
Erlang 4.7.3

Reference Manual

DRAFT (0.7)

Jonas Barklund
(barklund@hotmail.com)

Robert Virding
(rv@cslab.ericsson.se)

February 9, 1999

ii DRAFT (0.7) February 9, 1999 { 19 : 09

Contents

1 Introduction 1

2 Notation and glossary 3

2.1 Symbols . 3

2.2 Sets . 4

2.3 Mappings . 4

2.4 Tables . 5

2.5 Types . 5

2.6 Grammar . 6

2.6.1 Grammar notation 6

2.6.2 The lexical grammar 8

2.6.3 The main grammar 9

2.7 Glossary . 9

3 Lexical structure 21

3.1 Lexical translation . 21

3.2 Character classes . 21

3.3 Line terminators . 22

3.4 Input elements . 22

3.5 White space . 23

3.6 Comments . 23

3.7 Separators . 24

3.8 Keywords . 24

3.9 Operators . 24

3.10 Escape sequences . 24

3.11 Integer literals . 25

3.12 Float literals . 27

3.13 Character literals . 27

3.14 String literals . 28

3.15 Atom literals . 28

3.16 Variables . 29

3.17 Universal pattern . 30

3.18 Separated token sequences 30

iii

iv DRAFT (0.7) February 9, 1999 { 19 : 09

4 Types and terms 33

4.1 Types in Erlang . 33

4.2 Atoms . 34

4.3 Numbers . 34

4.3.1 Characters . 35

4.4 Refs . 35

4.5 Binaries . 36

4.6 Process identi�ers . 36

4.7 Ports . 37

4.8 Tuples . 38

4.8.1 Records . 39

4.8.2 Functions . 39

4.9 Lists and conses . 39

4.9.1 Strings . 40

4.9.2 Association lists 41

4.10 Relational and equality operators on terms 41

4.10.1 Coercion . 41

4.11 Size of data structures . 42

4.11.1 Equality between terms 43

4.11.2 The term order . 44

4.12 Lifetime of data structures 45

4.13 Memory management . 46

5 Arithmetics 47

5.1 Notation . 47

5.2 The integer type . 48

5.3 Integer operations . 49

5.4 The oating-point type . 50

5.5 Floating-point operations 51

5.6 Conversions . 54

5.7 Representation and evaluation 55

5.8 Noti�cation . 55

5.9 Conversion to and from numerals 56

5.9.1 Integer to decimal numeral 56

5.9.2 Decimal numeral to integer 56

5.9.3 Numeral with radix to integer 56

5.9.4 Float to numeral 57

5.9.5 Numeral to oat 57

6 Expressions and Evaluation 59

6.1 Environments . 59

6.2 Binding, e�ect and result 59

6.3 Variables and their scope . 61

6.4 Normal and Abrupt Completion of Evaluation 61

February 9, 1999 { 19 : 09 DRAFT (0.7) v

6.5 Order of evaluation . 62

6.6 Pattern matching . 63

6.6.1 Patterns . 63

6.6.2 De�nition of the pattern matching problem 64

6.6.3 Coding pattern matching 65

6.7 Functions, function applications and calls 66

6.7.1 Call of a named function 68

6.7.2 Call of an unnamed function 69

6.7.3 Extent of function calls and last call optimization . 70

6.8 Bodies . 71

6.9 catch expressions . 72

6.10 Match expressions . 73

6.11 Send expressions . 74

6.12 Relational and equational operators 75

6.12.1 Relational operators <, =<, >, and >= 76

6.12.2 Exact equational operators =:=, =/= 76

6.12.3 Arithmetic equational operators ==, /= 76

6.13 List concatenation operators 76

6.13.1 List addition operator ++ 77

6.13.2 List di�erence operator -- 77

6.14 Additive and shift operators 78

6.14.1 Numeric addition operators + and - 78

6.14.2 Integer bitwise operator bor 79

6.14.3 Integer bitwise operator bxor 79

6.14.4 Shift operators bsl and bsr 79

6.14.5 Disjunction operator or 80

6.14.6 Exclusion operator xor 80

6.15 Multiplicative operators . 80

6.15.1 Numeric multiplication operator * 81

6.15.2 Float division operator / 81

6.15.3 Integer division operator div 82

6.15.4 Integer remainder operator rem 82

6.15.5 Integer bitwise operator band 82

6.15.6 Conjunction operator and 82

6.16 Unary operators . 82

6.16.1 Unary plus operator + 83

6.16.2 Unary minus operator - 83

6.16.3 Bitwise complement operator bnot 83

6.16.4 Boolean complement operator not 84

6.17 Record expressions . 84

6.17.1 Record �eld index 85

6.17.2 Record �eld access 85

6.17.3 Record creation . 86

6.17.4 Record update . 86

vi DRAFT (0.7) February 9, 1999 { 19 : 09

6.18 Function application expressions 88

6.19 Primary Expressions . 89

6.19.1 Variables . 89

6.19.2 Atomic literals . 90

6.19.3 Tuple skeletons . 91

6.19.4 List skeletons . 91

6.19.5 List comprehensions 92

6.19.6 Block expressions 95

6.19.7 If expressions . 95

6.19.8 Case expressions 97

6.19.9 Receive expressions 98

6.19.10 fun expressions . 101

6.19.11 query expressions 102

6.19.12 Parenthesized expressions 103

6.20 Guards . 103

6.20.1 Guard tests . 104

6.20.2 Guard expressions 105

7 Compiling a module 107

7.1 Preprocessing . 107

7.2 Macros . 108

7.2.1 Macro de�nition 108

7.2.2 Macro unde�nition 109

7.2.3 Macro expansion 110

7.2.4 Initial set of macro de�nitions 112

7.3 File inclusion . 113

7.4 Conditional compilation . 113

7.5 Parsing . 115

7.6 Parse transforms . 115

7.7 Code generation . 116

8 Programs and modules 117

8.1 Module declarations . 117

8.2 The header part . 118

8.2.1 Export attributes 118

8.2.2 Import attributes 119

8.2.3 Compile attributes 120

8.2.4 File attributes . 120

8.2.5 Wild attributes . 121

8.3 Program forms . 121

8.4 Record declarations . 122

8.5 The module information functions 123

8.5.1 The function module_info/0 123

8.5.2 The function module_info/1 124

February 9, 1999 { 19 : 09 DRAFT (0.7) vii

9 Dynamics of modules 125

9.1 Loading or replacing a module 126

9.2 Loaded modules . 127

9.3 Exported functions of a module 127

9.4 Loading a new current version 127

9.5 Making a current version old 128

9.6 Purging an old version . 128

9.7 Checking a process for module usage 128

10 Processes and concurrency 129

10.1 An overview of Erlang processes 129

10.2 Process names . 130

10.3 Linked processes . 130

10.4 Completion of processes and exit signals 131

10.4.1 Process completion 131

10.4.2 Sending exit signals explicitly 132

10.4.3 Receiving an exit signal 132

10.5 Communication by messages 133

10.5.1 Sending a message 133

10.5.2 Message arrival . 133

10.5.3 Receiving a message 134

10.5.4 Order of messages 134

10.6 Signals . 135

10.6.1 Sending signals . 136

10.6.2 Order of signals . 136

10.6.3 Arrival of signals 136

10.7 Scheduling of processes . 137

10.8 Process group leaders . 138

10.9 Static and dynamic properties of a process 139

10.9.1 Static properties 139

10.9.2 Dynamic properties 139

11 Nodes 143

11.1 Single-node and multi-node systems 143

11.2 Registering a node . 144

11.3 Initializing and terminating friendship 145

11.4 Remote communication and magic cookies 145

11.5 Process registry . 147

11.6 Monitoring of nodes . 147

11.7 The state of a node . 147

11.7.1 Static properties 148

11.7.2 Dynamic properties 148

viii DRAFT (0.7) February 9, 1999 { 19 : 09

12 Ports 153

12.1 Overview of ports . 153

12.2 Drivers . 154

12.3 I/O terms . 154

12.4 Opening ports . 155

12.5 Controlling a port from an Erlang process 157

12.6 Transmitting data from an Erlang process to the outside . 158

12.7 Transmitting data from the outside to an Erlang process . 158

12.8 Closing ports . 160

12.9 Ports, links and exit signals 160

12.10 Static and dynamic properties of a port 160

12.10.1 Static properties 160

12.10.2 Dynamic properties 162

13 Builtin functions 165

13.1 Recognizer BIFs . 165

atom/1 . 165

binary/1 . 165

constant/1 . 165

float/1 . 165

function/1 . 165

integer/1 . 165

list/1 . 165

number/1 . 165

pid/1 . 165

port/1 . 165

record/2 . 165

reference/1 . 165

tuple/1 . 165

13.2 Builtin functions on atoms 166

13.2.1 atom_to_list/1 166

13.2.2 list_to_atom/1 167

13.3 Builtin arithmetic functions 167

13.3.1 abs/1 . 167

13.3.2 float/1 . 168

13.3.3 float_to_list/1 169

13.3.4 integer_to_list/1 170

13.3.5 list_to_float/1 170

13.3.6 list_to_integer/1 171

13.3.7 round/1 . 172

13.3.8 trunc/1 . 172

13.4 Builtin functions on binaries 173

13.4.1 binary_to_list/1 173

13.4.2 binary_to_list/3 173

February 9, 1999 { 19 : 09 DRAFT (0.7) ix

13.4.3 binary_to_term/1 174

13.4.4 concat_binary/1 174

13.4.5 list_to_binary/1 175

13.4.6 size/1 . 175

13.4.7 split_binary/2 175

13.4.8 term_to_binary/1 176

13.5 Builtin functions on tuples 176

13.5.1 element/2 . 176

13.5.2 list_to_tuple/1 177

13.5.3 setelement/3 . 177

13.5.4 size/1 . 178

13.5.5 tuple_to_list/1 178

13.6 Builtin functions on lists and conses 179

13.6.1 hd/1 . 179

13.6.2 length/1 . 179

13.6.3 tl/1 . 179

13.7 Builtin functions for modules 180

13.7.1 erlang:check_process_code/2 180

13.7.2 erlang:delete_module/1 181

13.7.3 erlang:load_module/2 181

13.7.4 erlang:preloaded/0 182

13.7.5 erlang:purge_module/1 182

13.7.6 erlang:module_loaded/1 183

13.8 Builtin functions for functions and processes 183

13.8.1 apply/2 . 183

13.8.2 apply/3 . 184

13.8.3 exit/1 . 184

13.8.4 exit/2 . 185

13.8.5 group_leader/0 185

13.8.6 group_leader/2 186

13.8.7 link/1 . 186

13.8.8 list_to_pid/1 . 186

13.8.9 pid_to_list/1 . 187

13.8.10 process_flag/2 187

13.8.11 process_info/1 188

13.8.12 process_info/2 188

13.8.13 processes/0 . 190

13.8.14 self/0 . 190

13.8.15 spawn/3 . 191

13.8.16 spawn/4 . 191

13.8.17 spawn_link/3 . 191

13.8.18 spawn_link/4 . 192

13.8.19 unlink/1 . 192

13.9 Builtin functions for process dictionaries 193

x DRAFT (0.7) February 9, 1999 { 19 : 09

13.9.1 erase/0 . 193

13.9.2 erase/1 . 193

13.9.3 get/0 . 194

13.9.4 get/1 . 194

13.9.5 get_keys/1 . 195

13.9.6 put/2 . 195

13.10 Builtin functions for nodes 196

13.10.1 erlang:disconnect_node/1 196

13.10.2 erlang:get_cookie/0 196

13.10.3 erlang:halt/0 . 197

13.10.4 is_alive/0 . 197

13.10.5 monitor_node/2 197

13.10.6 node/0 . 198

13.10.7 node/1 . 199

13.10.8 nodes/0 . 199

13.10.9 processes/0 . 199

13.10.10 erlang:set_cookie/2 200

13.10.11 set_node/2 . 200

13.10.12 erlang:set_node/3 201

13.10.13 statistics/1 . 201

13.11 Builtin functions for process registries 202

13.11.1 register/2 . 202

13.11.2 registered/0 . 203

13.11.3 unregister/1 . 203

13.11.4 whereis/1 . 204

13.12 Builtin functions for I/O and ports 204

13.12.1 open_port/2 . 204

13.12.2 port_close/1 . 204

13.12.3 port_info/1 . 205

13.12.4 port_info/2 . 205

13.12.5 ports/0 . 206

13.13 Miscellaneous builtin functions 207

13.13.1 date/0 . 207

13.13.2 erlang:hash/2 . 207

13.13.3 make_ref/0 . 208

13.13.4 now/0 . 208

13.13.5 throw/1 . 209

13.13.6 time/0 . 209

13.14 Reserved function names . 210

14 Libraries 211

14.1 The file library . 211

14.2 The io library . 211

14.3 The lists library . 211

February 9, 1999 { 19 : 09 DRAFT (0.7) xi

14.4 The math library . 211

14.4.1 acos/1 . 212

14.4.2 asin/1 . 212

14.4.3 atan/1 . 212

14.4.4 atan2/2 . 213

14.4.5 cos/1 . 213

14.4.6 cosh/1 . 214

14.4.7 exp/1 . 214

14.4.8 log/1 . 214

14.4.9 log10/1 . 215

14.4.10 pi/0 . 215

14.4.11 pow/2 . 215

14.4.12 sin/1 . 216

14.4.13 sinh/1 . 216

14.4.14 sqrt/1 . 216

14.4.15 tan/1 . 217

14.4.16 tanh/1 . 217

14.5 The string library . 217

Bibliography 219

A Summary of Erlang expressions 221

B Parse trees 223

B.1 Module declarations and forms 223

B.2 Atomic literals . 225

B.3 Patterns . 225

B.4 Expressions . 226

B.5 Guards . 230

C Portable hashing 231

C.1 De�nitions . 231

C.2 The hash function . 232

D The external term format 235

D.1 Context . 235

D.2 De�nitions . 236

D.3 The transformation . 237

E Grammar 239

E.1 The lexical grammar . 239

E.2 The main grammar . 243

E.3 The preprocessor grammar 251

xii DRAFT (0.7) February 9, 1999 { 19 : 09

\Release notes" for draft 0.7

This draft has the following important di�erences from draft 0.6:

� Cleaned up meaning of Erlang.

� Removed StandardErlang lexical rules from lexical summary. (Used

Std test in ALL Standard rules)

� Switch expression of case �xed.

� LineTerminator is only LF in Erlang 4.7.3. Warn about using whites-

pace after $.

� Fix recognizer BIFs in Erlang 4.7.3 to be only guard recognizers.

� Re-did macro de�nition and application syntax. Hopefully correct.

� All numeric literals (Integer, Decimal, ExplicitRadix and Float) are

now unsigned in the lexical structure.

� Made the logical operators have the same priorities as the additive and

multiplicative operators, as they should.

� Atomic literals now de�ned in the expression chapter as this is where

values are explained.

xiii

xiv DRAFT (0.7) February 9, 1999 { 19 : 09

\Release notes" for draft 0.6

This draft has the following important di�erences from draft 0.5:

� There is now an index (laboriously compiled).

� There is a neat summary of all Erlang expressions in xA.

� Function application is now described.

� Records are now described.

� Ports are now fully (?) described.

� Dynamic code loading is now fully (?) described.

� The external term format is now described.

� The portable (?) hash function is now described.

� Parse trees are now described.

� Added try E end to be almost equivalent with catch E .

� The description of atoms has changed (x4.2).

� All BIFs of Erlang 4.7.3 are described (x13), except two: set_node/2
and set_node/3.

� Exact equality and arithmetic equality (formerly called coerced equal-

ity) are now well-de�ned, I think (x4.11.1).

� The section about Unicode escapes is now written.

� Lowered minimummaxint to 259�1 (it was 263�1) so that on a 64-bit

machine an implementation without bignums can store all numbers as

scalars with four bits for a tag etc.

� Operators // and mod have been added (computing the same as div

and rem except that they round towards negative in�nity rather than

zero).

xv

xvi DRAFT (0.7) February 9, 1999 { 19 : 09

� Extent of function calls and last call optimization has been de�ned

(x6.7.3).

� Dropped type and rule declarations completely from the speci�cation.

� Scheduling and waiting in receive expressions is described more pre-

cisely.

I am considering:

� Moving x6.6.3 to an appendix.

Note:

� In the version for Standard Erlang, I have assumed that the pro-

posal about new BIFs will be accepted, hence there are quite a lot of

references to such BIFs. However, they are not described yet, hence

there are also quite a lot of unresolved cross-references in the Stan-

dard Erlang version. If the BIF proposal is not accepted, then I

will change to use the current BIFs also in that version, of course.

The following is what remains:

� Checking release notes for R4.

� The BIFs set_node/2 (x13.10.11) and set_node/3 (x13.10.12).

� Adding appendix about EPMD and Erlang to Erlang node com-

munication.

� If remaining proposals are accepted, incorporating them (the new BIFs

is a hog, the rest is fairly easy).

� Checking that monitoring of nodes is described properly.

PLEASE, DRAFT READERS: THERE ARE PLACES IN THE TEXT

WHERE I REQUEST INFORMATION, ESPECIALLY ABOUT VARIOUS

PARAMETERS OF ERLANG 4.7. IF YOU KNOW THESE THINGS,

EMAIL ME!

\Release notes" for draft 0.5

This draft has the following important di�erences from draft 0.4:

� It has been added to the introduction how the speci�cation relates

to the Erlang language and the implementations Erlang 4.7.3 and

Erlang 5.0.

� Some notions have been added to the glossary: expression, operator,

macro and term.

� Macro ?VERSION added. Comments?

� The description of equality tests is not quite accurate, will rewrite.

� The evaluation order has been updated to be strictly left-to-right.

� The section about guards (x6.20) has been rewritten on considerably

simpler form.

� The directionality when relating input and output environments has

been made more clear.

� It should now be even clearer that clauses are tried left to right and

that in receive expressions, all clauses are tried for a term in the

message queue before the next term is tried.

� The terminology for abrupt completion has been made more uniform.

� New chapter (x5) about arithmetics (LIA-1 based).

� New (but not yet complete) chapter (x12) about ports.

� The format for BIF descriptions has evolved and many BIFs described.

� The section about scheduling (x10.7) has been improved.

� New (short) sections about lifetime of terms (x4.12) and about memory
management (x4.13).

xvii

xviii DRAFT (0.7) February 9, 1999 { 19 : 09

Some things that are planned to be improved (and thus do not need to

be commented upon in the 0.5 draft if you agree):

� I will try to reduce the number of forward references further.

Known unclear issues:

� How should shadowing of BIFs work for those that are guard BIFs?

I have not gone through all comments from Torbj�orn Keisu. They should

be incorporated in release 0.5.1.

\Release notes" for draft 0.4

This draft has the following important di�erences from draft 0.3.1:

� `.' and `?' are now listed as separators.

� Full stops are detected properly (before white space and comments

have been thrown away).

� The structure of a module is now described as consisting of

� First a module declaration -module(ModuleName).

� Then any header forms, i.e., export, import and compile at-

tributes, together with type and rule declarations.

� Then the program forms, i.e., function declarations mixed with

file and wild attributes, record declarations and macro de�ni-

tions.

� The compilation of Erlang programs is now described in detail in x7.

� A list is now either [] or a cons in which the right part is a list.

� The description of coercion has been improved (x4.10.1).

I have taken (most of) the written comments on 0.3 and/or 0.3.1 by

HÂkan and Per Mildner into account.

Some things that are planned to be improved (and thus do not need to

be commented upon in the 0.4 draft if you agree):

� Express better the directionality when relating input and output en-

vironments of expressions.

� Express arithmetics in terms of LIA-1.

� Change the writing so that becomes clear that clauses (in case etc)

are tried left to right.

� Make the writing for receive expressions even clearer concerning the

fact that for each message, each clause is tried before the next message

is considered.

xix

xx DRAFT (0.7) February 9, 1999 { 19 : 09

� Use a more consistent terminology for abrupt completion and its

causes.

� The BIF Chapter (x13) is both incomplete and requiring changes.

� Assuming that the revised proposal about evaluation order is accepted,

the evaluation order will be changed to strict left-to-right everywere.

\Release notes" for draft

0.3.1

This draft has the following important di�erences from draft 0.3:

� Various typos have been �xed (in particular the ones in x6.10 and x6.11
about match and send expressions and in x8.5.2 about module_info/1
for imports).

� The operator and is no longer also listed as a keyword (x3.8).

� The proposed new escape sequence \s (for space) is described (x3.10).

� The blurb about process communcation has been removed from the

introduction of binaries (x4.5).

� Records are now in the term order (between tuples and lists) described

in x4.11.2.

� The unregistered_name error handler has been removed (x6.11), on
request from Klacke and Tony.

� The description of the list di�erence operator -- has been �xed so now

it may be correct (x6.13.2).

� The description of receive expressions has been somewhat adjusted

to accord better with reality and with the intentions (x6.19.9).

� The descriptions of how the clauses in if, case, receive, try and

fun expressions are checked have been improved to increase clarity

(x6.19.7, x6.19.8, x6.19.9, x6.19.10).

� The description of receive expressions has been signi�cantly im-

proved and may be correct (x6.19.10).

� The missing Section 6.20 about guards is no longer missing.

xxi

xxii DRAFT (0.7) February 9, 1999 { 19 : 09

� x10 has been almost completely rewritten and uses a new concept of

signals that comprises messages and exit signals, as well as link/unlink

requests, etc. (This is actually how it is implemented in the `5.0'

system and the presentation becomes more precise.)

� The priority high has been added (x10).

I have taken the written comments on 0.3 by Klacke and Tony into

account. The comments by Per Mildner remain (I forgot to bring them to

Stockholm).

Chapter 1

Introduction

This document is a speci�cation of the Erlang implementation called Er-

lang 4.7.3, developed at Ericsson Telecom AB.

Erlang was originally designed by Joe Armstrong, Robert Virding,

Claes Wikstr�om and Mike Williams at the Computer Science Laboratory of

Ericsson Telecommunications Systems Laboratories.

This speci�cation is primarily designed to be useful for Erlang pro-

grammers and implementors of Erlang by providing clear although mostly

informally expressed semantics for all language constructs. It should be of

use also for those developing analysis tools for Erlang although for these

purposes the semantics may have to be reformulated as a formal system.

The speci�cation should thus be able to function well as a reference

manual for the language. As such it should be a good companion to the

book Concurrent Programming in ERLANG, Second Edition [3], which is

more of a tutorial, text book and evangel than a language reference. That

edition of the book, however, uses an earlier version of the language (the

implementation Erlang 4.3).

It is also intended that the speci�cation should be useful as a basis for

a future international standardization of the language.

1

2 DRAFT (0.7) February 9, 1999 { 19 : 09

Chapter 2

Notation and glossary

In this chapter we de�ne the notation used in the remainder of the speci-

�caition, including that used for grammars. Notation that is mostly local

to a single chapter is described in that chapter. There is also a glossary

that explains various terms that are used in the speci�cation (some of them

speci�c to Erlang, some of them not).

2.1 Symbols

We use typewriter style for Erlang tokens, e.g., `foo(X) -> bar(X)'. The

symbol `X' is thus an Erlang variable.

We use slanted typewriter style for metavariables, e.g., for the `T ' in

`throw(T)'. A metavariable always consists of letters but may have an index

as in `E2' or `v1'. A metavariable stands for some unspeci�ed sequence of

Erlang tokens. The letter (and case of the letter) chosen for the main

symbol of the metavariable is an indication of the token sequences over

which the metavariable usually ranges (but the actual range is always given

explicitly in the text).

� An `E ' indicates an arbitrary Erlang expression.

� A `T ', `t ', `v ' or `w ' indicates an Erlang term. (The two latter

symbols are typically used for terms obtained as the value of some

expression, rather than a term occurring as part of the program text.)

� A `V ' indicates an Erlang variable.

� An `A ' indicates an Erlang atom.

� A `B ' indicates an Erlang Boolean atom or an Erlang binary.

� An `O ' indicates an Erlang operator.

� An `I ' indicates an Erlang integer numeral.

3

4 DRAFT (0.7) February 9, 1999 { 19 : 09

� An `F ' indicates an Erlang oating point numeral.

� A `P ' indicates an arbitrary Erlang pattern in some contexts and an

Erlang PID in others.

� An `R ' indicates an Erlang port or an Erlang ref.

� An `M ' indicates an Erlang module (i.e., a binary that is the repre-

sentation of a module).

We use italic letters in non-Erlang expressions to stand for numbers or

Erlang terms.

2.2 Sets

In set expressions, x [y and x \ y mean the union and intersection of the

sets x and y, respectively. x means the complement of a set x. x � y means

that x contains every element of y.

2.3 Mappings

A mapping is a set of pairs such that each pair has a distinct left half. We

write such a pair of v and t as v 7! t. A mapping � can be applied to a value

v, which is written �(v). If there is a pair v 7! t in �, then the application

denotes t. Otherwise the denotation is unde�ned.

We de�ne the domain of a mapping � to be the set of values occurring

in the left half of a pair in � and denote it by dom(�).

The restriction of a mapping � to a set of values d means the mapping

which is the largest subset of � such that its domain is contained in d and is

written �jd.
We say that that a mapping �0 extends a mapping � if dom(�0) � dom(�)

and for every value v in dom(�), �0(v) = �(v). That is, � is a subset of �0.

Note that the extension can be trivial | � extends �.

If �0 extends � then the di�erence between �
0 and � is the mapping con-

sisting of the pairs that occur in �
0 but not in � and is denoted by �

0 n �. In
other words, �0 n � = �

0jdom(�).
With the usual set notation we may denote a �nite mapping � with

domain fv 1; : : : ; vng by fv 1 7! �(v 1); : : : ; vn 7! �(vn)g. (All mappings

that will be discussed in this speci�cation are �nite.)

Let � and � be mappings. The result of extending � with � is a mapping

that contains all pairs of � and those pairs of � having left halves not in the

domain of � and we denote it by �� �. In other words, �� � = �jdom(�)[�.

We say that an mapping is de�ned for some value if the value is in the

domain of that mapping.

February 9, 1999 { 19 : 09 DRAFT (0.7) 5

An empty mapping has an empty set as its domain.

Most of this terminology is introduced for describing environments in

the evaluation of expressions (x6).

2.4 Tables

A table is an object with a state representing a mapping between Erlang

terms. We use the table metaphor because it is suggestive to use a termi-

nology of adding and removing rows.

A table consists of a �nite number of rows where each row contains a

key and a value, both of which are typically Erlang terms. The keys of

all rows in a table are distinct. An empty table has no rows. If t is a table

having a row with key k , then we may write t(k) for the value of that row.

Suppose that a table at a particular time contains n rows having the keys

k1, : : : , kn and values v1, : : : , vn. An association list (x4.9.2) representing
the contents of the table contains n 2-tuples {ki,vi}, 1 � i � n, in some

order. A list representing the keys of the table contains n terms ki, 1 � i � n,

in some order.

2.5 Types

When describing BIFs (x13) we include information about their types. This
information imposes constraints on which should be the types of the eval-

uated arguments and what the type of the result can be. The signature of

a BIF is written in accordance with that used for the experimental type

checker for Erlang [17, 18]. The type expressions listed in Table 2.1 are

used in this description: The type of a function F/n is expressed on the

form

F(T1;1,...,T1;n) -> T_1 ;

F(T2;1,...,T2;n) -> T_2 ;

: : :

F(Tk;1,...,Tk;n) -> T_k

and says that

� If F/n is applied to n arguments that are of the types T1;1, : : : , T 1;n ,

then the result is of type T 1.

� Otherwise, if : : :

� Otherwise, if F/n is applied to n arguments that are of the types Tk;1,

: : : , Tk;n , then the result is of type Tk.

This should cover all valid combinations of argument types for F/n .

6 DRAFT (0.7) February 9, 1999 { 19 : 09

Type expression Type

AtomicLiteral the denoted term

atom() atom

bool() Boolean

char() character

int() integer

float() oat

num() integer or oat

ref() ref

bin() binary

pid() PID

port() port

function() function

tuple() tuple

{T1,...,Tk} k-tuple with elements of types T1, : : : , Tk

[T] list with elements of type T

string() string

term() any Erlang term

Table 2.1: Types in Erlang.

2.6 Grammar

2.6.1 Grammar notation

The purpose of a grammar is to de�ne sets of well-formed sequences of

terminals, called syntactic categories. Some examples of syntactic categories

in this speci�cation are AtomicLiteral and Expr, which consist of the atomic

literals and the expressions of Erlang, respectively.

The terminals can be, e.g., individual characters of some alphabet, or

elements of some other set of tokens. The set of tokens may be in�nite but

it must be possible to partition them into a �nite number of categories. The

grammar will only be concerned with the category to which a token belongs.

We use a standard grammar formalism as explained, e.g., by Aho &

Ullman [1] (although we use a somewhat di�erent syntax than in their ex-

position). A grammar consists of a set of productions. Each production

consists of a head, which is a syntactic category, and a body, which is a �nite

(and possibly empty) sequence of terminals and syntactic categories.

A production is written as in

RecordField :

AtomLiteral = Expr

where RecordField is the head and AtomLiteral = Expr is the body consisting

February 9, 1999 { 19 : 09 DRAFT (0.7) 7

of a syntactic category AtomLiteral, a terminal = and a syntactic category

Expr.

We use two shorthands for productions. First, we may write a production

having one head but k bodies, where k > 1, with each body on a separate

line. This is shorthand for k productions, all with the same head. For

example, we write the single production

CompareExpr :

ListConcExpr RelationalOp ListConcExpr

ListConcExpr EqualityOp ListConcExpr

ListConcExpr

instead of the three productions

CompareExpr :

ListConcExpr RelationalOp ListConcExpr

CompareExpr :

ListConcExpr EqualityOp ListConcExpr

CompareExpr :

ListConcExpr

Second, we may attach a subscript opt (for `optional') to a body element

(as a matter of fact we only do so for elements that are syntactic categories).

A production having such an annotation in the body is shorthand for two

productions, one where the body element is present (but without the sub-

script) and one where it is not. For example, the production

TupleSkeleton:

{ Exprsopt }

is short for the two productions

TupleSkeleton:

{ Exprs }

TupleSkeleton:

{ }

If more than one body element of a production has an opt subscript, then

this expansion can be repeated and will produce 2k productions, where k is

the number of subscripted elements. For example, the production

ModuleDeclaration:

ModuleAttribute HeaderFormsopt ProgramFormsopt

is short for the two productions

8 DRAFT (0.7) February 9, 1999 { 19 : 09

ModuleDeclaration:

ModuleAttribute HeaderForms ProgramFormsopt

ModuleDeclaration:

ModuleAttribute ProgramFormsopt

which are short for the four productions

ModuleDeclaration:

ModuleAttribute HeaderForms ProgramForms

ModuleDeclaration:

ModuleAttribute HeaderForms

ModuleDeclaration:

ModuleAttribute ProgramForms

ModuleDeclaration:

ModuleAttribute

In x3.11 an additional ad-hoc shorthand is used where a single production

Digit[k]: one of the �rst k of

0 1 2 3 4 5 6 7 8 9 Aa Bb Cc Dd Ee Ff

is used to summarize sixteen productions on the form

Digit2 :

0

1

...

Digit16 :

0

1
...

E

e

F

f

2.6.2 The lexical grammar

The productions in in x3 can be viewed as constituting a grammar on their

own. That grammar has individual ASCII characters as terminals. It de�nes

two syntactic categories Token (x3.4) and FullStop (x3.18) from which the

terminals of the main grammar (x2.6.3) are drawn.

February 9, 1999 { 19 : 09 DRAFT (0.7) 9

The subgrammar for Token actually consists of regular expressions and

can therefore be coded in a system such as the lex utility program, which

translates the grammar to a �nite automaton that can be implemented very

e�ciently.

The lexical grammar is summarized in xE.1.

2.6.3 The main grammar

In the main grammar presented in x6 and x8, the terminals are the syntactic
categories of the lexical grammar and anything in typewriter style (all of

which belong to Token as described in x3).
That grammar is almost, but not quite, a LALR(1) grammar. The

problem is that match expressions (x6.10) and generators (x6.19.5) begin

with a pattern, which is typically indistinguishable from an expression using

a lookahead of only one token. One way to make the grammar a LALR(1)

grammar is to change the productions

MatchExpr :

Pattern = SendExpr

...

Generator :

Pattern <- Expr

to

MatchExpr :

ApplicationExpr = SendExpr

...

Generator :

ApplicationExpr <- Expr

and add UniversalPattern as a PrimaryExpr.

Then it must be veri�ed after parsing that the left-hand operand of =

and <- are indeed patterns and that no UniversalPattern appears in an

expression.

(Note that this problem would not have appeared if the syntax of match

expressions and generators had included a keyword before the pattern.)

The main grammar is summarized in xE.2.

2.7 Glossary

The purpose of this section is to explain some terms that are used throughout

the speci�cation and either do not have a natural point of de�nition or that

10 DRAFT (0.7) February 9, 1999 { 19 : 09

need to be used before their point of de�nition. In the latter case, this

glossary is intended to give a summarical explanation that will be su�cient

until the full description is reached. Most concepts explained here are thus

described in more detail elsewhere. When a word in an explanation is in

bold face, it is explained separately.

Abrupt completion

The evaluation of an expression completes abruptly either because

a problem has been encountered that makes it impossible or mean-

ingless to continue evaluation (cf. exit), or because it has been

requested to throw a value. Abrupt completion always has an as-

sociated reason which is an Erlang term. Abrupt completion can

be trapped if it occurs in the body of a catch expression (x6.9) and
the reason can then be accessed. Abrupt completion for expressions

is described in more detail in x6.4.
A process may also complete abruptly, e.g., because the evaluation

of its original function application completes abruptly or it receives

an untrapped exit signal. Abrupt completion for processes is de-

scribed in more detail in x10.4.1.
Application

We use this word with two overloaded meanings. We can mean

a function application, i.e., the application F(E1,...,Ek) of an

Erlang function F to a sequence of arguments E1, : : : , Ek, or

we can mean an application in the sense of OTP, i.e., a collection

of related modules.

Argument

A function application expression has two main parts: a function

to be applied and a sequence of arguments, or actual parameters,

of the function application. The arguments are evaluated before

the function call begins, so the called function can only observe the

values of the arguments.

Arity The arity of a function is the number of arguments to which it

expects should be applied. Each function has a speci�c arity (so

the clauses de�ning it must expect the same number of arguments)

but there may be functions having the same function symbol but

di�erent arities.

ASCII

ASCII is the popular acronym for the 7-bit code for representation

of characters properly called ANSI X3.4 [2].

BIF A BIF is a built-in function of Erlang.

Being built-in does not imply any particular form of implementa-

tion: a BIF could be implemented, for example, through a virtual

February 9, 1999 { 19 : 09 DRAFT (0.7) 11

machine instruction, a procedure in another language, or an Er-

lang function. A BIF must not be rede�ned during the lifetime

of a node so the Erlang compiler and loader are permitted to

use all information in the description of the BIF to make execution

e�cient.

Some BIFs have unquali�ed names (e.g., length/1) while others

must be referred to using a quali�ed name (e.g., lists:map/2) un-

less they have been explicitly imported (x8.2.2).
The operators of Erlang (x3.9) are not BIFs, but with the excep-

tion of match expressions (with the = operator), binary operator

expressions behave exactly like applications of binary functions.

Erlang constructs such as if expressions, catch expressions, etc.,

are not even functions and thus not BIFs.

The BIFs of Erlang are described in detail in x13.
Big-endian

When a sequence of bytes b 1, : : : , bk is interpreted as a big-endian

numeral, the signi�cance decreases monotonically. If the numeral

has base 256 and is interpreted as unsigned, its value is

256(256(: : : 256b 1 + b2 : : :) + bk�1) + bk =

kX

i=1

256k�ib i;

and we denote this by BigEndianValue(hb 1; : : : ; bki).
For example, the four bytes 22 188 72 209 when interpreted as a

big-endian numeral represent 381,438,161 because 2563 � 22+ 2562 �
188+2561 � 72+2560 � 209 = 16777216 � 22+65536 � 188+256 � 72+
1 � 209 = 369098752 + 12320768 + 18432 + 209 = 381438161.

If the numeral is interpreted as signed, then its value is

(BigEndianValue(hb 1; : : : ; bk) + 28k�1i) mod 28k � 28k�1

and we denote this by BigEndianSignedValue(hb 1; : : : ; bki).

Bignum

A bignum is an Erlang integer that is not a �xnum. Bignums are

represented in such a way that integers with very large magnitudes

can be represented. However, arithmetic operations on bignums,

even comparatively small ones, should be expected to be much more

expensive than the corresponding operations on �xnums. x4.5.
Binary

When used as a noun, a binary is an Erlang term that represents

a �nite sequence of bytes. Binaries are described in more detail in

x4.5.

12 DRAFT (0.7) February 9, 1999 { 19 : 09

Body A body (syntactic category Body) is a nonempty sequence of ex-

pressions. Evaluating a body means to evaluate the constituent

expressions in order. The value of the body is the value of the last

expression.

Byte A byte is an integer in the range [0; 255].

Call To call a function (e.g., a BIF) means to evaluate an applica-

tion of the function. However, we often mean only the part of the

evaluation that follows argument evaluation.

Clause

In expressions where there is a choice between several alternatives,

each alternative is speci�ed through a clause. Every clause has a

body that will be evaluated if the clause is chosen. What the other

parts are depends on the surrounding expression. In function decla-

rations and in fun, case, receive and try expressions, each clause

has a pattern and a corresponding guard. In if expressions, the

clauses have only a guard.

Compile time

When we write that something is carried out at compile time or

that a compile time error should be raised, we mean that it should

happen as part of the process of transforming an Erlang module

de�nition into a loadable binary.

However, one must also consider compilers that are applied to source

code that has already been loaded, e.g., in order to be used in

an interpreter. In that case, enough processing must have taken

place as the source code was loaded so that all errors that should

be detected at compile-time according to this speci�cation were

detected at load time.

Compilation of Erlang modules is described in more detail in x7.

Context

A context is a set of variables. Each expression that occurs as part

of an Erlang program (i.e., a module declaration) has an input

context, which is the set of variables that will have bindings at run

time, i.e., when the expression is evaluated. (In other words: the

input context is the domain of the environment in which the ex-

pression will be evaluated.) It also has an output context, which is

the input context extended with any variables for which the expres-

sion will provide bindings. Input and output contexts are described

in more detail in x6.2.

February 9, 1999 { 19 : 09 DRAFT (0.7) 13

E�ect Evaluation of an Erlang expression by an Erlang process may

produce an e�ect, regardless of whether it completes normally or

abruptly. An e�ect is one of:

� changing the state of a process;

� changing the state of a port;

� changing the state of a node.

Typical e�ects are sending a message (which adds to the message

queue of some process) or receiving a message (which removes from

the message queue of the own process).

E�ects that are observable externally are those that change the

state of a port, and in some cases those that change the state of a

node. A typical example of such an e�ect is sending a message to

a port in order to produce output.

Environment

An expression is evaluated in an environment, which is a mapping

from variables to terms. Environments are described in more detail

in x6.2.

Erlang

In this speci�cation, the unquali�ed name Erlang refers to Er-

lang 4.7.3. Erlang 4.7.3 may be written explicitly when referring

to di�erent behaviour of di�erent versions.

Error A compile-time error is a violation of a syntactic or semantic rule

that governs Erlang programs and that can be veri�ed in the

process of compiling an Erlang module (x7). If a compile-time

error occurred while compiling a module, the result of loading or

using it is unde�ned.

A run-time error is a violation of a required condition in the seman-

tic rules that govern Erlang programs and that is veri�ed during

evaluation. If the description states that the evaluation should exit

with some reason, then this behaviour is required. (The exit rea-

son is then a term describing the error.) If a stated precondition

is violated and the description does not state an exit reason, then

computation may proceed but the result and e�ects are unde�ned.

If a process completes abruptly due to an error that was encountered

while evaluating its function application, the exit signal provides

information about the error.

Exit When we say that the evaluation of an expression exits with rea-

son T, this is short for saying that the evaluation of the expression

completes abruptly with an associated reason {'EXIT',T}.

14 DRAFT (0.7) February 9, 1999 { 19 : 09

An exit indicates that an exceptional situation such as a run-time

error has occurred.

Exit signal

An exit signal is an Erlang term communicated from one process

to another, typically to inform the latter that the former process

has completed (or to simulate that this has happened). Exit signals

are described in more detail in x10.4.

Expression

An Erlang expression is a well-formed sequence of tokens (syn-

tactic category Expr) that can be evaluated. Either the evaluation

completes normally (cf. normal completion), in which case the re-

sult is the value of the expression, or it completes abruptly, in which

case there is an associated reason for the abrupt completion.

Fixnum

A �xnum is an Erlang integer in a range that can be represented

e�ciently on the platform hosting the implementation. Arithmetic

operations on �xnums should be expected to be fast. The largest

and smallest �xnums are given by the implementation parameters

max�xnum and min�xnum. x4.5

Float Float is a synonym for oating-point number. Floats are described

in more detail in x5.4.

Free variable

A free variable in a context (cf. x6.2) is a variable that does not

belong to that context.

Function

In Erlang a function may compute a function in the mathematical

sense but does not necessarily do so. This is because it may have

e�ects, such as sending or receiving messages or modifying the state

of the process (x10.9.2), the node (x11.7.2) or some port (x12.10.2),
and it may also depend on these states and what is received.

All Erlang functions (including the BIFs) are strict , i.e., in a

function application all arguments are fully evaluated before any

part of the function body is evaluated.

Function symbol

A named function is declared through a FunctionDeclaration, in

which case its name consists of a function symbol that is an atom

and an arity which is a nonnegative integer.

Garbage collection

Garbage collection is the activity of automatically reclaiming mem-

ory that can no longer be referenced. In Erlang this is done fully

February 9, 1999 { 19 : 09 DRAFT (0.7) 15

automatically. It is commonly believed that such automatic mem-

ory management reduces the number of severe programming errors

and thus shortens development time and product quality, possibly

at a modest expense of execution time. (One of the di�erences be-

tween the newer language Java [9] over the older language C [13] is

that Java provides garbage collection.)

Guard

A guard (syntactic category Guard) is a sequence of guard tests

(syntactic category GuardTest), which are Boolean-valued expres-

sions. They are used in clauses (such as those of function decla-

rations and receive expressions). When a clause is considered for

selection, all guard tests of the guard must evaluate to true. (In

contexts where the guard is optional, an omitted guard is equivalent

to the trivially true guard true.)

The guard tests and their constituent guard expressions (syntactic

category GuardExpr) have been chosen so that they are indepen-

dent of the state (i.e., their result depends exclusively on their ar-

guments), have no side e�ect and (with a few exceptions) take O(1)

time (with respect to the size of their arguments).

Implementation

Although we referred to Erlang 4.7.3 as an Erlang implementa-

tion, there are actually implementations on various platforms that

may di�er slightly, for example, due to di�erent operating sys-

tems. When we write that something is implementation-de�ned,

no portable Erlang 4.7.3 program can depend on the choice made

for a particular platform.

Latin-1

Latin-1 is the popular name for the 8-bit code for representation of

characters properly called ISO/IEC 8859-1 [12].

List A list is a sequence of terms that either is empty, or consists of a

�rst element (the head) and a remaining list (the tail). Lists are

described in more detail in x4.9.

Literal

A literal is an expression for which the value is considered obvious

so no evaluation is necessary. Numerals are obvious examples of

literals, other examples from Erlang are string literals and atom

literals (x4)

All Erlang literals are terms but there are terms for which there

are no literals, e.g., PIDs and refs.

16 DRAFT (0.7) February 9, 1999 { 19 : 09

Little-endian

When a sequence of bytes b1, : : : , bk is interpreted as a little-

endian numeral, the signi�cance increases monotonically. If the

numeral has base 256 and is interpreted as unsigned, its value is

b1 + 256(b 2 + 256(: : : bk�1 + 256b k : : :)) =

kX

i=1

256i�1b i

and we denote this by LittleEndianValue(hb 1; : : : ; bki).
For example, the four bytes 22 188 72 209 when interpreted as

a little-endian numeral represent 3,511,204,886 because 2560 � 22 +
2561 � 188 + 2562 � 72 + 2563 � 209 = 1 � 22 + 256 � 188 + 65536 � 72 +
16777216 �209 = 22+48128+4718592+3506438144 = 3511204886.

Macro

A macro is a token abstraction and each macro application is re-

placed as part of the preprocessing by a sequence of tokens.

Macros are described in more detail in x7.2.

Message

A message is an Erlang term communicated from one process to

another. Each message is queued at the receiving process, which can

subsequently read a message by evaluating a receive expression

(x6.19.9). Messages are described in more detail in x10.5.

Module

A module is a named unit of executable Erlang code. Its external

interface is a mapping from (exported) function names to functions.

A module is loaded onto a node. Modules are described in more

detail in x8. Dynamic replacement of modules is described in x9.

Node A node hosts Erlang processes and ports. There could be more

than one node on a computer and a node could run on a multipro-

cessor computer. All processes on a node share certain resources.

Nodes are described in more detail in x11.

Normal completion

When the evaluation of an expression completes normally, a result

has been computed that is the value of the expression.

Operator

A binary operator is a symbol that is written between two expres-

sions, called its operands. For every Erlang binary operator (x3.9)
except =, such an operator expression is evaluated exactly like an

application of a binary function.

February 9, 1999 { 19 : 09 DRAFT (0.7) 17

A pre�x operator is a symbol that is written before an expression,

called its operand . For every Erlang pre�x operator (x3.9), such
an operator expression is evaluated exactly like an application of a

unary function.

OTP OTP stands for Open Telecom Platform [6] and is a programming

environment for telecom applications developed at Ericsson Telecom

AB. The Erlang language is a core component of OTP.

Pattern

A pattern expresses the structure of a term and its syntax (syntactic

category Pattern) resembles that of a term. It can be matched

(x6.6) against a term in an input context, which will either fail

or succeed with an output context that contains bindings for any

variables in the pattern that were not in the input context. A

universal pattern (syntactic category UniversalPattern) is a wild

card, i.e., it will match any term.

PID A PID stands for a Process IDenti�er and is an Erlang term that

uniquely identi�es a process that exists or has existed. PIDs are

(ideally, cf. x4.6) never `reused' so spawning a new process always

yields a new PID. PIDs are described in more detail in x4.6.

Port A port is an Erlang term that uniquely identi�es an external re-

source. Communication with a port has been designed to be similar

to communication with a process. Ports are described in more de-

tail in x12.

Preprocessing

A module declaration is preprocessed as part of compilation (cf.

compile time). This involves macro expansion, elimination of the

record abstraction and conditional compilation. Preprocessing is

described in more detail in x7.1.

Process

A process is an entity that carries out the evaluation of an `original'

function application and can send and receive signals (x10.6), e.g.,
messages and exit signals. Processes are described in more detail

in x10.

Ref A ref is an Erlang term. The interesting property of refs is that

each call of the BIF make_ref/0 (x13.13.3) is guaranteed to return a
universally unique ref and that there is no other way to obtain a ref

(e.g., there are no ref literals). Refs are discussed in more detail in

x4.4. (\Ref" is obviously short for \reference", but we write simply
\ref" here as \reference" has a rather di�erent meaning in some

programming languages.)

18 DRAFT (0.7) February 9, 1999 { 19 : 09

Run time

When we write that something is carried out at run time, we mean

that it should happen at the time an expression is being evaluated,

etc. For example, testing the type of arguments to BIFs is carried

out at run time in Erlang (i.e., the types of the values of the

arguments are tested).

Skeleton

A skeleton is an Erlang expression that reveals the structure of

a data structure but for which the individual parts are given by

arbitrary expressions.

