
ETRI Journal, volume 18, number 4, January 1997 265

A New Integrated Software Development

Environment Based on SDL, MSC, and CHILL for
Large-scale Switching Systems

DongGill Lee, JoonKyung Lee, Wan Choi, Byung Sun Lee, and Chimoon Han

CONTENTS

I. INTRODUCTION

II. ENVIRONMENT CONCEPT IN A
DEVELOPMENT METHODOLOGY
FOR LARGE-SCALE SWITCHING
SYSTEMS

III. ARCHITECTURE AND
CHARACTERISTICS

IV. EXPERIENCES FROM THE USE OF
ISDE IN TWO PROJECTS

V. CONCLUSIONS

REFERENCES

ABSTRACT

This paper presents a new software
development environment that supports
an integrated methodology for covering
all phases of software development and
gives integrated methods with tools for ITU-
T (Telecommunication Standardization
Section of the International Telecommu-
nication Union) languages. The design of
the environment to improve software pro-
ductivity and quality is based on five main
concepts: 1) formal specifications based
on SDL (Specification and Description
Language) and MSC (Message Sequence
Charts) in the design phase, 2) verification
and validation of those designs by tools,
3) automatic code generation and a safe
separate compilation scheme based on
CHILL (CCITT High-Level Language) to
facilitate programming-in-the-many and
programming-in-the-large. 4) debugging
of distributed real-time concurrent CHILL
programs, and 5) simulation of application
software for integrated testing on the host
machine based on CHILL. The application
results of the environment compared with
other approaches show that the produc-
tivity is increased by 19 % because of
decreasing implementation and testing
cost, and the quality is increased by 83 %
because of the formal specifications with
its static and dynamic checking facilities.

266 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

I. INTRODUCTION

A software development environment

should be highly flexible, extensible, and

very well-integrated. Software development

environments are intended to provide a co-

hesive and integrated set of tools to support

the process of software development. There

is much current research into environment

design focusing on maximizing the degree to

which these tools can be integrated [1]-[3].

CHILL (CCITT High-Level Language)

[4], [5] is recommended by ITU-T (Telecom-

munication Standardization Section of the

International Telecommunication Union,

formerly CCITT) as a standard programming

language. CHILL is characterized by strong

type checking, information hiding, piecewise

programming, concurrent programming, and

exception handling. SDL (Specification and

Description Language) [6] is well-suited for

all systems whose behavior can be modeled

by extended finite-state machines in which

the focus is to be placed especially on aspects

of interaction. MSC (Message Sequence

Charts) [7] specify scenarios of message flows

between a system and its environment at the

system level with scenario hierarchy to use

case modeling during the analysis phase and

test suits during the test phase.

In order to improve productivity and

quality of telecommunication software, sev-

eral SDL environments [8]-[11] and several

CHILL environments [12]-[15] have been de-

veloped in many countries and used to develop

telecommunication systems. Most of these

environments are dependent on their own

computing environment, switching system,

and organization. Some of the environments

such as SDT [9], GEODE [10], and CHIPSY

[14] are designed to be portable and flexible in

their application domains. SDT and GEODE

focus on SDL and MSC environments for the

design phase, while CHIPSY focuses on a

CHILL environment for the implementation

phase.

With emphasis on integrated methods and

methodologies for covering all phases, we

have developed the Integrated Software De-

velopment Environment (ISDE) with a view to

achieving transportability by using the ITU-T

languages: CHILL, SDL and MSC. Based on

an integrated paradigm, ISDE supports various

activities occurring in system analysis, sys-

tem specification and design, implementation,

debugging and simulation for telecommunica-

tion software development with standard lan-

guages and methodologies. Also, due to com-

pliance with standards and a high-degree of

portability, ISDE can be used to develop a wide

range of telecommunication application soft-

ware. ISDE was successfully applied to de-

velopment of TDX-10 ISDN switching sys-

tem [16]. The results show that ISDE can de-

crease the total cost considering productivity

and quality of the development of a system be-

cause the reduced cost in the implementation

and testing phases is much higher than the in-

creased cost in the design phase caused by us-

ing formal languages recommended by ITU-T.

This paper consists of five sections. In the

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 267

subsequent section, we present the concepts of

ISDE based on ITU-T languages. We explain

the architecture and the characteristics of our

environment in section 3. In section 4, we de-

scribe our experience of using ISDE in the de-

velopment of switching system and compare it

with related works. Finally, in section 5, we

summarize our approaches and contributions.

II. ENVIRONMENT CONCEPT
IN A DEVELOPMENT
METHODOLOGY FOR
LARGE-SCALE SWITCHING
SYSTEMS

ISDE is a language-centered environment.

Figure 1 shows the software development

paradigm supported by ISDE. In terms of the

activities in software development, the sys-

tem consists of four parts: Integrated SDL

Environment for Telecommunication systems

(ISET) [17], CHILL Programming Environ-

ment (CPE) [18], CHILL Debugging environ-

ment (CDE) [19] and CHILL Simulation Envi-

ronment (CSE)) [20]. ISET and CPE are in-

tegrated by translating SDL to CHILL and by

means of uniform environment user interfaces.

Our large-scale switching systems such as

TDX-10 and ATM switching system are lo-

cal/tandem/toll switching systems that support

100,000 subscribers. In terms of software de-

velopment, they should be thought of as real-

time, fault-tolerant, and distributed systems

based on Motorola 68020 or SUN SPARC pro-

Fig. 1. Development process with ISDE.

cessors, and they require methodologies and

environments for very large software program-

ming projects. Figure 2 shows the structure of

our development process [21] for the analysis

and design phases.

Fig. 2. Development approach.

268 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

Concrete requirements are defined to be

used between the customer and the devel-

oper by an inspection of informal user require-

ments. When defining requirements, a con-

ceptual model is defined to achieve conceptual

integrity among various developers. The re-

quirements definition specifies everything that

the end-users see, including features (functions

from the user’s point of view) and external in-

terfaces in the system development.

Functions are formally defined from re-

quirements with what the system is to do rather

than how the system is to be implemented.

Each function is specified in the form of SDL

system and process diagrams, as if the system

had only the process definition for the func-

tion. The system diagram defines processes,

external interfaces in the environment, and sig-

nals to/from processes. The process diagrams

mainly show how the system level states are

changed and what responses are made accord-

ing to external stimuli.

