeration types. A
further enhancement would be the generalization of the information given in the Build
command in order to express the fact that certain variants apply to certain building blocks
only.

Acknowledgments

The author would like to thank R.Conradi, T. Mehner, and William G.Wood for their
constructive comments that led to the improvement of this paper.

8 Literature

Apo 85

Bac 78a

BL76

CCI85

Cod 70a

DK 76

EP84

Est 85

Est 86

Fel79

GHW 85

Hab 85

HKL 84

HP 80

HP 80a

HSZ 85

Loc 83

Apollo Computer Inc.. DOMAIN Software
Engineering Environment (DSEE) Reference
Manual. Order No. 003016, Rev. 03, July 85.
Backus, John: The History of Fortran I, II, and
I11. SIGPLAN Notices 13,8(1978)165..180.
Belady, L.A.; Lehmann, M.M.: A model of large
program development. IBM Syst. Journal 15,3
(1976)225..252.

CCITT: CCITT High Level Language (CHILL),
Recommendation Z.200, Geneva 1985.

Codd, E.F.: A Relational Model of Data for
Large Shared Data Banks. CACM 13,6(1970)
377..387.

DeRemer, F.L.; Kron, H.H.: Programming-in-
the-large versus Programming-in-the-small. =
[NS 76: 80..89].

Erickson, V.B.; Pellegrin, J.F. : Build - A
Software Construction Tool. AT & T Bell
Laboratories Technical Journal 63, 6(1984)
1049..1059.

Estublier, J.: A Configuration Manager: The
Adele Database of Programs. Workshop on
Software Engineering Environments for Pro-
gramming-in-the-Large. Cape Cod, June 85, pp.
140..147.

Estublier, Jacky: ADELE - A Data Base of
Programs. Presentation Manual. Laboratoire
Genie Informatique, 38402 St.Martin d'Heres,
Juin 1986.

Feldman, Stuart I. : Make - A Program for
Maintaining Computer Programs. Software -
Practice and Experience 9 (1979)255..265.
Guttag, John V.; Horning, James J.; Wing,
Jeanette M. : The Larch Family of Specification
Languages. IEEE Software 2,5(1985)24..36.
Habermann, A. N.: Automatic Deletion of Obso-
lete Information. The Journal of Systems and
Software 5,2(1985)145..154.

Luckham, David C.; Henke, Friedrich W. von ;
Krieg-Brueckner, Bernd; Owe, Olaf: ANNA - A
Language for Annotating Ada Programs. Stan-
ford Univ. Comp. Syst. Lab. Tech. Rep 84-261.
Habermann, A. Nico; Perry, Dewayne E.:
System Composition and Version Control for
Ada. Carnegie-Mellon Univ., Dept. of Computer
Science, May 1980.

Habermann, A. Nico; Perry, Dewayne E.: Well-
Formed System Compositions. Dept. of
Computer Science, Carnegie-Mellon Univ.,
CMU-CS-80-117, Pittsburgh, March 1980.
Swinehart, Daniel C.; Zellweger, Polle T
Hagmann, Robert B.: The Structure of Cedar.
SIGPLAN Notices 20,7(1985) 230..244.
Lockemann, Peter C. : Analysis of Version and
Configuration Control in a Software
Engineering Environment. = Davis, C.G.;
Jajodia, S.; Ng, P.A.; Yeh, R.T. (eds) : Entity-
Relationship Approach to Software-Engineer-
ing, North Holland, Amsterdam 1983.

250

LS83a

MMS 79

MTW 84

Not 85

NS 176

PS59

Ref83

Roc 75

Sie 81

SW 80

Tic 85

Wal 84

Wi69a

Win 82

Win 85

Win 86

Wir 71

Wir 80

Lampson, Butler W.; Schmidt, Eric E.
Organizing Software in a Distributed Envi.
ronment. SIGPLAN Notices 18,6(1983)1..13.
Mitchell, James G.; Maybury, William; Sweet,
Richard: Mesa Language Manual. Xerox, Palo
Alto Research Center, Palo Alto 1979. Version
5.0,CSL-79-3.

Mehner, T.; Tobiasch, R.; Winkler , JFH.: A
Proposal for an Integrated Programming
Environment for CHILL. Third CHILL
Conference, Cambridge, September 23-28, 1984,
pp. 65..71.

Notkin, David: The GANDALF Project. The
Journal of Systems and Software 5,2(1985)
91..105.

Schneider, H.-J; Nagl, M. (eds.):
Programmiersprachen - 4.Fachtagung der GI,
Springer Berlin usw. 1976.

Perlis, A.J.; Samelson, K. (eds) : Report on the
Algorithmic Language ALGOL. Num. Math. 1
(1959) 41..60.

Reference Manual for the Ada Programming
Language ANSI/MIL-STD 1815A. United
States Dept. of Defense, Washington, January
1983.

Rochkind, Mark J.: The source code control
system, IEEE Trans. on Softw. Eng. 1,4(1975)
364..370.

Siemens AG: EWSD Digital Switching System.
telcom report Vol. 4(1981) Special Issue.
Winkler, J.F.H.; Stoffel, C. : Methode zur
Erzeugung angepalter und ubertragbarer
Betriebssysteme.

= Schneider, H.J. (Hrsg.): Portable Software,
B.G. Teubner Stuttgart, 1980, pp. 34..47.