A skeleton is a literal if, and only if, all its subexpressions are

literals.

Syntactic sugar

When we write that an expression E is syntactic sugar for some

expression E 0, it means that evaluation of E should behave exactly

like evaluation of E 0. The compiler could implement E by replacing

it with E 0 or some expression equivalent to E 0.

Term An Erlang term is an Erlang expression for which it is obvious

without any evaluation what value it denotes. Erlang terms are

described in more detail in x4.
In mathematics, a term is usually a syntactic entity. That is, it can

be written using some formal language. This is not the case for all

Erlang terms.

All Erlang terms except refs, ports, pids, functions and binaries

have literals denoting them. All occurrences of a literal denote the

same term.

Throw

When we say that the evaluation of an expression throws T, this

is short for saying that the evaluation of the expression completes

abruptly with an associated reason {'THROW',T}.

This is always caused by evaluation of an application throw(T)

(x13.13.5) and indicates a programmer-controlled nonlocal exit.

Token When we discuss the main grammar of Erlang (x2.6.3), tokens
are its terminals; the tokens themselves are de�ned by the lexical

grammar (x2.6.2).

Tuple An Erlang k-tuple (where k � 0) is a mapping from the integers

1, : : : , k to terms t1, : : : , tk. A view of k-tuples that is closer to

the implementation is that they consist of k enumerated �elds, each

of which contains an Erlang term.

February 9, 1999 { 19 : 09 DRAFT (0.7) 19

Type The terms of Erlang are partitioned into a collection of types and

many operations are only meaningful for terms of a certain type.

Erlang is a dynamically typed language, which means that the type

of a term is always obvious but that the type of any other kind of

expressions, e.g., a variable, is not stated explicitly and generally

cannot be inferred at compile time.

The types and terms of Erlang are described in more detail in x4.
In the descriptions of the BIFs of Erlang, we describe what are

the expected types of their arguments and what is the type of their

result. The notation used for these types is described in x2.5.

Unicode

The Unicode standard, version 2.0, [5] is a 16-bit code for repre-

sentation of multilingual text. It contains symbols for most scripts

used in the world today. It includes the 7-bit ASCII character set

as its �rst 128 characters and the 8-bit Latin-1 character set as its

�rst 256 characters.

Variable

A variable (syntactic category Variable, cf. x3.16) stands for a term.
It can be part of an expression or of a pattern. In the evaluation

of an expression, the value must be found in the environment

(x6.19.1). In pattern matching (x6.6), the value may already be in

the environment, or a value will be added to the environment when

the variable is �rst encountered.

In other words, a variable will be bound locally to a certain term.

Unlike in conventional (imperative) programming languages, there

is no concept of updating the value of a variable.

20 DRAFT (0.7) February 9, 1999 { 19 : 09

Chapter 3

Lexical structure

This chapter describes the lexical structure of Erlang programs and how a

sequence of ASCII characters is translated to a sequence of tokens and full

stops.

3.1 Lexical translation

A sequence of ASCII characters is translated into a sequence of Erlang

tokens by applying the following four steps, in order:

1. The sequence of characters is translated to a sequence of input char-

acters and line terminators (x3.3). If the sequence does not end with

a line terminator, one is added at the end.

2. The sequence of input characters and line terminators is translated to

a sequence of Erlang input elements (x3.4).

3. The sequence of Erlang input elements is translated to a sequence of

tokens and full stops by discarding white space (x3.5) and comments

(x3.6) and detecting full stops (x3.18). The resulting sequence of tokens
and full stops is the result of the lexical processing.

3.2 Character classes

ErlangUppercase:

the capital ASCII letters A{Z (\101 to \132)

ErlangLowercase:

the small ASCII letters a{z (\141 to \172)

ErlangLetter :

ErlangLowercase

ErlangUppercase

21

22 DRAFT (0.7) February 9, 1999 { 19 : 09

ErlangDigit :

the ASCII decimal digits 0{9 (\060 to \071)

3.3 Line terminators

Line terminators need to be recognized uniformly across platforms so Er-

lang compilers and tools can report line numbers and determine the end of

comments coherently.

LineTerminator :

the LF character (\linefeed" or \newline")

InputCharacter :

AsciiInputCharacter but not LF

3.4 Input elements

The sequence of input characters and line terminators is translated to a

sequence of input elements, i.e., white space (x3.5), comments (x3.6) and
tokens.

There are six kinds of tokens: separators (x3.7), keywords (x3.8), oper-
ators (x3.9), integer literals (x3.11), oat literals (x3.12), character literals
(x3.13), string literals (x3.14), atom literals (x3.15), variables (x3.16), uni-
versal patterns (x3.17).

Note that white space and comments always will separate tokens.

Input :

InputElementsopt

InputElements:

InputElement

InputElements InputElement

InputElement :

WhiteSpace

Comment

Token

February 9, 1999 { 19 : 09 DRAFT (0.7) 23

Token:

Separator

Keyword

Operator

IntegerLiteral

FloatLiteral

CharLiteral

StringLiteral

AtomLiteral Variable

UniversalPattern

3.5 White space

White space is de�ned as the characters with ASCII codes less than or

equal to that of ASCII space, i.e., the control characters and space. The

line terminators are composed of control characters but have been identi�ed

in a preceding step and are therefore included explicitly below.

WhiteSpace:

LineTerminator

ControlCharacter

the ASCII SP character, also known as \space"

ControlCharacter :

any ASCII control character (\000 to \037)

3.6 Comments

A comment begins with an ASCII % character and extends up to and in-

cluding the next line terminator.

Comment :

% InputCharactersopt LineTerminator

InputCharacters:

InputCharacter

InputCharacters InputCharacter

Examples of comments:

%A space after the percent is not obligatory but...

% The comment can begin a line.

%% There can be additional %s in the comment.

24 DRAFT (0.7) February 9, 1999 { 19 : 09

3.7 Separators

The following 15 tokens are separators in Erlang:

Separator : one of

() { } [] . :

| || ; , ? -> #

3.8 Keywords

The following 13 tokens are the keywords of Erlang:

Keyword : one of

after cond let when

begin end of

case fun query

catch if receive

Thus they cannot be used as atom literals (x3.15).
The keywords all_true, cond, let and some_true are not de�ned in

Erlang 4.7.3 but are reserved for possible future extensions of the language.

3.9 Operators

The following 29 tokens are the operators of Erlang:

Operator : one of

+ - * / div rem

or xor bor bxor bsl bsr and band

== /= =:= =/= < =< > >=

not bnot ++ -- = ! <-

Thus they cannot be used as atom literals (x3.15).

3.10 Escape sequences

These are the escape sequences for character literals, string literals and

quoted atom literals. All escape sequences begin with a backslash (\).

February 9, 1999 { 19 : 09 DRAFT (0.7) 25

EscapeSequence:

\ b % \008: backspace BS

\ d % \177: delete DEL

\ e % \033: escape ESC

\ f % \014: form feed FF

\ n % \012: linefeed LF

\ r % \015: carriage return CR

\ s % \040: space SPC

\ t % \011: horizontal tab HT

\ v % \013: vertical tab VT

\ \ % \008: backslash \

ControlEscape % \000 to \037: 64 less than the char

\ ' % \047: single quote '

\ " % \042: double quote "

OctalEscape % \000 to \777: from octal value

ControlEscape:

\ ^ ControlName

ControlName:

any character between \100 and \137

OctalEscape:

\ OctalDigit

\ OctalDigit OctalDigit

\ OctalDigit OctalDigit OctalDigit

OctalDigit : one of

0 1 2 3 4 5 6 7

In the case of a control escape, it denotes the character which has a code

that is 64 less than that of the ControlName following \ and ^.

In the case of an octal escape, it denotes the integer denoted by the octal

numeral. Note that only the octal escapes \000 to \177 denote characters.

The octal escapes \200 to \377 denote noncharacter bytes while \400 to

\777 denote larger integers.

3.11 Integer literals

An integer literal consists of an optional sign, an optional radix speci�er and

a sequence of digits in the speci�ed radix (which is decimal if omitted).

IntegerLiteral :

DecimalLiteral

ExplicitRadixLiteral

26 DRAFT (0.7) February 9, 1999 { 19 : 09

DecimalLiteral :

Digits[10]

ExplicitRadixLiteral :

2 # Digits[2]

3 # Digits[3]

4 # Digits[4]

5 # Digits[5]

6 # Digits[6]

7 # Digits[7]

8 # Digits[8]

9 # Digits[9]

1 0 # Digits[10]

1 1 # Digits[11]

1 2 # Digits[12]

1 3 # Digits[13]

1 4 # Digits[14]

1 5 # Digits[15]

1 6 # Digits[16]

Digits[k]:

Digit[k]

Digits[k] Digit[k]

Digit[k]: one of the �rst k of

0 1 2 3 4 5 6 7 8 9 Aa Bb Cc Dd Ee Ff

An integer literal without an explicit radix should thus be composed of

decimal digits and will be interpreted arithmetically as a decimal numeral

as described in x5.9.2.
If an explicit radix is given, it consists of a decimal numeral between 2

and 16 followed by a # character. Suppose that that the decimal interpreta-

tion of this numeral is r. The characters following it should then be drawn

from the �rst r \extended digits" 0, : : : , 9, A, : : : , F, where the letters may

alternatively be in lower case. Its interpretation as a numeral in radix r is

given in x5.9.3.
A compile-time error occurs if an integer literal is too large or too small

to be representable as an Erlang integer.

Examples of integer literals:

0 1499 -54 2#0010010 -8#377

10#1499 16#fa66 16#FA66

(Their values are 0, 1499, -54, 18, -255, 1499, 64 102, 64 102 and 1 234 567,

respectively.)

February 9, 1999 { 19 : 09 DRAFT (0.7) 27

3.12 Float literals

A oat literal has �ve parts: an optional sign, a whole number part, a dec-

imal point, a fractional part and an optional exponent part. The exponent

part, if present, is indicated by E or e and is followed by the exponent as a

decimal numeral with an optional sign.

FloatLiteral :

DecimalLiteral . DecimalLiteral ExponentPartopt

ExponentPart :

ExponentIndicator Signopt DecimalLiteral

Sign: one of

+ -

ExponentIndicator : one of

E e

(The rule for DecimalLiteral appears in x3.11.) A compile-time error occurs

if the magnitude of a oat literal is too large or too small to be representable

as an Erlang oat.

The interpretation of a oat literal as a oat is given in x5.9.5.
Examples of oat literals:

1.0 -5.1e6 5.1e+6 0.346E-20

3.13 Character literals

A character literal is indicated by $ followed either by a single character or

an escape sequence.

CharLiteral :

$ CharLiteralChar

CharLiteralChar :

InputCharacter

EscapeSequence

The escape sequences are described in x3.10.
Note that $ should not be followed by white space (x3.5)1 which should

instead be expressed through an escape sequence.

Examples of character literals:

1The reasons that $ should not be followed by whitespace are (i) it is impossible to

determine safely from the printed representation of a program which character $ followed

by whitespace and/or a line break actually denotes, and (ii) whitespace (especially at the

end of a line) often gets transformed by text processing or text transmission tools.

28 DRAFT (0.7) February 9, 1999 { 19 : 09

$x $R $$ $\n $\s $\\ $\^T $\125

The values of these literals are the characters `x', `R', dollar, newline, space,

backslash, control-T and `U' (which has ASCII code eighty�ve, which is

denoted by the octal numeral 125).

3.14 String literals

A string literal is enclosed in " characters.

StringLiteral :

" StringCharactersopt "

StringCharacters:

StringCharacter

StringCharacters StringCharacter

StringCharacter :

InputCharacter but not ControlCharacter or \ or "

EscapeSequence

The escape sequences are described in x3.10.
Examples of string literals:

"Fred" "" "\n" "\e42n" "Ludwig Van Beethoven"

The second literal denotes an empty string.

3.15 Atom literals

An atom literal, which we will also refer to simply as an atom, is on one of

two forms:

� An unquoted atom is a nonempty sequence of Erlang letters, Er-

lang digits and the ASCII character `@', where the �rst character

must be a lowercase Erlang letter. Such an atom cannot consist of

the same sequence of characters as a keyword (x3.8) or an operator

(x3.9).

� A quoted atom is a sequence of input characters and escape sequences

enclosed in single quotes ('). As for string literals, line terminators

and control characters cannot appear \naked" in a quoted atom.

AtomLiteral :

AtomLiteralChars but not a Keyword or Operator

' QuotedCharactersopt '

February 9, 1999 { 19 : 09 DRAFT (0.7) 29

AtomLiteralChars:

ErlangLowercase NameCharsopt

NameChars:

NameChar

NameChars NameChar

NameChar :

ErlangLetter

ErlangDigit

@

_

QuotedCharacters:

QuotedCharacter

QuotedCharacters QuotedCharacter

QuotedCharacter :

InputCharacter but not ControlCharacter or \ or '

EscapeSequence

The escape sequences are described in x3.10.
Examples of atoms:

friday tv@lf@rs@lj@re one_2_three '!%r@(\'.\ $\\[[#'

The fourth example shows several escape sequences and nonletters.

We say that the printname of an atom is

� the atom literal as such, in the case of an unquoted atom;

� the sequence of ASCII characters resulting from decoding of escape

sequences and removal of the surrounding quotes, in the case of a

quoted atom.

Two atoms are the same if and only if they have the same printname.

For example, the atoms foo and 'foo' are the same and so are the atoms

'foo bar'and 'foo\040bar'.

3.16 Variables

A variable is a nonempty sequence of Erlang letters, Erlang digits and

the character `@', where the �rst character must be an uppercase Erlang

letter. Since no keyword, operator or literal begins with an uppercase Er-

lang letter, there can be no ambiguity between them.

30 DRAFT (0.7) February 9, 1999 { 19 : 09

Variable:

_ NameChars

ErlangUppercase NameCharsopt

Note that a single underscore is not a Variable but a UniversalPattern

(cf. x3.17).
Examples of variables:

MostSignificantDigit X Best_guess _Rest LOUD

It is recommended that compilers warn about a variable that has only

a binding occurrence (and thus no applied occurrences) unless the variable

begins with an underscore.

3.17 Universal pattern

A universal pattern consists of a single underscore.

UniversalPattern:

_

It is thus syntactically similar to a variable but may only appear in pat-

terns (cf. x6.6) where occurrences of the universal pattern are like binding

occurrences of distinct variables that have no other occurrences. Matching

against the universal pattern thus always succeeds.

3.18 Separated token sequences

In the �nal step of lexical processing, white space and comments are dis-

carded. At the same time, each occurrence of a single period token (i.e.,

`.', which is a separator) that is followed by white space or a comment

is replaced by a FullStop. The �nal result is a sequence of tokens and full

stops where each full stop should be thought of as terminating the preceding

sequence of tokens.

TerminatedTokens:

TokenSequencesopt

TokenSequences:

TokenSequence

TokenSequences TokenSequence

TokenSequence:

Tokens FullStop

February 9, 1999 { 19 : 09 DRAFT (0.7) 31

Tokens:

Token

Tokens Token

FullStop:

. WhiteSpace

. Comment

32 DRAFT (0.7) February 9, 1999 { 19 : 09

Chapter 4

Types and terms

4.1 Types in Erlang

Erlang is a dynamically typed language, which means that the type of a

variable or expression generally cannot be determined at compile time. The

dynamic typing o�ers a high degree of exibility in that a variable can take

on, for example, an integer in one invocation but a list in another invocation.

This corresponds to having union types in a statically typed language. Some

of the advantages of polymorphic static typing can be achieved also for well-

structured Erlang programs by adding type declarations and type analysis

[17].

Every Erlang term belongs to exactly one of the types below.

The types in Erlang can be divided into elementary types and com-

pound types. A term of an elementary type never properly contains an

arbitrary Erlang term and is said to be an elementary term. A term of a

compound type is said to be a compound term and has a number of imme-

diate subterms.

The elementary types in Erlang are:

� Atoms (x4.2).

� Numbers (integers and oats) (x4.3).

� Refs (x4.4).

� Binaries (x4.5).

� Process identi�ers (x4.6).

� Ports (x4.7).

The compound types in Erlang are:

� Tuples (x4.8).

33

34 DRAFT (0.7) February 9, 1999 { 19 : 09

� Lists and conses (x4.9).

The BIFs for recognizing terms of a certain type are described in xx13.1.

4.2 Atoms

The only distinguishing property of an atom is its printname (cf. x3.15).
Two atoms are equal if and only if they have the same printname. The

printname of an atom must have at most maxatomlength characters. In

Erlang 4.7.3, maxatomlength is 255.

The atoms true and false are called Boolean. Thus, when we say that

an expression is Boolean, we mean that its value is a Boolean atom. The

Boolean atoms are distinguished in that Erlang provides four operators

acting only on them:

� The logical complement operator not (x6.16.4).

� The logical operators and (x6.15.6), or (x6.14.5) and xor (x6.14.6).

Boolean atoms are also distinguished in the �lters of list comprehensions

(x6.19.5).
Comparison for equality between two atoms is O(1). This is accom-

plished by \interning", i.e., making sure that each occurrence of an atom

is represented internally by the same value through a hashtable that maps

printnames to atoms and is used each time an atom is to be obtained from

its printname. Because such a table grows each time a new atom is cre-

ated, many consider it bad programming style to write programs that may

add new atoms at runtime, e.g., through the BIFs list_to_atom/1 and

binary_to_term/1. Strings [x4.9.1] can often be used instead when the

O(1) comparison for equality is not needed.

Atoms are recognized by the BIF atom/1 (x13.1).
There are no operators acting speci�cally on atoms (but note the Boolean

operators above).

Atom literals are described in x3.15.
Erlang BIFs relating to atoms are described in x13.2.

4.3 Numbers

Erlang has two numeric types: integers and oats. The arithmetic oper-

ations permit arbitrary combinations of integer and oat operands, when

meaningful. We therefore describe both types together.

Erlang integers and oats are described in detail in x5.2 and x5.4,
respectively.

Integer literals are described in x3.11. Float literals are described in

x3.12.

February 9, 1999 { 19 : 09 DRAFT (0.7) 35

Numbers, integers and oats are recognized by the BIFs number/1,

integer/1 and float/1 , respectively (x13.1).
Erlang provides the following operators acting on numeric terms:

� The unary plus and minus operators +, - (x6.16.1, x6.16.2).

� The multiplicative operators * (x6.15.1), / (x6.15.2), div (x6.15.3) and
rem (x6.15.4).

� The addition operators + and - (x6.14.1)

� The signed shift operators bsl and bsr (x6.14).

� The unary bitwise complement operator bnot (x6.16.3).

� The integer bitwise operators band (x6.15.5), bor (x6.14.2) and bxor

(x6.14.2).

Erlang BIFs relating to numbers are described in x13.3.

4.3.1 Characters

A character is an integer having a value in the range [0; 255] and is thus a

byte.

There are no operators acting speci�cally on characters.

The characters literals are a subset of the integer literals1, plus the char-

acter literals described in x3.13.

4.4 Refs

Refs are terms for which the only meaningful operations are obtaining a new

ref and comparing two refs for equality.

When we describe operations (such as transformation to the external

term format, cf. xD) we shall assume that the internal representation of a

ref R consists of three parts:

� node[R], which is the node on which R was created, represented by

an atom;

� creation[R], a nonnegative integer that is the value of creation[N]

for the node N on which R was created;

� ID[R], a nonnegative integer which is a \serial number" for R on the

node on which it was created.

1It is possible, but not recommended, to use an integer literal to denote a character.

36 DRAFT (0.7) February 9, 1999 { 19 : 09

Two refs are equal if all these parts are equal. In Erlang 4.7.3 ID[R] is lim-

ited to XXX. Thus the BIF make_ref/0 may eventually produce duplicate

values.

There are no ref literals.

Refs are recognized by the BIF reference/1 (x13.1).
There are no operators acting speci�cally on refs.

Erlang BIFs relating to refs are described in x13.13.

4.5 Binaries

A binary is a sequence of bytes, i.e., a sequence of integers between 0 and

255.

There are no binary literals.

Binaries are recognized by the BIF binary/1(x13.1).
There are no operators acting speci�cally on binaries.

Erlang BIFs relating to binaries are described in x13.4.

Note

The Erlang 4.7.3 implementation has disjoint address spaces for its pro-

cesses and thus copy terms sent as messages (x10.5). However, in typical

applications binaries may be very large and copying them would therefore

be expensive. Therefore the Erlang 4.7.3 implementation has a single

memory area for all binaries residing on a node and uses indirect address-

ing. That is, a binary would be represented in the memory of a process

by a pointer into the common binary area together with information about

length. When sending a binary in a message, only the local information is

copied, not the elements of the binary. This also implies that a binary can

be split (cf. the BIF split_binary/2, x13.4.7) in constant time as no copy-

ing of the elements is necessary. Of course this arrangement complicates

memory management, as the binary area must be maintained separately.

4.6 Process identi�ers

An Erlang process is an entity that carries out the evaluation of an applica-

tion. That particular evaluation is identi�ed by a distinct process identi�er,

usually called simply a PID. The PID must be used in order to send messages

to the process and when manipulating it (e.g., linking with it or attempting

to kill it).

PIDs are elementary terms and a PID can be created only by spawning

a process. Spawning a process always yields a PID that is distinct from all

accessible PIDs. (PIDs and refs are obviously similar and an ine�cient im-

plementation of refs could indeed be obtained by letting make_ref/0 spawn

February 9, 1999 { 19 : 09 DRAFT (0.7) 37

a new process and use its PID.)

When a process completes, its PID is still a PID but it no longer refers

to a process so BIFs cannot use it. The result or e�ect when a BIF is given

the PID of a completed process varies, cf. Section13.8.

Processes are further described in Chapter 10.

When we describe operations (such as transformation to the external

term format, cf. xD) we shall assume that the internal representation of a

PID P consists of three parts:

� node[P], which is the node on which P was spawned, represented by

an atom;

� creation[P], a nonnegative integer that is the value of creation[N]

for the node N on which P was spawned;

� ID[P], a nonnegative integer which is a \serial number" for P on the

node on which it was spawned.

Two PIDs are equal if all these parts are equal. In Erlang 4.7.3 ID[P]

is limited to XXX. Thus the BIFs spawn/3, etc., may eventually produce

duplicate values.

There are no PID literals.

PIDs are recognized by the BIF pid/1(x13.1).
There are no operators acting speci�cally on processes or PIDs.

Erlang BIFs relating to processes are described in x13.8.

4.7 Ports

An Erlang node communicates with resources in the outside world (includ-

ing the rest of the computer on which it resides) through ports. Examples

of such external resources are �les and non-Erlang programs running on

the same host. An external resource behaves much like an Erlang process,

although interaction with it causes or is caused by events in the outside

world.

Each external resource is identi�ed by an Erlang term that is referred

to as a port. When a port is created, it is connected externally to an entity,

which is either

� a recently spawned external process or recently opened driver (x12.2);

� a �le.

Internally the port is connected to a process, which is originally the process

that opened the port.

A process communicates with an external resource through messages

sent to a port. Any process can send messages to an external resource. The

process connected with a port will receive messages from the resource.

38 DRAFT (0.7) February 9, 1999 { 19 : 09

When the external resource is depleted (i.e., the end of the �le has been

reached, the external process has completed or the driver is closed), the port

is closed, corresponding to the termination of a process. A process can be

linked to a port and it will then be noti�ed when the port is closed.

Ports are obviously similar to PIDs but do not allow all operations that

PIDs allow.

Ports are further described in x12.
When we describe operations (such as transformation to the external

term format, cf. xD) we shall assume that the internal representation of a

port Q consists of three parts:

� node[Q], which is the node on which Q was opened, represented by

an atom;

� creation[Q], a nonnegative integer that is the value of creation[N]

for the node N on which Q was opened;

� ID[Q], a nonnegative integer which is a \serial number" for Q on the

node on which it was opened.

Two ports are equal if all these parts are equal. In Erlang 4.7.3 ID[Q] is

limited to 256. Thus the BIF open_port/2 may eventually produce dupli-

cate values. However, open_port/2 will never return a duplicate open port

and the number of simultaneously open ports is limited to 256.

There are no port literals.

Ports are recognized by the BIF port/1(x13.1).
There are no operators acting speci�cally on ports.

Erlang BIFs relating to ports are described in x13.12.

4.8 Tuples

A k-tuple, where k � 0, is a mapping from the integers 1, : : : , k to Erlang

terms, which are its immediate subterms, or elements. (There is exactly one

0-tuple, which is a void mapping.) We say that the size of such a tuple is

k. The types of the k terms are independent. A k-tuple can be used as a

sequence of k terms where each term can be accessed through its index.

A tuple must have at most maxtuplesize elements. In Erlang 4.7.3,

maxtuplesize is 65535.

Tuple skeletons are described in x6.19.3. A tuple literal is a tuple skeleton

where all subexpressions are themselves literals.

The time for accessing a tuple element given the tuple and an index

(i.e., what is computed by the BIF element/2) is O(1), i.e., a constant-

time operation. The element update operation | obtaining a tuple that

di�ers from a given one in exactly one element (i.e., what is computed by

the BIF setelement/3) | is O(n), where n is the number of elements

February 9, 1999 { 19 : 09 DRAFT (0.7) 39

of the tuple. (A future version of Erlang may have a di�erent trade-o�

between element access and element update. For example, reducing the time

for element update to O(log n) may justify increasing the time for element

access to O(log n).)

Tuples are recognized by the BIF tuple/1(x13.1).
There are no operators acting speci�cally on tuples.

Erlang BIFs relating to tuples are described in x13.5.

4.8.1 Records

A record type R has a number of �eld names. A term of record type R has

a value for each of these �elds.

A term of record type R is a tuple which has one more element than the

number of �elds of R and having the atom R as its �rst element.

Terms of a record type R are recognized by record guard tests (x6.20.1).
There are no operators acting speci�cally on records.

Record declarations are described in x8.4 and record expressions are

described in x6.17.

4.8.2 Functions

A function of arity n is a term that can be applied to a sequence of n

terms. Evaluating the application may cause certain e�ects and may either

never complete, complete abruptly with some associated reason or complete

normally with a result.

There are no function literals. However, fun expressions, having func-

tions as their values, are described in x6.19.10. Function declarations, de-

scribed in x8.3, associate a function name with a function in a certain mod-

ule.

In Erlang 4.7.3 a function (i.e., the value of a fun expression) is repre-

sented by a tuple, hence the recognizer tuple/1 returns true for a function.

It is not recommended to exploit this representation.

Erlang BIFs relating to functions are described in x13.8.

4.9 Lists and conses

Erlang has a constant [], which is called nil. Erlang also has a term-

forming binary operator [� � � |� � �] called cons. The operands of cons are

usually referred to as the head and the tail of the resulting term and are its

immediate subterms.

The arguments of cons can be any terms but the intended use of cons is

for forming lists. (In any use of cons as a general pairing operator, a 2-tuple

[x4.8] could be used instead.)

Let us de�ne which terms are lists.

40 DRAFT (0.7) February 9, 1999 { 19 : 09

� Nil is an empty list (thus having zero elements).

� Cons applied to an arbitrary term and a list (with k elements) is a list

(with k + 1 elements).

� There are no other lists than those constructed by a �nite number of

applications of the two preceding rules.

A list thus represents a �nite sequence. As suggested by the use of the

cons operator, the properties of a linked representation should be assumed.

Computing the cons operator takes O(1) time and so does obtaining the

head and/or the tail of a consed term. However, obtaining an element at

an arbitrary position of a list takes O(n) time, where n is the index of the

element to retrieve.

In addition to the nil constant and the cons operator, there are additional

list skeletons, described in x6.19.4, although for every list skeleton, there is

an equal term that is a composition of cons operators and nil constants.

A list literal is a list skeleton in which all subexpressions are themselves

literals.

Nil and conses are both recognized by the BIF list/1 (x13.1), although
the name is highly misleading.

Erlang provides the following operators acting on lists and conses:

� The list addition operator ++ (x6.13.1).

� The list subtraction operator -- (x6.13.2).

Erlang BIFs relating to lists and conses are described in x13.6.

4.9.1 Strings

A string is a list of characters (x4.3.1) and can be seen as representing a

text. Note that a list is a string only if all its elements are characters. It

follows that a cons is a string only if its head is a character and its tail is a

string.

String literals are described in x3.14 (but note that list literals with

character literals also denote strings).

There are no operators acting speci�cally on strings (but note the list

operators above).

Erlang BIFs converting from and to strings are described in various

sections of x13.
As strings are lists, note that a string can be used anywhere a list is

expected (for example, as operand of a list operator or as argument of a list

BIF).

February 9, 1999 { 19 : 09 DRAFT (0.7) 41

4.9.2 Association lists

An association list is a list of 2-tuples. For each 2-tuple we say that the �rst

element is the key and the second element is the value.

Let lst be an association list

[{k1,v1},{k2,Tv},...,{kn,vn}]

and let K be the set of keys in lst . lst represents a mapping which for

each key k 2 K contains a pair (k ; v j) such that k = k j and for all i,

1 � i < j, k 6= k i.

When we write that a BIF returns an association list, the �rst element

of each 2-tuple in the returned list is always distinct.

4.10 Relational and equality operators on terms

Erlang provides the following relational and equality operators, acting on

a pair of terms, each of any type.

� The comparison operators <, =<, > and >= (x6.12.1).

� The (exact) equality operators =:= and =/= (x6.12.2).

� The arithmetic equality operators == and /= (x6.12.3).

4.10.1 Coercion

Coercion is applied when computing some arithmetic operators (including

the arithmetic equality operators).

The function toFloat maps a number to a oat as follows:

toFloat (a) = a if a is a oat;

= cvtinteger!float(a) if a is an integer.

(cvtinteger!float is as de�ned in LIA-1 [14].)

The function coerce maps a pair of terms to a pair of terms as follows:

coerce(a; b) = (a; b) if a or b is not a number;

= (toFloat(a); toFloat(b)) if a or b is a oat;

= (a; b) otherwise.

42 DRAFT (0.7) February 9, 1999 { 19 : 09

4.11 Size of data structures

The function size gives a measure of the size of an Erlang term T as

an integer. The memory needed for representing T in Erlang 4.7.3 is

O(size(T)) (this excludes shared information such as the printname of an

atom). The measure is also used in this document for expressing the rate of

growth of operations such as comparisons.

� If T is an atom, a �xnum (x5.2), a oat, a ref, a PID or a port, then

size(T) = O(1):

� If T is a bignum (x5.2), then

size(T) = O(log<�1[T]):

� If T is a binary of k bytes, then

size(T) = O(k):

� If T is a cons with head Th and tail T t, then

size(T) = O(1) + size(Th) + size(Th):

� If T is a tuple with elements T1, : : : , Tk, or a function with values T1,

: : : , Tk for the free variables, then

size(T) = O(1) +O(k) +

kX

i=1

size(T i):

� If T is a function with values T1, : : : , Tk for free variables, then

size(T) = O(1) +O(k) +

kX

i=1

size(T i):

We will allow ourselves to apply size also to sets of terms and sets of pairs

of terms.

� If t is a set of items t1, : : : , tk, then

size(t) = O(1) +O(k) +

kX

i=1

size(ti):

� If t is a pair of items a and b, then

size(t) = O(1) + size(a) + size(b):

February 9, 1999 { 19 : 09 DRAFT (0.7) 43

4.11.1 Equality between terms

(Exact) equality between Erlang terms a and b is de�ned as follows:

� If a and b were the result of the same evaluation of an expression, then

they are equal.

� Otherwise, if a and b are of di�erent type, then they are not equal.

� Otherwise, equality of a and b depends on the type of a and b:

� Atom: a and b are equal if and only if they have the same

printname.

� Integer: a and b are equal if and only if <�1[a] = <�1[b].
� Float: a and b are equal if and only if <�1[a] = <�1[b]. (As

in all programming languages, it is unwise to trust equality for

oats, as imprecision due to rounding may lead to unexpected

inequalities.)

� Ref : a and b are not equal.

� Binary: a and b are equal if and only if they consist of identical

sequences of bytes.

� PID: a and b are not equal.

� Port: a and b are not equal.

� Cons:

� If a and b are both empty, then they are equal.

� Otherwise, if a and b are both nonempty, then they are equal

if and only if the heads of a and b are equal and the tails of

a and b are equal.

� Otherwise, a and b are not equal.

� Tuple:

� If a and b have di�erent size, then they are not equal.

� Otherwise, if all corresponding elements of a and b are pair-

wise equal, then a and b are equal.

� Otherwise, a and b are not equal.

It follows that two records are equal if, and only if, they are of

the same type and all corresponding elements are pairwise equal.

For tuples that represent functions the representation is such that

if a and b were the results of (di�erent occurrences of) identical

expressions, then equality is not de�ned; otherwise they are not

equal.

44 DRAFT (0.7) February 9, 1999 { 19 : 09

Due to how the representation of oats in the external term format (xD),
equality is not at all de�ned for oats that have been transformed to the

external format and back again, or have been sent as messages.

The time required for determining exact equality of two terms T1 and

T2 should be min(size(T 1); size(T2)).

Arithmetic equality between Erlang terms a and b is de�ned as follows:

� If a and b are numbers, then they are arithmetically equal if and only

if a0 is (exactly) equal to b
0, where (a0; b0) = coerce(a; b) (x4.10.1).

� Otherwise, if a and b are both of elementary types, then they are

arithmetically equal if and only if they are (exactly) equal.

� Otherwise, if a and b are both lists, then:

� If a and b are both empty, then they are arithmetically equal.

� Otherwise, if a and b are both nonempty, then they are arithmeti-

cally equal if and only if the heads of a and b are arithmetically

equal and the tails of a and b are arithmetically equal.

� Otherwise, a and b are not arithmetically equal.

� Otherwise, if a and b are both tuples of the same size, then a and b

are arithmetically equal if and only if all corresponding elements of a

and b are pairwise arithmetically equal.

� Otherwise a and b are not arithmetically equal.

4.11.2 The term order

The term order of Erlang terms, which we will write here as <, is a order

relation that satis�es the following criteria:

� It is transitive, i.e., if t1 < t2 and t2 < t3, then it must be the case

that t1 < t3.

� It is asymmetric, i.e., there can be no terms t 1 and t2 such that

t1 < t2 and t 2 < t 1. (This implies that it is irreexive, i.e., that

there can be no term t such that t < t .)

� It is an arithmetic total order relation, i.e., if t1 is not arithmetically

equal to t2, then exactly one of t1 < t2 and t2 < t1 holds, unless t 1
and t2 are functions.

� The terms are primarily ordered according to their type, in the follow-

ing order: numbers < atoms < refs < ports < PIDs < tuples < empty

list < conses < binaries.

February 9, 1999 { 19 : 09 DRAFT (0.7) 45

� Numbers are ordered arithmetically (so there is no distinction between

integers and oats in this ordering). For example, 4.5 < 5 < 5.3.

� Atoms are ordered lexicographically according to the codes of the char-

acters in the printnames. For example, '' < a < aaa < ab < b.

� If t1 and t2 are both refs, both PIDs or both ports, then t1 precedes

t2 if and only if either

� node(t1) precedes node(t2), or

� node(t1) equals node(t2) and t1 was created before t2.

� Tuples are ordered �rst by their size, then according to their ele-

ments lexicographically. For example, {} < {a} < {aaa} < {xxx}

< {aaa,xxx} < {xxx,aaa}. (It follows that records are ordered �rst

by their number of elements, then according to their type, then ac-

cording to their elements with �elds compared in the order given by

record �eld
�1
R
, where R is the record type.) Functions are not ordered,

except for equality as described above.

� An empty list precedes a cons (and thus a nonempty list) and conses

are ordered �rst by their heads, then by their tails. (Thus a longer list

may precede a shorter list even though a shorter tuple always precedes

a longer tuple.) For example, [] < [a|2] < [a|b] < [a] < [a,a]

< [b].

� Binaries are ordered �rst by their size, then according to their elements

lexicographically. (That is, the same as the order between tuples of

integers.)

4.12 Lifetime of data structures

We say that a term has identity if it is

� a ref,

� a PID,

� a port, or

� a compound term (i.e., a tuple or a list) in which some immediate

subterm has identity.

An elementary term with identity is created by evaluating an expression on

a certain form. (For example, a ref is created by evaluating an application

of the BIF make_ref/0). In this case, each evaluation of such an expression

46 DRAFT (0.7) February 9, 1999 { 19 : 09

creates a new term that can be distinguished from all other such terms. If

an elementary term with identity is embedded in a compound term, that

compound term also has identity. Erlang 4.7.3 will not share or copy terms

with identity except when such sharing or copying is implied by the language

semantics.

For a term with identity there is thus a de�nite moment of creation.

There is, however, no corresponding moment of destruction: the lifetime of

a term with identity is unbounded.

A term that does not have identity is said to be generic.

For generic terms, the concept of lifetime is not meaningful at all as

there is no way in which two equal specimen of a generic term could be

distinguished. If the value of an expression is a generic term, it would be

impossible to tell from two such terms whether they were the result of the

same evaluation or two separate evaluations. (Evaluation of the expression

might have side e�ects that would be di�erent for one or more evaluations

but that is not the point here.) An implementation is permitted to share or

copy generic terms.

For example, when a literal {1,2,3} is evaluated more than once, an im-

plementation may let all evaluations return references to the same (generic)

tuple or let each evaluation return a new specimen of such a term.

4.13 Memory management

In the previous section we noted that for generic terms, there is no concept

of lifetime and for terms with identity, the lifetime is unbounded.

However, Erlang 4.7.3 will keep track of all references to terms (both

generic terms and terms with identity) and when no references to a specimen

of a term remain, the memory occupied by the specimen must eventually be

reused. There are no \memory leaks," i.e., memory that is not part of the

representation of terms that can be referenced but is never reclaimed.

Reclamation of memory in a process (garbage collection) could occur

incrementally or in batches but will not cause violation of the scheduling

policies described in x10.7.

Chapter 5

Arithmetics

We de�ne the mathematical functions in terms of which the arithmetics of

Erlang are de�ned. This chapter depends signi�cantly on the international

standard document ISO/IEC 10967-1 [14], referenced in this text as LIA-1.

5.1 Notation

Let Z be the set of mathematical integers, R the set of real numbers and B
the set of Booleans, denoted by true and false.

There are four exceptional values that are not numbers but may be the

results of the LIA-1 functions de�ned in this chapter: integer overow,

oating overow, underow and unde�ned.

The following de�nitions are restated from LIA-1. For x 2 R, the nota-
tion bxc stands for the largest integer not greater than x:

bxc 2 Z and x� 1 < bxc � x

and tr (x) stands for the integer part of x (truncated towards 0):

tr (x) = bxc if x � 0;

= �b�xc if x < 0.

The following de�nitions are restated from the 1995 working draft of the

international standard document ISO/IEC 10967-2 [15], referenced in this

text as LIA-2.

Let S be a subset ofR, closed under (arithmetic) negation. The following
are four rounding functions for mapping values of R into S. Given any

x 2 R,

bxcS = maxf z 2 S j z � x g

dxeS = minf z 2 S j z � x g

47

48 DRAFT (0.7) February 9, 1999 { 19 : 09

truncateS(x) = bxcS if x � 0;

= dxeS if x < 0.

nearestS(x) = bxcS if jbxcS � xj < jx� dxeS j;
= dxeS if jbxcS � xj > jx� dxeS j;
= bxcS or dxeS if jbxcS � xj = jx� dxeS j.

In addition it must hold that nearestS(�x) = �nearestS(x).
When the subscript S is omitted, Z is assumed.

We may write oorS(x) for bxcS and ceilingS(x) for dxeS .
Note that

� oorS(x) rounds x towards negative in�nity,

� ceilingS(x) rounds x towards positive in�nity,

� truncateS(x) rounds x towards zero and

� nearestS(x) rounds x to the nearest value in S.

When we write [i; j], where i and j are integers, we mean the set fx 2 Z j
i � x � j g. When we write [i; j), where i and j are integers, we mean the

set fx 2 Z j i � x < j g.

5.2 The integer type

The set of numbers that can be represented by the integer type is called I and

is a subset of Z. LIA-1 requires I to be characterized by four parameters:

bounded 2 B (whether the set I is �nite)

modulo 2 B (whether out-of-bounds results \wrap")

minint 2 I (the smallest integer in I)

maxint 2 I (the largest integer in I)

For the integer type of Erlang, modulo and bounded are false. As bounded

is false, I = Z and the values of minint and maxint are not meaningful.

Erlang has three additional parameters:

�xnum 2 B (whether there are \�xnums")

min�xnum 2 I (the smallest �xnum in I)

max�xnum 2 I (the largest �xnum in I)

�xnum is true, min�xnum is �227 and max�xnum is 227 � 1.

Let If = fx 2 I j min�xnum � x � max�xnum g. If is the set of

\�xnums", the representation of which can utilize the most e�cient repre-

sentation of integers in the machine, typically occupying one word of mem-

ory.

Let Ib = I n If . Ib is the set of \bignums", the representation of which

may require arbitrary amounts of memory. An implementation for which

Ib 6= ; , such as Erlang, is said to have bignums.

February 9, 1999 { 19 : 09 DRAFT (0.7) 49

5.3 Integer operations

Elsewhere in this speci�cation we express the integer arithmetic operations

of Erlang in terms of the following functions from LIA-1:

add I : I � I ! I [finteger overowg
(x; y) 7! the sum of x and y

subI : I � I ! I [finteger overowg
(x; y) 7! the di�erence of x and y

mulI : I � I ! I [finteger overowg
(x; y) 7! the product of x and y

div I : I � I ! I [finteger overow;unde�nedg
(x; y) 7! the quotient of x and y

remI : I � I ! I [funde�nedg (x; y) 7! the remainder of x and y

mod I : I � I ! I [funde�nedg (x; y) 7! x modulo y

negI : I ! I [finteger overowg (x) 7! the (arithmetic) negation of x

absI : I ! I [finteger overowg (x) 7! absolute value of x

eqI : I � I ! B (x; y) 7! x equals y

neqI : I � I ! B (x; y) 7! x does not equal y

lssI : I � I ! B (x; y) 7! x is less than y

leqI : I � I ! B (x; y) 7! x is not greater than y

gtr I : I � I ! B (x; y) 7! x is greater than y

geqI : I � I ! B (x; y) 7! x is not less than y

For each function, LIA-1 states a number of axioms. In Erlang 4.7.3,

modulo = false (x5.2), bounded = false and mod I = mod
a

I
. For div and

rem the pair div t
I
=rem

t

I
is provided.

For convenience we reproduce the strengthened axioms of Section 5.1.3

of LIA-1 here:

add I(x; y) = x+ y if x+ y 2 I;

= integer overow if x+ y =2 I.

subI(x; y) = x� y if x� y 2 I;

= integer overow if x� y =2 I.

mul I(x; y) = x � y if x � y 2 I;

= integer overow if x � y =2 I.

50 DRAFT (0.7) February 9, 1999 { 19 : 09

div
f

I
(x; y) = bx=yc if y 6= 0 and bx=yc 2 I;

= integer overow if y 6= 0 and bx=yc =2 I;

= unde�ned if y = 0.

rem
f

I
(x; y) = x� (bx=yc � y) if y 6= 0;

= unde�ned if y = 0.

div
t

I
(x; y) = tr(x=y) if y 6= 0 and tr(x=y) 2 I;

= integer overow if y 6= 0 and tr(x=y) =2 I;

= unde�ned if y = 0.

rem
t

I
(x; y) = x� (tr(x=y) � y) if y 6= 0;

= unde�ned if y = 0.

mod
a

I
(x; y) = x� (bx=yc � y) if y 6= 0;

= unde�ned if y = 0.

negI(x) = �x if �x 2 I;

= integer overow if �x =2 I.

absI(x) = jxj if jxj 2 I;

= integer overow if jxj =2 I.

eqI(x; y) = true if x = y;

= false if x 6= y.

neqI(x; y) = true if x 6= y;

= false if x = y.

lssI(x; y) = true if x < y;

= false if x � y.

leqI(x; y) = true if x � y;

= false if x > y.

gtr I(x; y) = true if x > y;

= false if x � y.

geqI(x; y) = true if x � y;

= false if x < y.

5.4 The oating-point type

The set of numbers that can be represented by the oat type is called F and

is a �nite subset of R. F may contain both normalized and denormalized

February 9, 1999 { 19 : 09 DRAFT (0.7) 51

values (cf. Section 5.2 of LIA-1); FN stands for the set of normalized values

in F .

LIA-1 requires F to be characterized by �ve parameters:

p 2 Z (the precision of F)

r 2 Z (the radix of F)

emin 2 Z (the smallest exponent of F)

emax 2 Z (the largest exponent of F)

denorm 2 B (whether F contains denormalized values)

Erlang 4.7.3 directly uses the oat representation of the underlying

processor so these parameters are not de�ned. It is guaranteed, however,

that the size of a oat is at least 64 bits.

5.5 Floating-point operations

Elsewhere in this speci�cation we express the oating-point arithmetic op-

erations of Erlang in terms of the following functions from LIA-1:

addF : F � F ! F [foating overow;underowg
(x; y) 7! the sum of x and y

subF : F � F ! F [foating overow;underowg
(x; y) 7! the di�erence of x and y

mulF : F � F ! F [foating overow;underowg
(x; y) 7! the product of x and y

divF : F � F ! F [foating overow;underow;unde�nedg
(x; y) 7! the quotient of x and y

negF : F ! F (x) 7! the (arithmetic) negation of x

absF : F ! F (x) 7! absolute value of x

signF : F ! I (x) 7! the sign of x

exponentF : F ! F [funde�nedg
(x) 7! the exponent of x

fractionF : F ! F (x) 7! x scaled by a power of r to the range [1=r; 1)

scaleF : F � I � F ! F [foating overow;underowg
(x; n) 7! the product of x and r

n

succF : F ! F [foating overowg
(x) 7! the least oat greater than x

predF : F ! F [foating overowg
(x) 7! the greatest oat less than x

52 DRAFT (0.7) February 9, 1999 { 19 : 09

ulpF : F ! F [funderow;unde�nedg
(x) 7! the value of one unit in the last place of x

truncF : F � I ! F (x) 7! x with the low p� n digits zeroed

roundF : F � I ! F [foating overowg
(x) 7! x rounded to n signi�cant digits

intpartF : F ! F (x) 7! the integer part of x

fractpart
F
: F ! F (x) 7! x minus the integer part of x

eqF : F � F ! B (x; y) 7! x equals y

neq
F
: F � F ! B (x; y) 7! x does not equal y

lssF : F � F ! B (x; y) 7! x is less than y

leqF : F � F ! B (x; y) 7! x is not greater than y

gtrF : F � F ! B (x; y) 7! x is greater than y

geqF : F � F ! B (x; y) 7! x is not less than y

For each function, LIA-1 states a number of axioms. For convenience we

reproduce the axioms of Section 5.2.7 of LIA-1 here:

addF (x; y) = resultF (add
�

F
(x+ y); rndF)

subF (x; y) = addF (x;�y)

mulF (x; y) = resultF (x � y; rndF)

divF (x; y) = resultF (x=y; rndF) if y 6= 0;

= unde�ned if y = 0.

negF (x) = �x

absF (x) = jxj

signF (x) = 1 if x > 0;

= 0 if x = 0;

= �1 if x < 0.

exponentF (x) = b(logr jxjc+ 1 if x 6= 0;

= unde�ned if x = 0.

fractionF (x) = x=r
exponentF (x) if x 6= 0;

= unde�ned if x = 0.

scaleF (x; n) = resultF (x � rn; rndF)

succF (x) = minf z 2 F j z > x g if x 6= fmax ;

= oating overow if x = fmax .