A function is subject to being transformed

into one or more blocks which are the basic de-

velopment units in design and implementation.

SDL is used to specify the behavior of func-

tions and to design the internal structure and

behavior of blocks. MSCs show the normal se-

quence of signals interchanged between one or

more blocks and their environment per func-

tion. The interaction of messages and actions,

interfaces between components, and identifi-

cation of data can be defined from the analy-

sis of MSCs. MSCs are used as the starting

point for drawing SDL process diagrams. Sub-

systems are formed by grouping blocks. When

blocks are defined, they are designed in the

form of SDL block diagrams and control flow

diagrams in reference to MSCs and message

surveys. In our development approach, using

MSCs is not regulation in detail design for the

components of a block. Each block is mapped

to an executable CHILL module.

ISET provides a paradigm for formal spec-

ifications and descriptions by supporting the

usage of formal languages that are SDL and

MSC, for verification and validation of sys-

tem specifications by static semantic checking

based on an entity-relationship model of SDL

and by dynamic semantic checking based on

a numerical Petri-net model of SDL, for step-

wise refinement, for documentation, and for

translation into CHILL programs. After se-

mantic checking of SDL descriptions, the SDL

descriptions are translated into CHILL pro-

grams and executed interactively on a simula-

tion environment for validation.

Basically, CPE provides an environment

for editing, compiling, and running CHILL

programs in the host environment. In order to

prepare programs to be executed on the target

under the host environment, it provides the fa-

cilities to cross-compile source programs, and

to down-load them onto distributed multipro-

cessor target systems.

For debugging and testing of CHILL pro-

grams CDE provides CHILL source-level de-

bugging facilities on the host environment and

target machines. Typically, programmers ex-

amine and trace the logic of programs by us-

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 269

ing a source-level debugger first, then simulate

programs in a CHILL Simulation Environment

for integration testing with some other execu-

tion modules. CSE provides a target software

environment by simulating distributed multi-

processing, concurrency within a program, in-

teractions of signals in terms of CHILL, real-

time data base management, and time manage-

ment. After the integration test on a host, pro-

grammers debug real-time facilities of an exe-

cution module running on the target systems at

source-level under the control of the host en-

vironment. Finally, the entire software in the

real environment is tested. Since our switch-

ing system supports multi execution modules

within a processor, it needs to run all of the

multi execution modules together to monitor

and trace message passing and real-time facil-

ities among them by using a tracer such as the

IPC monitor.

III. ARCHITECTURE AND
CHARACTERISTICS

1. Integrated SDL Environment

A layered architecture with a unified repre-

sentation of both Graphical Representation of

SDL (SDL/GR) and textual Phrase Represen-

tation of SDL (SDL/PR) not only facilitates a

flexible and extensible environment, but also

makes it easy to integrate tools and languages.

Figure 3 shows the SDL environment architec-

ture, ISET.

Tools of ISET may be classified in terms of

Fig. 3. ISET architecture.

functional roles as follows: the graphical en-

vironment with SDL graphic editor and hard-

copy generator; the analysis with SDL syn-

tax checker, SDL static semantic analyzer and

SDL dynamic semantic analyzer; translation

with SDL/GR to PR translator, SDL/PR to GR

translator, SDL/PR compiler, SDL to CHILL

translator, and SDL to DB translator.

A. Internal Integration

Since the conceptual model of SDL is

based on extended finite-state machines, its ab-

stract syntax is thought of as graphs consisting

of nodes and transition arcs. Moreover, two-

dimensional languages with graphical repre-

sentation have a natural representation that is

a general directed graph rather than a simple

tree. The graph representation of SDL (GSDL)

is an internal language that preserves all the se-

mantics of SDL with graphical information to

represent SDL/GR diagrams also. Basically,

it has predefined node types and arc types.

270 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

The node types define semantics of SDL sym-

bols and their graphical shapes. However, the

arc types define only graphical shapes (solid,

dashed, or thick lines, and lines with or without

arrow heads), therefore they are interpreted in

the context of the connectivity of node types.

Internal integration is achieved by adapting

GSDL as a core language for all tools to share

GSDL. SDL descriptions saved in the form

of GSDL may be followed by translation into

other languages: SDL/GR, SDL/PR, CHILL,

and SDL/DB. The GSDL not only facilitates

integration of environment tools, but also en-

ables them to share and utilize internal data

structures such as parse trees, symbol tables,

and abstract syntax graphs.

B. Verification and Validation

In ISET, the formal specifications is de-

fined as the use of formal languages that are

SDL and MSC and the verification of the spec-

ifications is defined as the semantic checking

in terms of SDL semantic rules. Semantics of

SDL can be divided into static semantics and

dynamic semantics. Static semantic analysis

is primarily concerned with checks for consis-

tency and completeness and with correctness

and compliance with SDL semantic rules. On

the other hand, a major concern of dynamic

semantic analysis is incorrectness of dynamic

behavior such as the possibility of deadlock

and unreachability. The entity-relationship

model was used for representing static seman-

tics while our new numerical Petri-net model

for SDL [22] was employed for representing

dynamic semantics. For verification and val-

idation, ISET provides an SDL static semantic

analyzer, an SDL dynamic semantic analyzer,

and an SDL to CHILL translator for testing.

From the entity-relationship model of SDL

[23], a normalized relational model is de-

rived by an SDL to DB translator. The ana-

lyzer reads the SDL/DB form from the SDL

database and binds all or parts of the sys-

tem descriptions to configure structures and

to resolve interfaces and interactions among

components. It then performs static semantic

checking for semantic checks such as visibility

and uniqueness of names, consistency of sig-

nals defined in blocks, processes, and services

as well as consistency and completeness be-

tween incoming signals and outgoing signals,

and channel connectivity and consistency in

interaction diagrams. To analyze the dynamic

behavior of a system described in SDL, the dy-

namic semantic analyzer can effectively con-

struct a symbol table and a state transition ta-

ble from transformation rules based on SDL

syntax and semantics, generate a reachability

graph, and perform dynamic behavior check-

ing and generate diagnosis messages for dead-

locks, unreachability, detection of cycles and

no receiver.