Tichy, Walter F.: RCS - A System for Version
Control. Software - Pract. & Exp. 15,7(1985)
637..654.

Walden, Kim: Automatic Generation of Make
Dependencies. Software - Pract. & Exp. 14,6
(1984)575..585.

Wijngaarden, A. van: Report on the Algorithmic
Language ALGOL 68. Num. Mathematik
14(1969)79..218.

Winkler, J.F.H.: Ada: die neuen Konzepte.
Elektron. Rechenanlagen 24,4(1982)175..186.
Winkler, J.F.H.: Language Constructs and
Library Support for Families of Large Ada
Programs. Workshop on Software Engineering
Environments for Programming-in-the-Large.
Cape Cod, June 85,17..28.

Winkler, J.F.H.: Die Programmiersprache
CHILL. Automatisierungstechnische Praxis
28,5(1986)252..258, 28,6(1986)290..294.
Wirth, Niklaus: The Programming Language
PASCAL. acta informatica 1(1971) 35..63.
Wirth, Niklaus: MODULA-2. Eidgendssische
Technische Hochschule Ziirich, Institut fur
Informatik Bericht 36, March 1980.

CONFIGURATION/VERSION CONTROL

Chair : Per Holager (ELAB-SINTEF, NOR)
Assistant chair : Arne Venstad/Ole Solberg (RUNIT, NOR)

Discussion

Arthur Evans (Tartan Labs, USA):

Mr. Winkler described how to keep the configuration information distributed
throughout the source programs, which 1is an interesting approach. We have been
using at Tartan Labs an approach in which we maintain a central database to control
our building process. We found that once we got everything sorted out, it was
moderately easy to keep things straight. Comments?

Jurgen Winkler (Siemens, FRG):

My approach parallels the one taken in programming languages that provide
constructs for PITL, like ADA, CHILL, MESA and MODULA-2. In ADA, the with- and use-
clauses are distributed in the program. With this strategy the information is wherc
it belongs. If I inspect a program module, I also want to see its relationships to
other modules. If the information is presented in this "object-oriented" manner at
the user interface, it does not imply any specific internal structure. Indeed the
question of internal structure is not addressed at all.

Jacky Estublier (L.G.I. C.N.R.S., FRA):

The reason why we chose a similar distribution of the configuration information, is
that we got fast file access to the object because of good locality of information.
The same locality also reduces network traffic and minimizes updating conflicts in
a distributed environment.

Andy Rudmik (GTE Comm. Syst., USA):

A question for Ellen Borison on the model for software manufacture. I can see the
benefit of coming up with models like this, and I think it is applicable to perhaps
a significant part of the life cycle. When I look at the kind of software life
cycles in our software development effort, I would characterize the functions as
having a high degree of concurrency (needing mutual synchronization), and a lot of
non-determinism (not repeatable because of non-recorded user input). I can
certainly see that this model might apply to compilation and linking which have
fairly straight-forward mapping functions. But a large percentage of the software
development activities such as requirements and design involves a high degree of
non-deterministic interaction between the various functions. Therefore, I'm
suggesting that the model might be extended to incorporate some of these issues.

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

. 23% %CS |
244 T g{,

'Advanced
Programming Environments

Proceedings of an International Workshop
Trondheim, Norway, June 16—18, 1986

p"

Lol

IFIP

Edited by
Reidar Conradi, Tor M. Didriksen and Dag H. Wanvik

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

Editorial Board
D. Barstow W.Brauer P, Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editors

Reidar Conradi

Tor M. Didriksen

Division of Computer Science, Norwegian Institute of Technology
N-7034 Trondheim-NTH, Norway

Dag H. Wanvik
RUNIT/SINTEF, Norwegian Institute of Technology
N-7034 Trondheim-NTH, Norway

International Workshop on Advanced Programming Environments

Organized by: IFIP Working Group 2.4 on Systems Programming Languages
in cooperation with ACM SIGPLAN/SIGSOFT

Sponsored by: Division of Computer Science (DCS), NTH
Computer Centre at the Univ. of Trondheim (RUNIT)
Kongsberg Vapenfabrikk, Branch Office Trondheim
Royal Norwegian Council for Technical and Scientific Research (NTNF), Oslo
Norsk Hydro, Oslo
Norwegian Teleadministration’s Research Lab, Kjeller/Oslo
Integrert Databehandling A/S (IDA), Oslo
International Business Machines, Oslo

CR Subject Classification (1985): D.2.6, K.6.3

ISBN 3-540-17189-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-17189-4 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Advanced programming environments.
(Lecture notes in computer science; 244) Papers presented at the International Workshop on
Advanced Programming Environments, organized by IFIP's Working Group 2.4 on Systems
Programming Languages in cooperation with ACM SIGPLAN/SIGSOFT, sponsored by Division of
Computer Science (DCS), NTH and other organizations. 1. Electronic digital computers—
Programming—Congresses. |. Conradi, Reidar. II. Didriksen, Tor M. Ill. Wanvik, Dag H.

IV. International Workshop on Advanced Programming Environments (1986: Trondheim, Norway)
V. International Federation for Information Processing. Working Group 2.4 on Systems Program-
ming Languages. VIl. ACM Special Interest Group in Programming Languages. VIIl. ACM Sigsoft.
IX. Norges tekniske hegskole. Division of Computer Science. X. Series.

QA76.6.A3327 1986 005 86-31536

ISBN 0-387-17189-4 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort”, Munich.

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