February 9, 1999 { 19 : 09 DRAFT (0.7) 53

predF (x) = maxf z 2 F j z < x g if x 6= �fmax ;
= oating overow if x = �fmax .

ulp
F
(x) = r

eF (x)�p if x 6= 0 and r
eF (x)�p 2 F ;

= underow if x 6= 0 and r
eF (x)�p =2 F ;

= unde�ned if x = 0.

truncF (x) = bx=reF (x)�nc � reF (x)�n if x � 0;

= �truncF (�x; n) if x < 0.

roundF (x) = rnF (x; n) if jrnF (x; n)j � fmax ;

= oating overow if jrnF (x; n)j > fmax .

intpartF (x) = signF (x) � bjxjc
fractpartF (x) = x� intpartF (x)

eqF (x; y) = true if x = y;

= false if x 6= y.

neqF (x; y) = true if x 6= y;

= false if x = y.

lssF (x; y) = true if x < y;

= false if x � y.

leqF (x; y) = true if x � y;

= false if x > y.

gtrF (x; y) = true if x > y;

= false if x � y.

geqF (x; y) = true if x � y;

= false if x < y.

The functions are expressed in terms of a number of helper functions and

sets:

� The set F � is F extended with all numbers having the same precision

as numbers in FN but larger magnitude.

� The approximate addition function add
�

F
: F � F ! R is as de-

scribed in Section 5.2.4 of LIA-1, ideally but not necessarily such that

add
�

F
(x; y) = x+ y.

� The functions eF : R! Z and rnF : F �Z ! F
� are as described in

Section 5.2.7 of LIA-1, i.e., they are de�ned such that

eF (x) = blogr jxjc+ 1 if jxj � fminN ;

= emin if jxj < fminN .

54 DRAFT (0.7) February 9, 1999 { 19 : 09

and

rnF (x; n) = sign
F
(x) � bjxj=reF (x)�n + 1=2c � reF (x)�n

� rndF : R ! F
� is the rounding function used when taking an exact

result inR to a p-digit approximation. It must satisfy the requirements

stated in Sections 5.2.5 and 5.2.8 of LIA-1. There are two derived

constants characterizing rndF :

� rnd error 2 R is the maximum rounding error in ulps;

� rnd style 2 fnearest; truncate;otherg is the rounding style.

For Erlang 4.7.3, rnd error is XXX and rnd style is XXX.

� resultF : R � (R ! F
�) ! F [foating overow;underowg

is the function described in Section 5.2.6 of LIA-1. The value of

resultF (x; rnd), where x 2 R and rnd is a rounding function in R !
F
�, is the result of applying the rounding function to x, provided that

the result is in F . If jxj is greater than zero but less than fmin, then

XXX???

5.6 Conversions

Let nearest I!F : I ! F [foating_overowg be de�ned as

nearest I!F (x) = resultF (x;nearestF);

where resultF is as in x5.5 (cf. Section 5.2.6 of LIA-1) and nearestF is a

rounding-to-nearest function for F (x5.1).
De�ne the following four functions:

oorF!I(x) = oorZ(x) if oorZ(x) 2 I;

= integer overow if oorZ(x) =2 I.

ceilingF!I(x) = ceilingZ(x) if ceilingZ(x) 2 I;

= integer overow if ceilingZ(x) =2 I.

truncateF!I(x) = truncateZ(x) if truncateZ(x) 2 I;

= integer overow if truncateZ(x) =2 I.

nearestF!I(x) = nearestZ(x) if nearestZ(x) 2 I;

= integer overow if nearestZ(x) =2 I.

Note that the four functions oorZ , ceilingZ , truncateZ and nearestZ meet

the requirements in Section 5.3 of LIA-1 for being used as the rounding

function rndF!I in a conversion function cvtF!I .

February 9, 1999 { 19 : 09 DRAFT (0.7) 55

5.7 Representation and evaluation

The purpose of this section is to de�ne notation and terminology that is

used in the subsequent chapters.

� If i 2 I, then <[i] is the Erlang integer representing i.

� If f 2 F , then <[f] is the Erlang oat representing f .

� If b 2 B, i.e., true or false, then <[b] is the Erlang Boolean atom

representing b. That is, <[true] = true and <[false] = false.

� If x is one of integer overow, oating overow, underow and

unde�ned, then <[x] is the Erlang atom badarith.

Similarly,

� If I is an Erlang integer, then <�1[I] 2 I is the integer it represents.

� If F is an Erlang oat, then <�1[F] 2 F is the real number it represents.

� If B is an Erlang Boolean atom, then <�1[B] 2 B is the Boolean it

represents. That is, <�1[true] = true and <�1[false] = false.

We have a notation for writing the result of evaluating an expression:

� When we write E) T we state that evaluating the expression E com-

pletes normally and that its value is the term T . (If the environment

is relevant, it is stated elsewhere.)

� When we write E ; R we state that evaluating the expression E exits

with reason R .

5.8 Noti�cation

Whenever the evaluation of the translated Erlang expressions causes one

of the functions de�ned in the preceding sections of this chapter to return

an exceptional value, the evaluation of the translated Erlang expression

exits with reason badarith.

A catch expression (x6.9) can be used for handling the exception in

accordance with Section 6.1.1 of LIA-1.

The usual mechanisms for handling of abnormal completion ensure that

in absence of a catch expression that catches the arithmetic exception, the

process will complete abruptly; any exit signals sent to linked processes will

propagate information about the arithmetic exception (x10.4).

56 DRAFT (0.7) February 9, 1999 { 19 : 09

5.9 Conversion to and from numerals

We will de�ne conversions from I and F to canonical decimal numerals.

Below we will only discuss decimal numerals and thus omit \decimal". We

will also de�ne conversions from decimal numerals to I or F .

5.9.1 Integer to decimal numeral

Given an integer i 2 I, the canonical numeral is de�ned recursively as fol-

lows.

� If 0 � i < 10, then the canonical numeral for i is the decimal digit

with value i.

� If i < 0, then the canonical numeral for i is a minus sign (`�') followed
by the canonical numeral for �i.

� If i � 10, then the canonical numeral for i is the canonical numeral

for bi=10c followed by the decimal digit with value i mod 10.

5.9.2 Decimal numeral to integer

Given a sequence of characters, its interpretation as a decimal integer nu-

meral (if any) is de�ned as follows:

� If the sequence consists of a minus sign followed by decimal digits d1,

: : : , dk, then it denotes �i, where i is the integer denoted by the digits
d1, : : : , dk.

� If the sequence consists of a plus sign followed by decimal digits d1,

: : : , dk, then it denotes the same integer as that denoted by the digits

d1, : : : , dk.

� If the sequence consists only of decimal digits d1, : : : , dk, then it

denotes the integer
P

k

j=1 dj � 10k�j .

� Otherwise, it does not denote any integer.

Note that this also de�nes the meaning of a DecimalLiteral : if the sequence

of characters that it constitutes denotes i 2 I, then the DecimalLiteral

denotes <[i].

5.9.3 Numeral with radix to integer

In this context, `A' and `a' are digits with value 10, `B' and `b' are digits

with value 11, etc., up to `F' and `f' which are digits with value 15. Given a

radix r and a sequence of characters, its interpretation as an integer numeral

in radix r (if any) is de�ned as follows:

February 9, 1999 { 19 : 09 DRAFT (0.7) 57

� If the sequence consists of a minus sign followed by digits d1, : : : , dk,

then it denotes �i, where i is the integer denoted by the digits d1, : : : ,
dk.

� If the sequence consists of a plus sign followed by decimal digits d1,

: : : , dk, then it denotes the same integer as that denoted by the digits

d1, : : : , dk.

� If the sequence consists only of digits d1, : : : , dk where each digit dj ,

1 � j � k, has a value that is less than r, then it denotes the integerP
k

j=1 dj � rk�j.

� Otherwise, it does not denote any integer.

Note that this also de�nes the meaning of a ExplicitRadixLiteral : consider

the sequence of characters that it constitutes. Let r be the integer denoted

by the digits before the `#' character. If the concatenation of the sign (if

any) with the digits following the `#' character denotes i 2 I in radix r,

then the ExplicitRadixLiteral denotes <[i].

5.9.4 Float to numeral

The canonical numeral for a oat f 2 F is de�ned recursively as follows.

� If f < 0, then the canonical numeral for f is a minus sign (`�') followed
by the canonical numeral for �f .

� If f = 0, then the canonical numeral for f is the digit `0' followed by

a decimal point (`:'), the digit `0', the letter `e' and the digit `0'.

� If f > 0, then let w and e be the unique integers such that f = w � 10e
and w mod 10 6= 0. The canonical numeral for f is the canonical

numeral for w with a decimal point (`:') inserted after the �rst digit,

followed by the letter `e', followed by the canonical numeral for e +

blog10 wc. (Obviously w > 0 and the canonical numeral for w thus

begins with a digit.)

5.9.5 Numeral to oat

Given a sequence of characters, the number it denotes (if any) is de�ned as

follows. The sequence of characters should consist of

� a (possibly signed) decimal numeral, which we will call the whole num-

ber part;

� a decimal point;

� an unsigned decimal numeral, which we will call the fractional part;

58 DRAFT (0.7) February 9, 1999 { 19 : 09

� optionally an `E' or `e' followed by a (possibly signed) decimal numeral,

which we will call the exponent.

If it does not, then the sequence of characters does not denote any number.

Let e0 be the number of digits in the fractional part, let w be the integer

denoted by the concatenation of the whole number part and the fractional

part, and let e be the integer denoted by the exponent, or zero if there was

no exponent part (x5.9.2).
The number in F denoted by the sequence of characters is then

resultF (w � 10e�e0 ; rndF):

Note that this also de�nes the meaning of a FloatLiteral : if the sequence

of characters that it constitutes denotes f 2 F , then the FloatLiteral denotes

<[f].

Chapter 6

Expressions and Evaluation

Erlang is on one hand a functional programming language and on the

other hand a language with concurrency.

That Erlang is a functional language means that the central syntactic

concept is that of an expression which is evaluated in order to obtain its

value, which is the result of the evaluation.

That Erlang has explicit concurrency means that there is the concept

of a process and communication between processes as an action. A process is

a dynamic entity with state that carries out the evaluation of an expression.

During its lifetime, it can exchange messages with other processes and create

new processes.

Communication is commanded by evaluating an expression (of the form

P ! E), which means that there are expressions for which evaluation has a

side e�ect .1

The presence of (side) e�ects means that some expression do not have a

unique value. Two evaluations in the same context might produce di�erent

results. Good programmers avoid confusing use of such possibilities.

6.1 Environments

A binding is a pair of a variable and a term. An environment is a map-

ping (x2.3) from variables to terms, i.e., a set of bindings such that no two

bindings have the same variable in their left halves.

6.2 Binding, e�ect and result

Erlang is di�erent from most other programming languages | including

other functional programming languages | in that expressions constitute

1As achieving the e�ect is often the sole reason for evaluating the expression, calling it

a \side" e�ect is sometimes misleading.

59

60 DRAFT (0.7) February 9, 1999 { 19 : 09

the only major syntactical category. It is customary to make no distinction

between expressions (evaluated for their result) and commands (executed

for their e�ect) | cf. C [13], Scheme [20], Standard ML [19], etc. | but all

those languages have declarations as a separate category.

An Erlang expression is always evaluated in an environment, which

we refer to as the input environment of the expression. The expression

may provide bindings for variables not in its input environment. The output

environment of the expression is then the extension of the input environment

with the variable bindings it provides.

Each occurrence of an Erlang expression has a lexical location. It may

be evaluated several times during the execution of a program (for example, if

it is located in the body of a function) and the environments in which it will

be evaluated may di�er. However, the domains of all these environments

will be the same. The input context of the expression is the set of variables

that is the common domain of these input environments; similarly the output

context is the common domain of the output environments. Note that the

output context of an expression always contains the input context; there is

no shadowing of variables.

Erlang has been designed so that the domain of the output environment

for an expression is a function of the input domain. This allows the input and

output context of every expression occurrence in an Erlang program to be

determined at compile-time. An applied occurrence of a variable that does

not belong to the input context where it occurs | usually called an unbound

variable | can therefore be detected at compile-time and a compiler must

do so and give a compile-time error when an unbound variable is detected.

In Erlang an occurrence of an expression in some environment thus

has three roles:

� It provides a (possibly trivial) extension of the environment to other

subexpressions of the expression or body in which it occurs. Given the

input context of the expression, it is possible to determine at compile

time its output context.

� Its evaluation produces e�ects, i.e., it may cause the process evaluat-

ing it to send or receive messages (which could be either interprocess

communication or I/O through ports).

� Its evaluation has a result, which is the value of the expression, pro-

vided that the evaluation of the expression completes normally. How

this value is used depends on the surrounding expression.

In this chapter we go through all Erlang expressions and explain their

syntax, their e�ects, their results and how they extend the environment at

run time (which implies how they extend the context at compile time).

February 9, 1999 { 19 : 09 DRAFT (0.7) 61

6.3 Variables and their scope

For each occurrence of a variable there will always be an occurrence of the

same variable that is its binding occurrence. However, in general it cannot

be determined until run time which is the binding occurrence. This is due

to the lack of a de�ned order of evaluation. If a variable occurrence is not a

binding occurrence, then it is called an applied occurrence.

If a variable is in the output context of an expression occurrence but

not in its input context, then the variable must have a binding occurrence

inside the expression occurrence. As we will see, the binding occurrence of a

variable will always be in a pattern but a pattern may also contain applied

occurrences of variables.

6.4 Normal and Abrupt Completion of Evaluation

For any expression there is a normal mode of evaluation in which the execu-

tion is carried out according to the rules laid out in the following sections. If

the evaluation of an expression is carried out according to these rules until

the computation is �nished and the result available, then the expression is

said to complete normally .

The evaluation of an expression may alternatively complete abruptly ,

always with an associated reason which is an Erlang term. The abrupt

completion will have one of the following causes:

� The BIF throw/1 has been applied to a term T . The reason for the

abrupt completion is then the term {'THROW',T}.

� The BIF exit/1 has been applied to a term T . The reason for the

abrupt completion is then the term {'EXIT',T}.

� A run-time error has occurred (for example, in the evaluation of a BIF

application), which is then described by a term T . The reason for the

abrupt completion is then the term {'EXIT',T}. When we write that

evaluation exits with reason R , this is short for writing that evaluation

completes abruptly with reason {'EXIT',R}.

It follows that abrupt completion due to an error in a BIF is indistinguishable

from abrupt completion due to evaluation of the BIF exit/1. Indeed the

BIF exit/1 is intended to be used to signal that an error has occurred.

When the evaluation of an expression has completed abruptly, the steps

of the normal mode of evaluation of the expression are no longer followed

and there is no output environment. Abrupt completion is discussed sep-

arately for each kind of expression but in general, abrupt completion of a

subexpression causes abrupt completion of the whole expression with the

same reason. The exceptions are catch expressions, which are intended to

62 DRAFT (0.7) February 9, 1999 { 19 : 09

be used for catching an abrupt completion and go back to normal mode of

evaluation (x6.9).
The BIF throw/1 is intended for abrupt completion as a form of non-

local control and abrupt completion caused by its evaluation should always

be caught.

6.5 Order of evaluation

The order in which the subexpressions of an expression are evaluated is not

de�ned, with one exception:

In a body, the expressions are evaluated strictly from left to right.

In order to simplify the presentation of the expressions of Erlang, we will

adopt a convention: When we say that a sequence of expressions E1, E2,

: : : , Ek, k � 0, is evaluated in some order in an environment �, we mean

that:

� In the normal mode of evaluation, all expressions are evaluated in some

order, say Eo1
, : : : , Eok

.

� If the evaluation of some expression Eoi
, where 1 � i � k, completes

abruptly with some reason, the expressions Eoi+1
, : : : , Eok

are not

evaluated and evaluation of the whole sequence completes abruptly

with the same reason.

� � is the input environment of expression Eo1
.

� For each i, 1 < i � k, the output environment of expression E oi�1
. is

the input environment of expression Eoi
.

� The output environment of the sequence is the output environment of

expression Eok
.

Note that sequence of expressions being evaluated in some order does not

imply anything about how the values of these expressions are used. This

will be described separately for each kind of expression.

The uncertainty about the order of evaluation together with the require-

ment of x6.2 that the compiler must give a compile-time error for an applied

occurrence of an unbound variable implies that the compiler must only ac-

cept a program if for any evaluation order, there will not be an applied

occurrence of an unbound variable. The e�ect of this is that when a se-

quence of expressions will be evaluated in some order, the compiler should

assume for each expression that it will be the �rst to be evaluated, so its

input context will be �.

For example, in a context where X is unbound, the expression (X=8) +

X should give a compile-time error. If the left operand of + is evaluated

February 9, 1999 { 19 : 09 DRAFT (0.7) 63

�rst, then the occurrence of X in the right operand will have the value 8.

However, if the right operand is evaluated �rst, then the occurrence of X in

it will be unbound.

In the same context, the expression (X=8) + (X=9) should be accepted

by the compiler, because regardless of the order in which the operands are

evaluated, the applied occurrence of X will be bound. (However, there will

be a run-time error because either X will be bound to 8 and then matched

against 9, or it will be bound to 9 and then matched against 8.)

6.6 Pattern matching

Pattern matching occurs as part of the evaluation of several Erlang lan-

guage constructs so we describe it separately.

6.6.1 Patterns

Pattern:

AtomicLiteral (x6.19.2)
Variable (x3.16)
UniversalPattern (x3.17)
TuplePattern

RecordPattern

ListPattern

TuplePattern:

{ Patternsopt }

ListPattern:

[]

[Patterns ListPatternTailopt]

ListPatternTail :

| Pattern

Patterns:

Pattern

Patterns , Pattern

RecordPattern:

RecordType RecordPatternTuple

RecordType:

AtomLiteral

RecordPatternTuple:

{ RecordFieldPatternsopt }

64 DRAFT (0.7) February 9, 1999 { 19 : 09

RecordFieldPatterns:

RecordFieldPattern

RecordFieldPatterns , RecordFieldPattern

RecordFieldPattern:

RecordFieldName = Pattern

RecordFieldName:

AtomLiteral

(Strictly speaking \cons pattern" would be a more appropriate name for

what we call a list pattern.)

We say that two patterns are equal (and thus exchangeable) if they

match exactly the same terms resulting in exactly the same bindings.

Part of the idea with pattern matching is to verify that a term has a

certain (nested) structure with respect to lists or tuples. It is then obvious

that:

� [P1] equals [P1|[]].

� [P1,P2,...,Pk], where k > 1, equals [P1|[P2,...,Pk]].

� [P1,P2,...,Pk|Pk+1], where k > 1, equals [P1|[P2,...,Pk|Pk+1]].

We can therefore describe pattern matching as if each ListPattern is either

[] or [Pattern | Pattern].

In the scope of a record declaration (x8.4) that establishes R as a record

type with n �elds, a record pattern #R{F1=P1,...,Fk=Pk}, where F1, : : : ,

Fk are distinct names of �elds in R , is syntactic sugar for a tuple pattern

{R,Q2,...,Qn+1} where for each i, 2 � i � n+ 1,

� If there is an integer j, 1 � j � k, such that record �eld
R
(F j) = i,

then Q i is P j.

� Otherwise, Q i is _.

It is a compile-time error if a record pattern is not in the scope of an ap-

propriate record declaration. As record patterns are syntactic sugar, we can

describe pattern matching as if they did not exist.

6.6.2 De�nition of the pattern matching problem

A pattern matching problem takes as input a pattern P , a term T and an

(input) environment � and results in either failure or success, in the latter

case together with an (output) environment �0 that extends �.

The domain of �0 must include the domain of � and all variables occurring

in P . We say that �0 is minimal if its domain is exactly that.

February 9, 1999 { 19 : 09 DRAFT (0.7) 65

Informally we can say that pattern matching succeeds if the structure

of the pattern P is the same as that of the term T and there exists an

environment �0 extending � such that for each occurrence of a variable in P ,

its value in �
0 is the term in the corresponding position of T . �0 is then the

output environment if it is minimal.

More precisely, the pattern matching succeeds with an output environ-

ment �0 if �0 is a minimal extension of � and P matches T , which means that

exactly one of the following hold:

� P is an atomic literal which denotes T ;

� P is a variable which �
0 maps to T ;

� P is a universal pattern;

� there exists a k � 0 such that P is a tuple pattern {P1,..., Pk}, T is

a tuple with size k and elements T1, : : : , Tk, and for each i, 1 � i � k,

P i matches T i;

� P is a list pattern [] and T is an empty list;

� P is a list pattern [Ph|Pt], T is a cons with head Th and tail T t, Ph

matches Th and P t matches T t.

If pattern matching succeeds with an environment �0, then �
0 is unique (as

can be shown).

6.6.3 Coding pattern matching

As will be obvious below where pattern matching is used, the pattern is

available at compile-time and so is the context, as was noted in x6.2. There-
fore the pattern matching can be computed by code that traverses the term

and veri�es that the structure is the same as in the pattern, �lling in values

for variables not in the input context as they are encountered in the pattern.

When a variable not in the input context of the pattern occurs more than

once in the pattern, any occurrence can be proclaimed the binding occur-

rence. It should be the one actually visited �rst by the pattern matching

algorithm being used.

Here is an example of how code for matching P against T could be

generated. The generated code examines the term T , provided at run time.

We assume that the representation of environments is such that for each

variable there is a location with unde�ned initial contents that can be written

once with a value for the variable. We assume that when the code is run,

�
0 has been obtained by extending � with locations for the variables that

occur in P but not in �. If execution passes through all the code, the pattern

matching has succeeded and all locations in �0 have been written with values.

66 DRAFT (0.7) February 9, 1999 { 19 : 09

We describe recursively the code generation for a pattern p with P as

initial value. At run time, t should be the term against which p is to be

matched. The initial value of t will be T .

� If p is an atomic literal, generate code that �nishes the matching with

failure if t is not exactly that literal.

� If p is the binding occurrence of a variable, generate code that writes

t in its location in �
0.

� If p is a variable but not the binding occurrence, generate code that

�nishes the matching with failure if the contents of its location in �
0 is

not (exactly) equal to t.

� If p is the universal pattern, generate no code.

� If p is a tuple pattern {p1,...,pk} (where k � 0), generate code that:

� If t is not a tuple of size k, complete with failure.

� Match p1 against element 1 of t.

: : :

� Match pk against element k of t.

� If p is a list pattern [], generate code that �nishes the matching with

failure if t is not an empty list.

� If p is a list pattern [ph|pt] (or some list pattern that is equal to such

a pattern), generate code that:

� If t is not a cons, �nish the matching with failure.

� Match ph against the head of t.

� Match pt against the tail of t.

As there are no loops in the generated code (and assuming that testing

for equality always completes) the matching must either �nish with failure

or reach the end and thus �nish successfully.

6.7 Functions, function applications and calls

Function application is part of the evaluation of several kinds of Erlang

expressions, so we describe it once and for all here. The syntax of these

expressions is described elsewhere (x6.18, x13.8), as is the syntax of the

expressions that name or denote functions (x6.19.10, x8.3).
Evaluation of a function application consists of two parts: evaluation

of the arguments of the function and a function call. How arguments are

February 9, 1999 { 19 : 09 DRAFT (0.7) 67

evaluated is described separately for each form of function application and

the function call never begins until all arguments have been evaluated so

here will be described only how the actual function call is evaluated.

The input to a function call is some speci�cation of which function is to

be applied and the values of the arguments as a sequence of terms v 1, : : : ,

vn , for some n � 0.

The function to be applied is always speci�ed in one of the following four

ways:

1. A remote application: two atoms Mod and Fun . Let P be the process

evaluating the application.

� If a row with key (Mod ; Fun ; n) is in entry_points[node[P]]

(x11.7.2), then the function to be applied is Fun/n in the module

namedMod and the value of the row is a pointer to the executable

code (x9.3).
� Otherwise, if there is a row with key (E ; undefined_function; 3)

in entry_points[node[P]] (x10.9.2, x11.7.2), where E is the

value of error_handler[P], then the result of the function ap-

plication is obtained by instead evaluating an application

E:undefined_function(Mod,Fun,[v1,...,vn]).

The initial value of error_handler[P] is error_handler (cf. be-

low).

� Otherwise, the result of the function application is obtained by

evaluating an application

error_handler:undefined_function(Mod,Fun,[v1,...,vn])

The exported function undefined_function/3 in the preloaded

module error_handler exits with {undef,{Mod,Fun,[v1,...,

vn]}}.

2. An atom Fun . The only kind of expression that speci�es the function

in this way is an ApplicationExpr on the form AtomLiteral (Exprsopt

). There are three possibilities:

� If there is an import attribute (x8.2.2)
-import(Mod,[...,F/n,...])

then the function to be applied is to be obtained exactly as in

case 1 from the atoms Mod and Fun . (It is thus a remote appli-

cation.)

� Otherwise, if there is a de�nition of a function named Fun/n in

the lexically enclosing module (which we may assume to be named

Mod), then the function to be applied is the one so de�ned. This

is called a local application.

68 DRAFT (0.7) February 9, 1999 { 19 : 09

� Otherwise, if there is a BIF with an unquali�ed name F/n , then

it is the function to be applied.

� Otherwise it is a compile-time error.

3. An implicit fun application: a function term that is the value of an

expression fun Fun/k . Let Mod be the module in which the fun ex-

pression lexically occurred. It is a compile-time error if a module

declaration contains an expression fun Fun/k but there is no de�ni-

tion of a function named Fun/k in the declaration of module Mod . The

function to be applied is thus the function Mod:Fun/k (which needs

not be exported).

4. An explicit fun application: a function term that is the value of an

explicit fun expression (x6.19.10). Let Mod be the module in which

the fun expression lexically occurred.

In cases 3 and 4 above, it may be that the arity of the function is not the same

as the number of arguments to which it is being applied. In this case, evalu-

ation of the function application exits with {badarity,{Mod,Fun,[v1,...,

vn]}}.

From the four cases above we see that the function to be applied is

either one named Fun/n de�ned through a FunctionDeclaration (x8.3) in
some module named Mod , or it is denoted by an explicit fun expression

(x6.19.10). We now describe how the evaluation proceeds in these two cases.

6.7.1 Call of a named function

We shall describe evaluation of a call by a process P of the function named

Fun/n in module Mod to the values v1, : : : , vn of the arguments. First,

current_function[P] (x10.9.2) should be set to {Mod,Fun,[v1,...,vn]}.2
Next, let the FunctionDeclaration de�ning Fun/n in Mod be

F(P1;1,...,P1;n) [when G1] -> B1 ;
... ;

F(Pk;1,...,Pk;n) [when Gk] -> Bk.

where k is a natural number, each P i;j (1 � i � k and 1 � j � n) is a

Pattern, each (optional) G i is a Guard and each Bi is a Body.

Carry out the following step for each function clause i, where i goes

from 1 to k in that order, until a clause s is found for which both pattern

matching and guard evaluation succeeds or all clauses have been tried.

� Match the terms v1, : : : , vn against the patterns P i;1, : : : , P i;n in an

empty environment. If the matching succeeds, evaluate the guard G i

2This is necessary only in order to support the function process_info/2 (x13.8.12).

February 9, 1999 { 19 : 09 DRAFT (0.7) 69

in the output environment of the pattern matching (an omitted guard

trivially succeeds).

If there is no clause for which both pattern matching and guard evalua-

tion succeeds, then the evaluation of the function application exits with

{function_clause,{Mod,Fun,[v1,...,vn]}}. Otherwise, the evaluation

of the function application continues by evaluating the body B s in the out-

put environment of guard G s.

6.7.2 Call of an unnamed function

We shall describe evaluation of a call of a function term to the values v1,

: : : , vn of the arguments. Suppose that the function term was obtained by

evaluating in an environment � a FunExpr

fun (P1;1,...,P1;n) [when G1] -> B1 ;
... ;

(Pk;1,...,Pk;n) [when Gk] -> Bk

end

where k is a natural number, each P i;j (1 � i � k and 1 � j � n) is a

Pattern, each (optional) G i is a Guard and each Bi is a Body. Suppose also

that the fun expression occurred lexically in the module named Mod .

Carry out the following step for each function clause i, where i goes

from 1 to k in that order, until a clause s is found for which both pattern

matching and guard evaluation succeeds or all clauses have been tried.

� Match the terms v 1, : : : , vn against the patterns P i;1, : : : , P i;n in

an empty environment (not �). If the matching succeeds, let �0
i
be the

output environment. Evaluate the guard G i in ���
0

i
(an omitted guard

trivially succeeds).

If there is no clause for which both pattern matching and guard evalua-

tion succeeds, then the evaluation of the function application exits with

{lambda_clause,Mod}. Otherwise, evaluation of the function application

continues by evaluating the body B s in the output environment of guard G s.

Note that matching the formal parameters (i.e., the patterns of the

clauses) against actual parameters (i.e., the terms v1, : : : , vn) in an empty

environment implies that variables in the patterns of a clause shadow vari-

ables in the input environment of the fun expression. It is recommended

that the compiler issues a warning when such shadowing takes place (i.e.,

when there is a variable in a pattern of a fun clause that is bound in the

input environment of the fun expression).

70 DRAFT (0.7) February 9, 1999 { 19 : 09

6.7.3 Extent of function calls and last call optimization

We shall state precisely when a function call begins and ends. Consider a

function application where a function is speci�ed in either of the four ways

described in x6.7. The function call begins when matching of the patterns of
the function clauses (either as identi�ed through a module name, a function

symbol and an arity, or as given in an explicit fun expression) against the

values of the arguments begins. (In the actual implementation there is an

entry point of the code for the function, cf. entry_points[N] of a node

N , and the beginning of the function call corresponds to the moment when

execution reaches that entry point.)

Note that argument evaluation in the evaluation of a function application

thus always occurs before the function call begins.

Note also that in the case of a remote function application (i.e., case 1

of x6.7) when there is no exported function with the given module name,

function symbol and arity, there is no function call, so there is no beginning,

nor an end.

In order to state when the function call ends we must consider several

cases (cf. x6.7.1):

� If there is no clause of the function declaration for which both pattern

matching and guard evaluation succeeds, then the function call ends

when the evaluation of the function application completes (abruptly).

� Otherwise, let B be the body of the selected clause and let E 0 be the

�nal expression in the evaluation of B as de�ned below.

� If E 0 is a function application, and evaluation of B does not com-

plete abruptly before E 0 is evaluated, then the original function

call ends when the function call in E 0 begins. The function call

in E 0 is said to be the last call of B .

� Otherwise, the function call ends when the evaluation of the orig-

inal function application completes (normally or abruptly).

We shall de�ne the �nal expression of a body and of an expression

through mutual recursion. This is well-de�ned only when evaluation of the

body or the expression completes normally.

� The �nal expression in the evaluation of a body E1, ..., Ek, where

k � 1, is the expression Ek.

� The �nal expression in the evaluation of an expression E is de�ned

case by case:

� If E is a block expression begin B end, then the �nal expression

of E is the �nal expression of the body B .

February 9, 1999 { 19 : 09 DRAFT (0.7) 71

� If E is an if or case expression (x6.19.7, x6.19.8), then the �nal

expression of E is the �nal expression of the body of the selected

clause of E .

� If E is a receive expression (x6.19.9), then:
� If the expiry time was reached, then the �nal expression of E

is the �nal expression of the expiry body of E .

� Otherwise, the �nal expression of E is the �nal expression of

the body of the selected clause of E .

� If E is a parenthesized expression (E0), then the �nal expression

of E is E 0.

� Otherwise, the �nal expression of E is E itself.

When a function call ends, Erlang ensures that any resources that are

not recycled through garbage collection have been restored. In particular

this means that if memory for function calls is allocated on a stack, the size

of the stack is the same when a function call begins and when it ends.

A consequence of this requirement and the de�nition of when a function

call ends is that an Erlang implementation provides last call optimization

when the �nal expression in the body of a called function is a function

application.

Consider a process P that is evaluating an application of the exported

function Fun/n in the module named M . Let B be the binary that contains

the compiled code (x7.7) for the version of M that is current when the func-

tion call begins (x9.1). Process P is then using function Fun/n in B from

the time that the function call begins until the function call ends.

6.8 Bodies

A body is a nonempty sequence of expressions.

Syntax

Body :

Exprs

Exprs:

Expr

Exprs , Expr

Evaluation

Evaluation of a body E1, ..., Ek, where k � 1, with an input environment

� is carried out as follows:

72 DRAFT (0.7) February 9, 1999 { 19 : 09

� First E1 is evaluated, then E 2, and so on, until �nally Ek is evaluated.

The values of expressions E 1, : : : , Ek�1 are completely ignored. If

the evaluations of all these expressions complete normally, then the

evaluation of the body also completes normally and its value is the

value of expression Ek.

� If the evaluation of some expression E i, where 1 � i � k, completes

abruptly with some reason R , the expressions E i+1, : : : , Ek are not

evaluated and evaluation of the body completes abruptly with reason

R .

(Recall that in x6.5 we stated that this is the perceivable evaluation order. If

advantageous from an e�ciency point of view, an implementation can often

change the order of evaluation of expressions that have no side e�ects.)

Output environment

� � is used as input environment of expression E 1.

� For each i, 1 < i � k, the output environment of expression E i�1 is

used as input environment of expression E i.

� The output environment of expression Ek is used as output environ-

ment of the body.

6.9 catch expressions

A catch expression is used for restoring normal mode of evaluation.

Syntax

Expr :

catch Expr

MatchExpr

Evaluation

Evaluating an expression catch E begins by evaluating E .

� If evaluation of E completes normally and its result is v , then evalua-

tion of catch E also completes normally with result v .

� If evaluation of E completes abruptly with reason {'THROW',T}, for

some term T , then evaluation of catch E completes normally with

result T .

February 9, 1999 { 19 : 09 DRAFT (0.7) 73

� If evaluation of E completes abruptly with reason {'EXIT',T}, for

some term T , then evaluation of catch E completes normally with

result {'EXIT',T}.

Output environment

� The input environment of catch E is used as input environment of E .

� The output environment of E is not used;3 the output environment of

catch E is the same as its input environment.

6.10 Match expressions

A match expression consists of a pattern and an expression. Its purpose is

to match the pattern against the value of the expression, providing bindings

for variables having their binding occurrence in the pattern.

Syntax

MatchExpr :

Pattern = MatchExpr

SendExpr

Evaluation

The evaluation of an expression P = E , where P is a pattern and E is an

expression, begins with evaluating E .

� If the evaluation of E completes abruptly with reason R , then the

evaluation of the match expression also completes abruptly with reason

R .

� If the evaluation of E completes normally with the term T as result,

then what remains is matching P against T .

� If the matching succeeds, then the computation of the match

expression completes normally with result T .

� If the matching fails, the computation of the match expression

exits with reason {badmatch,T0}, where T 0 is some term that is a

(not necessarily strict) subterm of T such that its top level does

not match the corresponding subpattern of P .

3If evaluation of E completes abruptly, then the values of some variables with binding

occurrences in E may not have been computed. Therefore any bindings in E must not be

visible outside it.

74 DRAFT (0.7) February 9, 1999 { 19 : 09

Output environment

� The input environment of the match expression is used as input envi-

ronment of E .

� The output environment of E is used as input environment of the

pattern matching.

� The output environment of the pattern matching is used as output

environment of the match expression.

6.11 Send expressions

A send expression has two operands. The value of the leftmost operand

should identify a process or port to which the value of the rightmost operand

will be sent.

Syntax

SendExpr :

CompareExpr ! SendExpr

CompareExpr

Evaluation

The evaluation of a send expression E1 ! E2 begins with evaluating the

operands E 1 and E 2 in some order in the input environment of the send

expression.

Let v1 and v2 be the values of E 1 and E2 respectively.

� If v1 is a PID or a port, then v2 is dispatched as a message to v 1

(x10.5, x12.6).

� If v 1 is an atom, then v1 is looked up in registry[N], where N is the

node on which the current process is executing.

� If there is a process with some PID P registered under the name

v 1 on node N (x11.5), then v 2 is dispatched as a message to P .

� If there is no process registered under the name v1 on node N ,

then evaluation of the send expression exits with badarg.

� If v 1 is a 2-tuple of atoms A and N , then A is looked up in registry[N]

(although this lookup is performed on node N).

� If there is a process with some PID P registered under the name

A on node N , then v2 is dispatched as a message to P (x10.5).

February 9, 1999 { 19 : 09 DRAFT (0.7) 75

� If there is no process registered under the name A on node N ,

then the send expression has no e�ect.

� If v1 is not a PID, neither a port, nor an atom, nor a 2-tuple of atoms,

then evaluation of the send expression exits with badarg.

If evaluation completes normally, the value of the send expression is v2.

Output environment

The output environment of the operands is used as output environment of

the send expression.

6.12 Relational and equational operators

The relational and equality operators do not associate neither to left, nor to

the right.

These operators can be applied to any pair of values and will always

return true or false.

Syntax

CompareExpr :

ListConcExpr RelationalOp ListConcExpr

ListConcExpr EqualityOp ListConcExpr

ListConcExpr

RelationalOp: one of

< =< > >=

EqualityOp: one of

=:= =/= == /=

Evaluation

Evaluation of an expression E1 O E2, where O is one of the eight relational

and equality operators, begins with evaluating the operands E1 and E2 in

some order in the input environment of E1 O E2. Let the values of the

operands be v1 and v 2, respectively. See the following sections for how the

result is computed for each operator.

Output environment

The output environment of the operands is used as output environment of

E1 O E2.

76 DRAFT (0.7) February 9, 1999 { 19 : 09

6.12.1 Relational operators <, =<, >, and >=

The terms are compared according to the term order (x4.11.2) and equality

(x4.11.1). If the comparison succeeds, the value of the expression is true;

otherwise it is false.

� The operator < succeeds if v1 precedes v 2 in the term order.

� The operator =< succeeds if v1 precedes v2 in the term order, or v1 is

equal to v 2.

� The operator > succeeds if v2 precedes v 1 in the term order.

� The operator >= succeeds if v2 precedes v1 in the term order, or v1 is

equal to v 2.

6.12.2 Exact equational operators =:=, =/=

If the operator is =:=, then the value of the expression is true if v1 is

(exactly) equal to v2 and false otherwise.

If the operator is =/=, then the value of the expression is false if v1 is

(exactly) equal to v2 and true otherwise.

6.12.3 Arithmetic equational operators ==, /=

If the operator is ==, then the value of the expression is true if v 1 is arith-

metically equal to v2 and false otherwise.

If the operator is /=, then the value of the expression is false if v1 is

arithmetically equal to v2 and true otherwise.

6.13 List concatenation operators

The list concatenation operators associate to the right. This results in

the most e�cient computation of expressions on the form E1 ++ E2 ++ E3.

However, note that an expression E1 -- E2 -- E3 is equivalent to E1 --

(E2 -- E3), which may be counterintuitive.

Syntax

ListConcExpr :

AdditionShiftExpr ListConcOp ListConcExpr

AdditionShiftExpr

ListConcOp: one of

++ --

February 9, 1999 { 19 : 09 DRAFT (0.7) 77

Evaluation

Evaluation of an expression E1 ++ E2 or E1 -- E2 begins by evaluating the

operands E1 and E 2 in some order in the input environment of the whole

expression. Let the values of the operands be v1 and v2, respectively. See

the following sections for how the result is computed for each operator.

Output environment

The output environment of the operands is used as output environment of

the list concatenation expression.

6.13.1 List addition operator ++

� If v1 is not a list, the evaluation of E1 ++ E2 exits with reason badarg.

� Otherwise, suppose that the list v1 has the k elements x1, : : : , xk.

The value of E1 ++ E2 is then a list with x 1, : : : , xk as its �rst k

elements and v 2 as its kth tail. This means that if v2 is a list with

the l elements y1, : : : , y l, then the value of E1 ++ E2 is a list with

the k + l elements x 1, : : : , xk, y 1, : : : , y l. (If v2 is not a list, then

neither is the value of E1 ++ E2.)

The time required for computing the result from v1 and v2 should be

O(k) (where k is the number of elements in v1).

Informally, this operator computes the result of concatenating two lists.

6.13.2 List di�erence operator --

� If v 1 or v2 is not a list, the evaluation of E1 -- E2 exits with reason

badarg.

� Otherwise, suppose that v 2 has the l elements y1, : : : , yl. Let us

de�ne inductively a sequence s0, : : : , sl, each of which is a list. Let s0
be v1 and let si+1 (for 0 � i < l) be:

� If y i+1 is an element in si, then let si+1 be si without the �rst

occurrence of y i+1.

� Otherwise, let si+1 be si.

The value of E1 -- E2 is then sl.

The time required for computing the result from v1 and v2 should be

O(kl) (where k and l are the number of elements in v1 and v2, respectively).

Informally, this operator computes the result of removing the elements

of one list from another, a form of \list di�erence".

78 DRAFT (0.7) February 9, 1999 { 19 : 09

6.14 Additive and shift operators

The additive and shift operators associate to the left.

Syntax

AdditionShiftExpr :

AdditionShiftExpr AdditionOp MultiplicationExpr

AdditionShiftExpr ShiftOp MultiplicationExpr

AdditionShiftExpr or MultiplicationExpr

AdditionShiftExpr xor MultiplicationExpr

MultiplicationExpr

AdditionOp: one of

+ -

bor bxor

ShiftOp: one of

bsl bsr

Evaluation

Evaluation of an expression E1 O E2, where O is one of the additive operators

+, -, bor and bxor, shift operators bsl and bsr or logical operators or and

xor begins with evaluating the operands E1 and E2 in some order in the

input environment of the whole expression. Let the values of the operands

be v1 and v2, respectively. See the following sections for how the result is

computed for each operator.

Output environment

The output environment of the operands is used as output environment of

E1 O E2.

6.14.1 Numeric addition operators + and -

� If v1 or v 2 is not a number, then evaluation of E1 O E2 exits with

badarg.

� Otherwise, if both v1 and v 2 are integers, add I(<�1[v 1];<�1[v2]) (if
O is +) or subI(<�1[v 1];<�1[v2]) (if O is -) is computed; let the result

be r.

� Otherwise, the terms v1 and v2 are coerced to oats (x4.10.1); let
(w 1; w 2) = coerce(v1; v2). Next addF (<�1[w1];<�1[w 2]) (if O is +) or

subF (<�1[w1];<�1[w 2]) (if O is -) is computed; let the result be r.

February 9, 1999 { 19 : 09 DRAFT (0.7) 79

If r is a number, the value of E1 O E2 is <[r]; otherwise, evaluation of E1 O

E2 exits with <[r].

6.14.2 Integer bitwise operator bor

� If v 1 or v2 is not an integer, then evaluation of E1 bor E2 exits with

badarg.

� Otherwise, the value of E1 or E2 is the integer that is the bitwise

OR of v1 and v 2, i.e., the integer that in binary two's-complement

representation has a zero in those positions where the binary two's-

complement representations of both v1 and v2 have a zero, and a one

in the other positions.

6.14.3 Integer bitwise operator bxor

� If v1 or v2 is not an integer, then evaluation of E1 bxor E2 exits with

badarg.

� Otherwise, the value of E1 xor E2 is the integer that is the bitwise

XOR of v1 and v2, i.e., the integer that in binary two's-complement

representation has a one in those positions where the binary two's-

complement representation of exactly one of v 1 and v2 has a one, and

a zero in the other positions.

6.14.4 Shift operators bsl and bsr

These operators compute bitwise shifts in the binary two's-complement rep-

resentation of integers. The left-hand operator gives the integer to be shifted

and the right-hand operator gives the number of positions to shift.

The bsl operator computes bitwise shift to the left with zeroes in the

lowest-order bits of the result. The bsr operator computes arithmetic shift

to the right, i.e., with ones in the highest-order bits of the result if the

left-hand operand was negative and zeros otherwise.

� If v 1 or v2 is not an integer, evaluation of the shift expression exits

with badarg. Erlang 4.7.3 also exits with badarg if v 2 is not a

�xnum (x5.2).

� Otherwise, if the operator is bsl:

� If v2 is negative, the value of the shift expression is the same as

bsr for v1 and �v2.

80 DRAFT (0.7) February 9, 1999 { 19 : 09

� Otherwise, compute <�1[v 1] � 2<
�1[v2] and let the result be r.

(This is the result of extending the lowest-order bits in the binary

two's-complement representation of v1 with v2 zeroes.) If r 2 I,

then the value of E1 bsl E2 is <[r]; otherwise evaluation of the

shift expression exits with <[integer overow].

� Otherwise, the operator is bsr:

� If v2 is negative, the value of the shift expression is the same as

bsl for v1 and �v2.
� Otherwise, compute b<�1[v1] � 2�<

�1[v2]c and let the result be

r. (This is the result of removing the v 2 lowest-order bits in

the binary two's-complement representation of v1.) The result is

always in I when v1 is in I; the value of E1 bsr E2 is <[r].

6.14.5 Disjunction operator or

� If v1 or v2 is not a Boolean, then evaluation of E1 or E2 exits with

badarg.

� Otherwise, if at least one of v1 and v2 is true, the result is true.

� Otherwise, the result is false.

6.14.6 Exclusion operator xor

� If v1 or v2 is not a Boolean, then evaluation of E1 xor E2 exits with

badarg.

� Otherwise, if exactly one of v 1 and v2 is true, the result is true.

� Otherwise, the result is false.

6.15 Multiplicative operators

The multiplicative operators associate to the left.

Syntax

MultiplicationExpr :

MultiplicationExpr MultiplicationOp Pre�xOpExpr

MultiplicationExpr and Pre�xOpExpr

Pre�xOpExpr

February 9, 1999 { 19 : 09 DRAFT (0.7) 81

MultiplicationOp: one of

* /

div rem

band

Evaluation

Evaluation of an expression E1 O E2, where O is one of the �ve multiplica-

tive operators *, /, div, rem and band or logical operator and begins with

evaluating the operands E1 and E 2 in some order in the input environment

of E1 O E2. Let the values of the operands be v1 and v2, respectively. See

the following sections for how the result is computed for each operator.

Output environment

The output environment of the operands is the output environment of E1 O

E2.

6.15.1 Numeric multiplication operator *

� If v1 or v2 is not a number, then evaluation of E1 * E2 exits with

badarg.

� Otherwise, if both v 1 and v2 are integers, mul I(<�1[v1];<�1[v2]) is
computed; let the result be r.

� Otherwise, the terms v1 and v2 are coerced to oats (x4.10.1); let
(w 1; w 2) = coerce(v1; v2). Next mulF (<�1[w1];<�1[w 2]) is computed;
let the result be r.

If r is a number, the value of E1 * E2 is <[r]; otherwise, evaluation of E1 *

E2 exits with <[r].

6.15.2 Float division operator /

� If v1 or v2 is not a number, then evaluation of E1 / E2 exits with

badarg.

� Otherwise, the terms v1 and v2 are both coerced to oats (x4.10.1); let
(w 1; w 2) = (toFloat (v 1); toFloat (v 2)). Next divF (<�1[w 1];<�1[w2]) is
computed; let the result be r.

If r is a number, the value of E1 / E2 is <[r]; otherwise, evaluation of E1 /

E2 exits with <[r].

82 DRAFT (0.7) February 9, 1999 { 19 : 09

6.15.3 Integer division operator div

� If v1 or v2 is not an integer, then evaluation of E1 div E2 exits with

badarg.

� Otherwise, div t
I
(<�1[v1];<�1[v2]) is computed; let the result be r.

If r is a number, the value of E1 div E2 is <[r]; otherwise, evaluation of E1
div E2 exits with <[r].

6.15.4 Integer remainder operator rem

� If v1 or v2 is not an integer, then evaluation of E1 rem E2 exits with

badarg.

� Otherwise, rem t

I
(<�1[v1];<�1[v 2]) is computed; let the result be r.

If r is a number, the value of E1 rem E2 is <[r]; otherwise, evaluation of E1
rem E2 exits with <[r].