C. Generation of CHILL Programs

From SDL/GR and SDL/PR that are rep-

resented by GSDL, a CHILL program can be

generated. The generated CHILL code cannot

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 271

be guaranteed to be completely executable un-

less the SDL user provides additional CHILL

code inside the SDL symbols as detailed as

possible, as specified by the programming lan-

guage, because of the degree of details and se-

mantic gap between specification (or design)

and implementation. One of the most difficult

problems is data type conversion. The gener-

ated code can be executed on the CHILL Sim-

ulation Environment.

D. Prototyping Based on the CHILL Simula-
tion Environment

The automatic generation of CHILL pro-

grams enables users to use the prototype exe-

cutable code to refine SDL specifications and

descriptions by the CHILL Simulation Envi-

ronment. In the early design phase, all kinds

of execution modules could be constructed and

tested according to the system hierarchy in

SDL. After a basic test is performed for each

block, the (part of) system is integrated by

adding the individually tested blocks and veri-

fied/validated whether a certain function meets

its specification.

2. CHILL Programming Environment

The CHILL programming environment

(CPE) consists of the CHILL compilation

system (CCS) and the CHILL programming

support environment (CPSE). CCS consists of

: the native compilers for the host machines

VAX/UNIX, SUN-3/UNIX, MIPS, ALPHA,

and SUN/Solaris; the cross-compilers for

target switching systems; the separate com-

pilation system which supports piecewise

programming. The CPSE includes the fol-

lowing tools: a syntax-directed editor; a

set of language-sensitive tools for assisting

program development in CHILL such as an

interface analyzer, a static analyzer, a pretty

printer, a cross-reference generator; a set of

cross-development tools for building target

programs, including cross-assembler/linker,

program builder, and down-loader.

A. High Portability

CPE was designed paying much attention

to retargetability of the compilers and rehosta-

bility of the tools in order to promote flexi-

bility of the CPE. We separated the language-

dependent part from the machine-dependent

part in building the compilers. Each compiler

is mainly composed of a front end and a back

end. The front end, which emits intermedi-

ate code, EM [24], is shared by the compil-

ers, while several back ends exist for the cor-

responding host or target machines. The back

end employs a pattern matching table-driven

code generation technique to facilitate retar-

geting. It enabled us to make a code generator

for a new machine just by preparing a machine

description table, even if it required some hard

work to find better code patterns. We also de-

veloped an RTL translator for translating the

EM code to the RTL code that is an interme-

diate code of GNU compilers. The RTL trans-

lator makes it possible for the CHILL compil-

272 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

ers to use many new machine back ends and the

good optimization facility of the GNU compil-

ers. The separation and reduction of machine-

dependent part enabled us to develop a native

compiler and a cross-compiler simultaneously

without spending lots of time. It also allows

the environment to meet processor improve-

ment of target systems.

B. Safe Separate Compilation

Since the characteristics of large-scale

switching systems software are programming-

in-the-large and programming-in-the-many,

ensuring the consistency between imple-

mentation modules and their specifications

in whole system is an important problem.

The issue of separate compilation for very

large-scale software is that we have to make

the implementation modules and their spec-

ifications automatically consistent in every

update for guarantee of safety. Our approach

is that the specifications of implementation

modules may be manually or automatically

derived from the modules in order to ensure

their consistency. The separate compilation

is done in three steps: automatic specifica-

tion generation, change analysis [25], and

compilation or recompilation. The automatic

specification generation approach eliminates

the writing of specification modules which

are required to provide interface information.

The modification of implementation mod-

ules causes the compiler to generate their

specifications. After the compiler performs

visibility and semantic analysis, the compiler

generates the information for the granted

names with derived mode information and

the seized names for specifications. A change

in the specification may directly or indi-

rectly affect associated modules. This causes

change analysis to check the consistency of

the specifications for all modules. If some

changes occurred, it produces the context

files corresponding to the source files affected

just by the changes. Updating a context file

causes recompilation of the corresponding

implementation modules. In this case, the

compiler includes the context file and com-

piles the source program again. The sequence

of actions can be represented in time depen-

dency among files containing implementation,

specification modules, contexts, and so on.

The configuration manager determines such

time dependencies for the given configuration

description. Actual control of the separate

compilation procedure is realized by means of

the make facility in UNIX.

C. Multi-language : CHILL and UNIX/C

For the enhancement of system portabil-

ity, UNIX machines were decided to be the

host machines for CPE and every tool. In our

experience, porting CPE from VAX/UNIX to

SUN workstation took a few weeks. Further-

more, by keeping a compatible interface be-

tween CHILL and C procedures we can take

advantage of various UNIX capabilities such

as I/O routines and a variety of libraries on the

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 273

host as well as on the target system. To achieve

a compatible environment of CHILL and C,

some features were considered or added, such

as call frames like in C, compatible data repre-

sentation for common data types, string liter-

als, and so on.

3. CHILL Debugging Environment

The internal layer architecture and tools

of the CHILL Debugging Environment (CDE)

are shown in Figure 4.

Fig. 4. CDE architecture.

A. Debugging of Concurrent Programs on
the Host

The host debugger [26] can debug CHILL

programs on the host at source level. Since

concurrent processes are created and main-

tained by the CHILL Run-time System (CRS)

under a UNIX process on the host, retrieval

of the status of CHILL processes and synchro-

nization primitives can be done by accessing

data structures of the run-time system, and full

control of individual threads is performed. For

tracing a particular process instance or setting

breakpoints at them, the debugger performs

selection of a process only when the control

reaches a predefined process name or process

instance. This capability will lead users to set

conditional breakpoints in process instances.

The debugger can also communicate interac-

tively by using CHILL signals to CHILL pro-

grams.

B. Cross Debugging

The cross-debugger [27] is a tool running

on the host to trace and debug programs at

source level being executed on the target, com-

municating with a target debugger [27] that

is a primitive debugger residing on the target.