6.15.5 Integer bitwise operator band

� If v 1 or v 2 is not an integer, then evaluation of E1 band E2 exits with

badarg.

� Otherwise, the value of E1 band E2 is the integer that is the bitwise

AND of v 1 and v 2, i.e., the integer that in binary two's-complement

representation has a one in those positions where the binary two's-

complement representations of both v1 and v2 have a one, and a zero

in the other positions.

6.15.6 Conjunction operator and

� If v1 or v2 is not a Boolean, then evaluation of E1 and E2 exits with

badarg.

� Otherwise, if both v1 and v 2 are true, the result is true.

� Otherwise, the result is false.

6.16 Unary operators

The unary operators are +, -, bnot and not. The unary operators do not

associate. For example, the parentheses are necessary in bnot(-X).

February 9, 1999 { 19 : 09 DRAFT (0.7) 83

Syntax

Pre�xOpExpr :

Pre�xOp RecordExpr

RecordExpr

Pre�xOp: one of

+ -

bnot not

Evaluation

Evaluation of an expression O E , where O is one of the four unary operators

+, -, bnot and not, in an environment � begins with evaluating the operand

E in �. Let its value be v . See the following sections for how the result is

computed for each operator.

Output environment

The output environment of E is used as output environment of O E .

6.16.1 Unary plus operator +

v is returned.4

6.16.2 Unary minus operator -

The type of the result depends on the type of v .

� If v is not a number, evaluation of - E exits with badarith.

� Otherwise, if v is an integer, negI(<�1[v]) is computed; let the result
be r.

� Otherwise v is a oat, negF (<�1[v]) is computed; let the result be r.
If r is a number, then the value of - E is <[r]; otherwise, evaluation of - E

exits with <[r].

6.16.3 Bitwise complement operator bnot

� If v is an integer, then the value of bnot E is (�v)� 1 (Note that in

two's-complement representation this numeral is the bitwise comple-

ment of v and that (�v) � 1 may be representable even when �v is

not)

� Otherwise, the evaluation of bnot E exits with badarg.

4It is not intended that the unary + operator should be applied to anything but num-

bers.

84 DRAFT (0.7) February 9, 1999 { 19 : 09

6.16.4 Boolean complement operator not

� If v is the atom true, then the value of not E is false.

� If v is the atom false, then the value of not E is true.

� Otherwise, the evaluation of not E exits with badarg.

6.17 Record expressions

A record declaration (x8.4)

-record(R,{F1[=E1]; :::; Fn[=En]})

establishes R as a record type with n named �elds F1, : : : , Fn. The compiler

decides an invertible mapping for R from the �eld names F1, : : : , Fn to the

integers 2, : : : , n+ 1. Let us call this mapping record �eld
R
and its inverse

record �eld
�1
R
. A record term of type R is then represented by a tuple with

n+1 elements where the �rst element is the atom R and element i contains

the value for �eld record �eld
�1
R
(i), where 2 � i � n+ 1.

The value of record �eld
R
(F) is available as #R.F . For most purposes

it is su�cient and appropriate to use this mapping only indirectly through

record element access and record update expressions (see below).

Syntax

RecordExpr :

RecordExpropt # RecordType . RecordFieldName

RecordExpropt # RecordType RecordUpdateTuple

ApplicationExpr

RecordUpdateTuple:

{ RecordFieldUpdatesopt }

RecordFieldUpdates:

RecordFieldUpdate

RecordFieldUpdates , RecordFieldUpdate

RecordFieldUpdate:

RecordFieldName RecordFieldValue

RecordFieldValue:

= Expr

(The rules for RecordType and RecordFieldName appear in x6.6.)
There are four kinds of record expression and we will describe them one

by one.

February 9, 1999 { 19 : 09 DRAFT (0.7) 85

6.17.1 Record �eld index

A record �eld index expression gives the position of a �eld in the tuple that

is the record.

Evaluation

The value of an expression #R.F , where R is a record name and F is the

name of a �eld in R , is the integer record �eld
R
(F).

It is a compile-time error if the expression is not in the scope of a dec-

laration of a record type R having a �eld F .

Output environment

The output environment is the same as the input environment.

Note

Erlang 4.7.3 treats a record �eld index expression #R.F as syntactic sugar

for an integer literal record �eld
R
(F).

6.17.2 Record �eld access

A record �eld access expression extracts one �eld of a record.

Evaluation

In the scope of a record declaration that establishes R as a record type with

n �elds, the evaluation of an expression E#R.F , where F is the name of a

�eld in R , begins with evaluating the expression E ; let its value be v .

� If v is a tuple with n+ 1 elements and element 1 of v is R , the value

of the whole expression is element record �eld
R
(F) of v .

� Otherwise, evaluation of the whole expression exits with badarg.

It is a compile-time error if the expression is not in the scope of a declaration

of a record type R having a �eld F .

Output environment

The input environment of the whole expression is used as input environment

of E and the output environment of E is used as output environment of the

whole expression.

Note

Erlang 4.7.3 treats E#R.F as syntactic sugar for a function application

element(record �eld
R
(F),E).

86 DRAFT (0.7) February 9, 1999 { 19 : 09

6.17.3 Record creation

A record creation expression creates a new record with �eld values as spec-

i�ed or according to the record declaration.

Evaluation

In the scope of a record declaration that establishes R as a record type with

n �elds, an expression #R{F1=E1,...,Fk=Ek}, where R is a record name and

F1, : : : , Fk are distinct names of �elds in R , is evaluated exactly as if it were

a tuple skeleton

{R,E01,...,E
0

n
}

where each expression E 0
i
, 1 � i � n, is as follows:

� If there is an integer j, 1 � j � k, such that record �eld
R
(F j) = i,

then E 0
i
is E j.

� Otherwise, if there is a default initializer expression for the �eld named

record �eld
�1
R
(i), then E 0

i
is that expression.

� Otherwise, E 0
i
is the atom literal undefined.

It is a compile-time error if the expression is not in the scope of a declaration

of a record type R having at least the �elds F1, : : : , Fk, or if F1, : : : , Fk are

not distinct.

Expressions E 01, : : : , E
0

n are evaluated in some order, let their values be

v 01, : : : , v
0

n. The value of the record creation expression is then a n + 1-

tuple with the atom R as its �rst element and v 01, : : : , v
0

n as the remaining

elements.

Output environment

The input environment of the whole expression is used as input environment

of E 1, : : : , Ek and the output environment of E1, : : : , Ek is used as out-

put environment of the whole expression. However, any default initializer

expressions must be evaluated in an empty environment and must have an

empty output environment.

Note

Erlang 4.7.3 treats #R{F1=E1,...,Fk=Ek} as syntactic sugar for the tuple

skeleton described above.

6.17.4 Record update

A record update expression creates a new record with �eld values as speci�ed

or according to a given record.

February 9, 1999 { 19 : 09 DRAFT (0.7) 87

Evaluation

In the scope of a record declaration that establishes R as a record type with

n �elds, the evaluation of an expression E0#R{F1=E1,...,Fk=Ek}, where R

is a record name and F1, : : : , Fk are distinct names of �elds in R , begins

with evaluating the expressions E 0, E1, : : : , Ek in some order. Let their

values be v0, v 1, : : : , vk.

� If v0 is not a tuple with n+ 1 elements, or its �rst element is not the

atom R , then evaluation of the record update expression exits with

badarg.

� Otherwise, the value of the whole expression is an n + 1-tuple where

element 1 is the atom R and where for each i, 2 � i � n+ 1, element

i is obtained as follows:

� If there is an integer j, 1 � j � k, such that record �eld
R
(F j) = i,

then element i is v j .

� Otherwise, element i is element i of v0.

It is a compile-time error if the expression is not in the scope of a declaration

of a record type R having at least the �elds F1, : : : , Fk, or if F1, : : : , Fk are

not distinct.

Output environment

The input environment of the whole expression is used as input environment

of E 0, E1, : : : , Ek and the output environment of E0, E1, : : : , Ek is used as

output environment of the whole expression.

Note

Erlang 4.7.3 treats E0#R{F1=E1,...,Fk=Ek} as syntactic sugar for an ex-

pression such as

case E0 of

{R,V1,...,Vn} ->

{R,E01,...,E
0

n}

_ -> exit(badarg)

end

where each V i and E 0
i
, 1 � i � n, is as follows:

� If there is an integer j, 1 � j � k, such that record �eld
R
(F j) = i,

then V i is a universal pattern and E 0
i
is E j .

� Otherwise, V i is a new variable and E 0
i
is V i.

A new variable is a variable not in the input domain. Moreover, all new

variables are distinct.

88 DRAFT (0.7) February 9, 1999 { 19 : 09

6.18 Function application expressions

There are three forms of function application expressions: for applying a

named function in the same module, for applying a named and exported

function in a di�erent module, and for applying the value of a function

expression. There are also BIFs for function application, cf. x13.8. Syntac-
tically the �rst form is included in the third form.

Syntax

ApplicationExpr :

PrimaryExpr (Exprsopt)

PrimaryExpr : PrimaryExpr (Exprsopt)

PrimaryExpr

Evaluation

There are three forms of application expressions and we will describe them

one by one.

� An expression on the form Fun(E1,...,Ek), where Fun is a function

name, is a local function application. It is evaluated by evaluating the

expressions E1, : : : , Ek in some order and then as described in case 2

of x6.7. It is a compile-time error if there is no function named Fun/k

in the lexically enclosing module declaration.

� The evaluation of an expression on the form E0(E1,...,Ek) (where

E 0 is not an atomic literal) begins with evaluating the expressions E0,

E 1, : : : , Ek in some order. Then it depends on the value of E0:

� If the value of E0 is a 2-tuple {Mod,Fun}, where Mod and Fun are

atoms, then the expression is a remote function application and

evaluation proceeds as described in case 1 of x6.7.
� If the value of E0 is the result of evaluating an implicit fun expres-

sion (x6.19.10), then evaluation proceeds as described in case 3

of x6.7.
� If the value of E0 is the result of evaluating an explicit fun expres-

sion (x6.19.10), then evaluation proceeds as described in case 4

of x6.7.
� Otherwise, evaluation of the application expression exits with

badarg.

� An expression on the form Em:E0(E1,...,Ek) is a remote function

application and is evaluated exactly as if it were an application ex-

pression {Em,E0}(E1,...,Ek) (see above).

February 9, 1999 { 19 : 09 DRAFT (0.7) 89

Output environment

The input environment of the whole expression is used as input environment

of [[Em,] E0,] E1, : : : , Ek and the output environment of [[Em,] E0,] E1, : : : ,

Ek is used as output environment of the whole expression.

6.19 Primary Expressions

The primary expressions are the building blocks from which other expres-

sions are constructed. Note that many of them are themselves compound

but the enclosed expressions can be thought of as being parenthesized so

primary expressions have in�nite precedence.

PrimaryExpr :

Variable

AtomicLiteral

TupleSkeleton

ListSkeleton

ListComprehension

BlockExpr

IfExpr

CaseExpr

ReceiveExpr

FunExpr

QueryExpr

ParenthesizedExpr

6.19.1 Variables

An applied occurrence of a variable has its value given by a variable binding

in the current environment. The requirement to verify at compile time that

every applied variable occurrence is in the input context at the occurrence

(x6.2) guarantees that there must be such a binding at run time.

Syntax

A Variable is a Token and its syntax is described in x3.16.

Evaluation

Evaluation of an expression V , where V is a variable, consists of looking up

the value for V in the input environment. If there is no binding for V in the

input environment (x6.1), then it is a compile-time error (x6.2, x6.3).

90 DRAFT (0.7) February 9, 1999 { 19 : 09

Output environment

The input and output environments of a variable are the same.

6.19.2 Atomic literals

An atomic literal always denotes the same value regardless of the context so

no evaluation is necessary to determine which term an atomic literal denotes.

All atomic literals except string literals are elementary terms.

Syntax

AtomicLiteral :

IntegerLiteral

FloatLiteral

CharLiteral

StringLiterals

AtomLiteral

StringLiterals:

StringLiteral

StringLiterals StringLiteral

Evaluation

The compiler can be expected to compile a literal into code that directly

creates the internal representation of the term.

� An atom literal always denotes an atom, cf. x4.2.

� An integer literal always denotes an integer, cf. x4.3.

� A oat literal always denotes a oat, cf. x4.3.

� A character literal always denotes a character, cf. x4.3.1.

� A string literal always denotes a string, cf. x4.9.1.

Note that a string literal may be written as several subsequent stubs,

which are nevertheless thought of as constituting a single string literal. For

example,

"this " "is o" "ne string"

is indistinguishable from the string literal

"this is one string".

This suggests one way to write a string literal on more than one line: dividing

it into several parts and breaking the lines (and adding indentation) between

them.

February 9, 1999 { 19 : 09 DRAFT (0.7) 91

Output environment

The input and output environments of an atomic literal are the same.

6.19.3 Tuple skeletons

For a tuple skeleton, the \surface structure" is obvious and no evaluation is

needed to obtain it. If all immediate subexpressions of a tuple skeleton are

literals, the tuple skeleton is itself a (tuple) literal.

Syntax

TupleSkeleton:

{ Exprsopt }

A tuple skeleton may have at most 255 elements so tuples with more

elements must be created in some other way than through syntax (e.g., by

calling the BIF list_to_tuple/1 [x13.5.2]).

Evaluation

For a tuple skeleton it is always obvious that it denotes a tuple with k

elements, for some natural number k.

Evaluation of an expression {E1,...,Ek} begins with evaluating the im-

mediate subexpressions E1, : : : , Ek in some order in the input environment

of {E1,...,Ek}. Let the values of the immediate subexpressions be v1,

: : : , vk. The value of the tuple skeleton is then a k-tuple mapping i to v i,

1 � i � k.

Output environment

The output environment of the immediate subexpressions is used as output

environment of {E1,...,Ek}.

6.19.4 List skeletons

(As for list patterns, \cons skeletons" may be a more accurate name but the

main use is for lists.)

For a list skeleton, the \surface structure" is obvious and no evaluation

is needed to obtain it. If all immediate subexpressions of a list skeleton are

literals, the list skeleton is itself a (list) literal.

Syntax

ListSkeleton:

[]

[Exprs ListSkeletonTailopt]

92 DRAFT (0.7) February 9, 1999 { 19 : 09

ListSkeletonTail :

| Expr

Evaluation

For a list skeleton it is always obvious that for some natural number k, it

denotes either

� a list with exactly k elements (when on the form [E1,...,Ek]),

� a list with k + l elements (when on the form [E1,...,Ek|Ek+1] and

the value of Ek+1 is a list with l elements), or

� a term that is not a list at all (when on the form [E1,...,Ek|Ek+1]

and the value of Ek+1 is not a list).

As for list patterns we should note that certain list skeletons are equal:

� [E1] equals [E1|[]].

� [E1,E2,...,Ek] (where k > 1) equals [E1|[E2,...,Ek]].

� [E1,E2,...,Ek|Ek+1] (where k > 1) equals [E1|[E2,...,Ek|Ek+1]].

We can therefore describe evaluation and other properties of list skeletons

as if each ListSkeleton is either [] or [Expr | Expr].

A list skeleton [] is a literal and its value is an empty list.

An expression [E1|E2] can be thought of as if it were an application of

a cons operator.5 We shall therefore refer to E 1 and E2 as the operands of

the expression.

Evaluation of an expression [E1|E2] begins with evaluating the operands

E1 and E 2 in some order in the input environment of [E1|E2]. Let the values

of the operands be v 1 and v2, respectively. The value of the [E1|E2] is then

a cons with v1 as its head and v2 as its tail. (If v2 is a list, then so is the

value of [E1|E2].)

Output environment

The output environment of the operands is used as output environment of

[E1|E2].

6.19.5 List comprehensions

A list comprehension always denotes a list, produced by evaluating an ex-

pression for each collection of values of its variables. These collections of

values are produced by some generators and are those that in addition satisfy

certain �lters.
5Indeed the corresponding language element in some related languages is a proper

(right-associative) operator. For example, in Standard ML [19] the corresponding expres-

sion is written as E1 :: E2.

February 9, 1999 { 19 : 09 DRAFT (0.7) 93

Syntax

ListComprehension:

[Expr || ListComprehensionExprs]

ListComprehensionExprs:

ListComprehensionExpr

ListComprehensionExprs , ListComprehensionExpr

ListComprehensionExpr :

Generator

Filter

Generator :

Pattern <- Expr

Filter :

Expr

The syntactic constituents of a list comprehension is a template expression

(to the left of ||) and a collection of generators and �lters that we will call

the body (to the right of ||).

A nontrivial generator has at least one variable in its pattern. Each such

variable can be expected to appear either in the template expression or in

the right-hand side of some later generator or in some later �lter. The list

is generated by substituting in the template expression all combinations of

values that are yielded by the generators, such that the values satisfy all

�lters.

Each variable occurrence in the pattern of a generator is a binding oc-

currence so it is a compile-time error if a variable occurs twice in such a

pattern. To the right of a generator, all variables occurring in its pattern

shadow variables in the input environment (or bound by generators to the

left of it). The template expression of a generator is used in the environ-

ment in which all generators have contributed their bindings, as we explain

in more detail below.

Evaluation

We will explain the result of evaluating a list comprehension

[E || W1,...,Wk]

in terms of a sequence of sequences of environments �0, �1, : : : , �k.

The initial sequence of environments, �0, contains exactly one environ-

ment, which is the input environment of the list comprehension. Each other

sequence of environments �i (1 � i � k) consists of all extensions of �0 that

are generated by the generators in W1, : : : , W i and that satisfy the �lters

94 DRAFT (0.7) February 9, 1999 { 19 : 09

in W1, : : : , W i. The value of the list comprehension is a list l of the same

length as the number n of environments in �k and for each i, 1 � i � n,

the ith element of l is the value of the template E when evaluated in the ith

environment of �k.

We shall now explain how given a sequence of environments �i, we obtain

the next sequence of environments �i+1, where 0 � i < k.

There are two cases depending on whether W i+1 is a generator or a �lter.

� W i+1 is a generator Pi+1 <- Ei+1. Suppose that �i consists of the en-

vironments �i;1, : : : , �i;mi
for some natural number mi. For each j

(1 � j � mi), let v i;j be the value of E i+1 when evaluated in �i;j . If

there is a j (1 � j � mi) for which v i;j is not a list, then the computa-

tion of the list comprehension exits with reason badmatch. Otherwise,

for each j (1 � j � mi), let 	i;j be the sequence of environments such

that each element of 	i;j consists of the environment �i;j extended

with the bindings resulting from matching the pattern P i against the

corresponding element of the list v i;j. If P i does not match an element

of v i;j, that element is discarded, so 	i;j may contain fewer elements

than v i;j. The order between elements in v i;j must be preserved in

	i;j. Finally, �i+1 is the result of concatenating the sequences 	i;1,

: : : , 	i;mi
, in order.

� W i+1 is a �lter. �i+1 is obtained by evaluating W i+1 in each environ-

ment of �i, keeping those environments in which the result is true

and discarding those environments in which the result is false. If for

some environment the value of W i+1 is not a Boolean, the computation

of the list comprehension completes abruptly with reason badarg. The

order between environments in �i must be preserved in �i+1.

Output environment

The input and output environments of a list comprehension are the same.

Examples

The value of the list comprehension in the body

Y = [1,2],

Z = 42,

[{X,Y,Z,W} || X <- Y, W <- [a,b], Y <- [4,5], W <- [c,d]]

is

[{1,4,42,c},{1,4,42,d},{1,5,42,c},{1,5,42,d},

{1,4,42,c},{1,4,42,d},{1,5,42,c},{1,5,42,d},

{2,4,42,c},{2,4,42,d},{2,5,42,c},{2,5,42,d},

{2,4,42,c},{2,4,42,d},{2,5,42,c},{2,5,42,d}]

February 9, 1999 { 19 : 09 DRAFT (0.7) 95

Note that the generator for X is evaluated in an expression in which Y is

[1,2], that the value for Z in the input environment is never shadowed

by any generator so it is the same for every tuple in the result, and that

although the leftmost generator for W produces values for W that are not

accessible in the template pattern, they cause the results to be duplicated

(as there are two possible values for the leftmost binding of W).

6.19.6 Block expressions

A block expression has no e�ect on evaluation and is merely a way to paren-

thesize and delimit a sequence of expressions, i.e., a body. This allows using

a body where otherwise only a single expression would be allowed.

Syntax

BlockExpr :

begin Body end

Evaluation

Evaluating an expression begin B end in an environment � means to eval-

uate the body B in � (x6.8).
If the evaluation of B completes abruptly with reason R , evaluation of

the block expression also completes abruptly with reason R . If it completes

normally, the value of begin B end is the value of B .

Output environment

The output environment of B is used as output environment of begin B

end.

6.19.7 If expressions

An if expression goes through a sequence of clauses, each consisting of a

guard and a body, and its value is the value of the �rst body having a

successful corresponding guard.

Syntax

IfExpr :

if IfClauses end

IfClauses:

IfClause

IfClauses ; IfClause

96 DRAFT (0.7) February 9, 1999 { 19 : 09

IfClause:

Guard ClauseBody

ClauseBody :

-> Body

(The rule for Guard appears in x6.20.)
Each clause consists of a guard and a body.

Evaluation

Evaluation of an expression

if

G1 -> B1 ;
... ;

Gk -> Bk

end

in an environment � is carried out as follows.

Each guard G i (1 � i � k) is evaluated (in some order) in �, as described

in x6.20, until one succeeds or all guards have failed. Let s be the smallest
number such that G s succeeds, if such a number exists; otherwise evaluation

of the if expression exits with reason if_clause.

The value of the if expression is obtained by evaluating the body B s

with the output environment of G s as input environment.

Output environment

For each clause Gi -> Bi, 1 � i � k, let di be the domain of the output en-

vironment of G i when � is the input environment, and let d0
i
be the domain

of the output environment of B i when di is the domain of its input envi-

ronment. The output environment of the if expression is obtained as the

output environment of B s restricted to the intersection of all d0
i
, 1 � i � k.

Note

The if expression above is equal to the following case expression (x6.19.8):

case L of

_ when G1 -> B1 ;
... ;

_ when Gk -> Bk

end

where L is any literal, such as 42. An if expression is thus like a case

expression but with trivial matching.

February 9, 1999 { 19 : 09 DRAFT (0.7) 97

6.19.8 Case expressions

A case expression chooses between sequences of expressions to evaluate,

depending on the value of some expression.

Syntax

CaseExpr :

case Expr of CrClauses end

CrClauses:

CrClause

CrClauses ; CrClause

CrClause:

Pattern ClauseGuardopt ClauseBody

ClauseGuard :

when Guard

Guard :

Body

(The rule for ClauseBody appears in x6.19.7.)
We refer to the expression between case and of as the switch expression

and to the sequence of clauses to the right of of as the clauses of the case

expression. Each clause consists of a pattern, an optional guard and a body.

An omitted guard is equivalent with a trivially satis�ed true guard.

Evaluation

Evaluation of an expression

case E of

P1 [when G1] -> B1 ;
... ;

Pk [when Gk] -> Bk

end

in an environment � is carried out as follows.

First the switch expression E is evaluated in �. If that evaluation com-

pletes abruptly with reason R , then evaluation of the case expression also

completes abruptly with reason R . If the evaluation of the switch expression

completes normally, let us call its value v and its output environment �0.

Next each pattern P i (1 � i � k) is matched (in some order) against

v in �
0 and (in case of a successful match) the corresponding guard G i is

evaluated in the output environment of P i. Let s be the smallest number

98 DRAFT (0.7) February 9, 1999 { 19 : 09

such that P s matches v and G s succeeds, if such a number exists; otherwise

evaluation of the case expression exits with reason case_clause.

The value of the case expression is obtained by evaluating the body B s

in the output environment of G s.

Output environment

For each clause Pi when Gi -> Bi, 1 � i � k, let di be the domain of the

output environment of P i when �
0 is its input environment, let d0

i
be the

domain of the output environment of G i when di is the domain of its input

environment, and let d
00

i
be the domain of the output environment of B i

when d
0

i
is the domain of its input environment. The output environment of

the case expression is obtained as the output environment of B s restricted

to the intersection of all d00
i
, 1 � i � k.

Note

The name CrClause refers to the fact that CaseExpr and ReceiveExpr both

have the same kind of clauses.)

6.19.9 Receive expressions

A receive expression normally consumes one message from the message

queue of the process evaluating it. The exception is when the receive

expression speci�es an expiry time, there is no suitable message waiting

when the processing of the receive expression begins and the speci�ed

amount of time passes before such a message arrives. receive expressions

are similar to case expressions (S6.19.8) both in syntax and in semantics

but cannot be de�ned in terms of them in a useful way (because a receive

expression matches expressions against the message queue without removing

them unless there is a matching clause).

Syntax

ReceiveExpr :

receive CrClauses end

receive CrClausesopt after Expr ClauseBody end

(The rules for CrClauses and ClauseBody appear in x6.19.8 and x6.19.7,
respectively.)

We refer to the sequence of clauses as the clauses of the receive expres-

sion. Each clause consists of a pattern, an optional guard and a body. An

omitted guard is equivalent with a trivially satis�ed true guard. A receive

expression containing a part after E -> B is said to have an expiry part.

Then E is called the expiry expression of the receive expression and B is

February 9, 1999 { 19 : 09 DRAFT (0.7) 99

called the expiry body. A clause must either have at least one clause or an

expiry part, or both.

Evaluation

Evaluation of an expression

receive

P1 [when G1] -> B1 ;
... ;

Pk [when Gk] -> Bk

[after

E -> Bk+1]

end

(where k may be zero, in which case there must be an expiry part) in an

environment � is carried out as follows by a process Q .

The evaluation of a receive expression has three parts. The �rst part

only takes place if the receive expression has an expiry part. The second

part is the same for all receive expressions. The third part is somewhat

di�erent if the receive expression has an expiry part.

� Part 1. The purpose of this part is to determine the expiry time of

the receive expression, if it has an expiry part.

If the receive expression has an expiry part, the expiry expression E

is evaluated in �. If that evaluation completes abruptly with reason

R , then evaluation of the receive expression also completes abruptly

with reason R . If the evaluation of the expiry expression completes

normally, let us call its value WaitingTime . If WaitingTime is nei-

ther the atom infinity, nor a nonnegative integer, the evaluation

of the receive expression completes abruptly with reason badarg.

WaitingTime will be used in part 3, if evaluation reaches that part.

In Erlang 4.7.3 WaitingTime must be a �xnum. Next the system

clock of node[Q] is read before anything else happens. Let its value

be Start .

Note that the output environment of the expiry expression is not used.

Its variable bindings are therefore local.6

� Part 2. The purpose of this part is to process an existing message if

there is one in the queue.

6From the syntax it might seem as if bindings of the expiry expression ought to be

visible in the expiry body but if the bindings of the expiry expression were visible at all,

they could then just as well be visible for all clauses. A careful approach has therefore

been to make all its bindings local.

100 DRAFT (0.7) February 9, 1999 { 19 : 09

Suppose that message_queue[Q] contains the n terms M1, : : : , Mn, in

that order.

For each term M j (1 � j � n, in that order):

for each clause i (1 � j � k, in some order):

match P i against M j in � and if that succeeds, evaluate G i in

the output environment of P i,

until a (�rst) term M t has been found for which there is a matching

pattern P s with successful guard G s, if they exist at all; otherwise

evaluation of the receive expression continues with part 3 below.

The term M t is removed from message_queue[Q].

The value of the receive expression is then obtained by evaluating

the body B s in the output environment of G s.

(Note that if necessary, every message in the message queue will be

tried against every clause, even if there is an expiry.)

� Part 3. The purpose of this part is to wait for a receivable term to

appear in the message queue, or to expire. There are three alternatives:

1. If the receive expression has no expiry part, or WaitingTime is

the atom infinity, then:

➦ status[Q] is changed to waiting and timer[Q] is set to

0. When status[Q] becomes running again, if there are

messages in message_queue[Q] which have not previously

been examined, process them as in part 2. If that does not

complete the evaluation of the receive expression, execution

continues at ➦ above.

2. If the receive expression has an expiry part and WaitingTime

is the integer 0, then:

The evaluation of the receive expression �nishes by letting s

be k+1 and evaluating the expiry body B s with � as input en-

vironment. If its evaluation completes abruptly with reason

R , then evaluation of the receive expression also completes

abruptly with reason R . If the evaluation of the expiry body

completes normally, its value is also the value of the receive

expression. (Note that status[Q] is not a�ected.)

3. Otherwise, the receive expression has an expiry part for which

WaitingTime is a positive integer. timer[Q] is set to Waiting-

Time .

February 9, 1999 { 19 : 09 DRAFT (0.7) 101

➦ status[Q] is changed to waiting. If there are messages in

message_queue[Q] that have not previously been examined

when status[Q] becomes running again, process them as

in part 2. If that does not complete the evaluation of the

receive expression, the system clock of node[Q] is read and

if its value is greater than or equal to Start+WaitingTime,

evaluation of the receive expression �nishes as described for

case 2. Otherwise, execution continues at ➦ above.

(Note that when there are unexamined messages in the queue, they

will be processed even if the expiry time has been reached. This implies

that the value of the expiry expression cannot be seen as a hard limit

on how much time the evaluation of the receive expression may take.)

Output environment

For each clause Pi when Gi -> Bi, 1 � i � k, let di be the domain of the

output environment of P i when � is its input environment, let d
0

i
be the

domain of the output environment of G i when di is the domain of its input

environment, and let d
00

i
be the domain of the output environment of B i

when d
0

i
is the domain of its input environment. Let d00

k+1 be the domain of

the output environment of Bk+1 when its input environment is �.

The output environment of the receive expression is the output en-

vironment of B s restricted to the intersection of all d00
i
, 1 � i � k + 1.

6.19.10 fun expressions

A fun expression denotes a function. Its value can therefore be applied.

A fun expression is similar to a literal in that it is normal (i.e., it cannot

be further simpli�ed). However, it is not expected that the value of a fun

expression is represented internally in such a way that the fun expression

can be reconstructed.

Syntax

FunExpr :

fun FunctionArity

fun FunClauses end

FunClauses:

FunClause

FunClauses ; FunClause

FunClause:

(Patternsopt) ClauseGuardopt ClauseBody

102 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

A fun expression is either implicit or explicit. In the former case, it refers

to a named function in the same module and in the latter case, it explicitly

describes a function.

� Consider �rst an implicit fun expression on the form fun F/A , where

F is an atom and A is a decimal literal. If there is no function with

name F and arity A in the module in which the fun expression lexically

appears, then it is a compile-time error. Otherwise, the expression fun

F/A denotes a function term that can be applied. Evaluation of an

application of such a function term is described in x6.7.

� Consider now an explicit fun expression, i.e., an expression

fun (P1;1,...,P1;n1) [when G1] -> B1 ;
... ;

(Pk;1,...,Pk;nk) [when Gk] -> Bk

end

where k is a natural number, each P i;j (1 � i � k and 1 � j � ni)

is a Pattern, each (optional) G i is a Guard and each Bi is a Body. It

is a compile-time error if there is no number A such that A = n1 =

� � � = nk. Otherwise the fun expression denotes a function term that

can be applied. Evaluation of an application of such a function term

is described in x6.7.

Output environment

The input and output environments of a fun expression are the same, i.e.,

any variables bound in (an explicit) fun expression are local to it.

6.19.11 query expressions

Query expressions are only syntactically part of Erlang but is a query

interface to the database system Mnesia, part of OTP [7, ch. 6]. Their

semantics will not be described in detail here.

Syntax

QueryExpr :

query ListComprehension end

There is a syntactic extension to RecordExpr that is only valid inside a

QueryExpr :

RecordExpr :

RecordExpr . RecordFieldName

February 9, 1999 { 19 : 09 DRAFT (0.7) 103

6.19.12 Parenthesized expressions

An expression may always be enclosed in parentheses without changing its

meaning. Such parentheses may be used in order to express the syntactic

structure of an expression when the grammatical rules would otherwise give

another structure.

Syntax

ParenthesizedExpr :

(Expr)

Evaluation

Evaluating an expression (E) means evaluating E .

Output environment

The output environment of E is used as the output environment of (E).

6.20 Guards

In Erlang a pattern can optionally be augmented with a guard for ex-

pressing additional conditions on the term that is to be matched against the

pattern. A guard consists of a nonempty sequence of guard tests.

The guard tests have subexpressions, which are guard expressions. When

compared with expressions, both guard tests and guard expressions are syn-

tactically restricted. They are built from a small repertoire of primitives for

which it is guaranteed that:

� Their evaluation takes bounded (often constant) time.

� They do not have any e�ects.

� There are only \simple" errors.

Syntax

Guard :

GuardTest

Guard , GuardTest

Evaluation

Evaluation of a guard completes with success or with failure; there is no

concept of abrupt completion.

A guard is evaluated by evaluating the guard tests from left to right

until one is found that fails, in which case evaluation of the whole guard

104 DRAFT (0.7) February 9, 1999 { 19 : 09

fails without evaluating any more guard tests, or all guard tests have been

evaluated, in which case evaluation of the whole guard succeeds.

Output environment

The input and output environments of a guard are the same.

6.20.1 Guard tests

Guard tests are syntactically identical with certain Boolean expressions but

their semantics are slightly di�erent in the case of abrupt completion.

There are �ve kinds of guard tests: trivially true tests, record tests,

recognizers, term comparisons and parenthesized guard tests.

Syntax

GuardTest :

true

GuardRecordTest

GuardRecognizer

GuardTermComparison

ParenthesizedGuardTest

GuardRecordTest :

record (GuardExpr , RecordType)

GuardRecognizer :

RecognizerBIF (GuardExpr)

RecognizerBIF :

AtomLiteral

GuardTermComparison:

GuardExpr RelationalOp GuardExpr

GuardExpr EqualityOp GuardExpr

ParenthesizedGuardTest :

(GuardTest)

Evaluation

We discuss the kinds of guard tests one by one.

� A true test succeeds trivially.

� A GuardRecordTest record(E,R) (where E is a guard expression and

R is a record type) is evaluated by evaluating E and then testing the

result. The test succeeds if the evaluation of E completes normally

February 9, 1999 { 19 : 09 DRAFT (0.7) 105

with some result v and v is a record of type R ; otherwise the test fails.

Note that there is no BIF record/2, a GuardRecordTest just happens

to have the same syntax as a function application.

� A GuardRecognizer is an application of one of the recognizer BIFs of

x13.1 to a guard expression. It is evaluated by evaluating the guard

expression and applying the BIF to the result. The test succeeds if

the evaluation of the guard expression completes normally with some

result v and the BIF returns true for v ; otherwise the test fails.

� A GuardTermComparison is a RelationalOp or an EqualityOp ap-

plied to a pair of guard expressions. It is applied by evaluating both

operands and then computing a boolean as described in x6.12. The

test succeeds if evaluations of both operands complete normally with

some results v1 and v2 and the subsequently computed boolean is

true; otherwise the test fails.

� A ParenthesizedGuardTest (G) succeeds if, and only if, the guard test

G succeeds.

Note that if any subexpression of a guard test completes abruptly, the guard

test (and thus the guard of which it is a part) fails. A guard test can never

complete abruptly.

Output environment

The input and output environments of a guard test are the same.

6.20.2 Guard expressions

The guard expressions are syntactically identical with certain expressions.

GuardExpr :

GuardAdditionShiftExpr

GuardAdditionShiftExpr :

GuardAdditionShiftExpr AdditionOp GuardMultiplicationExpr

GuardAdditionShiftExpr ShiftOp GuardMultiplicationExpr

GuardMultiplicationExpr

GuardMultiplicationExpr :

GuardMultiplicationExpr MultiplicationOp GuardPre�xOpExpr

GuardPre�xOpExpr

GuardPre�xOpExpr :

Pre�xOp GuardApplicationExpr

GuardApplicationExpr

106 DRAFT (0.7) February 9, 1999 { 19 : 09

GuardApplicationExpr :

GuardBIF (GuardExprsopt)

GuardRecordExpr

GuardPrimaryExpr

GuardBIF :

AtomLiteral

GuardExprs:

GuardExpr

GuardExprs , GuardExpr

GuardRecordExpr :

GuardPrimaryExpropt # AtomLiteral . AtomLiteral

GuardPrimaryExpr :

Variable

AtomicLiteral

GuardListSkeleton

GuardTupleSkeleton

ParenthesizedGuardExpr

GuardListSkeleton:

[]

[GuardExprs GuardListSkeletonTailopt]

GuardListSkeletonTail :

| GuardExpr

GuardTupleSkeleton:

{ GuardExprsopt }

ParenthesizedGuardExpr :

(GuardExpr)

It is described in x13 which BIFs are guard BIFs.

Evaluation

All guard expressions are expressions and a guard expression is evaluated

exactly as the corresponding expression. Evaluation of a guard expression

may complete abruptly but a guard expression always occurs as part of a

guard test which will restore normal evaluation by simply failing.

Output environment

The input and output environments of a guard expression are the same.

Chapter 7

Compiling a module

The unit of compilation in Erlang is a module. The compilation of a

module is carried out in the following steps:

1. Lexical processing, as described in x3. This takes a sequence of ASCII
characters and produces a sequence of tokens and full stops, i.e., a

sequence of TokenSequence (x3.18).

2. Preprocessing, as described in x7.1. This takes a sequence of To-

kenSequence and produces a new sequence of TokenSequence, after

conditional compilation and macro expansion.

3. Parsing, as described in x7.5. Each TokenSequence in the sequence is

parsed as an Erlang form (x8). The result is a list of parse trees,

which are represented as Erlang terms (xB).

4. Parse transformation, as described in x7.6. If a parse transform func-

tion has been speci�ed, it is applied to the list of parse trees, resulting

in a new list of parse trees. Otherwise the result is the same list of

parse trees.

5. Code generation, as described in x7.7. This takes a list of parse trees

and returns a binary representation of a module, which can be loaded

(x9).

The resulting binary can be loaded into a running Erlang system or be

saved in a �le and loaded from there (x9.1).

7.1 Preprocessing

The preprocessing step takes a sequence of TokenSequence as input and

produces a new sequence of TokenSequence. (A TokenSequence is a sequence

of tokens followed by a full stop, cf. x3.18.)

107

108 DRAFT (0.7) February 9, 1999 { 19 : 09

During preprocessing, the compiler is in one of two modes: skipping or

processing. When the compiler is in skipping mode, a TokenSequence is ig-

nored unless it is one of the directives for conditional compilation discussed

in x7.4. When the compiler is in processing mode, the treatment of a To-

kenSequence is as described in this section. The compiler is originally in

processing mode.

Each TokenSequence that is one of the following directives is processed

and is not part of the output sequence of TokenSequence.

Directive:

MacroDe�nition (x7.2.1)
MacroUnde�nition (x7.2.2)
IncludeDirective (x7.3)
IncludeLibDirective (x7.3)
IfdefDirective (x7.4)
IfndefDirective (x7.4)
ElseDirective (x7.4)
EndifDirective (x7.4)

The directives -define(M [(V1,...,Vk)],Toks) and -undef(M) maintain

the set of macro de�nitions, the directives -include(F) and -include_lib(F)

control �le inclusion, and the directives -ifdef(M), -ifndef(M), -else

and -endif control conditional compilation (x7.4).
The tokens in a TokenSequence that is not a Directive are subject to

macro expansion (x7.2.3) and the resulting tokens, followed by a full stop,

form a TokenSequence that is part of the output of the preprocessing.

7.2 Macros

As the preprocessor goes through the sequence of TokenSequence, it main-

tains a set of macro de�nitions. A MacroDe�nition adds to the set (x7.2.1),
a MacroUnde�nition may remove from the set (x7.2.2), any other TokenSe-

quence leaves it unchanged.

A TokenSequence that is not recognized as a Directive (x7.1) is subject
to macro expansion (x7.2.3).

The initial set of macro de�nitions is described in x7.2.4.

7.2.1 Macro de�nition

A macro de�nition is a directive that adds a macro de�nition.

MacroDe�nition:

- define (MacroName MacroParamsopt , MacroBody) FullStop

February 9, 1999 { 19 : 09 DRAFT (0.7) 109

MacroName:

AtomLiteral

Variable

MacroParams:

(Variablesopt)

Variables:

Variable

Variables , Variable

MacroBody :

Tokens

A macro de�nition -define(M,Toks) associates the macro name M with

no sequence of parameters and an arbitrary (and possibly empty) sequence

of tokens Toks .

A macro de�nition -define(M(V1,...,Vk),Toks), where k � 0, asso-

ciates the macro name M with a (possibly empty) sequence of macro param-

eters V1, : : : , Vk which must be distinct variables, and a (possibly empty)

sequence of tokens Toks .

Unlike the case for function names, which associate a symbol and an arity

with a function, a macro name is simply a symbol and the macro named M

either takes no parameters at all or obtains the arity k above. It is thus not

possible to de�ne two macros with the same name M but di�erent arities.

In either case, the scope of the association for M begins immediately after

the macro de�nition. It is a compile-time error if a macro de�nition of M

occurs in the scope of another macro de�nition of M .

Note the di�erence between the macro de�nitions -define(abc,123)

and -define(abc(),123). The former is associated with no parameters

while the latter is associated with an empty sequence of parameters and an

application of it must therefore have an empty argument sequence (x7.2.3).
In Erlang 4.7.3, a macro name 'Foo' and a macro name Foo denote

di�erent macros. This is to be viewed as a bug (not a feature) and will

change in a future version so a macro name that is a quoted atom and a

macro name that is a variable denote the same macro if the print name of

the atom consists of the same sequence of characters as the variable. For

example, the macro names 'Foo' and Foo will then denote the same macro.

7.2.2 Macro unde�nition

The scope of a macro de�nition is terminated by a macro unde�nition or

the end of the module de�nition.

MacroUnde�nition:

- undef (MacroName) FullStop

110 DRAFT (0.7) February 9, 1999 { 19 : 09

Beginning immediately following an unde�nition -undef(M), the macro

name M is unde�ned. It is not an error if M was unde�ned also immedi-

ately preceding the unde�nition.

7.2.3 Macro expansion

Each macro application in a TokenSequence is expanded, i.e., replaced with

tokens according to the macro de�nition that is in force at that point.

MacroApplication:

? MacroName

? MacroName (MacroArgumentsopt)

MacroArguments:

MacroArgument

MacroArguments , MacroArgument

MacroArgument :

BalancedExpr that is not one of , or)

BalancedExpr :

(BalancedExprs)

[BalancedExprs]

{ BalancedExprs }

begin BalancedExprs end

if BalancedExprs end

case BalancedExprs end

receive BalancedExprs end

query BalancedExprs end

OtherToken

BalancedExpr BalancedExpr

Macro expansion of a TokenSequence is de�ned as follows. Let us write

hT 1 T2 : : : Tki for the macro expansion of a TokenSequence T 1 T2 : : : Tk.

We write � or � 0 for an arbitrary sequence of tokens and �1, : : : , �k for k

balanced expressions, i.e., BalancedExpr above.

� h? A � FullStopi = h� 0 � FullStopi if A is an atom and there is a macro

de�nition for A with no parameters and a replacement sequence � 0.

� h? A (�1 , : : : , �k) � FullStopi =
h� 0[�1/v1, : : : ,�1/vk] � FullStopi
if A is an atom and there is a macro de�nition for A with k parameters

v1, : : : , vk and a replacement sequence � 0.

� h? � FullStopi in any other case is a compile-time error.

February 9, 1999 { 19 : 09 DRAFT (0.7) 111

� hT � FullStopi = T h� FullStopi where T is any token but ?.

� hFullStopi = FullStop.

To summarize in words, after ? must follow a de�ned macro name. Either it

is de�ned to have no parameters, in which case ? and the atom are replaced

by the expansion and macro expansion starts over from there, or it is de�ned

to have a number of parameters in which case ? and the atom must be

followed by that many macro arguments. In that case ?, the atom and the

macro arguments are replaced by the expansion in which each occurrence of

a macro parameter has been replaced by the corresponding macro argument

and macro expansion starts over from there. If the �rst token is not ?, it is

made part of the result of the macro expansion.

For example, suppose the following macro de�nitions are in force:

-define(foo,fum(?).

-define(bar(X),(X))).

They associate the macro name foo with no parameters and the three tokens

fum, (and ?, and the macro name bar with one macro parameter X and

an expansion consisting of (, the token sequence given as macro argument,

) and) again. (This would be an extremely objectionable programming

style.) Then the TokenSequence

foo(X) -> ?foo bar(6*X).

which consists of the thirteen tokens foo, (, X,), ->, ?, foo, bar, (, 6, *, X

and), followed by a full stop, is macro expanded to

foo(X) -> fum((6*X)).

in the following steps:

1. hfoo (X) -> ? foo bar (6 * X) FullStopi
The �rst �ve tokens (including the atom foo even though there hap-

pens to be a macro with that name) are una�ected by macro expansion.

2. foo (X) -> h? foo bar (6 * X) FullStopi
The next two tokens are the separator ? and the atom foo. There is a

macro de�nition of foo with no parameters and expansion consisting

of the tokens fum, (and ?; thus ? and foo are replaced by fum, (and

? and macro expansion starts over from there.

3. foo (X) -> hfum (? bar (6 * X) FullStopi
The next two tokens are una�ected by macro expansion.

112 DRAFT (0.7) February 9, 1999 { 19 : 09

4. foo (X) -> fum (h? bar (6 * X) FullStopi
The next two tokens are ? and bar and there is a macro de�nition of

bar with one macro parameter. The macro argument consists of the

tokens 6, * and X. The tokens ?, bar, (, 6, *, X and) are then replaced

with the expansion (, 6, *, X,),) and macro expansion starts over

from there.

5. foo (X) -> fum (h(6 * X)) FullStopi
The remaining six tokens are una�ected by macro expansion.

6. foo (X) -> fum ((6 * X)) FullStop

Macro expansion is complete.

Note that directives are not macro expanded (and their arguments are

not evaluated). For example, it is not possible to write

-define(SRCDIR(FN),"/usr/local/src/myproj/" FN ".erl").

-include(?SRCDIR("bliss")).

because the argument of include must be an IncludeFileName, i.e., a One-

StringLiteral.

7.2.4 Initial set of macro de�nitions

Initially the following three macros are de�ned, each one associated with no

parameters:

� ?MODULE is expanded to a single token: an atom literal that is the

name of the module being compiled.

� ?FILE is expanded to a single token which is a string literal that is a

full path to the �le that is being compiled.

� ?LINE is expanded to a single token which is an integer literal that

is the number of the line on which the LINE token appears. If LINE

occurs within a macro then LINE is expanded to the number of the

line in which that macro is expanded. Unde�ning or rede�ning the

LINE macro has no e�ect. (Note that LINE does not have a �xed

token sequence and has to be handled as a special case in the macro

expansion.)

� ?MACHINE is expanded to a single token: an atom literal that is the

name of the abstract Erlang machine on which the compiler is run-

ning. The known abstract Erlang machines are:

� 'JAM'

� 'BEAM'

� 'VEE'

February 9, 1999 { 19 : 09 DRAFT (0.7) 113

7.3 File inclusion

The include and include_lib directives splice in the contents of a �le.

IncludeDirective:

- include (IncludeFileName) FullStop

IncludeLibDirective:

- include_lib (IncludeFileName) FullStop

IncludeFileName:

OneStringLiteral

The di�erence between the include and include_lib directives lies in

which paths are searched when the given �lename is not absolute. For

-include(F), �le F is searched in each directory for which an include

path was given to the compiler (option {i,Dir}), in order (as if using

file:path_open/3 [6, p. 230]). Also for -include_lib(F), these paths

are tried �rst. However, if the �le is not found, then if F can be split into a

string L that does not contain the character `/' and one string N that begins

with `/', L is looked up as a library (i.e., as if it was given as argument to

code:lib_dir/1 [6, p. 164]). If that yields a path P to a library directory

then the path which is the concatenation of P and N is used.

It is a compile-time error if no readable �le is found.

The contents of the �le is subject to lexical processing (x3). It is an

error if lexical processing of the contents of the included �le does not yield

a TerminatedTokens, i.e., a sequence of TokenSequence.

The resulting sequence of TokenSequence is processed exactly as de-

scribed in this section. While processing the included �le, the FILE and

LINE macros (x7.2.4) refer to the path of the included �le and line numbers

in it, respectively. The sequence of TokenSequence that is the result of the

preprocessing of the included �le becomes part of the output of the prepro-

cessing of the including sequence of TokenSequence at the location of the

include or include_lib directive.

7.4 Conditional compilation

There are four directives related to conditional compilation and two addi-

tional directives for which syntax is reserved.

IfdefDirective:

- ifdef (MacroName) FullStop

IfndefDirective:

- ifndef (MacroName) FullStop

114 DRAFT (0.7) February 9, 1999 { 19 : 09

ElseDirective:

- else FullStop

EndifDirective:

- endif FullStop

It is a compile-time error if the sequence of TokenSequence given to the

preprocessing step does not contain matching triples or pairs of

� IfdefDirective, ElseDirective and EndifDirective;

� IfndefDirective, ElseDirective and EndifDirective;

� IfdefDirective and EndifDirective;

� IfndefDirective and EndifDirective.

This must hold for a whole module de�nition as well as individually for each

included �le (x7.3).
If the compiler is in processing mode and encounters an -ifdef(M) direc-

tive [or -ifndef(M) directive], the compiler tests whether there is a macro

de�nition for M . If this is [not] the case, then the compiler continues in

processing mode until it encounters the matching else or endif directive.

(Note that this may involve handling any number of enclosed nested triples

or pairs of the kinds above.) If an else directive was encountered, the

compiler continues in skipping [processing] mode until the matching endif

directive is encountered. In either case, after the endif directive, the com-

piler continues in processing mode.

If the compiler is in skipping mode and encounters an -ifdef(M) or

-ifndef(M) directive, it continues in skipping mode until it encounters the

matching else or endif directive. (Again, this may involve handling any

number of enclosed nested triples or pairs of the kinds above.) If an else

directive was encountered, the compiler continues in skipping mode until

the matching endif directive is encountered. In either case, after the endif

directive, the compiler continues in skipping mode. Thus, it is obligatory for

the compiler to keep track of the directives for conditional compilation also

when in skipping mode. For example, the compiler must report a compile-

time error for a module containing the following directives:

-define(foo,42).

-ifdef(foo).

-else.

-else

-endif.

The compiler may implement this mechanism in any suitable way, but

the following machinery serves as an example and may clarify the description

February 9, 1999 { 19 : 09 DRAFT (0.7) 115

above. Let the compiler have a state consisting of a register Processing

and a stack. Processing is either true or false. Each stack item is a pair

where the left half is either if or else and the right half is either true or

false. Initially Processing is true and the stack is empty. Here is what

happens when the compiler encounters a TokenSequence:

� If the TokenSequence is -ifdef(M) or -ifndef(M), then a pair of if

and the value of Processing is pushed onto the stack. If Processing

is true and either the TokenSequence is -ifdef(M) and M has no

macro de�nition, or the TokenSequence is -ifndef(M) and M has a

macro de�nition, then Processing is changed to false.

� If the TokenSequence is -else then it is a compile-time error if the

stack is empty or the left half of the top pair is not if. The left half

of the top pair is changed to else and the contents of Processing is

set to the logical conjunction of the right half of the top pair and the

negation of Processing.

� If the TokenSequence is -endif then it is a compile-time error if the

stack is empty. Processing is set to the right half of the top stack

pair and that pair is popped o� the stack.

� If the TokenSequence is anything else, then if Processing is true, it

is processed as described in x7.1, otherwise it is ignored.

The directives if and elif (with any number of arguments) are reserved

for future extension of conditional compilation.

7.5 Parsing

The sequence of TokenSequence is parsed as a ModuleDeclaration (x8.1).
The result is a list of parse trees (one for each top-level form), which are

represented as Erlang terms (xB).

7.6 Parse transforms

A parse transform is a function mapping lists of parse trees to lists of parse

trees. Each parse transform is implemented by a separate module with an

exported function named parse_transform/1. Suppose that the compiler

has been instructed (through compiler options) to use the k parse transforms

implemented by modules M 1, : : : , Mk. (The order is relevant and is the same

as the order in which the compiler options appear.)

Let L 0 be the list of parse trees resulting from parsing the preprocessed

sequence of TokenSequence, represented as Erlang terms (xB). For each i,

1 � i � k, let L i be the result of computing

116 DRAFT (0.7) February 9, 1999 { 19 : 09

Mi:parse_transform(Li�1)

if that computation completes normally. The result must be a list of parse

trees for aModuleDeclaration (just as L0 is). If for some M i, the computation

completes abruptly or the result of the computation is not a list of parse

trees for a ModuleDeclaration, then it is a compile-time error. Otherwise,

Lk is used in the code generation step (x7.7).

7.7 Code generation

The code generation step takes a list of parse trees represented as Erlang

terms (xB) and produces a binary that contains a loadable representation

of the module. That binary can either be loaded immediately (x9.1) or

be written to a �le for later loading. The actual format of the binary is

implementation-de�ned.

Chapter 8

Programs and modules

An Erlang module declaration consists of a collection of forms. Forms are

function declarations together with some attributes and record declarations

for the module. It is the smallest unit of code that can be separately com-

piled and loaded. An Erlang compiler thus has access to all the code of

a module at compile-time. Therefore it can determine at compile-time, for

example, the names of all functions being declared in the module.

An Erlang program typically consists of a number of modules, out of

which some may be standard Erlang modules or parts of library applica-

tions [6].

8.1 Module declarations

A module declaration may begin with one or more �le attributes, as de-

scribed in x8.2.4.
After those must follow a module attribute -module(Name), in which the

argument Name must be an atom. The module attribute states the name of

the module.

The module attribute is followed by a header part , consisting of a (pos-

sibly empty) sequence of header forms, which are additional attributes and

declarations of the module.

Finally there is a code part , consisting of a (possibly empty) sequence

of program forms: function declarations, possibly interspersed with such

attributes and declarations that need not be in the header part.

ModuleDeclaration:

FileAttributesopt ModuleAttribute HeaderFormsopt ProgramFormsopt

FileAttributes:

FileAttribute

FileAttributes FileAttribute

117

118 DRAFT (0.7) February 9, 1999 { 19 : 09

ModuleAttribute:

- module (ModuleName) FullStop

ModuleName:

AtomLiteral

There is a restriction in the �le compiler that a �le named Mod.erl must

contain the full source code of an Erlang module named Mod . (This �le

may however include other �les containing header forms, cf. x8.2.) This

restriction may be lifted or altered in a future version of Erlang.

8.2 The header part

The header part is a sequence of header forms, which are header attributes

or anywhere attributes. The former may only appear in the header part

while the latter may also appear in the code part.

HeaderForms:

HeaderForm

HeaderForms HeaderForm

HeaderForm:

HeaderAttribute

AnywhereAttribute

HeaderAttribute:

ExportAttribute

ImportAttribute

CompileAttribute

WildAttribute

AnywhereAttribute:

FileAttribute

MacroDe�nition

RecordDeclaration

Macro de�nitions are de�ned in x7.2.
The remaining attributes (both header attributes and others) are de-

scribed in the following sections.

8.2.1 Export attributes

An export attribute is syntactically like an application of a (hypothetical)

function export/1 to a list of function names, preceded by a dash. Each

function name consists of a function symbol and an arity numeral, separated

by /.

February 9, 1999 { 19 : 09 DRAFT (0.7) 119

ExportAttribute:

- export (FunctionNameList) FullStop

FunctionNameList :

[FunctionNamesopt]

FunctionNames:

FunctionName

FunctionNames , FunctionName

FunctionName:

FunctionSymbol / Arity

FunctionSymbol :

AtomLiteral

Arity :

IntegerLiteral

There may be more than one export attribute among the header forms.

The order between functions names in an export attribute is irrelevant. The

same function name may appear more than once in an export attribute and

in several export attributes.

If there is an export attribute in module M that lists the function F/A ,

then the function with symbol F and arity A in module M can be applied

using a remote application (x6.7).
Note that if there is not an export attribute in module M that lists

the function F/A , then the function cannot be applied through a remote

application even in the code for module M .

It is a compile-time error if there is an export attribute listing a function

F/A but no declaration of a function F/A .

8.2.2 Import attributes

An import attribute is syntactically like an application of a (hypothetical)

function import/1 to a module name and a list of function names (cf. x8.2.1),
preceded by a dash.

ImportAttribute:

- import (ModuleName , FunctionNameList) FullStop

Import attributes have the following role. If there is an import attribute in

module M that lists the function F/A of module M 0, then a seemingly local

function application F(E1,...,EA) in module M is syntactic sugar for a

remote function application M0:F(E1,...,EA) (unless there is a BIF named

F/A , cf. x6.18).

120 DRAFT (0.7) February 9, 1999 { 19 : 09

There may be more than one import attribute among the header forms.

The order between import attributes and between functions names in an

import attribute is irrelevant. The same function name may appear more

than once in an import attribute and in several import attributes for the

same module.

It is a compile-time error if in the same module there are import at-

tributes listing the same function name but di�erent modules.

If in some module there is both an import attribute listing a function

F/A and a function declaration for F/A , then all applications of the form

F(E1,...,EA) in the module will refer to the imported function. However,

if there is an export attribute listing F/A , it refers to the function being

declared. For example, consider the following module:

-module(expimp).

-import(lists,[sort/1]).

-export([sort/1]).

sort(X) -> sort(X).

The declaration of the function sort/1 may appear to be recursive but

it is not: the application sort(X) to the right of `->' calls the imported

function. However, the export attribute refers to the function being declared

in module expimp. (Here the function being declared simply returns the

result of the imported function but if the module is later replaced by a new

version, the function sort/1 may be de�ned di�erently.)

8.2.3 Compile attributes

A compile attribute is syntactically like an application of a (hypothetical)

unary function compile to a list of terms.

CompileAttribute:

- compile ([Termsopt]) FullStop

The terms in the list will be appended at the end of the list of options given

to the compile:file/2 function. The terms must therefore be acceptable

as options for the Erlang compiler being used, or compilation will fail.

The compiler options are implementation-de�ned.

8.2.4 File attributes

A �le attribute is syntactically like an application of a (hypothetical) func-

tion file/2 to a string literal (presumably a �le name although it is not an

error if no such �le exists) and a line numeral, preceded by a dash.

February 9, 1999 { 19 : 09 DRAFT (0.7) 121

FileAttribute:

- file (StringLiteral , LineNumeral) FullStop

LineNumeral :

IntegerLiteral

The purpose of a �le attribute -file(F,L) is to inform the compiler that

the code being compiled originated from line L in the �le F so that error

messages can refer to the proper place in the original �le.

8.2.5 Wild attributes

A wild attribute is syntactically like an application of a unary function

other than export/1, import/1, file/2, compile/1, type/1, deftype/1

and record/1 to a term.

WildAttribute:

- AtomLiteral (Term) FullStop

The compiler gathers all wild attributes for a module M and at runtime,

a BIF call M:module_info(attributes) returns a list of them (cf. x8.5.2).

8.3 Program forms

The program forms are function declarations and such attributes that may

appear anywhere in a module declaration. (For unambiguity of the gram-

mar, it is required that the ProgramForms begins with a FunctionDecla-

ration but there is no signi�cant di�erence between an AnywhereAttribute

that appears as part of the HeaderForms and one that appears as part of

the ProgramForms.)

ProgramForms:

FunctionDeclaration

ProgramForms FunctionDeclaration

ProgramForms AnywhereAttribute

FunctionDeclaration:

FunctionClauses FullStop

FunctionClauses:

FunctionClause

FunctionClauses ; FunctionClause

FunctionClause:

FunctionSymbol FunClause

122 DRAFT (0.7) February 9, 1999 { 19 : 09

FunClause:

(Patternsopt) ClauseGuardopt ClauseBody

(The rule for FunClause is repeated from x6.19.10 for convenience.)

Each function declaration consists of one or more function clauses, sepa-

rated by semicolons. Every clause of a function declaration must begin with

the same AtomLiteral and the sequence of arguments following it must have

the same length in every clause. The AtomLiteral is the function symbol

and together with the length of the argument sequences, which is the arity

of the function, it forms the function name. A function declaration for a

function named F/A is thus on the form

F(P1;1,...,P1;A) [when G1] -> B1 ;
... ;

F(Pk;1,...,Pk;A) [when Gk] -> Bk.

where the guard part of each function clause is optional.

It is a compile-time error if in a module there is more than one declaration

for a function name.

Application of functions is de�ned in x6.18.

8.4 Record declarations

RecordDeclaration:

- record (RecordType , RecordDeclTuple) FullStop

RecordDeclTuple:

{ RecordFieldDeclsopt }

RecordFieldDecls:

RecordFieldDecl

RecordFieldDecls , RecordFieldDecl

RecordFieldDecl :

RecordFieldName RecordFieldValueopt

(The rules for RecordType and RecordFieldName appear in x6.6 while the

rules for RecordFieldValue appear in x6.17.)
In a record declaration

-record(R,{F1[=E1]; :::; Fn[=En]})

the �eld names F1, : : : , Fn must all be distinct and the (optional) default

initializer expressions E1, : : : , En will be evaluated in an empty environment

and must have an empty output environment. It should be a compile-time

error if a default initializer expression contains a free variable.

February 9, 1999 { 19 : 09 DRAFT (0.7) 123

The scope of the record declaration begins immediately after its lexical

occurrence and ends at the end of the module declaration. In a module there

must be at most one record declaration for each record type. It is possible for

two modules that are part of the same application to have incoherent record

declarations. This could lead to severe problems. Similar problems may

appear, unless caution is taken, when loading a new version of a module if

its record declarations have changed (because there may be existing records

created according to the old record declarations).

The record declaration establishes R as the name of a record type having

n �elds named F1, : : : , Fn. The optional default initializer expression E i is

used when a record is created (x6.17.3) and no value is speci�ed for the �eld

named F i. (If no default initializer expression is given either, then the atom

undefined is used.) For example, a record declaration

-record(music,{title,artist,medium=cd,number})

declares music to be a record type and that each record term of type music

has four �elds named title, artist, medium and number. An expression

#music{}

creates a record in which these �elds have the values undefined, undefined,

cd and undefined, respectively, while an expression

#music{title="The Dark Side of the Moon",

artist="Pink Floyd",

medium=lp}

creates a record in which the �elds have the values "The Dark side of the

Moon", "Pink Floyd", lp and undefined, respectively (the default initial-

izer expression cd for medium was overridden).

8.5 The module information functions

When compiling a module, the compiler automatically adds declarations for

two functions module_info/0 and module_info/1 in it.

8.5.1 The function module_info/0

In any module M , the compiler automatically adds a declaration of a func-

tion module_info/0, such that an application M:module_info() returns an

association list (cf. x4.9.2). This association list is such that for every key K

that the function module_info/1 accepts, except module, the list contains

a 2-tuple {K,M:module_info(K)} and no other 2-tuples.

124 DRAFT (0.7) February 9, 1999 { 19 : 09

8.5.2 The function module_info/1

In any module M , the compiler adds a declaration for an exported function

module_info/1 such that for certain terms, the function returns a value. It

must hold that:

� M:module_info(module) returns M (i.e., the name of the module as

an atom).

� M:module_info(exports) returns a list of 2-tuples such that for ev-

ery function name F/A that appears in an export attribute, the list

contains a 2-tuple {F,A}. That is, the �rst element of each 2-tuple

is an atom and the second element is an integer. There are no other

2-tuples in the list and the order between the 2-tuples is unde�ned.

� M:module_info(imports) returns a list of 2-tuples such that for every

function name F/A that appears in an import attribute for a module

M 0, the list contains a 2-tuple {{F,A},M 0}. That is, the �rst element

of each 2-tuple is itself a 2-tuple of an atom and an integer, and the

second element of each pair is an atom. There are no other 2-tuples

in the list and the order between the 2-tuples is unde�ned.

� M:module_info(attributes) returns an association list such that for

every wild or compile attribute -K(T) of module M , the list contains a

2-tuple {K,T}. That is, the �rst element of each 2-tuple is an atom and

the second element is an arbitrary term. There are no other 2-tuples

in the list and the order between the 2-tuples is unde�ned.

� M:module_info(compile) returns an association list with informa-

tion about the compilation of module M . The association list must at

least map the atom time to the time when compilation of module M

began (represented as a six-tuple of integers: year, month, day, hours,

minutes and seconds, like the elements in the result of the BIF date/0

[x13.13.1] followed by the elements in the result of the BIF time/0

[x13.13.6]) and the atom options to the list of options that were given

to the compiler (including those provided through compile directives

[x8.2.3]).

An implementation may let M:module_info/1 accept additional atoms as

argument (in which case the association list returned by M:module_info/0

should be extended accordingly, cf. x8.5.1).

Chapter 9

Dynamics of modules

Erlang has been designed to make it possible to incorporate functionality

for replacing a version of a module with a new version of that module, even

though at the same time there are processes executing the old version of the

module.

An example of such functionality is provided by a collection of BIFs:

load_module/2, delete_module/1, purge_module/1, etc., which are de-

scribed in this chapter.1

A process that is evaluating an application of a function in the old version

of module can �nish the evaluation of that application even though a new

version of the function has been loaded. However, there can be only one

\old version" of a module so it is presumed that the Erlang code of the

modules has been written so that processes will begin using the new version

of the module as soon as possible.

As soon as a new version of a module named Mod has been loaded,

evaluation of remote applications of functions in module Mod will use the

new version of module (x9.3).
This implies, for example, that a tail recursive function which is intended

to run for a long time should typically use a remote function application for

the tail recursive call. The tail recursive call will then use the most recently

loaded version of the module. (Note also that the last call optimization

[x6.7.3] entails that evaluation of such a tail recursive function can run using
stack space bounded only by the need for each iteration.)

Obviously, the programmer must be aware of the possibility that modules

may be replaced by new versions and design the code so it will cope gracefully

with such replacements.

1These BIFs are, in turn, used for implementing the code module of OTP [6, p. 158{

167].

125

126 DRAFT (0.7) February 9, 1999 { 19 : 09

9.1 Loading or replacing a module

A version of a module named Mod is the result of compiling a ModuleDec-

laration with a module attribute -module(Mod), represented as a binary

(x7.7). (Module declarations are described in x8 and their compilation in

x7.)
The current version of a module named Mod on a node N is the one for

which there are rows in entry_points[N] (x9.3). the current version of Mod
on N is accessible as current_version[module_table[N](Mod)] (x9.2).

A version of a module named Mod , represented as a binary B , is the

current version on node N from the time it has been loaded on node N

(x9.4) until it is made old on node N (x9.5).
The old version of a module named Mod on a node N has all its code

intact on N but there are no longer any rows for it in entry_points[N] so

no new remote function calls can reach code in it. The version is the old

version until it is purged (x9.6).
When we write that a process P uses some version of a module Mod ,

represented as a binary B , we mean that P is using some exported function

F/A in B (x6.7.3, x9.7).
When a version of a module named Mod is to be replaced with a new

version on an Erlang node N , the following sequence of steps is intended

to be followed:

� The current version of module Mod on node N , if any, is made the old

version (x9.5).

� A version of module Mod is made the current version of Mod on node

N (x9.4).

� When it has been ensured that no process on node N is using the

old version of module Mod anymore, the old version of Mod is purged

(x9.6). This reclaims the space used on node N by the old version of

the code.

Ensuring that no process is using the old version of a module can be

accomplished in several ways, e.g.:

� Waiting until all such processes complete or no longer use the old

version of the code (cf. x9.7).

� Killing such processes.

� Designing the code of the module so that a process using it can

be sent a message that makes it prepare for a version change by,

e.g., completing or evaluating a remote tail recursive call.

February 9, 1999 { 19 : 09 DRAFT (0.7) 127

9.2 Loaded modules

At any time, a module is loaded on node N if there is a current version of

Mod on N , i.e., if current_version[module_table[N](Mod)] is a binary.

x9.4 and x9.5 describe how current_version[module_table[N](Mod)]

is set to a binary or to none, respectively.

A process residing on node N can �nd out whether module Mod is loaded

on node N through a BIF call erlang:module_loaded(Mod), which inspects

current_version[module_table[N](Mod)] and returns true if the value

is a binary and false if it is none (x13.7.6).

9.3 Exported functions of a module

Each node maintains a table entry_points[N] (x11.7.2) in which the keys

are triples consisting of a module name (an atom), a function symbol (an

atom) and an arity (a nonnegative integer) and the values are entry points

to executable code. The table contains one row for each exported function

of each loaded module.

x9.4 and x9.5 describe how rows are are added to and removed from

entry_points[N], respectively.

The table entry_points[N] is used implicitly when evaluating remote

function applications (x6.7.1). Only while a version B of a module Mod is

current on a node N can a remote call of an exported function F/n in B

begin.

9.4 Loading a new current version

When a binary B is to be made the current version of a module Mod on a

node N , there are two preconditions:

� B must represent the result of compiling a module declaration for a

module Mod , and

� there must be no current version of module Mod on node N , i.e.,

current_version[module_table[N](Mod)] should be none.

The actions required to make B the current version are

1. For each exported function Name/Arity of the version of Mod repre-

sented by B , add to entry_points[N] a row with (Mod ; Name ; Arity)

as key and an entry point of the executable code for that function as

value.

2. Set current_version[module_table[N](Mod)] to B .

128 DRAFT (0.7) February 9, 1999 { 19 : 09

9.5 Making a current version old

When the current version of a module Mod on a node N is to become the

old version of that module on the node, the precondition is that there is not

already an old version, i.e., that old_version[module_table[N](Mod)] is

none.

Let the value of current_version[module_table[N](Mod)], i.e., the

current version of Mod on N be B . The actions required to make B the old

version of Mod on N are

1. Remove every row from entry_points[N] that has Mod as key.

2. Set old_version[module_table[N](Mod)] to B .

3. Set current_version[module_table[N](Mod)] to none.

9.6 Purging an old version

When the old version of a module Mod on a node N is to be purged, there

had better be no process using it. If some process residing on N is using the

old version of Mod , the behaviour of that process is thereafter unde�ned.

The action required to purge the old version of Mod on N is setting

old_version[module_table[N](Mod)] to none. If that was the last refer-

ence to the binary that was the old version of Mod on N , then the memory

management subsystem (x4.13) will eventually reclaim the memory occu-

pied by it. (The reason that processes still using the old version may behave

erratically is that it cannot be expected that their references through return

addresses will prevent the binary from being \garbage collected".)

9.7 Checking a process for module usage

A BIF call erlang:check_process_code(P,Mod) (x13.7.1) inspects the value
of stack_trace[P] and returns true if there is a reference to the code of

some function in old_version[module_table[node[P]](Mod)] and false

otherwise.

A list of the PIDs of all processes residing on node N can be obtained

through a BIF call processes() (x13.10.9) on node N .

Chapter 10

Processes and concurrency

10.1 An overview of Erlang processes

An Erlang process is an entity that exists for a certain time, is evaluating

a function application, has a state and is able to communicate with other

processes during its lifetime. It may complete normally or abruptly.

Each process is associated with a unique term, called its process identi-

�er or PID. The PID of a process is used for referring to the process, for

example, when communicating with it. As there is a one-to-one correspon-

dence between processes and PIDs, we will often abuse our terminology and

write about the PIDs as if they were the actual processes. A process can

obtain its own PID using the BIF self/0 (x13.8.14).
Normally a function application appears in a program through an ex-

pression on the form F(T1,...,Tk) or M:F(T1,...,Tk) (or through an ap-

plication of one of the BIFs apply/2 and apply/3). In the normal mode

of evaluation, the expression is then evaluated as part of the same process

until it completes normally, in which case the result is the value of the ex-

pression, or it completes abruptly, in which case the enclosing expression

also completes abruptly.

Through the BIFs spawn/3, spawn/4, spawn_link/3 and spawn_link/4

(x13.8) it is possible to request instead that the application is evaluated in a

process of its own. An application spawn(M,F,[E1,...,Ek]) has the e�ect

of spawning a new process that evaluates the application M:F(E1,...,Ek),

but does not wait for its value to be computed. The value of the expression

spawn(M,F,[E1,...,Ek]) is instead the PID of the new process. The value

of M:F(E1,...,Ek) cannot be accessed even though it is computed (when

the computation completes normally) so it is obvious that any result of a

process must be made available through communication.

Let the values of the expressions M , F , E1, : : : , Ek be Mod , Fun , v1, : : : ,

vk. The call of the function Mod:Fun/k to the values v1, : : : , vk is known

as the initial call of the process.

129

130 DRAFT (0.7) February 9, 1999 { 19 : 09

The BIF spawn/3 spawns the new process on the same node as the

process evaluating the application while spawn/4 spawns the new process

on a speci�ed node (x11). The BIFs spawn_link/3 and spawn_link/4 are

like spawn/3 and spawn/4, respectively, but link the spawning and spawned

processes (x10.3).
Processes communicate through signals. The two kinds of signals that

are immediately noticeable for Erlang programmers are messages and exit

signals. Both messages and exit signals are terms but they are sent and

received di�erently and with di�erent purposes.

An exit signal is automatically sent upon completion of a process and it

may cause abrupt completion of other processes, as described in x10.4.
A message is sent by evaluating a send expression, i.e., an application of

the ! operator (x6.11). Correspondingly, evaluating a receive expression

(x6.19.9) normally receives one message and dispatches on its form. The

mechanism for communication by messages is described in x10.5.

10.2 Process names

Each node maintains a registry of names of processes, providing a level of

abstraction when referring to a process. These names are atoms and can

be used instead of the PID when sending a message to a process. It is also

possible to retrieve the current PID that a name is registered to stand for.

Process names are described in more detail elsewhere (x11.5) as are the
BIFs register/2, whereis/1, unregister/1 and registered/0 (x13.11).

10.3 Linked processes

A pair of processes P 1 and P2 may be linked, which means that when P 1

completes, an exit signal (x10.4) is sent to P2, and vice versa. Receiving

the exit signal can either cause P 2 to complete abruptly or notify P2 of

the completion of P1 in the form of a message (x10.5). Links are completely
symmetric so there is no distinction between the linked processes. A process

may link to itself but that has no e�ect.

Note that when a process P1 is linked to two or more processes, say P 2

and P3, then if P2 completes abruptly, the exit signal received by P1 will

cause abrupt completion also of P1 (unless it is trapping exits), which will

cause an exit signal to be sent to P3, etc. The abrupt completion of P2 thus

causes abrupt completion of P3 even though the processes were not linked

directly. In this way, abrupt completion of one process in a collection of

linked processes may cause abrupt completion of several or all processes in

the group.

A link can be created between two processes P 1 and P2 in the following

ways:

February 9, 1999 { 19 : 09 DRAFT (0.7) 131

� If one of the processes spawned the other using the BIF spawn_link/3

or spawn_link/4. In this case, the link is in e�ect as soon as the

process has been created.

� If process P 1 calls the BIF link/1 with P2 as argument, or process

P1 calls it with P2 as argument. In this case, setting up the link

takes an unspeci�ed amount of time. If the two processes are already

linked when one of them evaluates an application of link/1, it has

no e�ect. If when (say) P1 evaluates link(P2) the process P 2 has

completed, then no link is created and P1 eventually receives an exit

signal {'EXIT',P2,noproc} (x10.4).
For details see the description of the BIF link/1 (x13.8.7) and x10.6.3.

The link between two processes P 1 and P2 is removed if process P1 evaluates

unlink(P2) or process P2 evaluates unlink(P1). It takes an unspeci�ed

amount of time before the link is removed. If the two processes are not

linked when one of them evaluates an application of unlink/1, it has no

e�ect. For details see the description of the BIF unlink/1 (x13.8.19) and
x10.6.3.

Obviously, two processes setting up or removing a link between each

other may need to synchronize with messages to ensure the status of the

link before further processing.

It is also possible for a process and a port to be linked, as described in

x12.9.

10.4 Completion of processes and exit signals

In this section we describe what causes a process to complete and the exit

signals and messages that are dispatched when that happens. We also de-

scribe how exit signals are sent using the BIF exit/2 and what happens

when exit signals are received.

10.4.1 Process completion

A process may complete for one of the following four reasons:

� The evaluation of the toplevel application of a process completes nor-

mally: Reason will be normal.

� The evaluation of the toplevel application of a process completes abruptly

with exit reason R : Reason will be R .

� The evaluation of the toplevel application of a process completes abruptly

with a thrown term: Reason will be nocatch.

132 DRAFT (0.7) February 9, 1999 { 19 : 09

� The process receives an exit signal that causes it to complete abruptly

(x10.4.3), Reason will then be as speci�ed in x10.6.3.

The BIF exit/1 (x13.8.3) is typically used to make a function call exit

with some reason, as some kind of error has been detected. Unless the

code has been written to restore normal computation, the process execut-

ing the function call will terminate. That is, evaluation of an application

exit(Reason) for some term Reason completes abruptly with the exit term

Reason as reason and unless the evaluation is governed by a catch expres-

sion, the process completes as described above.

The BIF throw/1 (x13.13.5) is intended for nonlocal control, not for

signalling an error or making a process terminate.

When a process completes, an exit signal is sent to every process that

is linked to it. The order in which these exit signals are sent is not de�ned.

The exit signal contains the PID of the completing process and contains the

exit reason.

More precisely, suppose that process P completes for one of the reasons

above. For each process P 0 for which P 0 is in linked[P], dispatch an exit

signal with P as sender and Reason as reason.

If two processes P1 and P2 residing on di�erent nodes (x11) are linked
and the nodes lose contact, P 1 and P2 will receive exit signals with reason

noconnection, as if the other process had completed.

10.4.2 Sending exit signals explicitly

The BIF exit/2 (x13.8.4) can be used to send exit signals to processes. If

process P 1 evaluates the application exit(P2,Reason), an exit signal with

reason Reason is sent to process P2, similarly to when process P1 is linked

with P2 and completes with exit reason Reason . However, if Reason is

kill, the receiving process will always complete (x10.6.3).
Note that if P 1 is linked to P 2, and trap_exit[P2] is false (or Reason

is kill), then P2 will terminate and an exit signal will subsequently be sent

to P 1 itself.

For details, see the description of the BIF exit/2 (x13.8.4).

10.4.3 Receiving an exit signal

We write that a process P is trapping exits if trap_exits[P] is true.

When an exit signal is received, one of three things happens:

� If the receiving process is trapping exits and the exit signal was not

sent using the BIF exit/2 with kill as reason, then the reason is

placed in the message queue of the receiving process.

� Otherwise, if the reason is normal, nothing happens.

February 9, 1999 { 19 : 09 DRAFT (0.7) 133

� Otherwise (the reason is not normal and either the process is not

trapping exits or the exit signal was sent using the BIF exit/2 with

kill as reason), the process completes (x10.6.3).

For details, cf. x10.6.3.

10.5 Communication by messages

A message in Erlang can be any Erlang term. A message is sent by

a sending process to a speci�c receiving process, identi�ed by its PID, by

a registered name, which is an atom, or by 2-tuple of a node name and a

registered name.

Communication by messages in Erlang is asynchronous, i.e., the pro-

cess sending a message does not wait until the message is received. We shall

therefore describe sending of messages and reception of messages in three

steps:

� A message is dispatched from a process with some process as recipient.

� The message arrives at the message queue of the recipient.

� The recipient retrieves the message from its message queue.

10.5.1 Sending a message

The only primitive for sending a message in Erlang is the operator !. An

expression E 1 ! E 2 is called a send expression (x6.11).
The value of the left operand should either be a PID, an atom that

is registered on the current node as a process name (x10.2), or a 2-tuple of

atoms where the �rst element is a name for some process on the node named

by the second element. The value of the right operand is the message to be

dispatched. Evaluation of send expressions is described precisely in x6.11.
There is no direct way for the sending process to �nd out whether the

message ever arrived at the message queue of the recipient process or was

retrieved (except that evaluation of a send expression will exit with reason

badargwhen the receiver is speci�ed through an atom that is not a registered

name).

The dispatched message contains no other information than the message

as such. In particular, it does not identify the sending process unless its

PID is made part of the message.

10.5.2 Message arrival

When a term Msg arrives at the message queue of the recipient process P it

is placed at the end of message_queue[P]. If status[P] is waiting, then

134 DRAFT (0.7) February 9, 1999 { 19 : 09

status[P] is changed to runnable and the process will eventually proceed

in part 3 of the evaluation of a receive expression (x6.19.9).
For details, cf. x10.6.3.

10.5.3 Receiving a message

The only primitive for receiving a message in Erlang is the receive ex-

pression (x6.19.9) which has the syntax

receive

P 1 [when G 1] -> B 1 ;

...

Pk [when Gk] -> Bk

[after

E -> Bk+1]

end

where the after part is optional but must be included if k = 0.

When a receive expression is evaluated, each term in the message queue

of the process is matched (in order) against each clause (i.e., a message is

matched against the pattern of the clause and the guard of the clause is

evaluated) until a message is found for which there is a matching clause.

The message is then removed from the message queue of the process and

the body of the �rst matching clause is evaluated.

If no term in the message queue matched any clause, then the process

suspends until at least one term has arrived at the queue, each such term

is then tried as above until one arrives that matches some clause. However,

if the receive expression has an after part, then the waiting for a message

expires after the speci�ed number of milliseconds have passed and the expiry

body is evaluated.

The evaluation of receive expressions is described in detail in x6.19.9.

10.5.4 Order of messages

It is assured (through the rules of signals, cf. x10.6.2) that if a process P 1
dispatches two messages M1 and M 2 to the same process P2, in that order,

then message M1 will never arrive after M2 at the message queue of P2.

Note that this does not guarantee anything about in which order mes-

sages arrive when a process sends messages to two di�erent processes. Also

note that linking/unlinking requests are processed as soon as they arrive at

a process while messages can be received long after they arrived at the mes-

sage queue (when the process evaluates a receive expression). For example,

if a process P1 evaluates

link(P2), P2 ! foo, unlink(P2)

February 9, 1999 { 19 : 09 DRAFT (0.7) 135

then the link between P1 and P2 may or may not still be in e�ect when

process P 2 actually receives message foo, depending on whether the unlink

request from process P 1 has arrived yet. In order to guarantee that the link

is in e�ect when process P2 receives foo, process P2 could send an answer

message to P 1 which would wait to receive that message before unlinking.

10.6 Signals

In this section we describe a model for how communication between two

processes or between a process and a port takes place in Erlang. The

model is assumed in other parts of this speci�cation. It is important that

it is a model: Erlang 4.7.3 does not use it in the implementation, but

communication behaves according to the model.

All communication between processes and ports takes place through sig-

nals. A signal is characterized by a sending process/port, a destination pro-

cess/port, a kind and additional data depending on the kind of the signal.

The kind is one of the following:

Message.

Additional data: a term that is the actual message.

Exit signal.

Additional data: a Boolean ag saying whether the sending process

just died or not and a reason which is a term.

Link request.

Additional data: none. See x10.3.
Unlink request.

Additional data: none. See x10.3.

Group leader request.

Additional data: the process that is to be the new group leader of

the destination process. See x10.8.
Info request.

Additional data: a key which is an atom. See x13.8.12.

Erlang 4.7.3 has three additional kinds of signals, which are not described

in detail here:

Suspend/resume request.

For suspending of resuming a process, respectively.

Garbage collection request.

For requesting that garbage collection be done.

Trace/notrace request.

For turning tracing of a process on or o�, respectively

136 DRAFT (0.7) February 9, 1999 { 19 : 09

10.6.1 Sending signals

Sending a signal is completely asynchronous: the sending process has no

direct way to infer when the signal reached its destination or even whether

it was ever received.

Sending the various types of signals is described in x6.11 (messages),

x10.4 (exit signals), x10.3 (link and unlink requests), x13.8.6 (group leader

requests) and x13.8.12 (info requests).

10.6.2 Order of signals

The amount of time that passes between the dispatch of a signal s destined

for a process P and the arrival of s at P is unspeci�ed but positive. If P

has completed, s will never arrive at P . In that case it is still possible that

s triggers another signal, for example if it is a link request (cf. x10.6.3).
It is guaranteed that if a process P 1 dispatches two signals s1 and s2 to

the same process P2, in that order, then signal s1 will never arrive after s2
at P2. It is ensured that whenever possible, a signal dispatched to a process

should eventually arrive at it. There are situations when it is not reasonable

to require that all signals arrive at their destination, in particular when a

signal is sent to a process on a di�erent node and communication between

the nodes is temporarily lost.

10.6.3 Arrival of signals

Consider a signal in transit with destination process P . When the signal

arrives at the node on which P resides or resided, what happens primarily

depends on whether P has completed or not. (If the sender and destina-

tion processes reside on the same node, the processing may nevertheless be

subject to delay.)

� If P has completed, what happens depends on the kind of the signal:

� If the signal was a link request from a process P 0 then an exit

signal noproc is sent to P 0.

� Otherwise, the signal is discarded.

� If P has not completed, what happens also depends on the kind of the

signal:

� Message with actual message M : the term M is placed at the end

of message_queue[P] (x10.5.2).
� Exit signal with sender P 0, ag ProcessCompleted and term

Cause . (ProcessCompleted is true if P 0 completed and false

otherwise.) First of all it is established whether reception of this

exit signal causes P to complete abruptly or not.

February 9, 1999 { 19 : 09 DRAFT (0.7) 137

� If ProcessCompleted is true, P 0 is in linked[P], trap_exit[P]

is false and Cause is something other than normal, then P

should complete: Reason is Cause .

� Otherwise, if ProcessCompleted is false and Cause is kill,

then P should complete: Reason is killed.

� Otherwise, if ProcessCompleted is false, trap_exit[P]

is false and Cause is something other than normal then P

should complete: Reason is Cause .

� Otherwise, P should not complete.

What happens next depends on ProcessCompleted :

� If ProcessCompleted is true: P must have been linked with

P 0. If P 0 is in linked[P], then remove it.

� If ProcessCompleted is false: P 0 must have called the BIF

exit/2 with P and Cause as arguments.

What �nally happens depends on whether P should complete

abruptly or not.

� If P should complete, the �nal processing is as described in

x10.4.1.
� If P should not complete, then unless Cause is normal, a mes-

sage {'EXIT',P0,Cause} is placed at the end of message_queue[P]

(x10.5.2).

� Link request with sender P 0. If P 0 is not in linked[P], then P 0 is

added to linked[P].

� Unlink request with sender P 0. If P 0 is in linked[P], then P 0 is

removed from linked[P].

� Group leader request with new group leader P 0. group_leader[P]

is set to P 0.

� Info request with sender P 0 and key K . Reply to the sender with

a message containing the requested information.

10.7 Scheduling of processes

If a process P is suspended in part 3 of the evaluation of a receive expres-

sion (x6.19.9), then status[P] is waiting, otherwise it is either runnable

or running. Depending on status[P], we say that P is waiting, runnable

or running. At any time, at most one of the processes residing on a node is

running, if the node is on a uniprocessor system. On a node on a multipro-

cessor system there may be multiple processes running simultaneously. A

newly spawned process is initially runnable.

138 DRAFT (0.7) February 9, 1999 { 19 : 09

In x10.9.2 it is described how status[P] may change to waiting or to

runnable. In addition, the scheduler of an Erlang node has as its task to

repeatedly choose which runnable process gets to run. When the scheduler

changes the status[P] to running, process P will run for one cycle, unless

during that cycle status[P] changes to waiting, in which case another

runnable process will be scheduled to run. At the end of the cycle, if B is

still running, the scheduler changes status[P] back to runnable.

Erlang 4.7.3 attempts to make cycles be of equal and short duration,

the latter to favour interactive processes that do a small amount of work

between waiting states.

When we write that Erlang 4.7.3 schedules a set of processes fairly, we

mean that each runnable process in the set should eventually be scheduled

and preferably in the same order that they became runnable. (This is a very

weak requirement.)

Each process Q has an associated priority priority[Q], which is an

Erlang term. Three priorities are recognized: high, normal and low.

� While there are runnable processes with priority high, Erlang 4.7.3

schedules the processes with priority high fairly, ignoring processes

with priority low or normal.

� While there are no runnable processes with priority high or low, Er-

lang 4.7.3 schedules the processes with priority normal fairly.

� While there are no runnable processes with priority high or normal,

Erlang 4.7.3 schedules the processes with priority low fairly.

� While there are no runnable processes with priority high but there

are runnable processes with normal or low, Erlang 4.7.3 schedules

the processes with priority normal and low fairly. It also attempts

to schedule processes with priority normal normal advantage times

between each scheduling of a process with priority low.

For Erlang 4.7.3, normal advantage is 8.

10.8 Process group leaders

Each process P has a group leader, which is a process, possibly itself, referred

to in this speci�cation as group_leader[P]. The set of processes that have

the same group leader may be thought of as a process group, hence the term

group leader.

The group leader of a process is the default process for handling in- and

output of the process.

A process can retrieve its own group leader (using the BIF group_leader/0,

x13.8.5) and any process can set the group leader of any process (using the

February 9, 1999 { 19 : 09 DRAFT (0.7) 139

BIF group_leader/2, x13.8.6). When a new process is created, its group

leader will be the same as that of the process that spawned it.

In- and output (except for direct communication with a port, cf. x12) is
otherwise not covered by this speci�cation.

10.9 Static and dynamic properties of a process

When a process is created, some properties of the process are determined

and will be in e�ect until the process terminates. During that time also

a dynamic state is maintained, consisting of properties of the process that

change as time passes. This state is a�ected by and a�ects the computation

of the process.

We refer to these as the static and dynamic properties of a process. We

refer collectively to the values of the latter at a certain time as the state of

the process at that time.

10.9.1 Static properties

creation[P]

The value of creation[P] is the value of creation[N] for the node

N on which P was created.

ID[P] The value of ID[P] is a nonnegative integer that is a serial number

for P on the node on which it was created. The value cannot be

obtained directly but is used in the transformation to the external

term format (xD).

initial_call[P]

When a process P is spawned it is evaluating a remote application

Mod:Fun(Arg1,...,Argk) (the initial call). The value of initial_call[P]

is then the 3-tuple {Mod,Fun,k]}.

node[P]

When a process is spawned it is created on some node node[P].

This node never changes. The process P itself can access node[P]

by evaluating an expression node() (x13.10.6). Any process can

access node[Q] for a process Q by evaluating an expression node(Q)

(x13.10.7).

10.9.2 Dynamic properties

current_function[P]

The value is either the atom undefined, or a 3-tuple {Mod,Fun,k} if

the most recently begin function call was to the function Mod:Fun/k

(x6.7.3). It should be updated each time a named function is entered

140 DRAFT (0.7) February 9, 1999 { 19 : 09

(x6.7.1). It can be accessed as process_info(P,current_function)
(x13.8.12).

dictionary[P]

The value is a table (x2.4). A process can access and modify

dictionary[P] using the six BIFs get/0, get/1, get_keys/1, put/2,

erase/0 and erase/1 (x13.9). The table is initially empty.

error_handler[P]

The value is a module name (an atom) and it a�ects the evalua-

tion of applications of unde�ned function names (x6.18). A process

P can set error_handler[P] to a module name M by evaluating

an expression process_flag(error_handler,M) (x13.8.10). The

value is initially error_handler.

group_leader[P]

The value is a PID which identi�es the group leader of process P

(x10.8). A process P can access group_leader[P] by calling the

BIF group_leader/0 (x13.8.5) and any process can set the group

leader of any process by calling the BIF group_leader/2 x13.8.6.
(Any process can also access group_leader[P] as process_info(P,group_leader).)

When a process P spawns a new process Q , the initial value of

group_leader[Q] is group_leader[P].

heap_size[P]

The value should reect the amount of memory presently used for

storing the terms allocated by process P. heap_size[P] can be

accessed through the BIF process_info/2 (x13.8.12).

linked[P]

The value is a representation of the set of PIDs and ports that

identify the processes and ports to which P is linked (x10.3). It

cannot be modi�ed directly but a PID or port Q will be added to

linked[P] if it is not already in it and either

� P evaluates an application link(Q) (x13.8.7), or
� P receives a link request signal from Q .

A PID Q will be removed from linked[P] if it is in the set and

� P evaluates an application unlink(Q) (x13.8.19),
� P receives an unlink request signal from Q , or

� P receives an exit signal {'EXIT',Q,Reason} for some term

Reason , and the exit signal was sent due to process completion

(x10.4).

February 9, 1999 { 19 : 09 DRAFT (0.7) 141

memory_in_use[P]

The value should reect the total amount of memory presently used

by process P. memory_in_use[P] can be accessed through the BIF

process_info/2 with memory as second argument (x13.8.12).

message_queue[P]

The value is a representation of a queue of terms, which are the

messages that have arrived at the process (x10.5.2) but that have
not yet been received (x10.5.3). When a receive expression is

evaluated by a process P , it will �rst try to match the messages

in message_queue[P] against the clauses, in the order that they

appear in the queue (x6.19.9). New messages will be added at the

end of the queue. There is no direct way of accessing or modifying

message_queue[P] for a process P .

priority[P]

The value is one of the atoms low, normal and high and it af-

fects the scheduling priority of process P (x10.7). A process P

can set priority[P] to priority atom R by evaluating an expres-

sion process_flag(priority,R) (x13.8.10). The value is initially
normal.

reductions[P]

The value is an integer that should reect the number of function

calls that the process has begun (x6.7.3) since it was spawned. Er-
lang 4.7.3 de�nes a scheduling cycle (x10.7) as a certain (implementation-
de�ned) number of reductions. reductions[P] can be accessed

through the BIF process_info/2 (x13.8.12).

registered_name[P]

The value is an atom A if P is registered with the name TZA or [] if

P is not registered under any name. registered_name[P]must be

coherent with the contents of registry[node[P]]. The value is ini-

tially [] . It can be set to an atom by the BIF register/2 (x13.11.1)
and to [] by the BIF unregister/1 (x13.11.3). Given the atom

registered_name[P], the PID P can be obtained through the BIF

whereis/1 (x13.11.4, cf. x11.5) whereas given P , registered_name[P]
can be obtained through the BIF process_info/2 (x13.8.12).

stack_trace[P]

stack_trace[P] is a dynamic representation of the evaluation that

P is carrying out. It should contain su�cient information that a BIF

call erlang:check_process_code(P,Mod) should be able to return

true if P is using old_version[module_table[node[P]](Mod)]

and false otherwise. It cannot be accessed or updated explicitly.

142 DRAFT (0.7) February 9, 1999 { 19 : 09

status[P]

status[P] reects the scheduling status of P : waiting, runnable or

running. status[P] is initially runnable. status[P] is changed

from runnable to running or from running to runnable by the

scheduler. If status[P] is waiting when a message is added

to the end of message_queue[P], it is changed to runnable. If

status[P] is waiting when timer[P] changes from 1 to 0, it is

changed to runnable. Evaluation of a receive expression (x6.19.9)
may set status[P] to waiting. status[P] can be accessed through

the BIF process_info/2 but cannot be changed except as de-

scribed above.

timer[P]

If the value of timer[P] is positive, it reects the number of mil-

liseconds that remain until the status of process P should change

from waiting to runnable.