The cross-debugger accesses all the resources

such as source code and symbolic information

on the host, and controls debugging processes

by minimal support of the target. The cross de-

bugger has a similar functionality as the host

debugger except for the tracer part. When

starting a debugging session, the cross debug-

ger separates the actual executable code from

the symbolic information, then downloads the

actual code on the target. The main concept

of cross debugging is implemented in a cross

tracer that is the entry point to the target sys-

tem. The cross tracer can control all the cross

debugging processes with a small set of the

low-level operations. All operations and re-

sults to/from the target debugger are handled

through the cross tracer via the communication

link. The host debugger receives the execu-

tion results in the form of raw data. It displays

this data at the CHILL-level. The target debug-

274 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

ger has low-level operations such as reading or

writing contents of memory and registers, set-

ting breakpoints at instruction level, executing

a piece of code, and providing concurrent pro-

cessing information via a request to the target

operating system.

C. Regression Testing of Real-Time
Programs

Debugging of a concurrent program is dif-

ficult due to its nondeterministic behavior and

timing constraints imposed on them. These

two factors rule out the reproduction of an

error. The deterministic replay mechanism

records only events that cause nondetermin-

istic behavior of concurrent processes in the

event history and replays the concurrent pro-

cesses using a scheduling method which exe-

cutes concurrent processes following the order

of the recorded events. These facilities are per-

formed by the event monitoring system which

records dependent events which affect the run-

time behavior of concurrent programs and by

the deterministic replay which controls the re-

production of the program behavior using a

recorded event history and input data.

4. CHILL Simulation Environment

Our large-scale switching systems have

distinguished characteristics that are real-time,

embedded, interactive, and distributed. These

systems contain very large and complex

software. Therefore, in the development of

switching software, simulation is believed

to be one of the most important processes in

producing expensive,high-quality software.

The internal layer architecture and the sim-

ulation environment tools are shown in Fig-

ure 5.

Fig. 5. CSE architecture.

A. Simulation of Distributed Concurrent
Processing

CHILL provides a variety of concurrent

processing features: process, mutual exclu-

sion, event, buffer and signal. The CHILL

Run-time System (CRS) provides simulation

of all the concurrent processing features. CRS

consists of a kernel and CHILL primitive han-

dlers. The kernel provides the functions,

which are regarded as the most machine and

operating system dependent part, such as con-

text switching, scheduling, allocation of run-

time stacks for processes, and synchronization

routines invoked by primitive handlers. The

interface between application programs and

CRS is accomplished via the primitive han-

dlers. Since they are realized by procedures in-

voked by processes, they execute their func-

tions on the process contexts of the invoking

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 275

processes. When a program starts, the con-

trol goes first to the kernel of the CRS in the

context of the UNIX process. Then the ker-

nel initializes the status and it creates the out-

ermost process that is the parent process of all

CHILL processes to be created later, and it al-

locates run-time stack for the process. At this

time the application program is executed in the

context of the outermost process. Since each

action statement for concurrent processing is

translated by the compiler into one or more

primitive handler calls, a handler is invoked in

the same way of procedure call mechanism in

the context of the calling process. The differ-

ence to ordinary procedures is that the primi-

tive handlers are allowed to access the kernel

data structures. A handler may return to the

calling process, completing the request, or it

may be blocked. When it is blocked, it causes

context switching to the kernel process. Then

the scheduler selects a process from the ready

queue, and resumes that process.

For simulation of distributed processing

which is performed by the CHILL signals in

switching systems, communication between

processes of other modules are achieved via

common shared memory mechanism in UNIX.

On the other hand, communication between

processes within a module is achieved via lo-

cal shared memory which is dedicated to the

module. The two types of shared memory

are allocated by the CHILL Shell, and used

and managed by the CHILL Run-time System.

The process control block of processes and in-

formation on signals is stored in the common

shared memory. Information on event, buffer,

and region are stored in the local shared mem-

ory. Semaphores for the two types of shared

memory are respectively allocated to support

mutual exclusion.

B. Event Monitoring

The switching system is composed of

many processes, and the synchronization

and communications between the processes

are achieved mainly by signals. Correctness

of the system depends on the contents and

sequences of signals transmitted between the

processes. Thus, our approach to simulate a

switching system is based on the event mon-

itoring technique [28], which traces signals

and messages transmitted between processes

with a post-mortem view of the execution of

the program. The signal tracer records the

events occurring while a module is executed

into a signal database, which will be used for

tracing signals. The signal analyzer analyzes

the information on signal transmission history

between processes in the database which were

generated by the signal tracer, and displays

them on a graphic window.

C. Application Library for Simulation

To simulate the switching system software

on the host machine, a library for timer man-

agement is provided. The timer manager [29]

manipulates time constraints for the real-time

system based on the UNIX timer. It can con-

trol activation of a special process, receiving

a registered signal and stopping of a process

on the CRS. Since the data in the TDX-10 is

276 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

managed by the Data Base Management Sys-

tem (DBMS) which is the relational data model

with real-time responses, the DB simulator

provides the simulation facilities of the DBMS

for the switching system on the CRS.

D. Interactive Facility for Simulation

For the interactive facility for simulation,

the CHILL Shell interprets and executes user

commands interactively, and shows states of

processes as running or being delayed. It can

also send messages to the running processes

with a data form in CHILL. Moreover, one or

more CHILL programs on CHILL Shell can

be executed. The CHILL Shell allocates the

shared memory and semaphore, required by

the module before the execution, and deallo-

cates them after their execution.

5. Comparisons with Related Works

SDT [9] and GEODE [10] focus on SDL

and MSC environments for the design phase,

while CHIPSY [14] focuses on a CHILL

implementation. However, ISDE covers all

phases from the design phase to testing based

on integrated methodologies and methods.

SDT and GEODE translate SDL into C but

ISDE translates SDL into CHILL. Since this

scheme can reduce the semantic gap between

the specification and the implementation, the

design phase and the implementation phase

could be consistently integrated by SDL to

CHILL translation.

ISDE is more flexible than CHIPSY in

retargeting because ISDE adopts a pattern

matching table driven code generation scheme

[24] and GNU back ends with code optimiza-

tion of high quality. Moreover, our experi-

ence shows the EM code that was suggested

by Tanenbaum [24] does not have a sufficient

instruction set for RISC machine and CHILL.

Thus, we have extended the EM instruction set

by the addition of functions for supporting ef-

ficiently parameter passing, bit manipulation,

and function pointer manipulation.