If timer[P] is positive, it is decremented automatically once every

millisecond. When it changes from 1 to 0, if status[P] is waiting,

status[P] is changed to runnable.

timer[P] cannot be accessed directly and is set only as part of the

evaluation of a receive expression (x6.19.9).

trap_exit[P]

The value is a Boolean atom and it a�ects how exit signals ar-

riving at process P are processed (x10.4). A process P can set

trap_exit[P] to a Boolean atom B by evaluating an expression

process_flag(trap_exit,B) (x13.8.10). The value is initially false.
trap_exit[P] can be accessed as process_info(P,trap_exit)

(x13.8.12).

Chapter 11

Nodes

11.1 Single-node and multi-node systems

An Erlang node is the operating system for Erlang processes. Every

process runs on some speci�c node and once a process has been created it

remains on that node.

By default an Erlang node is isolated and constitutes a single-node

system. In order to become a communicating node that can be part of a

cluster of Erlang nodes, it must have a process registered under the name

net_kernel that has opened a port through which it communicates with

other nodes using the protocol described in xD.
Every Erlang node has a name, which is an atom. The printname

of the atom always contains exactly one @ character (\100). An isolated

node always has the name nonode@nohost. In a communicating node, the

part of the printname after the @ must be the network name of the host

computer on which the node resides (typically an Internet domain name).

We call an atom with such a printname a valid node name. The name of

each communicating node must be unique. As the node name contains the

network name of the host computer (which is assumed to be unique), it

is su�cient to ensure that all nodes running on the same host computer

have unique names. This is ensured by the use of EPMD, as described in

x11.2. Because node names are unique and that nodes are always referred

to through their names in the language, we will identify nodes with their

names.

A node with a net_kernel process that has opened a port R as de-

scribed above becomes a communicating node with name A by some process

making a BIF call erlang:set_node(A,R) (x13.10.11).CHECK THE AR-

GUMENTS!!! It is also possible to make a node communicating from the

beginning [6, pp. 5{9].

On an isolated node the e�ects and result is unde�ned when any other

node name than nonode@nohost is used in a BIF that have an explicit

143

144 DRAFT (0.7) February 9, 1999 { 19 : 09

node argument or when sending messages. (This is not stated again in the

descriptions of BIFs and send expressions.) In the remainder of this chapter,

Erlang nodes are assumed to be communicating unless it is stated explicitly

that a node is or may be isolated. Moreover, as every communicating node

has a unique name and there is no way to refer to a node except through its

name, we will identify nodes with their names. Thus, when we write \node

A", where A is an atom, we mean the node with name A , provided that such

a node exists.

Each node has a term associated with it, called the magic cookie of the

node. In order for a processes on some node N 1 to communicate successfully

with a process on another node N2, the magic cookie of node N 2 must be

provided in the communication from node N 1. A group of nodes can be

protected from communication originating on other nodes by sharing a magic

cookie and not disclosing it to other nodes. Magic cookies are discussed in

more detail in x11.4.
At any given time, each Erlang node has a number of other nodes as

friends. The set of such friends may change dynamically over time. When a

process running on some node N1 attempts to communicate with a process

on another node N 2, node N1 attempts to set up a friendship with node N 2
through negotiation between the net_kernel processes of the two nodes.

Friendship is a symmetric property so in the process, N 1 also becomes a

friend of node N2. The friendship is terminated when the nodes can no

longer communicate or when a process residing on one of the nodes calls

the BIF erlang:disconnect_node/1 (x13.10.1) with the name of the other

node as argument. Friendship is described in more detail in x11.3.

11.2 Registering a node

MAKE COHERENT WITH ABOVE AND FINISH!!!

Any computer that can be the host of Erlang nodes must provide the

service EPMD (Erlang Port Mapper Daemon). The EPMD service on

the host computer stores the names of all Erlang nodes running on the

computer, ensuring that the names are unique. It will provide a handle

to the port of the net_kernel process of any node residing on the host

computer, given the name of the node (cf. x11.3).
MUST OBTAIN INFO ABOUT SET_NODE/2-3 BEFORE FIXING

NEXT PARAGRAPH!!!

An Erlang node becomes a communicating node by spawning a process

registered with the name net_kernel. It should open a port through which

other nodes can communicate with it. It then contacts the EPMD service

on its host computer, requesting to register the node with a certain name

and the opened port. The protocol for this registration is described in x??.

February 9, 1999 { 19 : 09 DRAFT (0.7) 145

11.3 Initializing and terminating friendship

When a signal is to be delivered from a process residing on some node N1 to

a process residing on a di�erent node N2, N2 must be a friend of N1. NOT

CORRECT!!!: Concretely, this means that the net_kernel process of node

N1 has opened a port to the net_kernel process of node N2. Associated

with this port is an atom table, as described in xD.1.
Making node N2 a friend of node N1 is thus initiated when a process

on node N1 needs to communicate with a process on node N2 and node

N2 is not yet a friend of node N1. The friendship remains until node N1

detects that it cannot communicate with node N2 or either node calls the

BIF erlang:disconnect_node/1 (x13.10.1) with the name of the other node
as argument.

When node N1 makes node N 2 a friend, node N1 should also become a

friend of node N2. Under normal circumstances, friendship is thus a reexive

relation. When the means of communication is broken between two nodes

that are friends, they may not detect this simultaneously and friendship

may then temporarily be unilateral. Should communications be restored in

a situation where node N1 is still a friend of node N2 but node N2 is no longer

a friend of node N1, then N 1 should cease to be a friend of node N 2 before

(bilateral) friendship is resumed. (This is to ensure that both processes on

N1 monitoring friendship with N2 and processes on N2 monitoring friendship

with N1 will be noti�ed that friendship has been broken, cf. x11.6.)
NEXT PARAGRAPH IS HIGHLY UNCERTAIN!!!

When a node N1 wishes to initiate friendshipwith a node N 2 the net_kernel

process of node N1 �rst contacts the EPMD on the host computer of node

N2 and requests a handle of the port of the net_kernel process of node N2,

as described in x??. If this succeeds, then the net_kernel process of node

N1 contacts the net_kernel process of node N2 and completes the setup

of the friendship as described in xD. That communication also establishes

node N 2 as a friend of node N 1.

The current set of friends of a node N is referred to in this document as

friends[N].

11.4 Remote communication and magic cookies

All forms of communication between two processes residing on di�erent

nodes go through the net_kernel processes on those nodes. Note that

all communication between processes is in the form of signals (x10.6).
Each node N has associated with it an atom magic_cookie[N] that is

called the magic cookie of the node. Any process residing on node N can

obtain the magic cookie of node N through a BIF call erlang:get_cookie()

(x13.10.2).The magic cookie of node N can be set by any process residing

146 DRAFT (0.7) February 9, 1999 { 19 : 09

on node N to some atom A through a BIF call erlang:set_cookie(N,A)

(x13.10.10).
Each node also has a table magic_cookies[N] in which the keys are

node names and the values are the presumed magic cookies of those nodes.

The presumed magic cookie on node N1 of a node N2 cannot be retrieved

but can be set to some atom A by any process residing on node N 1 through

a BIF call erlang:set_cookie(N2,A) (x13.10.10).
When a process P 1 residing on a node N1 attempts to send a signal S to

a process P2 on a di�erent node N 2, then the following happens:

� The signal S , source P 1 and destination P2 are passed to the net_kernel

process on node N 1.

� If N 2 is not in friends[N], then the net_kernel attempts to make it

a friend of N1. Should this fail, the signal s is simply discarded.

� The net_kernel process on N1 looks up the atom N2 in magic_cookies[N1]

and if there is no value for N2, then the atom nocookie is inserted

for it. Let C be the result of the lookup (possibly after insertion of

nocookie).

� The net_kernel process on N1 passes P1, C , S and P2 to the net_kernel

process on N2 using the protocol described in xD.

� The net_kernel process on N2 compares C with magic_cookie[N2].

� If C and magic_cookie[N2] are (exactly) equal (x4.11.1), then
the signal S is passed on to process P2 as described in x10.6.3.

� Otherwise, if the signal S is a message with T as body, a message

{P1,badcookie,P2,T} is placed at the end of the message queue

of the net_kernel process of node N 2.

� Otherwise, the signal is passed on to process P2 as described in

x10.6.3.

The magic cookie mechanism is built into the communication mechanism

of Erlang in order to ensure that processes on a node cannot disrupt

processes running on an arbitrary node. The security model of Erlang is

such that if a process P1 resides on the same node as on a process P 2, or P 1
resides on a node that has the correct magic cookie for the node on which

P2 resides, then process P1 has complete access to process P2. Process P 1
can send arbitrary signals (including exit signals with kill as reason, cf.

x10.6.3) to process P2. It is thus up to the programmer to ensure that

processes running on the same node or on nodes that have each others'

correct magic cookies can trust each other. (Typically but not necessarily

one will make sure that whenever a node N1 has the correct magic cookie of

node N2, node N2 has the correct magic cookie of node N1. In particular, a

cluster of nodes may share a magic cookie.)

February 9, 1999 { 19 : 09 DRAFT (0.7) 147

11.5 Process registry

For each node there is a table registry[N] in which the keys are atoms

naming processes residing on that node and the values are the PIDs of

the processes. The process registry makes it possible to send messages to

registered processes on a node without knowing their PIDs.

Some processes, such as the net_kernel of a communicating node, are

spawned and registered automatically by the Erlang system. It is also

possible for any process on a node N to register a name A for a live process P

residing on N through a BIF call register(A,P) (x13.11.1). There can be

at most one name registered for a process. A process name is removed from

the registry automatically when the process completes. It is also possible

for any process on a node N to remove the name A from the registry of N

through a BIF call unregister(A) (x13.11.3). A process P can look up a

name A in the registry on node[P] and obtain the PID through a BIF call

whereis(A) (x13.11.4) or obtain a list of all currently registered names on

node[P] through a BIF call registered() (x13.11.2).
The BIF register/2must ensure that a process cannot be registered on

node N unless it resides on that node and is alive. Also it must be ensured

that when a process completes, any name for it in the registry of the node

on which it resides is removed.

11.6 Monitoring of nodes

THERE ARE THINGS MISSING ABOUT THIS, ESPECIALLY WHEN

DISCUSSING SIGNALS AND THE DYNAMIC STATE.

Any process on a node N1 can be noti�ed when some node N2 ceases to

be a friend of N1.

After a process P on a node N1 has made a BIF call monitor_node(N2,true)

(x13.10.5),where N 2 is an atom, a message {nodedown,N2} will be sent to P

if N2 ceases to be a friend of N1. If N2 is not a friend of N1 when the call

is made, the message {nodedown,N2} is sent to P immediately. A BIF call

monitor_node(N2,false) cancels the e�ect of a call monitor_node(N2,true).

The e�ect of a BIF call monitor_node(N2,false) when there is no call

monitor_node(N2,true) to cancel is unde�ned. There can be more than

one call monitor_node(N2,true) in e�ect and P will receive one message

for each call monitor_node(N2,true) that has not been canceled when N2

ceases to be a friend of N1.

11.7 The state of a node

When a node is started, some properties of the node are determined and will

be in e�ect until the node is terminated. During that time also a dynamic

148 DRAFT (0.7) February 9, 1999 { 19 : 09

state is maintained, consisting of properties of the node that change as time

passes. This state is a�ected by and a�ects the behaviour of the node.

We refer to these as the static and dynamic properties of a node. We

refer collectively to the values of the latter at a certain time as the state of

the node at that time.

11.7.1 Static properties

creation[N]

When a node is started, the value of creation[N]| a nonnegative

integer | is obtained from EPMD. Its purpose is to to distinguish

the current instance of the node from previous instances that had

the same name. The value is used when creating new refs, PIDs

and ports.

communicating[N]

This is a Boolean atom which is false if the node is isolated and

true if it is communicating. When a node becomes communicating,

the property is changed from false to true but after that it cannot

be changed. (The property is thus not strictly static as it can change

once but in practice we can treat it as being static.) It can be

accessed on the node itself through the BIF erlang:is_alive/0

(x13.10.4).

name[N]

This is the name of the node, which is an atom. For an isolated node

it is always nonode@nohost. When a node becomes communicating,

the name is changed but after that it cannot be changed. (The

property is thus not strictly static as it can change once but in

practice we can treat it as being static.) It can be accessed on the

node itself through the BIF node/0 (x13.10.6).

preloaded[N]

This is a set of the names of the modules that were loaded as part

of starting the node. Although there should normally never be any

reason to delete these modules, their presence in the (static) set

does not imply that they are still loaded. The set can be accessed

on the node itself through the BIF erlang:preloaded/0 (x13.7.4).

11.7.2 Dynamic properties

atom_tables[N]

This is a table that for each friend of N contains a row with the

name and the atom table (xD.1) for that friend as key and value,

respectively. When N gets a new friend, a row should be added to

February 9, 1999 { 19 : 09 DRAFT (0.7) 149

atom_tables[N] with the name of the friend as key and an empty

atom table as value. When a node ceases to be a friend of N , its

row in atom_tables[N] must be removed.

distribution_port[N]

On a communicating node, this is the port that was given as sec-

ond argument to node:alive/2 ???. The EPMD server for the

computer on which the node resides will communicate with the

net_kernel process of N through that port.

entry_points[N]

This is a table mapping triples consisting of a module name (an

atom), a function symbol (an atom) and an arity (a nonnegative

integer) to entry points to executable code. The table cannot be

accessed directly but is used when evaluating a function application

where the function is speci�ed through a module name, a function

symbol and an arity (x6.7.1). The table is updated by BIFs for

module dynamics (x9, x13.7).

friends[N]

This is a set of atoms that are names of nodes that are friends of

node N (x11.3). It can be accessed on node N by calling the BIF

nodes/0 (x13.10.8). The set is added to when a friendship has been
established with another node, typically because a process on one

of the nodes has attempted to communicate with a process on the

other node. The set is subtracted from when node N loses contact

with a friend node (e.g., because communication between host com-

puters has been lost, the other node has been terminated, or the

host computer on which it resides has been restarted), or when a

process on either node calls the BIF erlang:disconnect_node/1

(x13.10.1) with the name of the other node as argument.

garbage_collection[N]

This is the state of the garbage collection gauge, which is updated

automatically when processes collect garbage to reect the num-

ber of garbage collection operations that have been carried out

by processes on the node and the number of memory words re-

claimed by such operations. It can be accessed through the opera-

tion current_gc[N], which returns a 3-tuple {NumberOfGCs,WordsReclaimed,0}

of integers where NumberOfGCs is the total number of garbage col-

lection operations that have been carried out by processes on the

node and WordsReclaimed is the total number of memory words

reclaimed by such operations. (The third integer is always zero and

is there to confuse the enemy.)

magic_cookie[N]

This term must be provided by any process on another node that

150 DRAFT (0.7) February 9, 1999 { 19 : 09

wishes to communicate with a process on node N (cf. x11.4). The

value of magic_cookie[N] can be obtained by a process on node N

through the BIF erlang:get_cookie/0 (x13.10.2).magic_cookie[N]
can be set by a process on node N by calling the BIF erlang:set_cookie/2

(x13.10.10) with name[N] and the new magic cookie as arguments.

magic_cookies[N]

This is a mapping from atoms to terms. Its role in process com-

munication across nodes is described in x11.4. magic_cookies[N]

cannot be accessed directly but can be modi�ed by a process on

node N by calling the BIF erlang:set_cookie/2 (x13.10.10) with
the name of another node and the magic cookie to be used as argu-

ments.

module_table[N]

This is a table where the keys are module names, i.e., atoms. The

table contains a row with key Mod if a module named Mod has ever

been loaded on the node. The value R of each row contains two

�elds: current_version[R] and old_version[R].

� current_version[R] is either a binary representing the com-

piled code for the current version of the module, or none.

� old_version[R] is either a binary representing the compiled

code for the current version of the module, or none.

The table is initially empty. For a new row both �elds are none. It

cannot be accessed or modi�ed directly but is accessed or updated

by most BIFs for module dynamics (x9, x13.7).

monitored_nodes[N]

This is a table where each row has a node name as key and a table

as value. Each such table has the PID of a process residing on N

as key and a nonnegative integer as value. If monitored_nodes[N]

contains a row with key N 0 and value t and t contains a row with

key P and value I , then each time node N 0 ceases to be a friend of

node N , <�1[I] messages {node_down,N 0} will be sent to process

P . The value of monitored_nodes[N] cannot be accessed directly.

It can be modi�ed using the BIF monitor_node/2 (x13.10.5). It is
initially empty.

ports[N]

This is a set of the ports that are open on node N . It can be accessed

by processes on N through the BIF ports/0 (x13.12.5).The set is

updated implicitly when a new port is opened on N (x12.4) and

when a port on N is closed (x12.8).

February 9, 1999 { 19 : 09 DRAFT (0.7) 151

processes[N]

This is a set of the PIDs of the processes that run on node N . It

consists of the PIDs of all processes that have been spawned on N

and that have not yet completed. It can be accessed by processes

on N through the BIF processes/0 (x13.10.9).The set is updated

implicitly when a new process is spawned on N (x10.1) and when a

process on N completes (x10.4.1).

reductions[N]

This is the state of the reduction gauge. It is updated automatically

to reect the number of function calls that have been made on node

N .

reductions[N] cannot be accessed directly but the atomic op-

eration current_reductions[N] uses and updates the value of

reductions[N] to return a 2-tuple {Total,SinceLast} of integers

where both measure the number of function calls on node N . The

�rst is the number of reductions since node N was started while the

second is since the previous invocation of current_reductions[N].

The �rst time current_reductions[N] is invoked, Total and SinceLast

will be the same. This operation should only be invoked as part of

an explicit application statistics(reductions) (x13.10.13) in a

user program.

ref_state[N]

This is the state of the ref generator. It cannot be accessed di-

rectly but the atomic operation next_ref[N] uses the value of

ref_state[N] to provide the ID for a new ref and at the same

time increments the value of ref_state[N] so that the next invo-

cation of next_ref[N] will produce a unique ref.

registry[N]

This is a mapping from atoms to PIDs. It is ensured that at any

time,

� the mapping is invertible (i.e., that at most one name is regis-

tered for each PID),

� that all PIDs refer to processes residing on node N , and

� that all PIDs refer to live processes.

This implies that when a process completes, any name registered

for it must be removed from the registry.

registry[N] can be accessed by processes running on node N through

the BIFs register/2, unregister/1, registered/0 and whereis/1

(x13.11). It can be accessed indirectly by processes running on any

node when sending messages (x6.11).

152 DRAFT (0.7) February 9, 1999 { 19 : 09

runtime[N]

This is the state of the run time gauge. It is updated automat-

ically to reect the amount of time spent running processes on

node N . It cannot be accessed directly but the atomic operation

current_runtime[N] uses and updates the value of runtime[N]

to return a 2-tuple {Total,SinceLast} of integers where both mea-

sure the total time in milliseconds spent on running processes on

node N . The �rst element is the time since node N was started while

the second is since the previous invocation of current_runtime[N].

The �rst time current_runtime[N] is invoked, Total and SinceLast

will be the same. This operation should only be invoked as part of

an explicit BIF application statistics(runtime) (x13.10.13) in a

user program.

wall_clock[N]

This is the state of the real time gauge. It is updated automatically

to reect the passing of real time in the world where node N resides.

It cannot be accessed directly but the value of wall_clock[N] is

used and updated by the atomic operation current_wall_clock[N]

to return a 2-tuple {Total,SinceLast} of integers where both mea-

sure the time in milliseconds that has passed in the world. The �rst

element is the time since node N was started while the second is

since the previous invocation of current_wall_clock[N].

The �rst time current_wall_clock[N] is invoked, Total and SinceLast

will be the same. This operation should only be invoked as part of

an explicit BIF application statistics(wall_clock) (x13.10.13)
in a user program.

Chapter 12

Ports

12.1 Overview of ports

An Erlang node and thus an Erlang process on it communicates with

resources in the outside world (including the rest of the computer on which it

resides) through ports. Examples of such external resources are �les, drivers

(x12.2) and non-Erlang processes running on the same host. Information

sent to a port from outside the Erlang node can be read by an Erlang

process as messages and messages sent by an Erlang process to a port are

made available to the external program (or written to a �le).

A port can be unidirectional or bidirectional, as requested when the

port is opened. If the port is for communication with an external process,

it would typically be bidirectional. If the port is connected to a �le that is

being read, it would typically be input-only. If the port is connected to a

�le that is to be written, it would typically be output-only.

A port is always owned by some process that resides on the same node

as the port. That process will receive input in the form of messages from

the port when information is sent to the port from outside Erlang. The

port is initially owned by the process that opened the port but ownership

of a port can be transferred to another process on the same node.

An external resource has much in common with a process and thus a

port has much in common with a PID:

� Communicating with an external resource is similar to communicating

with a process: messages to a port are sent using the ! operator and

messages from a port are received using receive expressions.

� A process can link to a port in order to be noti�ed when an external

resource completes.

However, ports are restricted as compared with processes. For example,

information written to a port from outside Erlang is always sent as a

message to the process that owns the port. An external resource thus cannot

153

154 DRAFT (0.7) February 9, 1999 { 19 : 09

communicate directly with an arbitrary Erlang process.1 Also, it is not

possible to register a name for a port.

Each port is identi�ed by an Erlang term that is itself referred to as

a port (although calling it a port identi�er would be more in harmony with

process vs. process identi�er).

When a port is created, it is connected with an external entity, which is

either

� a recently spawned external process or recently opened driver (x12.2);

� an external resource, such as a �le.

As in the case of PIDs, there can be ports that were created for commu-

nication with an external process or resource that no longer exists. What

happens when a BIF is given such a port varies, cf. x13.12.
The interface to a port from the outside of Erlang is dependent on the

operating system where the node resides. A driver or external process that

has been started by the Erlang system when a port was opened can read

from a port and write to it using a pair of procedures that we refer to below

as read and write.

Erlang BIFs relating to ports are described in x13.12.

12.2 Drivers

An Erlang system may provide a way to extend a node with software

written in other programming languages than Erlang. Such software is

called a driver and would normally communicate with Erlang processes

through a port.

The interface to external software is thus the same regardless of whether

it runs as part of the node or as external processes.

12.3 I/O terms

De�ne an I/O term to be either

� a binary,

� nil, or

� a cons where the head is a byte or an I/O term and the tail is an I/O

term.

The contents of an I/O term is a sequence of bytes de�ned recursively

as follows:

1A typical way to establish communication between an external resource and arbitrary

processes is to let the process that is connected to the port be a server acting as a proxy.

February 9, 1999 { 19 : 09 DRAFT (0.7) 155

� The contents of a binary is the sequence of bytes of the binary, in the

order they appear in the binary.

� The contents of an empty list is an empty sequence.

� The contents of a cons of a byte and an I/O term is the byte followed

by the contents of the tail.

� The contents of a cons of two I/O terms is the contents of the head

followed by the contents of the tail.

To clarify, the function contents/1 de�ned below returns the contents

of an I/O term, represented as a list of bytes.2

contents(B) when binary(B) -> binary_to_list(B) ;

contents([]) -> [] ;

contents([I|Y]) when integer(I) -> [I | contents(Y)] ;

contents([X|Y]) -> contents(X) ++ contents(Y).

12.4 Opening ports

A port is opened by calling the BIF open_port/2 (x13.12.1). In an appli-

cation open_port(Resource,Options), the Resource argument identi�es

the resource to which a port is being opened and the Options argument

determines the details of the behaviour of the port.

Resource is one of

� a 2-tuple {spawn,Command}, where Command is a string or an atom

(in which case its printname will be used). A driver is opened inside

the Erlang node or an external process is spawned and a new port

is connected with the driver or the standard input and output of the

external process. Command must not contain a null character (\000

). Suppose that the result of extracting whitespace-separated words

from Command is Wd1, Wd2, : : : , Wdk.

� If Wd1 is the name of an installed driver, then such a driver will

be started with the string Wd2, : : : , Wdk as input.

� Otherwise Wd1 will be interpreted as the name of an external

program which is started with Wd2, : : : , Wdk as its arguments.

� a string or atom (in which case its printname will be used) Resource .

If Resource can be interpreted by Erlang 4.7.3 as identifying a re-

source (for example, naming a �le), a new port is connected with the

resource. If the resource is a �le, then either the option in (for reading

from the �le) or the option out (for writing to the �le) must be given.

2It is designed for clarity, not e�ciency.

156 DRAFT (0.7) February 9, 1999 { 19 : 09

� a 3-tuple {fd, In, Out}, where In and Out are integers. On a

node running on a POSIX-compliant operating system, In and Out

are interpreted as �le descriptors and a new port is connected writ-

ing to In and reading from Out . On other nodes, the behaviour is

implementation-de�ned.

If Resource is not one of the permitted alternatives, open_port/2 should

exit with badarg.

Options is a list of items, each of which is a term from one of the

following groups. At most one term from each group should be present. If

no term from a group is in Options , it is as if the default term for the group

was present.

Stream/packets

� stream (the default). Messages are sent without packet head-

ers.

� {packet,N}, where N is one of the integers 1, 2 and 4. Mes-

sages are sent in packets with the packet headers in N bytes

(x12.6).

Process inputs and outputs

(Only relevant on POSIX-compliant systems and for {spawn,Command}.)

� use_stdio. (The default.) Use the standard input and stan-

dard output (i.e., �le descriptors 0 and 1 on UNIX systems) of

the spawned process for communicating with Erlang.

� nouse_stdio. Use alternative input and output channels of

the spawned process (�le descriptors 3 and 4 on UNIX systems)

for communicating with Erlang.

Direction

� in. The port can only be used for input from the external

resource.

� out. The port can only be used for output to the external

resource.

� None. The port can be used for input from and output to the

external resource.

Received data

� binary. Input from the external resource is received as bina-

ries.

� None. Input from the external resource is received as lists of

bytes.

February 9, 1999 { 19 : 09 DRAFT (0.7) 157

End of stream

� eof. The port is not closed when the external resource is

depleted, instead a message {Port,eof} is sent to the owning

process.

� noeof. (The default.) The port is closed when the external

resource is depleted. All processes linked to the port will then

receive exit signals.

If Options is not a list or if Options contains unrecognized terms, open_port/2

should exit with badarg.

When a port is opened, it is automatically linked to the owning process

(x12.9).

12.5 Controlling a port from an Erlang process

By controlling a port R to an external resource we mean to write data to

the port or changing properties of the port itself. Such control is exercised

by sending a message with R as destination (x6.11). As before, evaluation

of such a send expression always succeds. However, the Erlang system

subsequently attempts to interpret the message as port control information

and if that interpretation fails, an exit signal (x10.4) will be sent to the

process owning R , i.e., owner[R] (x12.10.2).
Any process may control a port. However, the process that sends a mes-

sage to R must have the PID of the process that owns R (because owner[R]

must be part of the message, as described below).

Consider a message v sent to a port R .

� If the port has been closed, then nothing happens.

� If v is a tuple {owner[R], {command, Data}} , then:

� If in[R] is false, then an exit signal badsig is sent to owner[R].

� If Data is an I/O term (x12.3), then the contents of Data will

be transmitted through R , as described in x12.6 (where it is also

described how an exit signal badsig is sent to owner[R] if the

number of bytes in the contents of Data is too large to �t in the

packet header)

� Otherwise, an exit signal badsig is sent to owner[R].

� If v is a tuple {owner[R], close} , then the port R is closed and a

message {R, closed} is sent to owner[R].

� If v is a tuple {owner[R], {connect, P2}} , then what happens de-

pends on P2:

158 DRAFT (0.7) February 9, 1999 { 19 : 09

� If P2 is the PID of a process residing on the same node as R

(and thus owner[R], then a message {R, connected} is sent to

owner[R] and the value of owner[R] is changed to P2.

� Otherwise, an exit signal badsig is sent to owner[R].

� Otherwise, an exit signal badsig is sent owner[R].

It should be noted that all processing when writing to a port happens asyn-

chronously, also error processing.

12.6 Transmitting data from an Erlang process to

the outside

Suppose that an Erlang process has sent an I/O term T to a port R and

that the contents of the I/O term is a sequence of bytes b1, : : : , bk.

Depending on the value of packeting[R], the byte sequence transmitted

to the external resource may be prepended with a packet header by the

Erlang system:

� If packeting[R] is stream, then the byte sequence will be transmitted

as is.

� If packeting[R] is {packet,N}, the transmitted byte sequence will

be h 1, : : : , h N , b1, : : : , bk. The �rst N bytes constitute a packet

header, where for each i, 1 � i � N , h i = dk=256N�ie mod 256. (That
is, the packet header encodes the length of the byte sequence, k , as a

big-endian numeral, cf. p. 11.) However, if k � 256N , no byte sequence

at all will be transmitted to the external resource and instead an exit

signal badsig will be sent to owner[R].

If the external resource is a �le opened for writing, then the transmitted

byte sequence written to the �le (but the �le is not closed until the port is

closed). If the external resource is an opened driver or an external process,

it can read the transmitted byte sequence using the read function. However,

no assumption should be made about how many bytes of data will be read

by each invocation of the read function. Note that the transmission of a byte

sequence is atomic in that the bytes of a single transmission (including any

prepended bytes) will never be separated by bytes from other transmissions.

12.7 Transmitting data from the outside to an Er-

lang process

When the external resource to which a port R is opened is a �le and in[R]

is true, then the contents of the �le is written to the port as if by a single

February 9, 1999 { 19 : 09 DRAFT (0.7) 159

invocation of write. We will now describe what happens when an opened

driver or an external process writes data to a port using the write function.

If out[R] is false, then nothing is transmitted. Otherwise messages

will be sent to owner[R].

Let the complete sequence of bytes written (through one or more invoca-

tions of write) by the driver or external process be b1, : : : , bn. Depending

on the value of packeting[R], the byte sequence may be interpreted as

containing packet headers, in which case each packet will be delivered to

in[R] as a separate message.

� If packeting[R] is stream, all n bytes will be delivered but it is not

speci�ed how the byte sequence is to be divided into messages. Each

message i (where i � 1) contains the bytes bki
, : : : , bki+1�1 where

k1 = 1 and for each i, either ki � n and ki < ki+1, or ki = n + 1.

(Thus there should be no empty messages.) It is encouraged that each

invocation of write (with a nonempty sequence of bytes) should cause

a message to be sent, in order to facilitate interaction between the

driver or external process and the Erlang processes.

� If packeting[R] is {packet,N}, the sequence b1, : : : , bn is inter-

preted as containing packet headers of N bytes each. Each message i

(where i � 1) will contain the bytes bki+N , : : : , bki+1�1 where k1 = 1

and for each i, either ki � n,

li = BigEndianValue(bki
; : : : ; bki+N

)

(cf. p. 11) and ki+N+li = ki+1, or ki = n+1. (That is, the �rst N bytes

are interpreted as a packet header and the subsequent bytes [where the

number of bytes is given by the packet header] will be contained in

a single message. Then comes another packet header, etc. Note that

there can be empty messages.) It is encouraged that a message should

be sent as soon as all the bytes of a package have been written, in

order to facilitate interaction between the driver or external process

and the Erlang processes.

Each message to owner[R] is on the form {R,T} where T contains k trans-

mitted bytes, but the term T depends on whether in_format[R] is binary

or list:

� If in_format[R] is binary, then T is a binary consisting of the k

bytes in the order they were written.

� If in_format[R] is list, then T is a list of the k bytes in the order

they were written.

160 DRAFT (0.7) February 9, 1999 { 19 : 09

12.8 Closing ports

A port can be closed (through an implementation-de�ned method) by the

external resource. It can also be closed by an Erlang process using the

BIF port_close/1 (x13.12.2).
The options eof and noeof to the BIF open_port/2 (x12.4) determine

how the Erlang process that owns the port is noti�ed if the port is closed

by the external resource.

12.9 Ports, links and exit signals

An Erlang process may be linked to a port in the same way that it may

be linked to a process (x10.3). A process P may set up (or remove) a link

with a port R by calling the BIF link/1 (or unlink/1) with R as argument.

When a port is closed, an exit signal will be sent to every process linked

to the port. The actual exit signal is implementation-de�ned, except that

implementations are encouraged to use the exit signal normal when the

driver or external process completes normally.

When a port R receives an exit signal T from a process P , the following

happens.

� If T is normal and P is not owner[R], then nothing happens.

� Otherwise, if T is kill, the port is closed and an exit signal killed

is sent to every process that is linked to the port.

� Otherwise, the port is closed and an exit signal T is sent to every

process that is linked to the port.

Note that this behaviour is somewhat di�erent from how a process handles

incoming exit signals (x10.4.3).

12.10 Static and dynamic properties of a port

When a port is created, some properties of the port are determined and will

be in e�ect until the port is closed. During that time also a dynamic state is

maintained, consisting of properties of the port that change as time passes.

This state is a�ected by and a�ects the behaviour of the port.

We refer to these as the static and dynamic properties of a port. We

refer collectively to the values of the latter at a certain time as the state of

the port at that time.

12.10.1 Static properties

February 9, 1999 { 19 : 09 DRAFT (0.7) 161

command[R]

For a port that was opened through a call to open_port/2 with

{spawn,Cmd}, the value of command[R] is a string that is either

Cmd , if Cmd is a string, or the printname of Cmd , if Cmd is an atom.

It can be accessed through a BIF call erlang:port_info(R,name)

(x13.12.4).

creation[R]

The value of creation[R] is the value of creation[N] for the node

N on which R was created.

ID[R] The value of ID[R] is a nonnegative integer that is a serial number

for R on the node on which it was created. The value is used in the

transformation to the external term format (xD). It can be accessed
through a BIF call erlang:port_info(R,id) (x13.12.4).

in[R] When a port is opened it is decided whether data can be trans-

mitted from the outside to the process owning the port. The value

is true if one of the options in and bi was given when the port

was opened and false otherwise. The value of in[R] cannot be

accessed directly by Erlang processes.

in_format[R]

When a port is opened it is decided whether incoming data is sent as

binaries or as lists of bytes. The value is binary or list depending

on which of these options was given when the port was opened.

The value of in_format[R] cannot be accessed directly by Erlang

processes.

node[R]

When a port is opened it is created on some node node[R]. This

node never changes. Any process can access node[R] for a port R

by calling the BIF node/1 (x13.10.7) with R as argument.

out[R] When a port is opened it is decided whether data can be transmitted

from Erlang processes to the outside. The value is true if one of

the options out and bi was given when the port was opened and

false otherwise. The value of out[R] cannot be accessed directly

by Erlang processes.

packeting[R]

When a port is opened it is decided whether data is transmitted

as a stream or as packets beginning with a packet header of some

length. The value is stream or {packet,N} (where N is 1, 2 or 4)

depending on which of these options was given when the port was

opened. The value of packeting[R] cannot be accessed directly

by Erlang processes.

162 DRAFT (0.7) February 9, 1999 { 19 : 09

12.10.2 Dynamic properties

count_in[R]

count_in[R] is an integer that is the number of bytes read so far

from the port R . It can be accessed through a BIF call

erlang:port_info(R,input)

(x13.12.4).

count_out[R]

count_out[R] is an integer that is the number of bytes written so

far to the port R . It can be accessed through a BIF call

erlang:port_info(R,output)

(x13.12.4).

linked[R]

The value is a representation of the set of PIDs that identify the

processes to which R is linked (x10.3). It cannot be set directly but
a PID P will be added to linked[R] if it is not already in it and R

receives a linking request from P .

A PID P will be removed from linked[R] if it is in the list and

either

� P receives an unlinking request from Q , or

� P receives an exit signal {'EXIT',Q,Reason} for some term

Reason , and the exit signal was sent due to process completion

(x10.4).

The value of linked[R] can be accessed through a BIF call

erlang:port_info(R,links)

(x13.12.4).

owner[R]

The value is a PID and is the process that will receive messages

when data is written to the port R externally, will receive exit signals

when bad messages are sent to R and becomes linked with R when

R is opened. owner[R] can be changed to a PID P by sending a

message {owner[R],{connect,P}} to R . The value of owner[R]

can be accessed through a BIF call

erlang:port_info(R,connected)

February 9, 1999 { 19 : 09 DRAFT (0.7) 163

(x13.12.4).

There will typically also be bu�ers for inbound and/or outbound data

but these are not referred to above and we do not describe them in detail

here.

164 DRAFT (0.7) February 9, 1999 { 19 : 09

Chapter 13

Builtin functions

As for any function application, when an application of a BIF is evaluated

all arguments are fully evaluated before the BIF itself is called and begins

executing. When below we discuss the evaluation of a BIF with k parame-

ters, we assume that the k arguments have already been evaluated and that

their values are v1, : : : , vk.

For convenience we abuse our language slightly and may write

� \calling a BIF" when we mean \evaluating an application of a BIF"

(where the values of the k arguments are the terms v 1, : : : , vk),

� "the BIF returns : : : " when we mean \the evaluation of an application

of the BIF completes normally with result : : : ", and

� \the BIF exits with reason : : : " when we mean \the evaluation of an

application of the BIF exits with reason : : : ".

In this chapter we write that a BIF \exits with cause R" to express that the

evaluation of an application of the BIF completes abruptly with reason

{'EXIT',{R,{M,F,[v1,...,vk]}},

where M is the name of the module and F is the symbol of the function that

called the BIF, and as usual, v 1, : : : , vk are the values of the arguments.

If the abnormal completion was because there was something wrong with

the value of an argument, e.g., is was of the wrong type or it was an index

outside the meaningful range, then R is always the atom badarg.

If it is not explicitly said about a BIF that it is a guard BIF, then it is

not a guard BIF.

13.1 Recognizer BIFs

In Erlang 4.7.3 the recognizer BIFs are not true BIFs and can only be

used in guards as GuardRecognizer. There are twelve guard recognizers:

165

166 DRAFT (0.7) February 9, 1999 { 19 : 09

atom/1, binary/1, constant/1, float/1, function/1, integer/1, list/1,

number/1, pid/1, port/1, reference/1, and tuple/1. As they all behave

similarly, we describe them collectively.

Evaluation

If v 1 is one of the terms indicated in Table 13.1, then the recognizer in the

guard succeeds, otherwise it fails.

Recognizer Succeeds if and only if the argument is

atom/1 an atom

binary/1 a binary

constant/1 of an elementary type (cf. x4)
float/1 a oat

integer/1 an integer

function/1 a function term

list/1 a cons or nil

number/1 a number

pid/1 a PID

port/1 a port

reference/1 a reference

tuple/1 a tuple

Table 13.1: Erlang recognizer BIFs.

Note that the name of the recognizer list/1 is inaccurate: it does not

test whether its argument is a list. (It succeeds for all lists but also for some

terms that are not lists, such as [a|b]).

Note that although a GuardRecordTest record(E,R) x6.20.1 is not an

application of a BIF, it is used as a recognizer for records of a certain type.

In Erlang 4.7.3 function terms are implemented with tuples.

13.2 Builtin functions on atoms

13.2.1 atom_to_list/1

An atom is converted to a list of characters.

Type

atom_to_list(atom()) -> [int()].

Exits

Exits with cause badarg if v1 is not an atom.

February 9, 1999 { 19 : 09 DRAFT (0.7) 167

Evaluation

The BIF returns the printname of the atom v1 represented by a list of

characters.

Examples

atom_to_list(foo)) [102,111,111], i.e., "foo";

atom_to_list('')) [], i.e., "";

atom_to_list('T %@\'#')) [84,32,37,64,39,35], i.e., "T %@'#";

atom_to_list('456')) [52,53,54], i.e., "456";

atom_to_list(456); {badarg,...}.

13.2.2 list_to_atom/1

A list of characters is converted to an atom.

Type

list_to_atom([int()]) -> atom().

Exits

Exits with cause badarg if v 1 is not a list of characters.

Evaluation

The BIF returns the atom that has a printname consisting of the characters

in v1.

Examples

list_to_atom([102,111,111]), i.e., list_to_atom("foo")) foo;

list_to_atom([]), i.e., list_to_atom("")) '';

list_to_atom([84,32,37,64,39,35]), i.e., list_to_atom("T %@'#"))
'T %@\'#';

list_to_atom([52,53,54]), i.e., list_to_atom("456")) '456';

list_to_atom([102,-5,111]); {badarg,...}.

13.3 Builtin arithmetic functions

13.3.1 abs/1

The magnitude of a number is computed. abs/1 is a guard BIF.

168 DRAFT (0.7) February 9, 1999 { 19 : 09

Type

abs(int()) -> int() ;

abs(float()) -> float().

Exits

Exits with cause badarg if v 1 is not a number. May exit with integer_overflow

when v1 is an integer (see below).

Evaluation

If v1 is an integer, compute absI(<�1[v 1]); otherwise v1 is a oat, compute
absF (<�1[v 1]). Let r be the result. If r is a number, the the BIF returns

<[r]; otherwise the BIF exits with cause <[r].

Examples

abs(42)) 42;

abs(-88)) 88;

abs(5.0)) 5.0;

abs(-0.1)) 0.1;

abs(whoopee); {badarg,...}.

13.3.2 float/1

There are two BIFs named float/1 and which one of them is denoted in

an application float(E) depends on the context in which the application

appears.

If the application is a GuardRecognizer expression (x6.20), then it is the

guard test float/1 described in x13.1; otherwise it is a function converting

numbers to oating-point numbers (which may appear in guard expressions).

The following description is for the latter case.

Both BIFs float/1 are guard BIFs.

Type

float(num()) -> float().

Exits

Exits with cause badarg if v 1 is not a number. May exit with float_overflow

when v1 is an integer (see below).

Evaluation

The evaluation depends on the type of v 1:

February 9, 1999 { 19 : 09 DRAFT (0.7) 169

� If v1 is a oat, it is returned.

� If v1 is an integer, compute cvtI!F (<�1[v1]), let the result be r. If r
is a oat, the the BIF returns <[r]; otherwise the BIF exits with cause

<[r].

Examples

float(3)) 3.0;

float(0)) 0.0;

float(123456789123456789123456789)) 1.23456789123457E26;

float(whoopee); {badarg,...}.

13.3.3 float_to_list/1

The function produces a list of characters of a printed representation of a

oat.

Type

float_to_list(float()) -> [int()].

Exits

Exits with cause badarg if v1 is not a oat (there is thus no coercion from

integers).

Evaluation

The BIF returns the list of characters which is like the canonical decimal

numeral for <�1[v 1] (x5.9.4) except that:

� There are exactly 20 digits between the decimal point and the `e'. The

right end is adjusted by dropping digits or padding with zeroes.

� If the character after `e' is not a minus sign, then a plus sign is inserted.

� If the exponent part (i.e., the digits after `e') has only one digit, a zero

is inserted before that digit.

Examples

float_to_list(-0.00672))
[45,54,46,55,50,48,48,48,48,48,48,48,48,48,48,48,48,48,50,55,56,54,55,101,45,48,51],

i.e., "-6.72000000000000027867e-03";

float_to_list(13e4))
[49,46,51,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,101,43,48,53],

i.e., "1.30000000000000000000e+05";

170 DRAFT (0.7) February 9, 1999 { 19 : 09

float_to_list(0.0))
[48,46,48,101,43,48,48],

i.e., "0.00000000000000000000e+00";

float_to_list(636.9e121))
[54,46,51,54,56,57,57,57,57,57,57,57,57,57,57,57,57,53,52,53,53,51,101,43,49,50,51

i.e., "6.36899999999999954553e+123";

float_to_list(whoopee); {badarg,...}.

13.3.4 integer_to_list/1

The function produces a list of characters of a printed representation of an

integer.

Type

integer_to_list(int()) -> [int()].

Exits

Exits with cause badarg if v1 is not an integer.

Evaluation

The BIF returns the list of characters making up the canonical decimal

numeral for <�1[v1] (x5.9.1).

Examples

integer_to_list(0)) [48], i.e., "0";

integer_to_list(42)) [52,50], i.e., "42";

integer_to_list(-39)) [45,51,57], i.e., "-39";

integer_to_list(whoopee); {badarg,...}.

13.3.5 list_to_float/1

A oat is obtained from a oat literal represented by a list of the characters

of the literal.

Type

list_to_float([int()]) -> float().

Exits

Exits with cause badarg if v 1 is not a list of characters making up a oat

numeral, or if the number it represents is not representable as a oat (see

below). Leading or trailing spaces are not permitted.

February 9, 1999 { 19 : 09 DRAFT (0.7) 171

Evaluation

If the sequence of characters denotes a number f 2 F (x5.9.5), then <[f] is
returned, otherwise the BIF exits with cause badarg.

Examples

list_to_float([45,49,55,46,53,48,48]), i.e.,

list_to_float("-17.500")) -17.5;

list_to_float([49,50,51,46,52,53,101,56,55]), i.e.,

list_to_float("123.45e87")) 1.23450e89;

list_to_float([54,50,46,53,69,45,51]), i.e.,

list_to_float("62.5E-3")) 0.0625;

list_to_float([54,50,53,101,45,52]), i.e.,

list_to_float("625e-4"); {badarg,...};

list_to_float(whoopee); {badarg,...}.

13.3.6 list_to_integer/1

An integer is obtained from an integer literal represented by a list of the

characters of the literal.

Type

list_to_integer([int()]) -> integer().

Exits

Exits with cause badarg if v1 is not a list of characters making up a decimal

integer numeral, or if the integer it represents is too large to be represented

(see below). Leading or trailing spaces are not permitted.

Evaluation

If the sequence of characters denotes an integer i 2 I (x5.9.2), then <[i] is
returned, otherwise the BIF exits with cause badarg.

Examples

list_to_integer([52,50]), i.e., list_to_integer("42")) 42;

list_to_integer([48,48,48,48,48,48,53,54,55]), i.e., list_to_integer("000000567")

) 567;

list_to_integer([45,51,57]), i.e., list_to_integer("-39")) -39;

list_to_integer([111,105,110,107]), i.e., list_to_integer("oink")

; {badarg,...};

list_to_integer(whoopee); {badarg,...}.

172 DRAFT (0.7) February 9, 1999 { 19 : 09

13.3.7 round/1

The integer closest to a given number is computed. round/1 is a guard BIF.

Type

round(num()) -> int().

Exits

Exits with cause badarg if v 1 is not a number. May exit with integer_overflow

when v1 is a oat (see below).

Evaluation

The evaluation depends on the type of v 1:

� If v 1 is an integer, it is returned.

� If v1 is a oat, compute nearestF!I(<�1[v 1]), let the result be r. If
r is an integer, the the BIF returns <[r]; otherwise the BIF exits with

cause <[r].

Examples

round(42)) 42;

round(88.56)) 89;

round(-88.56)) -89;

round(0.0)) 0;

round(whoopee); {badarg,...}.

13.3.8 trunc/1

The �rst oat between a given number and zero is computed. trunc/1 is a

guard BIF.

Type

trunc(num()) -> int().

Exits

Exits with cause badarg if v 1 is not a number. May exit with integer_overflow

when v1 is a oat (see below).

Evaluation

The evaluation depends on the type of v 1:

February 9, 1999 { 19 : 09 DRAFT (0.7) 173

� If v1 is an integer, it is returned.

� If v 1 is a oat, compute truncateF!I(<�1[v 1]), let the result be r. If
r is an integer, the the BIF returns <[r]; otherwise the BIF exits with

cause <[r].

Examples

trunc(42)) 42;

trunc(88.56)) 88;

trunc(-88.56)) -88;

trunc(0.0)) 0;

trunc(whoopee); {badarg,...}.

13.4 Builtin functions on binaries

Binaries are described in x4.5.

13.4.1 binary_to_list/1

A list of bytes that are the elements of a binary, in the same order as in the

binary, is returned.

Type

binary_to_list(bin()) -> [int()].

Exits

binary_to_list/1 exits with cause badarg if v1 is not a binary.

Evaluation

Suppose that v 1 is a binary consisting of the bytes I1, : : : , Ik. A list

[I1,...,Ik] is returned. The time for computing the answer should be

O(k).

13.4.2 binary_to_list/3

A list of integers that are part of the elements of a binary, in the same order

as in the binary, is returned.