In comparison with state graph [10] in

GEODE, our numerical Petri-Net [22] for SDL

was restrictive to use for analysis of a large sys-

tem because the number of states of numerical

Petri-Net can increase rapidly due to incremen-

tal integration of SDL specification. However,

it is helpful in the early time of the design phase

for checking interactions among blocks.

Although Tichy’s separate compilation

scheme [25] minimizes recompilations by

incremental change analysis, it causes the

difficult problem to determine the sequence of

the recompilations for resolving semantic and

its cyclic dependency. Our separate compi-

lation scheme also minimizes recompilation.

Moreover, our separate compilation scheme

does not depend on the sequence of recom-

pilation, because it performs 3 steps, that are

specification generation, change analysis, and

context generation, in the context of an entire

program at once. In an early stage of large

software development, this scheme was very

useful in practice, it was inefficient in the last

stage of the development because whenever

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 277

a change occurred, checking of all system

interface had to be performed. To solve this

disadvantage, our scheme was modified to

perform 2 stages of separate compilation:

one was change analysis in system interfaces

and the other was change analysis within an

executable module.

IV. EXPERIENCES FROM THE
USE OF ISDE IN TWO
PROJECTS

1. Comparison of two Experimental
Projects

An experimental project for developing a

demo system was performed by university stu-

dents. The object system was a small subset

PABX (Private Automatic Branch eXchange)

demo system that has simple basic functions

for call processing and maintenance. Its archi-

tecture was designed as a distributed concur-

rent system based on message passing as in the

TDX series. The project was composed of sev-

eral sub-projects according to what methodol-

ogy was applied. Among them, in this paper,

the two approaches in Table 1 were observed.

The methodology and tools of project A were

STD (State Transition Diagram) and MSC for

design. The C language and its programming

environment in UNIX were used as implemen-

tation tools. This approach is very similar to

the previous approach in our organization.

For the verification of design specifica-

Table 1. Comparison of the two approaches.

Project name A B

Development environment STD, MSC, C ISDE

of source line (LOC) 3420 3400

Design 1.9 2.8

Man power Implementation 2.2 1.1

(MN)
Testing 3.2 2.1

Total 7.3 6.0

Design 3 1

Defect Implementation 8 5

Total 11 6

Productivity (LOC/DAY) 16 19

Quality (LOC/DEFECT) 310 567

tions, the STD static analyzer and MSC an-

alyzer were used. From the experimental

project, some data are shown in Table 1. Con-

sidering the indications of Albrecht [30] that 1

line of source (LOC) of CHILL approximates

1.29 times the functionality of 1 LOC of C,

the number of C source code lines are com-

pensated by multiplying the factor for the func-

tionality. The effect of other major factors [31]

for evaluating productivity and quality are ne-

glected because the important factors includ-

ing people, problem, product, and resources

are approximately the same. After the devel-

opment of the two demo systems, the defects

shown in Table1 were reported until the com-

278 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

pletion of the projects, that was about 1 month.

In this paper, we use the definition of the pro-

ductivityand quality which is defined by Press-

man [32] as follows:

Productivity = LOC/person-day, where LOC is line

of code

Quality = LOC/Defect, or

= Byte/Defect, where Byte is memory size

of code

From the Table 1, we can observe the follow-

ing aspects:

� The results of this project show that the

productivity and quality of our approach

is 18.7 % and 82.9 % higher than of the

ordinary approach.

� The portion of implementation and test-

ing cost is remarkably reduced. On the

other hand, that of design cost is in-

creased. However, it was possible to de-

crease the total cost of the development

of a system. Figure 6 shows compar-

isons of the time spent in each phase, us-

ing the ISDE approach and the ordinary

approach.

� By using the formal specification and

concurrent languages with powerful

verification and validation tools, ISDE

remarkably enhances the reliability

of software which is one of the most

important characteristics of switching

system software.

� SDL/CHILL are more suitable lan-

guages than STD/C to develop real-time

concurrent systems based on dis-

tributed architecture because SDL and

CHILL provide formal specifications

and languages features for concurrent

processing and distributed processing.

Fig. 6. Effort spent in the two approaches.

2. Development of the TDX-10 ISDN
Switching System

The development project of a large-scale

switching system for ISDN (Integrated Ser-

vices Digital Network), that is TDX-10 ISDN

[16], was performed for 5 years since 1990 in

ETRI. In 1992, the system was tested and pro-

duced good results. For 3 years from 1993

on, the system has been commercialized, and

in 1995 the first cut-over and operation be-

gan. Table 2 describes the status of the defects

of that period. From 1990 to 1992, we spent

12 months for formal specification and design,

8 months for CHILL programming, and 16

months for debugging and integration testing.

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 279

Some parts of the software matrix of TDX-10

ISDN is shown in Table 2.

Table 2. TDX-10 ISDN Software.

of source files 2,120

of source lines (executable code) 985,186

Object size (KBYTE) 19,737

of procedure definitions 8,202

of process definitions 748

of signal definitions 4,085

Total man power (MM) 171

of defects 1,203

System design (%) 2.7

Defect Implementation (%) 58.0

Operational data (%) 3.1

Interface & integration (%) 22.3

Productivity (LOC/DAY) 26.3

Quality (LOC/DEFECT) 1,602

Quality (KBYTE/DEFECT) 16.3

The result data from the application of

TDX-10 ISDN switching system is that pro-

ductivity is 26.3 LOC/Day and quality is 1602

LOC/Defect. If memory size is used as a mea-

sure of software size in stead of LOC, the qual-

ity is 16.3K Byte/Defect. This result is higher

than some other studies [33,34]. The compar-

isons with some other studies are as following:

� F. Myatty [33] gives statistical data

for productivity and quality based on

a size-oriented software matrix. For a

medium-sized software system, 10 to

20 lines of executable source code are

typically produced per day per person

during the entire period of development

of the system. The approximate number

of errors found in every 1000 lines of

executable source code in a delivered

software system is less than 4 errors.

� Data of a successful project for the de-

velopment of a robot controller called

RC2000 in General Electric Company is

published by J. L. Lawrence [34]. He

explains that the project is a very suc-

cessful project in its area. The project

used the DARTS (Design Approach for

Real-Time Systems) method [35] that is

a data flow approach for design and a

programming language that is very sim-

ilar to Ada. The DARTS design method

can be thought of as extending the Struc-

ture Analysis/Structure Design method

by providing an approach for structuring

the system into tasks with synchroniza-

tion as well as a mechanism for defin-

ing the interfaces between tasks. J. L.

Lawrence estimated that software pro-

ductivity of the project was 20 LOC/Day

and software quality based on memory

size was 4.2K Byte/Defect. Almost half

the members of the development team

280 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

worked on the previous project.

Productivity and quality in the TDX-10

ISDN project is 32 % and 290 % higher than in

the RS2000 project respectively. The two sys-

tems have similar system requirements includ-

ing real-time, concurrent processing, and em-

bedded system. In the case of Myatty’s study

[33], the productivity of our approach is 32 %

higher and the quality is up to 500 % higher.

From the above comparisons, we can conclude

that ISDE contributes to enhance the produc-

tivity and quality of switching systems. Espe-

cially, it was very helpful to enhance the relia-

bility of the switching system by formal spec-

ifications with verification and validation. Al-

though the software was a very large-scale and

complex concurrent parallel processing sys-

tem, ISDE was successfully applied and used

in developing the TDX-10 ISDN.

3. Benefits from Using ISDE

Our experiences of ISDE applied to the

development of switching system software

shows that this environment has made a great

contribution to productivity and quality en-

hancement of complex distributed concurrent

processing systems in the following aspects:

� Precise design specification using SDL

and MSC.

� The quality of design specification could

be much improved by the checking of

static and dynamic semantics for cor-

rectness and execution of design speci-

fication in the context of the target envi-

ronment.

� Owing to the simulation of design speci-

fications by automatic CHILL code gen-

eration, the target system could be pro-

totyped rapidly in the early phase and

almost all of the design errors could be

detected and removed. Moreover it al-

lowed us to define and test interfaces

well. This activity contributed to de-

creasing the total cost of development

and maintenance.

� Automatic generation of CHILL code

skeletons

� The smooth transition with the correct-

ness checking from the design phase to

the implementation phase through the

automatic program generation allowed

us to decrease implementation costs of

large-scale software.

� High portability of CPE was an impor-

tant factor when deciding the target pro-

cessors and computer environment for

users. It took about 1 year to port CPE

for a new target process including new

development of the optimization, and

about 6 months for a new host worksta-

tion. The GNU back ends in CPE were

used for experiments to estimate the per-

formance of switching system software

in a new processor within a short time.

These allow us to adopt easily the new

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 281

processor for target systems and host

computers.

� Separate compilation based on au-

tomatic context generation, change

analysis, and strong safety checking

were very efficient in programming-in-

the-many and in-the-large by supplying

valid interfaces before integration.

However, in the latter half of de-

velopment, the overhead of the safe

compilation increased because the sys-

tem interfaces were fixed and changes

of the code occurred in local scope.

� During integration testing, simulation

activities on the host machine were very

helpful for developing very large-scale

distributed software because all kinds of

execution modules defined in the system

hierarchy in SDL could be constructed

easily and they could be simulated on

the host environment to test their dy-

namic interactions by tracing all mes-

sages among the execution modules.

� In the host simulation, special situations

which may occur in operation could be

generated by additional software for test

case generation. These kinds of testing

were very useful to improve the reliabil-

ity of target software.

� Since several companies were involved

in the development of TDX-10 ISDN,

our environment played a key role in

providing a standard working environ-

ment for cooperations with other com-

panies. As a result, it facilitated tech-

nology transfer to cooperating compa-

nies based on common methodologies

and methods.

The experiences of SDL and CHILL usage

are as follows:

� SDL is a useful language for people to

abstract, project, and decompose large

and complex problems. Moreover, the

SDL descriptions are very useful as a

communication mechanism because no

serious problems arose in conveying de-

sign ideas represented in SDL from the

design organizations to the implementa-

tion organizations.

� Standard SDL usage rules were defined

to improve understandability and to set

up SDL subset rules. The followings are

SDL features that were not used: ser-

vice, signal refinement, block substruc-

ture, channel substructure, view and re-

veal. For efficient communication, ex-

tensions of SDL to support Event and

Buffer defined in CHILL were required.

The concurrent features in CHILL with

exception handling were estimated very

well due to efficiency and semantic con-

sistency of SDL.

� For efficient communications, signal

features for set-up of initial commu-

nication channels in CHILL were

282 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

introduced. We defined an initial signal

and a normal signal. The normal signal

is used when both the process instance

of sender and receiver are identified

before communicating. The initial

signal is used when the process instance

of the receiver is not identified. The

sender should send the initial signal to

the destination processor. The extended

statement for the send action is denoted

as “SEND initial-signal IN destination-

processor;”. The receiver should inform

a list of initial signals to be received

to the demon process operated in its

processor. Then the demon process can

know which process wants to receive

what initial signals. So, when an initial

signal has arrived, the demon process

assigns a receiver and passes the signal

to the destination process. Then an

initial communication channel is estab-

lished. The mechanism of initial signal

reduced much communication overhead

for broadcasting or multicasting to a

process definition.

� Concurrent features in CHILL were also

extended for supporting target operating

system dependent facilities efficiently.

Since CHILL defines that all of the

signals should be saved, which is the

opposite to the semantics of SDL, we

added a nonpersistent property to the re-

ceive case action for signals. The ex-

tended receive case statement is denoted

“RECEIVE CASE [NONPERSISTENT

EXCEPT signal-names];”. NONPER-

SISTENT means that the signals are not

saved. EXCEPT describes the signals

which are saved. The default action

for signal is persistent for the signals.

Extended mechanism for signals could

reduce overheads of the operating sys-

tem for saving unnecessary signals, and

also remove the semantic gap between

CHILL and SDL.

� The start action in CHILL is extended

by directives for efficient resource allo-

cation, time supervision and agent facil-

ity. Some directives are as follows:

- STACKSIZE directive describes

the stack size of process. The de-

fault size of the imaginary outmost

process is 4K byte and of internal

processes is 1k byte.

- SYSTEM directive means the

started process is system process.

In comparison with a user process,

a system process has more author-

ity to use resources of the system

and a higher priority.