Type

binary_to_list(bin(),int(),int()) -> [int()].

174 DRAFT (0.7) February 9, 1999 { 19 : 09

Exits

binary_to_list/3 exits with cause badarg if v1 is not a binary, if v 2 or v 3
is not an integer. It exits with cause badarg if the integers represented by

v2 and v3 are out of range (see below).

Evaluation

Suppose that v1 is a binary consisting of the bytes I 1, : : : , Ik and that

i = <�1[v2] and j = <�1[v3]. binary_to_list/2 exits with cause badarg

if i < 1, j < i or j > k. A list [I i,...,I j] is returned. The result is thus

always a nonempty list.

The time for computing the result should be O(j).

13.4.3 binary_to_term/1

Given a binary that is a representation in the external format (xD) of a

term, that term is returned.

Type

binary_to_term(bin()) -> term().

Exits

binary_to_term/1 exits with cause badarg if v1 is not a binary. It also

exits with cause badarg if the elements of v1 are not the external format

representation of some term (see below).

Evaluation

If the bytes that are the elements of v1 constitute a representation in

the external format (xD) of some term t , then t is returned; otherwise

binary_to_term/1 exits with cause badarg.

The time for computing the result should be O(k).

13.4.4 concat_binary/1

Given a list of binaries, one binary is returned which has as elements the

elements of the binaries in the list, in the same order as in which the elements

appear in the binaries and the binaries in the list.

Type

concat_binary([bin()]) -> bin().

February 9, 1999 { 19 : 09 DRAFT (0.7) 175

Exits

concat_binary/1 exits with cause badarg if v1 is not a list of binaries.

Evaluation

Suppose that v1 is a list [B1,...,Bk], such that each B i, 1 � i � k, is a

binary consisting of the bytes b i;1, : : : , b i;ni
. A binary consisting of the

bytes b1;1, : : : , b1;n1 , : : : , bk;1, : : : , bk;nk
is returned.

The time for computing the result should be O(max(
P

k

i=1 ni; k)).

13.4.5 list_to_binary/1

Given a list of bytes, a binary consisting of the same bytes in the same order

is returned.

Type

list_to_binary([int()]) -> bin().

Exits

list_to_binary/1 exits with cause badarg if v1 is not a list of bytes.

Evaluation

Suppose that v1 is a list of bytes [I1,...,Ik]. A binary consisting of the

bytes I1, : : : , Ik is returned.

The time for computing the result should be O(k).

13.4.6 size/1

See x13.5.4.

13.4.7 split_binary/2

A binary is split into two binaries, where the number of elements in the �rst

binary is given.

Type

split_binary(bin(),int()) -> {bin(),bin()}.

Exits

split_binary/2 exits with cause badarg if v1 is not a binary or v2 is not

an integer. It also exits with cause badarg if the number represented by v2

is out of range (see below).

176 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

Suppose that v1 is a binary consisting of the bytes I 1, : : : , Ik and that

i = <�1[v2]. The evaluation depends on i and k:

� If i < 0 or i > k, then split_binary/2 exits with cause badarg.

� Otherwise a 2-tuple of binaries {Bl,Br} is returned, where B l consists

of the bytes I1, : : : , I i and B r consists of the bytes I i+1, : : : , Ik. (If

i = 0 then B l is an empty binary and B r equals v1, while if i = k then

B l equals v1 and B r is an empty binary.)

The time for computing the answer should be O(1).

13.4.8 term_to_binary/1

Given a term, a binary having elements that represent the term in the

external format (xD) is returned.

Type

term_to_binary(term()) -> bin().

Exits

term_to_binary/1 always completes normally.

Evaluation

Let the representation in the external format (xD) of v1 be the sequence

of bytes I1, : : : , Ik. A binary consisting of these bytes, in that order, is

returned. The time for computing the answer should be O(k).

13.5 Builtin functions on tuples

Tuples are described in x4.8.

13.5.1 element/2

One element of a tuple is returned. element/2 is a guard BIF.

Type

element(int(),tuple()) -> term().

February 9, 1999 { 19 : 09 DRAFT (0.7) 177

Exits

element/2 exits with cause badarg if v1 is not an integer or v 2 is not a

tuple. It also exits with cause badarg if the number represented by v 1 is

out of range (see below).

Evaluation

Suppose that i = <�1[v1] and that v2 is a tuple with elements T1, : : : , Tk.

The evaluation depends on i and k:

� If i < 1 or i > k, then element/2 exits with cause badarg.

� Otherwise, T i is returned.

The time for computing the result should be O(1).

13.5.2 list_to_tuple/1

A tuple with the same elements as a given list is returned.

Type

list_to_tuple([term()]) -> tuple().

Exits

list_to_tuple/1 exits with cause badarg if v1 is not a list.

Evaluation

Let v1 be a list with elements T1, : : : , Tk. A tuple {T1,...,Tk} is returned.

The time for computing the answer should be O(k).

13.5.3 setelement/3

A tuple is computed that di�ers from a given tuple in exactly one element.

Type

setelement(int(),tuple(),term()) -> tuple().

Exits

setelement/3 exits with cause badarg if v 1 is not an integer or v2 is not

a tuple. It also exits with cause badarg if the number represented by v1 is

out of range (see below).

178 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

Suppose that i = <�1[v 1] and that v2 with elements T1, : : : , Tk. The

evaluation depends on i and k:

� If i < 1 or i > k, then setelement/3 exits with cause badarg.

� Otherwise, a tuple {T1,...,Ti�1,v3,Ti+1,Tk} is returned. (That is,

a tuple that is exactly like v2 except that the element at position i is

v 3.)

The time for computing the answer should be O(k). (This is not a de-

structive operation so the tuple given as argument must not be observably

a�ected.)

13.5.4 size/1

The number of elements of a binary or a tuple is returned. size/1 is a guard

BIF.

Type

size(bin()) -> int() ;

size(tuple()) -> int().

Exits

size/1 exits with cause badarg if v1 is neither a binary, nor a tuple.

Evaluation

The integer <[k] is returned, where k is the number of elements in the binary
or tuple v1. The time for computing the answer should be O(1).

13.5.5 tuple_to_list/1

A list with the same elements as a given tuple is returned.

Type

tuple_to_list(tuple()) -> [term()].

Exits

tuple_to_list/1 exits with cause badarg if v1 is not a tuple.

Evaluation

Let v1 be a tuple with elements T1, : : : , Tk. A list [T1,...,Tk] is returned.

The time for computing the result should be O(k).

February 9, 1999 { 19 : 09 DRAFT (0.7) 179

13.6 Builtin functions on lists and conses

Lists and conses are described in x4.9.

13.6.1 hd/1

The head of a cons, e.g., the �rst element of a list, is returned. hd/1 is a

guard BIF.

Type

If cons is used as intended, the type is

hd([T]) -> T.

If cons is used as a general pairing operator, the type is instead

hd([T|_]) -> T.

Exits

hd/1 exits with cause badarg if v1 is not a cons.

Evaluation

The head of the cons v1 is returned. The time for computing the result

should be O(1).

13.6.2 length/1

The number of elements of a list is returned. length/1 is a guard BIF.

Type

length([term()]) -> int().

Exits

length/1 exits with cause badarg if v1 is not a list.

Evaluation

The integer <[k] is returned, where k is the number of elements in the list.

The time for computing the answer should be O(1).

13.6.3 tl/1

The tail of a cons, e.g., all but the �rst element of a list, is returned. tl/1

is a guard BIF.

180 DRAFT (0.7) February 9, 1999 { 19 : 09

Type

If cons is used as intended, the type is

tl([T]) -> [T].

If cons is used as a general pairing operator, the type is instead

tl([_|T]) -> T.

Exits

tl/1 exits with cause badarg if v1 is not a cons.

Evaluation

The tail of the cons v1 is returned. The time for computing the result should

be O(1).

13.7 Builtin functions for modules

The syntax of modules is described in x8.1 and their dynamics in x9.
The BIFs in this section are not designed to be used directly in applica-

tions. Rather, they are provided for implementing more high-level interface

to dynamic loading and replacement of modules.1

13.7.1 erlang:check_process_code/2

A check is made whether a particular process is using a given module (x9.1).

Type

erlang:check_process_code(pid(),atom()) -> bool().

Exits

erlang:check_process_code/2 exits with cause badarg if v1 is not a pid

or v2 is not an atom.2

Evaluation

Let N be node[v1].

� If module_table[N] contains a row with v 2 as key and R as value,

old_version[R] is not none and a reference to old_version[R] is

found in stack_trace[P], then the BIF returns true (cf. x9.7).
1Cf. the code module of OTP [6, pp. 158{167].
2
Erlang 4.7.3 actually allows v2 to be anything and always returns false if v 2 is not

an atom.

February 9, 1999 { 19 : 09 DRAFT (0.7) 181

� Otherwise, it returns false.

13.7.2 erlang:delete_module/1

The current version of a module is changed to be the old version (x9.1).

Type

erlang:delete_module(atom()) -> atom().

Exits

erlang:delete_module/1 exits with cause badarg if v 1 is not an atom.

Moreover, it will exit with cause badarg if there is already an old version of

the module (see below)

Evaluation

Let P be the process calling delete_module/1 and let N be node[P].

� If there is no row with key v 1 in module_table[N], then undefined is

returned.3 Otherwise, let R be the value for v 1 in module_table[N].

� If old_version[R] is not none, the BIF exits with cause badarg.

� Otherwise, if current_version[R] is not none, it is made the old

version of module v1 as described in x9.5 and true is returned.

� Otherwise, no action is taken and true is returned.

13.7.3 erlang:load_module/2

A compiled module is loaded as the current version of the module (x9.1). If
there is already a current version of the module, it is made the old version

of the module.

Type

erlang:load_module(atom(),bin()) -> atom().

Exits

erlang:load_module/2 exits with cause badarg if v1 is not an atom or v2
is not a binary.

3This is contrary to the reasonable intuition that the BIF should return undefined if,

and only if, module_loaded/1 returns false for the module.

182 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

Let P be the process calling load_module/2 and let N be node[P].

� If the binary v2 does not contain compiled code for a module named

v 1, the BIF returns a tuple {error, badfile}.

� Otherwise, the following is done:

First, if module_table[N] contains no row with v1 as key, a row is

added with v1 as key and R as value, such that old_version[R] and

current_version[R]] are both none.

Otherwise, let R be the value of the row with v1 as key; if neither of

old_version[R] and current_version[R]] is none, the BIF returns

a tuple {error, not_purged}.

Next, if current_version[R] is not none, it is made the old version

of module v1 on node N as described in x9.5.

Finally, the binary v 2 is made the current version of module v1 on

node N as described in x9.4.

13.7.4 erlang:preloaded/0

A list is returned of the names of all modules that were loaded as part of

starting the current node.

Type

erlang:preloaded() -> [atom()].

Exits

erlang:preloaded/0 always completes normally.

Evaluation

The BIF returns a list representing the value of preloaded[node[P]], where

P is the process calling the BIF.

13.7.5 erlang:purge_module/1

The old version of a module is purged (x9.1).

Type

erlang:purge_module(atom()) -> true.

February 9, 1999 { 19 : 09 DRAFT (0.7) 183

Exits

erlang:purge_module/1 exits with cause badarg if v 1 is not an atom.

Moreover, it will exit with cause badarg if there is no old version of the

module (see below)

Evaluation

Let P be the process calling purge_module/1 and let N be node[P].

� If there is a row in module_table[N] with v1 as key and some R

as value, and old_version[R] is not none, then old_version[R] is

purged as described in x9.6 and true is returned.

� Otherwise, the BIF exits with cause badarg.

13.7.6 erlang:module_loaded/1

It is found out whether there is a current version (x9.1) of some module.

Type

erlang:module_loaded(atom()) -> bool().

Exits

erlang:module_loaded/1 exits with cause badarg if v1 is not an atom.

Evaluation

Let P be the process calling module_loaded/1 and let N be node[P].

� If there is a row in module_table[N] with v1 as key and some R as

value, and current_version[R] is not none, then the BIF returns

true.

� Otherwise, the BIF returns false.

13.8 Builtin functions for functions and processes

13.8.1 apply/2

A given function is applied to a sequence of arguments.

Type

apply({atom(),atom()},[term()]) -> term() ;

apply(function(),[term()]) -> term()

184 DRAFT (0.7) February 9, 1999 { 19 : 09

Exits

apply/2 exits with cause badarg if v1 is neither a 2-tuple of atoms, nor

a function, or v2 is not a list. apply/2 may also exit with the reasons

described in x6.7. (In addition, the function being applied may complete

abnormally with any reason.)

Evaluation

The evaluation depends on the type of the �rst argument:

� If v 1 is a 2-tuple of atoms Mod and Fun , then evaluation proceeds as

described by case 1 in x6.7 with the atoms Mod and Fun specifying

the module name and function symbol, respectively, and the list v 2
specifying the values of the arguments (and the arity).

� If v1 is a function, then evaluation proceeds as described by case 3

or 4 in x6.7 with v1 being the function and the list v2 specifying the

values of the arguments.

13.8.2 apply/3

Given a module name, a function symbol and a list of arguments, a function

is looked up and applied to the arguments.

Type

apply(atom(),atom(),[term()]) -> term().

Exits

apply/3 exits with cause badarg if v1 is not an atom, v2 is not an atom, or

v3 is not a list. apply/3 may also exit with the reasons described in x6.7.
(In addition, the function being applied may complete abnormally with any

reason.)

Evaluation

The evaluation of apply/3 is described by case 1 in x6.7 with the atoms v 1
and v2 specifying the module name and function symbol, respectively, and

the list v3 specifying the values of the arguments.

13.8.3 exit/1

The BIF always exits with the argument as reason. Unless the application

is governed by a catch expression (x6.9), the process calling the BIF will

exit.

February 9, 1999 { 19 : 09 DRAFT (0.7) 185

Type

exit(term()) -> _.

Exits

exit/1 always exits, see below.

Evaluation

The evaluation of exit/1 exits with reason v 1.

13.8.4 exit/2

An exit signal with the given reason is sent to a process or port. Reception of

the exit signal will cause the receiving process to complete abruptly unless it

traps exit signals or the reason is the atom normal, cf. x10.4.3. If the reason
is the atom kill, the receiving process will always complete abruptly.

Type

exit(pid(),term()) -> true ;

exit(port(),term()) -> true.

Exits

exit/2 exits with cause badarg if v 1 is neither a PID, nor a port.

Evaluation

An exit signal with v2 as reason is sent to the process or port identi�ed by

v1, as described in x10.4.2. The result is always the atom true.

13.8.5 group_leader/0

The BIF returns the group leader (x10.8) of the calling process.

Type

group_leader() -> pid().

Exits

group_leader/0 always completes normally.

Evaluation

The result is group_leader[P], where P is the process calling the BIF.

186 DRAFT (0.7) February 9, 1999 { 19 : 09

13.8.6 group_leader/2

The BIF changes the group leader of a process.

Type

group_leader(pid(),pid()) -> true.

Exits

group_leader/2 exits with cause badarg if v1 or v2 is not a PID.

Evaluation

A group leader signal (x10.6) is sent to v2 with v 1 as additional data. When

the signal is received by v2, group_leader[v2] will be set to v1 (x10.6.3).
The result is always the atom true.

13.8.7 link/1

A request to add a link between the process calling the BIF and some process

or port is submitted.

Type

link(pid()) -> true ;

link(port()) -> true.

Exits

link/1 exits with cause badarg if v1 is not a PID or a port.

Evaluation

Let P be the process evaluating the application of link/1.

� If P 6= v1 and v1 is not in linked[P], then v1 is added to linked[P]

and a link signal with P as sender is dispatched to process v 1 (x10.3,
x10.6).

� Otherwise, nothing is done.

The result is always the atom true.

13.8.8 list_to_pid/1

A list of characters is converted to a PID.

February 9, 1999 { 19 : 09 DRAFT (0.7) 187

Type

list_to_pid([int()]) -> pid().

Exits

list_to_pid/1 exits with cause badarg if v1 is not a list of characters that

represents a PID.

Evaluation

The result of a BIF call of list_to_pid/1 is a PID P such that the value

of pid_to_list(P) (cf. x13.8.9) on the same node equals v1.

13.8.9 pid_to_list/1

A PID is converted to a list of characters.

Type

list_to_pid(pid()) -> [int()].

Exits

list_to_pid/1 exits with cause badarg if v1 is not a PID.

Evaluation

The result of a BIF call of list_to_pid/1 is some list of characters. It is

guaranteed that for any PID P , the value of an expression list_to_pid(pid_to_list(P))

equals P .

13.8.10 process_flag/2

The value of a process ag is read and updated.

Type

process_flag(trap_exit,bool()) -> bool() ;

process_flag(error_handler,atom()) -> atom() ;

process_flag(priority,atom()) -> atom().

Exits

process_flag/2 exits with cause badarg if v1 and v2 is not one of the

following combinations:

� The atom trap_exit and a Boolean atom.

188 DRAFT (0.7) February 9, 1999 { 19 : 09

� The atom error_handler and a module name (i.e., an atom).

� The atom priority and a priority atom, i.e., one of normal, high and

low x10.7).

Evaluation

The action depends on v1:

� If v1 is trap_exit, then trap_exit[P] is set to v2 and the previous

value of trap_exit[P] is returned.

� If v1 is error_handler, then error_handler[P] is set to v2 and the

previous value of error_handler[P] is returned.

� If v1 is priority, then priority[P] is set to v2 and the previous

value of priority[P] is returned.

13.8.11 process_info/1

Information about various properties of a process is returned.

Type

process_info(pid()) -> term().

Exits

process_info/1 exits with cause badarg if v1 is not a PID.

Evaluation

The BIF returns information about the process v 1.

� If that process is not alive, the result is the atom undefined.

� Otherwise, the result is a list of 2-tuples, each of which is the same

as the result of an application of the BIF process_info/2 (x13.8.12)
to v1 and a distinct atom in the left column of Table 13.2. The list

should include all properties for which process_info/2 gives mean-

ingful information.

13.8.12 process_info/2

Information about some property of a process is returned, as described in

Table 13.2.

February 9, 1999 { 19 : 09 DRAFT (0.7) 189

Second argument Information returned about the process

current_function The most recently entered function.

dictionary The process dictionary.

error_handler The error handler module.

group_leader The group leader of the process.

heap_size The current heap size.

initial_call The initial application of the process.

links The processes and ports to which the process is

linked.

memory The total amount of memory occupied by the

process.

message_queue_len The number of unprocessed messages in the queue.

messages The unprocessed messages in the queue.

priority The scheduling priority of the process.

reductions The current number of reductions.

registered_name The registered name of the process, if any.

stack_size The current stack size.

status The scheduling status: waiting, runnable or

running.

trap_exit Whether exit signals are trapped.

Table 13.2: Alternatives for the BIF process_info/2.

Type

process_info(pid(),atom()) -> term().

Exits

process_info/2 exits with cause badarg if v 1 is not a PID or v2 is not one

of the atoms in the left column of Table 13.2.

Evaluation

� If process v1 is not alive, the result is the atom undefined.

� Otherwise, the BIF returns information about the process v1 and the

result is always a 2-tuple where the �rst element is v2:

� If v2 is current_function, then return {current_function,

current_function[v1]}.

� If v2 is dictionary, then return {dictionary,Dict}, where

Dict is an association list representing the contents of dictionary[v1]

(cf. the BIF get/0 [x13.9.3]).
� If v2 is error_handler, then return {error_handler,error_handler[v1]}.

190 DRAFT (0.7) February 9, 1999 { 19 : 09

� If v2 is group_leader, then return {group_leader,group_leader[v1]}.

� If v 2 is heap_size, then return {heap_size,heap_size[v1]}.

� If v2 is initial_call, then return {initial_call,initial_call[v1]}.

� If v2 is links, then return {links,Lst}, where Lst is a list

representing the value of linked[v1].

� If v 2 is memory, then return {memory,memory_in_use[v1]}.

� If v2 is message_queue_len, then return {message_queue_len,

<[l]}, where l is the length of message_queue[v1].

� If v 2 is messages, then return {messages,Lst}, where Lst is a

list representing the value of message_queue[v1] (i.e., a list of

the messages in the queue, in the same order).

� If v 2 is priority, then return {priority,priority[v1]}.

� If v2 is reductions, then return {reductions,reductions[v1]}.

� If v2 is registered_name, then return {registered_name,registered_name[v1]}.

� If v 2 is stack_size, then return {stack_size,<[s]}, where s is
a measure of the size of stack_trace[v1].

� If v 2 is status, then return {status,status[v1]}.

� If v 2 is trap_exit, then return {trap_exit,trap_exit[v1]}.

Let P be the process calling the BIF. The behaviour with respect to sig-

nals (x10.6) should be as if the result was obtained by P sending an info

request signal to process v1 with v2 as additional information, and process

v1 responding with a message to P containing the result.

13.8.13 processes/0

See x13.10.9.

13.8.14 self/0

The PID of the process calling the BIF is returned. self/0 is a guard BIF.

Type

self() -> pid().

Exits

self/0 always completes normally.

Evaluation

The PID of the process calling the BIF is returned.

February 9, 1999 { 19 : 09 DRAFT (0.7) 191

13.8.15 spawn/3

A new process is spawned on the same node.

Type

spawn(atom(),atom(),[term()]) -> pid().

Exits

spawn/3 exits with cause badarg if v1 or v2 is not an atom, or if v3 is not

a list.

Evaluation

Let the elements of v 3 be T 1, : : : , Tk. A new process is spawned on the same

node as the process calling the BIF (x10.1). The initial call of the process

is v1:v2(T1,...,Tk). The PID of the newly spawned process is returned.

13.8.16 spawn/4

A new process is spawned on a particular node.

Type

spawn(atom(),atom(),atom(),[term()]) -> pid().

Exits

spawn/4 exits with cause badarg if v 1, v2 or v 3 is not an atom, or if v 4 is

not a list.

Evaluation

Let the elements of v4 be T1, : : : , Tk. A new process is spawned on node

v1 (x10.1). The initial call of the process is v2:v3(T1,...,Tk). The PID of

the newly spawned process is returned.

13.8.17 spawn_link/3

A new process, initially linked to its creator, is spawned on the same node.

Type

spawn_link(atom(),atom(),[term()]) -> pid().

192 DRAFT (0.7) February 9, 1999 { 19 : 09

Exits

spawn_link/3 exits with cause badarg if v1 or v 2 is not an atom, or if v 3
is not a list.

Evaluation

The BIF does exactly the same thing as spawn/3 (x13.8.15), except that
when the BIF returns, the newly spawned process is linked with the process

calling spawn_link/3.

13.8.18 spawn_link/4

A new process, initially linked to its creator, is spawned on a particular

node.

Type

spawn_link(atom(),atom(),atom(),[term()]) -> pid().

Exits

spawn/4 exits with cause badarg if v1, v 2 or v3 is not an atom, or if v4 is

not a list.

Evaluation

The BIF does exactly the same thing as spawn/4 (x13.8.16), except that
when the BIF returns, the newly spawned process is linked with the process

calling spawn_link/4.

13.8.19 unlink/1

A request to remove any link between the process calling the BIF and some

process or port is submitted.

Type

unlink(pid()) -> true ;

unlink(port()) -> true.

Exits

unlink/1 exits with cause badarg if v 1 is not a PID or a port.

Evaluation

Let P be the process evaluating the application of unlink/1.

February 9, 1999 { 19 : 09 DRAFT (0.7) 193

� If P 6= v1 and v1 is in linked[P], then v1 is removed from linked[P]

and an unlink signal with P as sender is dispatched to process v1.

� Otherwise, nothing is done.

The result is always the atom true.

13.9 Builtin functions for process dictionaries

As described in x10.9.2, each process P has associated with it a table dictionary[P]

(x2.4).

13.9.1 erase/0

The process calling the BIF has every row of its dictionary removed but a

representation of the previous contents is returned.

Type

erase() -> [{term(),term()}].

Exits

erase/0 always completes normally.

Evaluation

Let d be the value of dictionary[P], where P is the process calling erase/0

and let lst be an association list representing the contents of d (x2.4). The
e�ect of the call is to remove every row of d and the result is lst .

The operation must be atomic.

13.9.2 erase/1

In the dictionary of the process calling the BIF, the value recorded for a cer-

tain key (if any) is erased, but the previously recorded value (or undefined)

is returned.

Type

erase(term()) -> term().

Exits

erase/1 always completes normally.

194 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

Let d be the value of dictionary[P], where P is the process calling erase/1.

There are two cases depending on whether v1 is a key in d or not:

� If d contains a row with v1 as key and some term T1 as value, then

that row is removed from d and t is t1.

� Otherwise, d is unchanged and t is the atom undefined.

The result is t .

The operation must be atomic.

13.9.3 get/0

A representation of the dictionary of the process calling the BIF is returned.

Type

get() -> [{term(),term()}].

Exits

get/0 always completes normally.

Evaluation

Let d be the value of dictionary[P], where P is the process calling get/0.

The result of calling get/0 is a list representing d (x2.4).

13.9.4 get/1

The value recorded for a certain key in the dictionary of the process calling

the BIF is returned (or undefined is returned if there is no value recorded).

Type

get(term()) -> term().

Exits

get/1 always completes normally.

Evaluation

Let d be the value of dictionary[P], where P is the process calling get/1.

There are two cases depending on whether v1 is a key in d or not:

� If d contains a row with v 1 as key and some term T1 as value, then t

is t1.

February 9, 1999 { 19 : 09 DRAFT (0.7) 195

� Otherwise, t is the atom undefined.

The result is t .

13.9.5 get_keys/1

A list of all keys in the dictionary of the process calling the BIF that have

a certain value is returned.

Type

get_keys(term()) -> [term()].

Exits

get_keys/1 always completes normally.

Evaluation

Let d be the value of dictionary[P], where P is the process calling get/0.

The result of calling get_keys/1 is a list without duplicates that contains

each key of d for which the value is v1. The elements of the resulting list

may be in any order.

13.9.6 put/2

In the dictionary of the process calling the BIF, a value is set for some key,

replacing any previous value, which is returned (or undefined is returned if

there was no value recorded previously).

Type

put(term(),term()) -> term().

Exits

put/2 always completes normally.

Evaluation

Let d be the value of dictionary[P], where P is the process calling put/2.

There are two cases depending on whether v1 is a key in d or not:

� If d contains a row with v1 as key and some term t1 as value, then

that row is replaced with one having v1 as key and v2 as value; t is

t1.

� Otherwise, a row with key v1 and value v2 is added to d and t is

undefined.

196 DRAFT (0.7) February 9, 1999 { 19 : 09

The result is t .

The operation must be atomic.

13.10 Builtin functions for nodes

13.10.1 erlang:disconnect_node/1

Friendship is terminated with a given node.

Type

disconnect_node(term()) -> atom().

Exits

disconnect_node/1 always completes normally.

Evaluation

Let P be the process calling disconnect_node/1.

� If node[P] is not communicating, then ignored is returned.

� Otherwise, if v1 is not an atom or v1 is not in friends[node[P]],

false is returned.

� Otherwise the same things happen as when node node[P] has lost

contact with node v1, as described in x11.3 and x11.6, and then true

is returned.

13.10.2 erlang:get_cookie/0

The magic cookie of the current node is returned.

Type

get_cookie() -> atom().

Exits

get_cookie/0 always completes normally.

Evaluation

The BIF returns magic_cookie[node[P]], where P is the process calling

get_cookie/0.

February 9, 1999 { 19 : 09 DRAFT (0.7) 197

13.10.3 erlang:halt/0

The current node is terminated.

Type

halt() -> _.

Exits

halt/0 never completes abnormally.

Evaluation

The node node[P], where P is the process calling halt/0, is terminated

immediately. The BIF thus never returns.

13.10.4 is_alive/0

The BIF tests whether the current node is communicating or not.

Type

is_alive() -> bool().

Exits

is_alive/0 always completes normally.

Evaluation

The BIF returns the value of communicating[node[P]], where P is the

process calling the BIF.

13.10.5 monitor_node/2

Calling this BIF has as e�ect to increase or decrease the number of messages

that the current process will receive as noti�cation that friendship between

the current node and a certain (other) node has ceased.

Type

monitor_node(atom(),bool()) -> true.

Exits

monitor_node/2 exits with cause badarg if v 1 is not an atom or if v2 is not

a Boolean atom. On an isolated node, it will also exit with cause badarg if

the node to be monitored is not the current node.

198 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

Let P be the process calling monitor_node/2.

� If alive[node[P]] is false and v 1 is not node[P], then the BIF

exits with cause badarg.

� If v 1 is node[P], do nothing.

� If v 1 is true, do the following:

1. If there is not already a row in monitored_nodes[node[P]]with

v 1 as key, then add one with an empty table as value.

2. Let t be the value for v1 in monitored_nodes[node[P]]. If there

is no row with P as key in that table, add such a row with value

1. Otherwise, add 1 to the value for P in t.

� Otherwise (v 1 is false):

� If there is no row with v1 as key in monitored_nodes[node[P]],

then do nothing.

� Otherwise, let t be the value for v 1. If there is no entry for P in

t, do nothing.

� Otherwise, if the row for P in t has value 1, then remove the row

for P .

� Otherwise, subtract 1 from the value for P in t.

The result is always true.

13.10.6 node/0

This BIF returns (the name of) the node on which the calling process resides.

node/0 is a guard BIF.

Type

node() -> atom().

Exits

node/0 always completes normally.

Evaluation

The result is node[P], where P is the process calling node/0 (x10.9.1).

February 9, 1999 { 19 : 09 DRAFT (0.7) 199

13.10.7 node/1

This BIF returns (the name of) the node on which a given ref, PID or port

was created. node/1 is a guard BIF.

Type

node(ref()) -> atom() ;

node(pid()) -> atom() ;

node(port()) -> atom().

Exits

node/1 exits with cause badarg if v 1 is not a ref, nor a PID or a port.

Evaluation

The result is node[v1] (x10.9.1, x12.10.1).

13.10.8 nodes/0

A list is returned of all friends of the node on which the BIF is called.

Type

nodes() -> [atom()].

Exits

nodes/0 always completes normally.

Evaluation

The BIF returns a list representing the value of friends[node[P]], where

P is the process calling the BIF.

13.10.9 processes/0

A list is returned of the PIDs of all live processes on the node on which the

BIF is called.

Type

processes() -> [pid()].

Exits

processes/0 always completes normally.

200 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

The BIF returns a list representing the value of processes[node[P]], where

P is the process calling the BIF.

13.10.10 erlang:set_cookie/2

The magic cookie of the current node and/or the presumed magic cookie of

another node is set.

Type

set_cookie(atom(),atom()) -> bool().

Exits

set_cookie/2 exits with cause badarg if v 1 or v2 is not an atom, or if the

atom v1 could not be the name of a node (i.e., it does not contain exactly

one `@' character, cf. x11.1).

Evaluation

There are two cases, depending on the value of v 1. Let P be the process

calling set_cookie/2 and let N be node[P].

� If v 1 equals N , then

1. Set magic_cookie[N] to v2.

2. For each pair in magic_cookies[N] where the presumed magic

cookie is nocookie, change the presumed magic cookie to v 2.

� If v1 does not equal N , then delete any pair for v 1 in magic_cookies[N]

and add a pair (v1; v 2) to magic_cookies[N].

13.10.11 set_node/2

Calling this BIF has as e�ect to make the node on which the calling process

resides a communicating node, provided that certain preconditions are met.

Type

set_node(???,???) -> ???.

Exits

???

February 9, 1999 { 19 : 09 DRAFT (0.7) 201

Evaluation

???

13.10.12 erlang:set_node/3

Ugga mugga.

Type

set_node(???,???,???) -> ???.

Exits

set_node/3 : : :

Evaluation

Yumm yumm!

13.10.13 statistics/1

Information about the current state of the node is returned.

Type

statistics(garbage_collection) -> {int(),int(),int()}

statistics(reductions) -> {int(),int()}

statistics(runtime) -> {int(),int()}

statistics(run_queue) -> int()

statistics(wall_clock) -> {int(),int()}.

Exits

statistics/1 exits with cause badarg if v1 is not an atom or if it is not

one of the atoms runtime, wall_clock or reductions.

Evaluation

Let N be the node on which the BIF is called. The evaluation depends on

v1:

� garbage_collection: return the result of current_gc[N] (x11.7.2),
i.e., a 3-tuple {NumberOfGCs,WordsReclaimed,0} of integers where

NumberOfGCs is the total number of garbage collection operations that

have been carried out by processes on the node and WordsReclaimed

is the total number of memory words reclaimed by such operations,

and the third integer is always 0.

202 DRAFT (0.7) February 9, 1999 { 19 : 09

� reductions: return the result of current_reductions[N] (x11.7.2),
i.e., a 2-tuple {TotalReductions,RecentReductions}where TotalReductions

is an Erlang integer representing the number of function calls made

on the node and RecentReductions is the same but only since the last

call statistics(reductions).

� run_queue: return <[i], where i is the number of processes on the

node that have runnable or running status.

� runtime: return the result of current_runtime[N] (x11.7.2), i.e., a
2-tuple {TotalRuntime,RecentRuntime} where TotalRuntime is an

Erlang integer representing the total time spent running processes

on the node and RecentRunTime is the same but only since the last

call statistics(runtime).

� wall_clock: return the result of current_wall_clock[N] (x11.7.2),
i.e., a 2-tuple {TotalWallClock,RecentWallClock}where TotalWallClock

is an Erlang integer representing the time which has passed since the

node was started and RecentWallClock is the same but only since the

last call statistics(wall_clock).

13.11 Builtin functions for process registries

The process registry of a node is described in x11.5.

13.11.1 register/2

A name is registered for a process on a node.

Type

register(atom(),pid()) -> true.

Exits

register/2 exits with cause badarg if v 1 is not an atom or if v2 is not

a PID. register/2 may also exit with cause badarg if some process is

already registered under the name, there is already a name registered for

the process, the process resides on a di�erent node than the one on which

the BIF is called, or the process has completed (see below).

Evaluation

Let N be the node on which the BIF is called.

February 9, 1999 { 19 : 09 DRAFT (0.7) 203

� If node[v2] is not N or registry[N] already contains a process with

name v1 or registry[N] already contains a name for process v2, or

process v2 has completed, then the BIF exits with cause badarg.

� Otherwise, the name v1 is added for v2 in registry[N]. The BIF

always returns the atom true.

The operation should be atomic to ensure the integrity of the registry.

13.11.2 registered/0

A list of all names in the registry on the current node is returned.

Type

registered() -> [atom()].

Exits

registered/0 always completes normally.

Evaluation

Let N be the node on which the BIF is called. A list without duplicates of

all names in registry[N] is returned. The order of the atoms in the list is

not de�ned. The operation should be atomic to ensure the integrity of the

registry.

13.11.3 unregister/1

Any registration for a name is removed.

Type

unregister(atom()) -> true.

Exits

unregister/1 exits with cause badarg if v1 is not an atom.

Evaluation

Let N be the node on which the BIF is called.

� If registry[N] does not contains the name v1, then the BIF has no

e�ect.

� Otherwise, the association for the name v 1 is removed from registry[N].

204 DRAFT (0.7) February 9, 1999 { 19 : 09

In either case, the atom true is returned. The operation should be atomic

to ensure the integrity of the registry.

13.11.4 whereis/1

The PID of a process registered under the given name is returned, if any.

Type

whereis(atom()) -> term().

Exits

whereis/1 exits with cause badarg if v1 is not an atom.

Evaluation

Let N be the node on which the BIF is called.

� If registry[N] does not contains the name v1, then the BIF returns

the atom undefined.

� Otherwise, the PID that is the value for v1 in registry[N] is returned.

The operation should be atomic to ensure the integrity of the registry.

13.12 Builtin functions for I/O and ports

13.12.1 open_port/2

A new port is opened to a recently opened driver or recently spawned ex-

ternal process.

Type

open_port(term(),[term()]) -> port().

Exits

open_port/2 exits with cause badarg if v1 is not one of the permitted

alternatives or v2 contains an invalid option (x12.4).

Evaluation

The BIF open_port/2 is described fully in x12.4.

13.12.2 port_close/1

A port is closed.

February 9, 1999 { 19 : 09 DRAFT (0.7) 205

Type

port_close(port()]) -> true.

Exits

port_close/1 exits with cause badarg if v1 is not a port. It may also exit

with cause badarg if v1 is already closed.

Evaluation

If v1 is already closed, exit with cause badarg. Otherwise, close port v 1.

13.12.3 port_info/1

Information about various properties of a port is returned.

Type

port_info(port()) -> term().

Exits

port_info/1 exits with cause badarg if v1 is not a port.

Evaluation

The BIF returns information about the port v1.

� If that port is not open, the result is the atom undefined.

� Otherwise, the result is a list of 2-tuples, each of which is the same

as the result of an application of the BIF port_info/2 (x13.12.4) to
v1 and a distinct atom in the left column of Table 13.3. The list

should include all properties for which port_info/2 gives meaningful

information.

13.12.4 port_info/2

Information about some property of a port is returned, as described in Ta-

ble 13.3.

Type

port_info(pid(),atom()) -> term().

206 DRAFT (0.7) February 9, 1999 { 19 : 09

Exits

port_info/2 exits with cause badarg if v1 is not a port or v2 is not one of

the atoms in the left column of Table 13.3.

Evaluation

� If port v1 is closed, the result is the atom undefined.

� Otherwise, the BIF returns information about the port v1 and the

result is always a 2-tuple where the �rst element is v2:

� If v 2 is id, then return {id,ID[v1]}.

� If v 2 is connected, then return {connected,owner[v1]}.

� If v 2 is input, then return {input,count_in[v1]}.

� If v2 is links, then return {links,Lst}, where Lst is a list

representing the value of linked[v1].

� If v 2 is name, then return {name,command[v1]}.

� If v 2 is output, then return {output,count_out[v1]}.

Let P be the process calling the BIF. The behaviour with respect to signals

(x10.6) should be as if the result was obtained by P sending an info request

signal to port v1 with v2 as additional information, and port v1 responding

with a message to P containing the result.

13.12.5 ports/0

A list is returned of all open ports on the node on which the BIF is called.

Type

ports() -> [port()].

Second argument Information returned about the port

id The ID of the port.

connected The process owning the port.

input The number of bytes read from the port.

links The processes to which the port is linked.

name The driver or external process to which the port

is opened.

output The number of bytes written to the port.

Table 13.3: Alternatives for the BIF port_info/2.

February 9, 1999 { 19 : 09 DRAFT (0.7) 207

Exits

ports/0 always completes normally.

Evaluation

The BIF returns a list representing the value of ports[node[P]], where P

is the process calling the BIF.

13.13 Miscellaneous builtin functions

13.13.1 date/0

The local date when the BIF is called is returned as a triple.

Type

date() -> {int(),int(),int()}.

Exits

date/0 always completes normally.

Evaluation

Let the current local year, month and day at the time of evaluation be y, m

and d. Let Month be a function mapping January to 1, February to 2, : : : ,

December to 12.

A triple {Year,Month,Day} is returned, where Year is the Erlang

integer <�1[y], Month is the Erlang integer <�1[Month(m)], and Day is

the Erlang integer <�1[d].

Examples

� date() evaluated on the 29th of June, 1996, would return {1996,6,29}.

� date() evaluated on the 1st of January, 2000, would return {2000,1,1}.

13.13.2 erlang:hash/2

A hash value in a speci�ed range for an arbitrary term is returned.

Type

hash(term(),fixnum()) -> int().

208 DRAFT (0.7) February 9, 1999 { 19 : 09

Exits

hash/2 exits with cause badarg if v2 is not a nonnegative integer.

Evaluation

The BIF returns <[Hash(v1;<�1[v 2]) + 1], where the function Hash is as

de�ned in xC. That is, the BIF maps each Erlang term to an integer in the

range [1; v 2]. The function Hash is de�ned in such a way as to be portable

across nodes and independent of time. (It is obviously not invertible.)

13.13.3 make_ref/0

A ref is returned that is di�erent from all refs created previously on the node

and that is di�erent from all refs created on other nodes.

Type

make_ref() -> ref().

Exits

make_ref/0 always completes normally.

Evaluation

Let N be the node on which make_ref/0 is called. The BIF invokes the

operation next_ref[N] (x11.7.2) and the result is a new ref that is re-

turned. This also modi�es the state ref_state[N] so future invocations of

next_ref[N] will produce di�erent refs.

13.13.4 now/0

A 3-tuple of integers is returned that is guaranteed to be di�erent for each

invocation on a node.

Type

now() -> {int(),int(),int()}.

Exits

now/0 always completes normally.

February 9, 1999 { 19 : 09 DRAFT (0.7) 209

Evaluation

Two calls of the BIF now() by processes residing on the same node can

never return the same term.4

13.13.5 throw/1

A value is thrown.

Type

throw(term()) -> _.

Exits

throw/1 always completes abruptly with reason {'THROW',v1}.

13.13.6 time/0

The local time of day when the BIF is called is returned as a triple.

Type

time() -> {int(),int(),int()}.

Exits

time/0 always completes normally.

Evaluation

Let the current local hour, minute and second at the time of evaluation be

h, m and s. The hour is on 24-hour format.

A triple {Hour,Minute,Second} is returned, where Hour is the Erlang

integer <�1[h], Minute is the Erlang integer <�1[m], and Second is the

Erlang integer <�1[s].

Examples

� time() evaluated at �ve minutes and forty-two seconds past midnight

would return {0,5,42}.

� time() evaluated at �ve minutes and forty-two seconds past noon

would return {12,5,42}.

4The name of the BIF comes from the fact that the three integers normally represent

the universal time (with microsecond resolution). However, the time might be inaccurate

if several calls are made within a microsecond.

210 DRAFT (0.7) February 9, 1999 { 19 : 09

� time() evaluated at �ve minutes and forty-two seconds before mid-

night would return {23,44,18}.

13.14 Reserved function names

The function names in Table 13.4 do not name BIFs but are recognized by

the compiler and a module must not de�ne any function with one of these

names.

The reason may be that the compiler automatically generates a de�nition

of a function with such a name (e.g., module_info/0 and module_info/1),

or that applications of function named as such are treated specially (e.g.,

record_info/2).

Function names without a reference in Table 13.4 are reserved because

Erlang 4.7.3 uses them for internal purposes. If a module de�nes a function

with one of the names below, the compiler gives a compile-time error.

Function name Described

apply_lambda/2

module_info/0 x8.5.1
module_info/1 x8.5.2
module_lambdas/4

record/2 x6.20.1
record_index/2

record_info/2

Table 13.4: Reserved function names

Chapter 14

Libraries

There are some standard libraries that belong to Erlang 4.7.3. Each library

is one Erlang module:

Further standard libraries are provided with OTP [6].

14.1 The file library

TO BE WRITTEN!

14.2 The io library

TO BE WRITTEN!

14.3 The lists library

TO BE WRITTEN!

14.4 The math library

The library contains trigonometric and logarithmic functions. All trigono-

metric functions work with angles in radians. The functions correspond to

Module name Contents

file File handling

io Simple input and output

lists List functions

math Logarithmic and arithmetic functions

string String functions

Table 14.1: Standard libraries of Erlang 4.7.3

211

212 DRAFT (0.7) February 9, 1999 { 19 : 09

the functions in the math facilities of ISO C [10, 13].

In the description of a function, v i refers to the value of the ith argument.

14.4.1 acos/1

Computes the arccosine function.

Type

acos(num()) -> float().

Exits

acos/1 exits with cause badarg if v1 is not a number. acos/1 exits with

cause badarith if v1 is not in the range [�1; 1].

Evaluation

The function returns resultF (arccos(v1); rndF). The result is always in the

range [0; �].

14.4.2 asin/1

Computes the arcsine function.

Type

asin(num()) -> float().

Exits

asin/1 exits with cause badarg if v1 is not a number. asin/1 exits with

cause badarith if v1 is not in the range [�1; 1].

Evaluation

The function returns resultF (arcsin(v 1); rndF). The result is always in the

range [��

2
;
�

2
].

14.4.3 atan/1

Computes the arctangent function.

Type

atan(num()) -> float().

February 9, 1999 { 19 : 09 DRAFT (0.7) 213

Exits

atan/1 exits with cause badarg if v 1 is not a number.

Evaluation

The function returns resultF (arctan(v 1); rndF). The result is always in the

range [��

2
;
�

2
].

14.4.4 atan2/2

Computes the arctangent function of a quotient, taking the signs of the

arguments into account for determining the quadrant.

Type

atan2(num(), num()) -> float().

Exits

atan2/2 exits with cause badarg if v1 or v2 is not a number. atan2/2 may

exit with cause badarith if v 1 and v2 are both zero.

Evaluation

The function returns resultF (arctan(
v1

v2
); rndF). The result is always in the

range [��

2
;
�

2
].

� If v2 is zero, then the result is �=2 if v1 is positive and ��=2 if v1 is
negative.

� If v1 and v2 are both positive, atan2(v1,v2) equals atan(v1/v2).

� If v1 is negative and v2 is positive, atan2(v1,v2) equals -atan((-v1)/v2).

� If v1 is positive and v2 is negative, atan2(v1,v2) equals math:pi()-atan(v1/(-v2)).

� If v1 and v 2 are both negative, atan2(v1,v2) equals atan(v1/v2)-math:pi().

14.4.5 cos/1

Computes the cosine function.

Type

cos(num()) -> float().

Exits

cos/1 exits with cause badarg if v1 is not a number.

214 DRAFT (0.7) February 9, 1999 { 19 : 09

Evaluation

The function returns resultF (cos(v 1); rndF).

14.4.6 cosh/1

Computes the hyperbolic cosine function.

Type

cosh(num()) -> float().

Exits

cosh/1 exits with cause badarg if v1 is not a number.

Evaluation

The function returns resultF (cosh(v 1); rndF).

14.4.7 exp/1

Computes exponentiation with base e.

Type

exp(num()) -> float().

Exits

exp/1 exits with cause badarg if v1 is not a number.

Evaluation

The function returns resultF (e
v1 ; rndF).

14.4.8 log/1

Computes logarithm with base e.

Type

log(num()) -> float().

Exits

log/1 exits with cause badarg if v1 is not a number. log/1 exits with cause

badarith if v1 � 0.

February 9, 1999 { 19 : 09 DRAFT (0.7) 215

Evaluation

The function returns resultF (loge(v1); rndF).

14.4.9 log10/1

Computes logarithm with base 10.

Type

log10(num()) -> float().

Exits

log10/1 exits with cause badarg if v 1 is not a number. log10/1 exits with

cause badarith if v1 � 0.

Evaluation

The function returns resultF (log10(v 1); rndF).

14.4.10 pi/0

Returns an approximation of �.

Type

pi() -> float().

Exits

pi/0 always completes normally.

Evaluation

resultF (�; rndF) is returned.

14.4.11 pow/2

Computes exponentiation.

Type

pow(num(),num()) -> float().

Exits

pow/2 exits with cause badarg if v1 or v2 is not a number. pow/2 exits with

cause badarith if v1 < 0 and v2 is a oat for which the fraction part is not

216 DRAFT (0.7) February 9, 1999 { 19 : 09

zero.

Evaluation

The function returns vv2

1 ; rndF).

14.4.12 sin/1

Computes the sine function.

Type

sin(num()) -> float().

Exits

sin/1 exits with cause badarg if v1 is not a number.

Evaluation

The function returns resultF (sin(v 1); rndF).

14.4.13 sinh/1

Computes the hyperbolic sine function.

Type

sinh(num()) -> float().

Exits

sinh/1 exits with cause badarg if v1 is not a number.

Evaluation

The function returns resultF (sinh(v1); rndF).

14.4.14 sqrt/1

Computes square roots.

Type

sqrt(num()) -> float().