- PROXY directive generates an

agent process that has the same

process instance value as the start-

ing process or a specified instance

value in the directive. When

an agent process is started, then

the parent process is terminated.

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 283

Since the agent process and its

parent process can have the same

instance value, the agent process

can perform the roles of the parent

process and new missions of the

agent process.

� Compatibility of CHILL and C made

it possible to develop the target operat-

ing system and ISDE in parallel and to

use utilities of the UNIX environment

as well as the input/output facility of

UNIX/C.

� Some features of CHILL were rarely

used. Typical examples were nested

modules, begin end blocks and defini-

tion of buffer or event within a process.

The number of unused keywords in the

CHILL definition was about 20. Some

of them are addr, based, begin, bin, card,

entry, forbid, getstack, max, pred, ptr,

row, result, upper, xor. This fact shows

that it is necessary to adapt CHILL to

each organization by pruning some al-

ternative and complex language features

for better understanding of CHILL and

simplifying the development of compil-

ers and related tools.

V. CONCLUSIONS

We have developed an integrated software

development environment for switching sys-

tems based on ITU-T languages to enhance the

productivityand quality of software. The envi-

ronment supports activities to specify and de-

scribe the behavior of desired switching sys-

tems in SDL with MSC, to generate and com-

pile CHILL programs automatically, and to de-

bug and simulate distributed concurrent real-

time CHILL programs. For the integrated tool

environment to support the given methodol-

ogy, the environment has been built to have

high transportabilityand flexibilitybased on an

integrated layered architecture.

Our experience in applying the environ-

ment to software development for switching

systems shows the following:

� The environment increases software

productivity by 19 %. The effective fac-

tors are integrated methods to reduce the

cost of development and maintenance

such as debugging and maintenance of

software at design level, error detection

in early phases, easy rapid prototyping,

debugging for distributed real-time

concurrent property, and integration test

on a host machine by simulation.

� The environment also enhances soft-

ware quality by 83 % by using for-

mal methods with CASE (Computer-

Aided Software Engineering) tools such

as formal specification with verifica-

tion and validation, simulation and test-

ing of specifications, automatic CHILL

code generation, concurrent program-

ming, safe separate compilation, dis-

tributed concurrent debugging, and sim-

284 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

ulation of entire application software of

the target system.

By development of the environment to as-

sist a consistent methodology and to provide

well-integrated methods with tools based on

ITU-T languages, we conclude that this envi-

ronment is a good solution to improve soft-

ware productivity and quality of large-scale

switching system and it can also be utilized

in other fields of telecommunications system

development because of their transportability

and flexibility with compliance to ITU-T stan-

dard languages. Currently, we are extending

ISDE to support object-oriented design and

implementation based on ITU-T languages and

object-oriented testing and maintenance based

on Kung’s approach [36].

REFERENCES

[1] Michal Young, Richard N. Taylor, and Dennis B.

Troup, “Software environment architectures and

user interface facilities,” IEEE Transactions on

Software Engineering, vol. 14, no. 6, 1988, pp.

697-708.

[2] A. N. Habermann and D. Notkin, “Gandalf: Soft-

ware development environments,” IEEE transac-

tions on software engineering, vol. SE-12, no. 12,

Dec. 1986, pp. 1117-1127.

[3] R. Kadia, “Issues encountered in building a flexible

software development environment,” Fifth ACM

SIFSOFT Symposium on Software Development

Environments, Virginia, USA, Dec. 1992, pp. 169-

180.

[4] CCITT, “CCITT high level language (CHILL),”

Recommendation Z.200, ISO/IEC 9496, 1995.

[5] K. Rekdal, “CHILL - The standard language for

programming SPC system,” IEEE Transactions on

Communications, vol. 30, no. 6, 1982, pp. 24-28.

[6] CCITT, “CCITT specification and description lan-

guage(SDL),” RecommendationZ.100, COM X-R

17-E, May 1992.

[7] CCITT, Message Sequence Charts (MSC), Recom-

mendation Z.120, Geneva, 1992.

[8] J. H. Heilesen, B. Michael, B. Renard, “Confor-

mance testing of SDL support tools,” SDL ’93 Us-

ing Objects, O. Faergemand and Amardeo Sarma,

Ed., North-Holland, 1993, pp. 411-426.

[9] Per Blysa, “SDT: The SDL design yool,” SDL

’93 Using Objects, O. Faergemand and Amardeo

Sarma, Ed., North-Holland, 1993, pp. 513-514.

[10] Vincent Encontiere, “GEODE,” SDL ’93 Using

Objects, O. Faergemand and Amardeo Sarma, Ed.,

North-Holland, 1993, pp. 501-503.

[11] G. Amsjo, A. Nyeng, “SDL-based software devel-

opment in siemens A/G - Experience of introducing

rigorous use of SDL and MSC,” 7th SDL Forum,

Oslo, September 1995, pp. 339-348.

[12] Kristen Rekdal, “CHILL - The international stan-

dard languages for telecommunications program-

ming,” Telektronikk, vol. 89, no. 2/3, 1993, pp. 5-

10.

[13] N. Sato, K.Ohmori, “Construction of CHILL en-

vironment using generally available tools,” 5th

CHILL Conference, Rio de Janeiro, Brazil, Mar.

1990, pp. 145-152.

[14] CHIPSY Reference Manual, Version 15.020, Kva-

tro Telecom AS, 1994.

[15] J. F. H. Winkler et al., “Object CHILL - An object-

oriented language for telecom applications,” XIV

International Switching Symposium, Yokohama,

Japan, Oct. 1992, vol. 2, pp. 204-208.

[16] H. G. Park, “Narrowband and broadband ISDN

technologyimplementation by TDX switching sys-

tem,” International Symposium on Telecommuni-

cations, Slovenia, Oct. 1992, pp. 119-122.

ETRI Journal, volume 18, number 4, January 1997 DongGill Lee et al. 285

[17] J. P. Hong et al., “Integrated SDL environment,” in

SDL ’89: The Language at Work, O. Faergemand

and M. M. Marques, Ed., North-Holland, 1989, pp.

117-126.

[18] J. P. Hong, DongGill Lee, K. S. Park, and H. G.

Bahk, “A CHILL programming environment,” 5th

CHILL Conference, Rio de Janeiro, Brazil, Mar.

1990, pp. 166-174.

[19] E. H. Paik et al., “Debugging and simulation envi-

ronment for a Switching System,” Pacific Telecom-

munications Conference, Hawaii, Jan. 1994, pp.

642-646.

[20] K. S. Park, “Simulation environment for telecom-

munication systems,” Conference on communica-

tion technology, China, June 1994, pp. 1387-1391.

[21] Chan J. Chung et al., “Using SDL in switching sys-

tem development,” in SDL ’89: The Language at

Work. O. Faergemand and M. M. Marques, Ed.,

North-Holland, 1989, pp. 377-386.

[22] Hwan C. Kimvol et al., “The automated verifica-

tion of SDL specifications using numerical petri-

nets,” SDL ’91: The Language at Work. O. Faerge-

mand et al., Ed., North-Holland, 1991, pp. 83-94.

[23] Hong-Keun Kim et al., “Data modeling and im-

plementation of repository for SDL ’92 environ-

ments,” Changha International CASE Symposium

’95, China, Oct. 1995, pp. 122-127.

[24] Andrew S. Tanenbaum et al., “A practical tool kit

for making portable compilers,” Communications

of the ACM, vol. 23, no. 9, 1983, pp. 654-660.

[25] Walter F. Tichy, “Smart recompilation,” ACM

Transactionson ProgrammingLanguagesand Sys-

tems, vol. 8, no. 3, 1986, pp. 273-291.

[26] S. H. Kim et al., “Source-Level debugging CHILL

programs,” 5th CHILL Conference,Rio de Janeiro,

Brazil, Mar. 1990, pp. 227-236.

[27] Jun-Cheol Park et al., “A debugger for CHILL pro-

grams in a cross-development environment,” 5th

CHILL Conference, Rio de Janeiro, Brazil, Mar.

1990, pp. 211-215.

[28] C. McDowell and D. Helmbold, “Debugging con-

current programs,” ACM Computing Surveys, vol.

21, no. 4, Dec. 1989, pp. 593-622.

[29] Eun-Hyang Lee et al., “An implementation of time

manager for CHILL run-time system,” ’92 The Ko-

rea Information Science Society Conference, vol.

19, no. 2, Korea, Oct. 1992, pp. 531-534.

[30] A. J. Albrecht, and J. E. Gaffney, “Software func-

tion, source lines of code and development effort

prediction,” IEEE Transactions on Software Engi-

neering, vol. SE-9, no. 6, Nov. 1983, pp. 639-648.

[31] Walston, C, and C. Feiix, “A method for program-

ming measurement and estimation,” IBM Systems

Journal, vol. 19, no. 1, 1977, pp. 54-73.

[32] Roger S. Pressman, Software Engineering - A

Practitioner’s Approach. McGraw-Hill, 1992.

[33] F. Mynatt, Software Engineering with Student

Project Guide. Prentice-Hall, 1990.

[34] J. L. Lawrence, “The RC2000: A software success

story,” ACM Sigsoft Software Engineering Notes,

vol. 10, no. 1, Jan. 1985, pp. 31-42.

[35] H. Gomaa, “A software design method for real-

time systems,” Communications of the ACM, vol.

27, no. 9, Sep. 1984, pp. 938-949.

[36] David Kung, Jerry Gao et al., “Developing an

object-oriented software testing and maintenance

environment,” Communications of the ACM, vol.

38, no. 10, Oct. 1995, pp. 75-86.

286 DongGill Lee et al. ETRI Journal, volume 18, number 4, January 1997

DongGill Lee received the

B.S. degree in Electronic

Engineering from Kyoungbuk

National University, Korea

in 1983 and the M.S. degree

and Ph.D degree in Computer

Science from Korea Advanced

Institute of Science and Technology in 1985 and 1993,

respectively. He joined ETRI in 1985 and engaged

in developing Software Development Environment

for telecommunications systems from 1985 to 1993.

Currently he is working toward development of an

Object-oriented Software Development Environment

for telecommunications systems. His interesting

research area includes programming language, compiler

construction, and software engineering.

JoonKyung Lee graduated

from Sogang University with

a B.S. degree in physics 1985

and from Soongsil University

with M.S. and Ph D. degrees

in computer engineering 1987

and 1997. Since 1987 he

has worked for the development of CHILL program-

ming environments at ETRI. His research interests

include programming languages, compilers and object-

oriented system software, especially in the field of

telecommunicational switching system.

Wan Choi received the B.S.

degree in electronics engineer-

ing from Kyungpook National

University, Korea, in 1981, and

the M.S. degree in computer

science from Korea Advanced

Institute of Science and Tech-

nology, Korea, in 1983. He has obtained the professional

engineer in 1988. He has been engaged in CHILL/SDL

Software Development Environment Project as the

project leader. His research interests include software

engineering, compiler design, and computer aided

software engineering.

Byung Sun Lee received the

B.S. degree in Mathematics

from Sungkyunkwan Uni-

versity in 1980 and the M.S.

degree in Computer Science

from Dongguk University in

1982. He is currently working

toward the Ph.D. degree at Korea Advanced Institute

of Science and Technology, Taejon, Korea. He joined

ETRI in 1982, and is currently a Head of Software

Environments Section. His interests include formal

methods, software development environments, software

reliability and software fault tolerance for real-time

systems, especially for telecommunication networks

and switching systems.

Chimoon Han received the

B.E. and M.E. degrees in

electronics engineering from

Kyungpook National Uni-

versity in 1977 and Yonsei

University in 1983, respec-

tively. He received the Ph.D.

degree in electronics engineering from the University of

Tokyo, Japan, in 1990. Since he joined Korea Institute

of Science and Technology in 1977, he was involved

in developing optical fiber communication and radio

mobile communication systems until 1982. Since 1983,

He has been involved in developing ISDN user-network

interface system, LAN system, ATM switching system

and wireless ATM PCS system in ETRI. He is currently

the Director of Systems Technology Department in

Switching Technologies Division, in ETRI. His research

interests include the system architecture and its perfor-

mance evaluation, system engineering, system design,

and implementation for ATM switching systems and

wireless ATM PCS systems.