February 9, 1999 { 19 : 09 DRAFT (0.7) 217

Exits

sqrt/1 exits with cause badarg if v1 is not a number. sqrt/1 exits with

cause badarith if v1 < 0.

Evaluation

The function returns
p
v 1; rndF).

14.4.15 tan/1

Computes the tangent function.

Type

tan(num()) -> float().

Exits

tan/1 exits with cause badarg if v 1 is not a number and may exit with

badarith if cos(v 1) is zero.

Evaluation

The function returns resultF (tan(v1); rndF).

14.4.16 tanh/1

Computes the hyperbolic tangent function.

Type

tanh(num()) -> float().

Exits

tanh/1 exits with cause badarg if v 1 is not a number.

Evaluation

The function returns resultF (tanh(v 1); rndF).

14.5 The string library

TO BE WRITTEN!

218 DRAFT (0.7) February 9, 1999 { 19 : 09

Bibliography

[1] Alfred V. Aho and Je�rey D. Ullman. Foundations of Computer Sci-

ence. Computer Science Press, New York, 1992.

[2] American National Standards Institute, New York. Coded character set

| 7-bit American National Standard Code for Information Interchange,

1986. ANSI X3.4 { 1986.

[3] Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams.

Concurrent Programming in ERLANG. Prentice Hall, Hemel Hemp-

stead, second edition, 1996.

[4] Jonas Barklund and Robert Virding. Erlang 4.7.3 Reference Manual.

Ericsson Software Technology AB, Box 1214, S-164 28 Kista, Sweden,

1999.

[5] The Unicode Consortium. The Unicode Standard, Version 2.0.

Addison-Wesley, Reading, Mass., 1996.

[6] Ericsson Software Technology AB, Box 1214, S-164 28 Kista, Sweden.

Erlang System/OTP 4.5: Development Environment Reference Man-

ual, second edition, 1997.

[7] Ericsson Software Technology AB, Box 1214, S-164 28 Kista, Sweden.

Erlang System/OTP 4.5: Mnesia Database Management System (Mne-

sia 1.1), second edition, 1997.

[8] D. Goldsmith and M. Davis. Utf-7: A mail-safe transfor-

mation format of unicode. Available by anonymous ftp from

ftp://ds.internic.net/rfc/rfc1642.txt, July 1994.

[9] James Gosling, Bill Joy, and Guy L. Steele Jr. The Java
TM

Language

Speci�cation. Addison-Wesley, Reading, Mass., 1996.

[10] Samuel P. Harbison and Guy L. Steele Jr. C, a Reference Manual.

Prentice-Hall, Englewood Cli�s, N. J., 1995.

[11] IEEE. Dead rats and rotten mice, 1066.

219

220 DRAFT (0.7) February 9, 1999 { 19 : 09

[12] ISO/IEC. Information processing | 8-bit single-byte coded graphic

character sets, 1987. Reference number ISO 8879:1987.

[13] ISO/IEC. Information technology | Programming languages | C,

1990. Reference number ISO/IEC 9899:1990.

[14] ISO/IEC. Information technology | Language independent arithmetic

| Part 1: Integer and oating point arithmetic, �rst edition, 1994.

Reference number ISO/IEC 10967-1:1994(E).

[15] ISO/IEC. Information technology | Language independent arithmetic

| Part 2: Elementary numerical functions. WORKING DRAFT, �rst

edition, 1995. Reference number ISO/IEC WD 10967-1:1995(E).

[16] ISO/IEC. Information technology | Universal Multiple-Octet Coded

Character Set (UCS) | Part 1: Architecture and Basic Multilingual

Plane. Amendment 2: UCS Transformation Format 8 (UTF-8), 1996.

Reference number ISO/IEC 10646-1: 1993/AMD.2: 1996(E).

[17] Simon Marlow and Philip Wadler. Erltc: A type checker for Erlang.

Technical report, University of Glasgow, 1996.

[18] Simon Marlow and Philip Wadler. A practical subtyping system for

Erlang. In Mads Tofte, editor, 1997 ACM SIGPLAN Intl. Conf. on

Functional Programming, New York, N.Y., 1997. ACM.

[19] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

De�nition of Standard ML | Revised. MIT Press, Cambridge, Mass.,

1997.

[20] Revised5 Report on the Algorithmic Language Scheme, February 1998.

Appendix A

Summary of Erlang

expressions

This is a summary of the expressions of Erlang. Each group of expressions

is annotated with a precedence.

� �
+ means a nonempty comma-separated sequence of �.

� �
@ means a nonempty semicolon-separated sequence of �.

� � j � means either � or �.

� [�] means � or nothing.

� (�) means �.

� Ep means an expression with precedence p or less.

� A means an atom.

� A means an integer literal.

� L means an atomic literal.

� V means a variable.

� P means a pattern.

� G means a guard.

221

222 DRAFT (0.7) February 9, 1999 { 19 : 09

10 catch E12 x6.9
9 P = E11 x6.10
8 E9 = E10 x6.11
7 E6 < E6 E6 =< E6 E6 > E6 E6 >= E6 x6.12

E6 =:= E6 E6 =/= E6 E6 == E6 E6 /= E6 x6.12
6 E5 ++ E6 E5 -- E6 x6.13
5 E5 + E4 E5 - E4 E5 bor E4 E5 bxor E4 x6.14

E5 bsl E4 E5 bsr E4 x6.14
E9 or E8 E9 xor E8 x6.14

4 E4 * E3 E4 / E3 x6.15
E4 div E3 E4 rem E3 x6.15
E4 band E3 x6.15
E8 and E7 x6.15

3 + E2 - E2 bnot E2 not E2 x6.16
2 #A.A #A{(A=E12)

+} x6.17
E2#A.A E2#A{(A=E12)

+} x6.17
1 A(E+12) E0(E

+
12) E0:E0(E

+
12) x6.18

0 V x6.19.1
L x6.19.2
{E+12} x6.19.3
[] [E�12|E12] x6.19.4
[E12||(P<-E12 j E12)+] x6.19.5
begin E+12 end x6.19.6
if (G -> E+12)

@ end x6.19.7
case E12 of (P [when G] -> E+12)

@ end x6.19.8
receive (P [when G] -> E+12)

@ [after E12 -> E+12] end x6.19.9
fun A/I x6.19.10
fun ((P+) [when G] -> E

+
12)

@ end x6.19.10
query [E12||(P<-E12 j E12)+] end x6.19.11
(E12) x6.19.12

Appendix B

Parse trees

In this appendix we de�ne the standard representation of parse trees for

Erlang programs as Erlang terms. A parse_transform/1 (x7.6) takes a
list of such terms as input and is expected to return a list of such terms. We

de�ne the representation in a top-down way by �rst examining the forms

that make up a module declaration and then going through their lexical

constituents, etc.

The representation admits representation of many parse trees that would

be rejected by the grammar of Erlang. For example, it allows representa-

tion of a module declaration in which forms are not in a permitted order.

We de�ne the representation semi-formally through a function Rep that

maps Erlang formulas or sequences of formulas to Erlang terms.

When we write L, we mean an Erlang integer that may be interpreted

by software tools as a line number when reporting errors, etc.

B.1 Module declarations and forms

A module declaration consists of a sequence of forms that are either function

declarations or attributes (x8.1).

� If D is a module declaration consisting of the forms F 1, : : : , Fk, then

Rep(D) = [Rep(F1),...,Rep(Fk)]:

� If F is an attribute -module(Mod), then

Rep(F) = {attribute,L,module,Mod}:

� If F is an attribute -export([Fun1/A1,...,Funk/Ak]), then

Rep(F) = {attribute,L,export,[{Fun1,A1},...,{Funk,Ak}]}:

223

224 DRAFT (0.7) February 9, 1999 { 19 : 09

� If F is an attribute -import(Mod,[Fun1/A1,...,Funk/Ak]), then

Rep(F) = {attribute,L,import,{Mod,[{Fun1,A1},...,

{Funk,Ak}]}}.

� If F is an attribute -compile([T1,...,Tk]), then

Rep(F) = {attribute,L,compile,[T1,...,Tk]}:

� If F is an attribute -file(File,Line), then

Rep(F) = {attribute,L,file,{Rep(File),Rep(Line)}}:

� If F is a record declaration -record(Name,{V1,...,Vk}), then

Rep(F) = {attribute,L,record,{Name,[Rep(V1),...,

Rep(Vk)]}}.

� If F is a wild attribute -A(T), then

Rep(F) = {attribute,L,A,T}:

� If F is a function declaration Name(Ps1) [when Gs1] -> B1 ; ...;

Name(Psk) [when Gsk] -> Bk end, where k � 1 and each Psi, Gsi and

Bi, 1 � i � k, is a pattern sequence, a guard and a body, respectively

(and Gsi is true if omitted), and each Psi, 1 � i � k, has the same

length Arity, then

Rep(F) = {function,L,Name,Arity,

[{clause,L,Rep(Ps1),Rep(Gs1),Rep(B1)},...,

{clause,L,Rep(Psk),Rep(Gsk),Rep(Bk)}]}.

In addition to the representations of forms, the list that represents a module

declaration may contain tuples {error,E}, denoting syntactically incorrect

forms, and {eof,L}, denoting an end of stream encountered before a com-

plete form had been parsed.

Each �eld declaration in a record declaration is with or without an ex-

plicit default initializer expression (x8.4).

� If V is A , then

Rep(V) = {record_field,L,Rep(A)}:

� If V is A = E , then

Rep(V) = {record_field,L,Rep(A),Rep(E)}:

February 9, 1999 { 19 : 09 DRAFT (0.7) 225

B.2 Atomic literals

There are �ve kinds of atomic literals, which are represented in the same

way in patterns, expressions and guard expressions:

� If L is an integer literal, then

Rep(L) = {integer,L,L}:

� If L is a oat literal, then

Rep(L) = {float,L,L}:

� If L is a character literal, then

Rep(L) = {integer,L,L}:

� If L is a string literal consisting of the characters C1, : : : , Ck, then

Rep(L) = {string,L,[C1,...,Ck]}:

� If L is an atom literal, then

Rep(L) = {atom,L,L}:

B.3 Patterns

For a sequence Ps of patterns P 1, : : : , Pk,

Rep(Ps) = [Rep(P1),...,Rep(Pk)]:

Individual patterns are represented as follows:

� If P is an atomic literal L , then

Rep(P) = Rep(L);

cf. xB.2.

� If P is a variable pattern V , then

Rep(P) = {var,L,A};

where A is an atom with a printname that constitutes the same char-

acters as V .

� If P is a universal pattern _, then

Rep(P) = {var,L,'_'}:

226 DRAFT (0.7) February 9, 1999 { 19 : 09

� If P is a tuple pattern {P1,...,Pk}, then

Rep(P) = {tuple,L,[Rep(P1),...,Rep(Pk)]}:

� If P is a nil pattern [], then

Rep(P) = {nil,L}:

� If P is a cons pattern [Ph|Pt], then

Rep(P) = {cons,L,Rep(Ph),Rep(Pt)}:

� If P is a record pattern #Name{Field1=P1,...,Fieldk=Pk}, then

Rep(P) = {record,L,Name,

[{record_field,L,Rep(Field1),Rep(P1)},...,

{record_field,L,Rep(Fieldk),Rep(Pk)}]}.

B.4 Expressions

A body B is a sequence of expressions E1, : : : , Ek, where k � 1, and

Rep(B) = [Rep(E1),...,Rep(Ek)]:

An expression E is one of the following alternatives:

� If E is catch E0, then

Rep(E) = {'catch',L,Rep(E0)}:

� If E is P = E0, then

Rep(E) = {match,L,Rep(P),Rep(E0)}:

� If E is E1 Op E2, where Op is !, or, and, a RelationalOp, an Equali-

tyOp, a ListConcOp, an AdditionOp, a ShiftOp or a MultiplicationOp,

then

Rep(E) = {op,L,Op,Rep(E1),Rep(E2)}:

� If E is Op E0, where Op is a Pre�xOp, then

Rep(E) = {op,L,Op,Rep(E0)}:

� If E is #Name.Field , then

Rep(E) = {record_index,L,Name,Rep(Field)}:

February 9, 1999 { 19 : 09 DRAFT (0.7) 227

� If E is E0#Name.Field , then

Rep(E) = {record_field,L,Rep(E0),Name,Rep(Field)}:

� If E is #Name{Field1=E1,...,Fieldk=Ek}, then

Rep(E) = {record,L,Name,

[{record_field,L,Rep(Field1),Rep(E1)},...,

{record_field,L,Rep(Fieldk),Rep(Ek)}]}.

� If E is E0#Name{Field1=E1,...,Fieldk=Ek}, then

Rep(E) = {record,L,Rep(E0),Name,

[{record_field,L,Rep(Field1),Rep(E1)},...,

{record_field,L,Rep(Fieldk),Rep(Ek)}]}.

� If E is E0(E1,...,Ek) (the case where E0 is an atom is not distin-

guished), then

Rep(E) = {call,L,Rep(E0),[Rep(E1),...,Rep(Ek)]}:

� If E is Em:E0(E1,...,Ek), then

Rep(E) = {call,L,{remote,L,Rep(Em),Rep(E0)},[Rep(E1),...,

Rep(Ek)]}.

� If E is a variable V , then

Rep(E) = {var,L,A};

where A is an atom with a printname that constitutes the same char-

acters as V .

� If P is an atomic literal L , then

Rep(P) = Rep(L);

cf. xB.2.

� If E is a tuple skeleton {E1,...,Ek}, then

Rep(E) = {tuple,L,[Rep(E1),...,Rep(Ek)]}:

� If E is [], then

Rep(E) = {nil,L}:

228 DRAFT (0.7) February 9, 1999 { 19 : 09

� If E is a cons skeleton [Eh|Et], then

Rep(E) = {cons,L,Rep(Eh),Rep(Et)}:

� If E is a list comprehension [E0 || W1, ..., Wk], where each W i,

1 � i � k, is a generator or a �lter, then

Rep(E) = {lc,L,Rep(E0),[Rep(W1),...,Rep(Wk)]}:

� If E is begin B end, where B is a body, then

Rep(E) = {block,L,Rep(B)}:

� If E is if Gs1 -> B1 ; ...; Gsk -> Bk end, where k � 1 and each

Gsi and Bi, 1 � i � k, is a guard and a body, respectively, then

Rep(E) = {'if',L,[{clause,L,[],Rep(Gs1),Rep(B1)},...,

{clause,L,[],Rep(Gsk),Rep(Bk)}]}.

� If E is case E0 of P1 [when Gs1] -> B1 ; ...; Pk [when Gsk] ->

Bk end, where E 0 is an expression, k � 1 and each Pi, Gsi and Bi,

1 � i � k, is a pattern, a guard and a body, respectively (and Gsi is

true if omitted), then

Rep(E) = {'case',L,Rep(E0),

[{clause,L,[Rep(P1)],Rep(Gs1),Rep(B1)},...,

{clause,L,[Rep(Pk)],Rep(Gsk),Rep(Bk)}]}.

� If E is receive P1 [when Gs1] -> B1 ; ...; Pk [when Gsk] -> Bk

end, where k � 1 and each Pi, Gsi and Bi, 1 � i � k, is a pattern, a

guard and a body, respectively (and Gsi is true if omitted), then

Rep(E) = {'receive',L,

[{clause,L,[Rep(P1)],Rep(Gs1),Rep(B1)},...,

{clause,L,[Rep(Pk)],Rep(Gsk),Rep(Bk)}]}.

� If E is receive P1 [when Gs1] -> B1 ; ...; Pk [when Gsk] -> Bk

after E 0 -> Bk+1 end, where k � 1, each Pi, Gsi and Bi, 1 � i � k,

is a pattern, a guard and a body, respectively (and Gsi is true if

omitted), E 0 is an expression and Bk+1 is a body, then

Rep(E) = {'receive',L,

[{clause,L,[Rep(P1)],Rep(Gs1),Rep(B1)},...,

{clause,L,[Rep(Pk)],Rep(Gsk),Rep(Bk)}],

Rep(E0),Rep(Bk+1)}.

February 9, 1999 { 19 : 09 DRAFT (0.7) 229

� If E is fun Name/Arity , then

Rep(E) = {'fun',L,{function,Name,Arity}}:

� If E is fun P1 [when Gs1] -> B1 ; ...; Pk [when Gsk] -> Bk end,

where k � 1 and each Pi, Gsi and Bi, 1 � i � k, is a pattern, a guard

and a body, respectively (and Gsi is true if omitted), then

Rep(E) = {'fun',L,{clauses,

[{clause,L,[Rep(P1)],Rep(Gs1),Rep(B1)}]},

...,

{clause,L,[Rep(Pk)],Rep(Gsk),Rep(Bk)}]}}.

� If E is query [E0 || W1,...,Wk] end, where each W i, 1 � i � k, is a

generator or a �lter, then

Rep(E) = {'query',L,{lc,L,Rep(E0),[Rep(W1),...,Rep(Wk)]}}:

� If E is E0.Field , a Mnesia record access inside a query, then

Rep(E) = {record_field,L,Rep(E0),Rep(Field)}:

� If E is (E 0), then

Rep(E) = Rep(E 0);

i.e., parenthesized expressions cannot be distinguished from their bod-

ies.

When W is a generator or a �lter (in the body of a list comprehension), then:

� If W is a generator P <- E , where P is a pattern and E is an expression,

then

Rep(W) = {generate,L,Rep(P),Rep(E)}:

� If W is a �lter E , which is an expression, then

Rep(W) = Rep(E):

230 DRAFT (0.7) February 9, 1999 { 19 : 09

B.5 Guards

A guard Gs is a nonempty sequence of guard tests G 1, : : : , Gk, and

Rep(Gs) = [Rep(G1),...,Rep(Gk)]:

A guard test G is either true, an application of a BIF to a sequence

of guard expressions (syntactically this includes guard record tests), or a

binary operator applied to two guard expressions.

� If G is true, then

Rep(G) = {atom,L,true}:

� If G is an application A(E1,...,Ek), where A is an atom and E1, : : : ,

Ek are guard expressions, then

Rep(G) = {call,L,{atom,L,A},[Rep(E1),...,Rep(Ek)]}:

� If G is an operator expression E1 Op E2, where Op is a RelationalOp

or an EqualityOp, and E1, E2 are guard expressions, then

Rep(G) = {op,L,Op,Rep(E1),Rep(E2)}:

All guard expressions are expressions and are represented in the same way

as the corresponding expressions, cf. xB.4.

Appendix C

Portable hashing

The function Hash de�ned in this appendix is used as part of the de�nition

of the BIF erlang:hash/2 (x13.13.2). Given an arbitrary Erlang term

and a positive integer r, it returns an integer in the range [0; r � 1]. The

function has been designed with the aim to make it a good hash function,

i.e., that it spreads function values evenly across the range.

C.1 De�nitions

We make use of nine constants C1, : : : , C9:

C1 = 268440163

C2 = 268439161

C3 = 268435459

C4 = 268436141

C5 = 268438633

C6 = 268437017

C7 = 268438039

C8 = 268437511

C9 = 268439627

We will use a helper function Foldl, such that

Foldl(F;E; hv1; : : : ; vki) = F (vk; F (vk�1; : : : F (v2; F (v1; E)) : : :))

(Note that Foldl(F;E; hi) = E, regardless of F .)

w1
 w2 denotes the bitwise exclusive OR of w1 and w2.

All arithmetic operations in this appendix are modulo 232.

231

232 DRAFT (0.7) February 9, 1999 { 19 : 09

C.2 The hash function

The main function Hash is de�ned as follows:

Hash(t ; r) = H(t ; 0) mod r

The auxiliary function H is de�ned by cases.

� If t is an atom having a printname with character codes i1, ..., ik,

where for all j, 1 � j � k, ij 2 [0; 255], then

H(t ; h) = C1 � h+ Foldl(F; 0; hi1; : : : ; iki);

where

F (i; h) = G(16h+ i)

G(j) = (j mod 228)
 16(bj=228c):

(Note that for any application of F , i 2 [0; 255] and h 2 [0; 228 � 1],

and for any application of G, j 2 [0; 228 � 1].)

� If t is a �xnum, then

H(t ; h) = C2 � h+ (<�1[t] mod 232):

I'M NOT SURE I GOT THIS RIGHT AND I'D RATHER NOTMEN-

TION FIXNUMS AND BIGNUMS!!!

� If t is a bignum where the 32-bit words of its absolute value in little-

endian order is w1, ..., wk, then

H(t ; h) = C � Foldl(F; h; hw1; : : : ; wki) + k;

where

C = C2 if <�1[t] � 0;

= C3 if <�1[t] < 0.

F (w; h) = C2 � h+ w

� If t is [], then

H(t ; h) = C3 � h+ 1:

� If t is a binary consisting of the bytes i1, : : : , ik, then

H(t ; h) = C4 � Foldl(F; h; hi1; : : : ; ili) + k;

where

l = min(k; 15)

F (i; h) = C1 � h+ i:

February 9, 1999 { 19 : 09 DRAFT (0.7) 233

� If t is a PID, then

H(t ; h) = C5 � h+MagicPid(t):

� If t is a port or a ref, then

H(t ; h) = C9 � h+MagicPortRef(t):

� If t is a oat represented by the two unsigned 32-bit quantities w1

and w2, then (THIS IS NOT VERY PORTABLE!!!)

H(t ; h) = C6 � h+ (w1
w2):

� If t is a term [t1,...,tk|tk+1], then

H(t ; h) = C8 �H(tk+1;Foldl(H;h; ht1; : : : ; tki)):

� If t is a tuple {t1,...,tk}, then

H(t ; h) = C9 � Foldl(H;h; ht1; : : : ; tki) + k:

234 DRAFT (0.7) February 9, 1999 { 19 : 09

Appendix D

The external term format

The external term format is a representation of any Erlang term as a

sequence of bytes. It is used as part of the Erlang distribution protocol

but can also be accessed explicitly through the BIFs binary_to_term/1

(x13.4.3) and term_to_binary/1 (x13.4.8),in which a sequence of bytes is

represented as a binary.

The version of the external term format described here is 4.7. It can

be recognized by the sequence of bytes beginning with a byte 131. Future

versions of the external term format that are not compatible with version

4.7 must begin the sequence of bytes di�erently.

We will describe the external term format as a function TermRep4:7 that

given an Erlang term returns a sequence of bytes. We use a mathematical

notation rather than Erlang function declarations, although it would not

be di�cult to transform our function de�nitions to an Erlang program

that returns a list of bytes.

D.1 Context

The transformation from a term to a sequence of bytes is context-dependent.

We assume that we can access the name of the node on which a term t

resides.

There is also an atom table that has 256 rows with keys 0 to 255, each

of which has an Erlang atom as value. Its purpose is to reduce the com-

munication when terms are being transmitted between two nodes (although

it would be possible to use an atom table also, for example, when writing

terms to a �le). The idea is that every node has one atom table for each of

its friends (x11). Two nodes that are friends, say N1 and N2, agree to ensure

that N1's atom table for N2 (i.e., atom_tables[N1](N2), cf. x11.7.2) will have
the same contents as N2's atom table for N1 (i.e., atom_tables[N2](N1)).

When an atom A is to be transmitted from node N1 to node N2, the

following happens at node N1. First a hash value I between 0 and 255 is

235

236 DRAFT (0.7) February 9, 1999 { 19 : 09

computed for A (cf. xC). Then row I of N1's atom table for N 2 is inspected.

If that row has A as value, then only I is transmitted to N 2 because it is

assumed that also N2's atom table for N1 has A as value for I . Otherwise

row I of N 1's atom table for N 2 is updated to contain A and the whole

printname of A is transmitted together with I to N2. Note that sequences

of bytes must be transformed back into terms at node N2 in the same order

as they were produced at node N1, for the atom tables to have the correct

contents at all times.

D.2 De�nitions

We will use the following auxiliary functions. When we write that something

is an error, it means that the transformation should fail.

� BE(k; i) (for Big Endian) is the sequence of bytes b1, : : : , bk such that

BigEndianValue(hb 1; : : : ; bki) is i. It is an error if i =2 [0; 256k � 1].

� BES(k; i) (for Big Endian Signed) is the sequence of bytes b1, : : : , bk

such that BigEndianSignedValue(hb 1; : : : ; bki) is i. It is an error if

i =2 [0; 256k � 1].

� ID(t), where t is a ref or a port, is the value of ID[t], which uniquely

identi�es the ref or port on the node on which it resides. If t is a PID,

ID(t) is the XXX least signi�cant bits of ID[t], cf. PS(t).

� FloatString(f) is a sequence of 31 bytes where the �rst 26 (if f is

nonnegative) or 27 (if f is negative) are the character codes of the

string produced by the ISO C printf facility given the format string

"%.20e" and the remaining 4 or 5 bytes are 0.

� CR(t), where t is a ref, PID or port, is the value of creation[t] (a

nonnegative integer), which distinguishes between di�erent invocations

of nodes with the same name. CR(t) must be in the range [0; 255].

� LE(k; i) (for Little Endian) is the unique sequence of bytes b1, : : : ,

bk such that LittleEndianValue(hb 1; : : : ; bki) is i. It is an error if

i =2 [0; 256k � 1].

� Log(k; i) is the base k logarithm of i rounded towards zero. It is an

error if i � 0.

� Node(t) is an atom that names the node on which the term t resides.

� PS(t), where t is a PID is ID[t] with the XXX least signi�cant bits

removed, cf. ID(t).

� SignBit(i) is 0 if i � 0 and 1 if i < 0.

February 9, 1999 { 19 : 09 DRAFT (0.7) 237

We write a sequence of bytes b1, : : : , bk as hb1; : : : ; bki. Juxtaposition

denotes concatenation, so

hb1; : : : ; bkihb01; : : : ; b0li = hb1; : : : ; bk; b01; : : : ; b0li:

D.3 The transformation

TermRep4:7(T) = h131iTR4:7(T)

The value of TR4:7(T) is de�ned by cases. When cases overlap, either

case could be used but the more speci�c case is preferred.

� If T is an integer in the range [0; 255], then

TR4:7(T) = h97i hT i:

� If T is an integer in the range [�231; 231 � 1] (but typically not in the

range [0; 255]), then

TR4:7(T) = h98iBES(4; T):

� If T is an integer in the range [�(256255�1); 256255�1] (but typically

not in the range [�231; 231 � 1]), then

TR4:7(T) = h110; l;SignBit(t)iLittleEndian(l; T);

where l = Log(256; jT j) + 1.

� If T is an integer in the range [�(256232�1 � 1); 2562
32
�1 � 1] (but

typically not in the range [�(256255 � 1); 256255 � 1]), then

TR4:7(T) = h111iBE(4; l) hSignBit(T)iLittleEndian(l; jT j);

where l = Log(256; jT j) + 1.

� If T is a oat, then

TR4:7(T) = h99i;FloatString(T):

� If T is an atom where the printname consists of k characters with codes

i1, : : : , ik, such that k � 255 and for all j, 1 � j � k, i1 2 [0; 255],

then

TR4:7(T) = h100; 0; k; i1; : : : ; iki;

238 DRAFT (0.7) February 9, 1999 { 19 : 09

or if the atom is also to be stored in row p of the atom table (where

p 2 [0; 255]), then

TR4:7(T) = h78; p; 0; k; i1; : : : ; iki;

or if the atom is already stored in row p of the atom table (where

p 2 [0; 255]), then

TR4:7(T) = h67; pi:

� If T is a ref, then

TR4:7(T) = h101iTR4:7(Node(T))BE(4; ID(T)) hCR(T)i:

� If T is a port, then

TR4:7(T) = h102iTR4:7(Node(T))BE(4; ID(T)); hCR(T)i:

� If T is a PID, then

TR4:7(T) = h103iTR4:7(Node(T))BE(4; ID(T))BE(4;PS(T))hCR(T)i:

� If T is a tuple with elements T1, : : : , Tk, where k � 255, then

TR4:7(T) = h104; kiTR4:7(T 1) � � � TR4:7(Tk):

� If T is a tuple with elements T1, : : : , Tk, where k � 232 � 1, then

TR4:7(T) = h104iBE(4; k)TR4:7(T 1) � � � TR4:7(Tk):

� If T is [], then

TR4:7(T) = h106i:

� If T is a (typically nonempty) string of Latin-1 characters having codes

i1, : : : , ik, where k � 216 � 1, then

TR4:7(T) = h107iBE(2; k) hi1; : : : ; iki:

� If T is a term [T1, : : : ,Tk|Tk+1], where k � 232 � 1, (but typically

not a string covered by the previous case) then

TR4:7(T) = h108iBE(4; k)TR4:7(T 1) � � � TR4:7(Tk+1):

� If T is a binary with elements i1, : : : , ik, where k � 232 � 1, then

TR4:7(T) = h109iBE(4; k) hi1; : : : ; iki:

� Otherwise, it is an error.

The inverse transformation is obvious.

Appendix E

Grammar

E.1 The lexical grammar

ErlangUppercase:

the capital ASCII letters A{Z (\101 to \132)

ErlangLowercase:

the small ASCII letters a{z (\141 to \172)

ErlangLetter :

ErlangLowercase

ErlangUppercase

ErlangDigit :

the ASCII decimal digits 0{9 (\060 to \071)

LineTerminator :

the LF character (\linefeed" or \newline")

InputCharacter :

AsciiInputCharacter but not LF

Input :

InputElementsopt

InputElements :

InputElement

InputElements InputElement

InputElement :

WhiteSpace

Comment

Token

239

240 DRAFT (0.7) February 9, 1999 { 19 : 09

Token:

Separator

Keyword

Operator

IntegerLiteral

FloatLiteral

CharLiteral

StringLiteral

AtomLiteral Variable

UniversalPattern

WhiteSpace:

LineTerminator

ControlCharacter

the ASCII SP character, also known as \space"

ControlCharacter :

any ASCII control character (\000 to \037)

Comment :

% InputCharactersopt LineTerminator

InputCharacters :

InputCharacter

InputCharacters InputCharacter

Separator : one of

() { } [] . :

| || ; , ? -> #

Keyword : one of

after cond let when

begin end of

case fun query

catch if receive

Operator : one of

+ - * / div rem

or xor bor bxor bsl bsr and band

== /= =:= =/= < =< > >=

not bnot ++ -- = ! <-

February 9, 1999 { 19 : 09 DRAFT (0.7) 241

EscapeSequence:

\ b % \008: backspace BS

\ d % \177: delete DEL

\ e % \033: escape ESC

\ f % \014: form feed FF

\ n % \012: linefeed LF

\ r % \015: carriage return CR

\ s % \040: space SPC

\ t % \011: horizontal tab HT

\ v % \013: vertical tab VT

\ \ % \008: backslash \

ControlEscape % \000 to \037: 64 less than the char

\ ' % \047: single quote '

\ " % \042: double quote "

OctalEscape % \000 to \777: from octal value

ControlEscape:

\ ^ ControlName

ControlName:

any character between \100 and \137

OctalEscape:

\ OctalDigit

\ OctalDigit OctalDigit

\ OctalDigit OctalDigit OctalDigit

OctalDigit : one of

0 1 2 3 4 5 6 7

IntegerLiteral :

DecimalLiteral

ExplicitRadixLiteral

DecimalLiteral :

Digits[10]

ExplicitRadixLiteral :

2 # Digits[2]

3 # Digits[3]

4 # Digits[4]

5 # Digits[5]

6 # Digits[6]

7 # Digits[7]

8 # Digits[8]

9 # Digits[9]

1 0 # Digits[10]

1 1 # Digits[11]

1 2 # Digits[12]

1 3 # Digits[13]

1 4 # Digits[14]

1 5 # Digits[15]

1 6 # Digits[16]

242 DRAFT (0.7) February 9, 1999 { 19 : 09

Digits[k]:

Digit[k]

Digits[k] Digit[k]

Digit[k]: one of the �rst k of

0 1 2 3 4 5 6 7 8 9 Aa Bb Cc Dd Ee Ff

FloatLiteral :

DecimalLiteral . DecimalLiteral ExponentPartopt

ExponentPart :

ExponentIndicator Signopt DecimalLiteral

Sign: one of

+ -

ExponentIndicator : one of

E e

CharLiteral :

$ CharLiteralChar

CharLiteralChar :

InputCharacter

EscapeSequence

StringLiteral :

" StringCharactersopt "

StringCharacters :

StringCharacter

StringCharacters StringCharacter

StringCharacter :

InputCharacter but not ControlCharacter or \ or "

EscapeSequence

AtomLiteral :

AtomLiteralChars but not a Keyword or Operator

' QuotedCharactersopt '

AtomLiteralChars :

ErlangLowercase NameCharsopt

NameChars :

NameChar

NameChars NameChar

NameChar :

ErlangLetter

ErlangDigit

@

_

QuotedCharacters :

QuotedCharacter

QuotedCharacters QuotedCharacter

February 9, 1999 { 19 : 09 DRAFT (0.7) 243

QuotedCharacter :

InputCharacter but not ControlCharacter or \ or '

EscapeSequence

Variable:

_ NameChars

ErlangUppercase NameCharsopt

UniversalPattern:

_

TerminatedTokens :

TokenSequencesopt

TokenSequences :

TokenSequence

TokenSequences TokenSequence

TokenSequence:

Tokens FullStop

Tokens :

Token

Tokens Token

FullStop:

. WhiteSpace

. Comment

E.2 The main grammar

ModuleDeclaration:

FileAttributesopt ModuleAttribute HeaderFormsopt ProgramFormsopt

FileAttributes :

FileAttribute

FileAttributes FileAttribute

ModuleAttribute:

- module (ModuleName) FullStop

ModuleName:

AtomLiteral

HeaderForms :

HeaderForm

HeaderForms HeaderForm

HeaderForm:

HeaderAttribute

AnywhereAttribute

244 DRAFT (0.7) February 9, 1999 { 19 : 09

HeaderAttribute:

ExportAttribute

ImportAttribute

CompileAttribute

WildAttribute

AnywhereAttribute:

FileAttribute

MacroDe�nition

RecordDeclaration

ExportAttribute:

- export (FunctionNameList) FullStop

FunctionNameList :

[FunctionNamesopt]

FunctionNames :

FunctionName

FunctionNames , FunctionName

FunctionName:

FunctionSymbol / Arity

FunctionSymbol :

AtomLiteral

Arity :

IntegerLiteral

ImportAttribute:

- import (ModuleName , FunctionNameList) FullStop

CompileAttribute:

- compile ([Termsopt]) FullStop

FileAttribute:

- file (StringLiteral , LineNumeral) FullStop

LineNumeral :

IntegerLiteral

WildAttribute:

- AtomLiteral (Term) FullStop

ProgramForms :

FunctionDeclaration

ProgramForms FunctionDeclaration

ProgramForms AnywhereAttribute

FunctionDeclaration:

FunctionClauses FullStop

FunctionClauses :

FunctionClause

FunctionClauses ; FunctionClause

February 9, 1999 { 19 : 09 DRAFT (0.7) 245

FunctionClause:

FunctionSymbol FunClause

RecordDeclaration:

- record (RecordType , RecordDeclTuple) FullStop

RecordDeclTuple:

{ RecordFieldDeclsopt }

RecordFieldDecls :

RecordFieldDecl

RecordFieldDecls , RecordFieldDecl

RecordFieldDecl :

RecordFieldName RecordFieldValueopt

Pattern:

AtomicLiteral (x6.19.2)

Variable (x3.16)

UniversalPattern (x3.17)

TuplePattern

RecordPattern

ListPattern

TuplePattern:

{ Patternsopt }

ListPattern:

[]

[Patterns ListPatternTailopt]

ListPatternTail :

| Pattern

Patterns :

Pattern

Patterns , Pattern

RecordPattern:

RecordType RecordPatternTuple

RecordType:

AtomLiteral

RecordPatternTuple:

{ RecordFieldPatternsopt }

RecordFieldPatterns :

RecordFieldPattern

RecordFieldPatterns , RecordFieldPattern

RecordFieldPattern:

RecordFieldName = Pattern

RecordFieldName:

AtomLiteral

246 DRAFT (0.7) February 9, 1999 { 19 : 09

Body :

Exprs

Exprs :

Expr

Exprs , Expr

Expr :

catch Expr

MatchExpr

MatchExpr :

Pattern = MatchExpr

SendExpr

SendExpr :

CompareExpr ! SendExpr

CompareExpr

CompareExpr :

ListConcExpr RelationalOp ListConcExpr

ListConcExpr EqualityOp ListConcExpr

ListConcExpr

RelationalOp: one of

< =< > >=

EqualityOp: one of

=:= =/= == /=

ListConcExpr :

AdditionShiftExpr ListConcOp ListConcExpr

AdditionShiftExpr

ListConcOp: one of

++ --

AdditionShiftExpr :

AdditionShiftExpr AdditionOp MultiplicationExpr

AdditionShiftExpr ShiftOp MultiplicationExpr

AdditionShiftExpr or MultiplicationExpr

AdditionShiftExpr xor MultiplicationExpr

MultiplicationExpr

AdditionOp: one of

+ -

bor bxor

ShiftOp: one of

bsl bsr

MultiplicationExpr :

MultiplicationExpr MultiplicationOp Pre�xOpExpr

MultiplicationExpr and Pre�xOpExpr

Pre�xOpExpr

February 9, 1999 { 19 : 09 DRAFT (0.7) 247

MultiplicationOp: one of

* /

div rem

band

Pre�xOpExpr :

Pre�xOp RecordExpr

RecordExpr

Pre�xOp: one of

+ -

bnot not

RecordExpr :

RecordExpropt # RecordType . RecordFieldName

RecordExpropt # RecordType RecordUpdateTuple

ApplicationExpr

RecordUpdateTuple:

{ RecordFieldUpdatesopt }

RecordFieldUpdates :

RecordFieldUpdate

RecordFieldUpdates , RecordFieldUpdate

RecordFieldUpdate:

RecordFieldName RecordFieldValue

RecordFieldValue:

= Expr

ApplicationExpr :

PrimaryExpr (Exprsopt)

PrimaryExpr : PrimaryExpr (Exprsopt)

PrimaryExpr

PrimaryExpr :

Variable

AtomicLiteral

TupleSkeleton

ListSkeleton

ListComprehension

BlockExpr

IfExpr

CaseExpr

ReceiveExpr

FunExpr

QueryExpr

ParenthesizedExpr

248 DRAFT (0.7) February 9, 1999 { 19 : 09

AtomicLiteral :

IntegerLiteral

FloatLiteral

CharLiteral

StringLiterals

AtomLiteral

StringLiterals :

StringLiteral

StringLiterals StringLiteral

TupleSkeleton:

{ Exprsopt }

ListSkeleton:

[]

[Exprs ListSkeletonTailopt]

ListSkeletonTail :

| Expr

ListComprehension:

[Expr || ListComprehensionExprs]

ListComprehensionExprs :

ListComprehensionExpr

ListComprehensionExprs , ListComprehensionExpr

ListComprehensionExpr :

Generator

Filter

Generator :

Pattern <- Expr

Filter :

Expr

BlockExpr :

begin Body end

IfExpr :

if IfClauses end

IfClauses :

IfClause

IfClauses ; IfClause

IfClause:

Guard ClauseBody

ClauseBody :

-> Body

CaseExpr :

case Expr of CrClauses end

February 9, 1999 { 19 : 09 DRAFT (0.7) 249

CrClauses :

CrClause

CrClauses ; CrClause

CrClause:

Pattern ClauseGuardopt ClauseBody

ClauseGuard :

when Guard

Guard :

Body

ReceiveExpr :

receive CrClauses end

receive CrClausesopt after Expr ClauseBody end

FunExpr :

fun FunctionArity

fun FunClauses end

FunClauses :

FunClause

FunClauses ; FunClause

FunClause:

(Patternsopt) ClauseGuardopt ClauseBody

QueryExpr :

query ListComprehension end

RecordExpr :

RecordExpr . RecordFieldName

ParenthesizedExpr :

(Expr)

Guard :

GuardTest

Guard , GuardTest

GuardTest :

true

GuardRecordTest

GuardRecognizer

GuardTermComparison

ParenthesizedGuardTest

GuardRecordTest :

record (GuardExpr , RecordType)

GuardRecognizer :

RecognizerBIF (GuardExpr)

RecognizerBIF :

AtomLiteral

250 DRAFT (0.7) February 9, 1999 { 19 : 09

GuardTermComparison:

GuardExpr RelationalOp GuardExpr

GuardExpr EqualityOp GuardExpr

ParenthesizedGuardTest :

(GuardTest)

GuardExpr :

GuardAdditionShiftExpr

GuardAdditionShiftExpr :

GuardAdditionShiftExpr AdditionOp GuardMultiplicationExpr

GuardAdditionShiftExpr ShiftOp GuardMultiplicationExpr

GuardMultiplicationExpr

GuardMultiplicationExpr :

GuardMultiplicationExpr MultiplicationOp GuardPre�xOpExpr

GuardPre�xOpExpr

GuardPre�xOpExpr :

Pre�xOp GuardApplicationExpr

GuardApplicationExpr

GuardApplicationExpr :

GuardBIF (GuardExprsopt)

GuardRecordExpr

GuardPrimaryExpr

GuardBIF :

AtomLiteral

GuardExprs :

GuardExpr

GuardExprs , GuardExpr

GuardRecordExpr :

GuardPrimaryExpropt # AtomLiteral . AtomLiteral

GuardPrimaryExpr :

Variable

AtomicLiteral

GuardListSkeleton

GuardTupleSkeleton

ParenthesizedGuardExpr

GuardListSkeleton:

[]

[GuardExprs GuardListSkeletonTailopt]

GuardListSkeletonTail :

| GuardExpr

GuardTupleSkeleton:

{ GuardExprsopt }

ParenthesizedGuardExpr :

(GuardExpr)

February 9, 1999 { 19 : 09 DRAFT (0.7) 251

E.3 The preprocessor grammar

Directive:

MacroDe�nition (x7.2.1)

MacroUnde�nition (x7.2.2)

IncludeDirective (x7.3)

IncludeLibDirective (x7.3)

IfdefDirective (x7.4)

IfndefDirective (x7.4)

ElseDirective (x7.4)

EndifDirective (x7.4)

MacroDe�nition:

- define (MacroName MacroParamsopt , MacroBody) FullStop

MacroName:

AtomLiteral

Variable

MacroParams :

(Variablesopt)

Variables :

Variable

Variables , Variable

MacroBody :

Tokens

MacroUnde�nition:

- undef (MacroName) FullStop

MacroApplication:

? MacroName

? MacroName (MacroArgumentsopt)

MacroArguments :

MacroArgument

MacroArguments , MacroArgument

MacroArgument :

BalancedExpr that is not one of , or)

BalancedExpr :

(BalancedExprs)

[BalancedExprs]

{ BalancedExprs }

begin BalancedExprs end

if BalancedExprs end

case BalancedExprs end

receive BalancedExprs end

query BalancedExprs end

OtherToken

BalancedExpr BalancedExpr

252 DRAFT (0.7) February 9, 1999 { 19 : 09

IncludeDirective:

- include (IncludeFileName) FullStop

IncludeLibDirective:

- include_lib (IncludeFileName) FullStop

IncludeFileName:

OneStringLiteral

IfdefDirective:

- ifdef (MacroName) FullStop

IfndefDirective:

- ifndef (MacroName) FullStop

ElseDirective:

- else FullStop

EndifDirective:

- endif FullStop

Index

! operator, 74{75

" character, 28

separator, 84{87

% character, 23

' character, 28

* operator, 80{82

+ operator, 78{80, 82{84

++ operator, 76{77

- operator, 78{80, 82{84

-- operator, 76{77

.erl �le name extension, 118

/ operator, 80{82

/= operator, 75{76

< operator, 75{76

= operator, 73{74

=/= operator, 75{76

=:= operator, 75{76

=< operator, 75{76

== operator, 75{76

> operator, 75{76

>= operator, 75{76

@ character, 143

\ character, see escapes, character

_ character, 30

, 231
d�eS , 47{48
�, 4
;, 55

�, 4
b�cS , 47{48
\, 4
), 55

�, 4
[, 4
. character, 30

[�; �], 48
[�; �), 48

abs/1 BIF, 167{168

acos/1 function of math library,

212

AdditionOp, 78, 246

AdditionShiftExpr, 78, 246

additive operators, 78{80

Aho, Alfred V., 6

and operator, 80{82

ANSI X3.4, see ASCII

anywhere attribute, 118

AnywhereAttribute, 118, 244

application

in OTP sense, 10

of a function, see function, ap-

plication of

ApplicationExpr, 88, 247

applied occurrence, see variable, ap-

plied occurrence

apply/2 BIF, 183{184

apply/3 BIF, 184

apply_lambda/2 reserved, 210

argument

evaluation of, see evaluation,

of arguments

of a function application, 10

arithmetic

exceptional values, 47

oat operations, see oat, arith-

metic operations

integer operations, see integer,

arithmetic operations

noti�cation, 55

Arity, 119, 244

253

254 DRAFT (0.7) February 9, 1999 { 19 : 09

arity of a function, see function,

arity

Armstrong, Joe, 1

ASCII, 10, 19

asin/1 function of math library,

212

association list, see list, associa-

tion

atan/1 function of math library,

212{213

atan2/2 function of math library,

213

atom

BIFs, 166{167

Boolean, 34

equality, 34

Erlang type, 34

interning, 34

literal, 28{29

printname, 29, 34

quoted, 28

table, see node, atom table

unquoted, 28

atom/1 BIF, 165{166

atom_tables node property, 148{

149, 235

atom_to_list/1 BIF, 166{167

atomic literal, 90{91

AtomicLiteral, 90, 247

AtomLiteral, 28, 242

AtomLiteralChars, 29, 242

B (the Booleans), 47

badarg exit cause, 165

badsig exit signal, 157{158

BalancedExpr, 110, 251

band operator, 80{82

begin expression, 95

BIF, 10{11

exit cause of, 165

guard, 165

recognizer, 105, 165{166

big-endian, 11

BigEndianSignedValue, 11

BigEndianValue, 11

bignum, see integer, bignum

binary, 11

BIFs, 173{176

Erlang type, 36

representation of compiled mod-

ule, 116

binary/1 BIF, 165{166

binary_to_list/1 BIF, 173

binary_to_list/3 BIF, 173{174

binary_to_term/1 BIF, 174, 235

binding, 59

binding occurrence, see variable,

binding occurrence

block expression, 95

BlockExpr, 95, 248

bnot operator, 82{84

Body, 71, 246

body, 12, 71{72

Boolean

AND, 82

complement, 84

negation, 84

OR, 80

XOR, 80

bor operator, 78{80

bounded, 48{49

bsl operator, 78{80

bsr operator, 78{80

built-in function, see BIF

bxor operator, 78{80

byte, 12, 36

call (a function), see function, call

case expression, 97{98

CaseExpr, 97, 248

catch expression, 61, 72{73

cause

for BIF exit, see BIF, exit cause

ceilingS , 47{48

character, 40

literal, 27{28

subset of integer, 35

CharLiteral, 27, 242

February 9, 1999 { 19 : 09 DRAFT (0.7) 255

CharLiteralChar, 27, 242

check_process_code/2BIF, 180{

181

clause, 12

function, see function, clause

of case expression, 97{98

of fun expression, 69, 102

of if expression, 95{96

of receive expression, 98{101

ClauseBody, 96, 248

ClauseGuard, 97, 249

code

generation, see module, code

generation

part, see module, code part of

declaration

coerce , 41

toFloat , 41

coercion

to oat, 41

command port property, 160{161

Comment, 23, 240

comment, 23

communicating node, see node, com-

municating

communicating node property, 148

communication

between processes, 59

CompareExpr, 75, 246

comparison of terms, see term, com-

parison

compilation, see module, compila-

tion

compile attribute, 120

compile-time

de�nition of, 12

error, 13

CompileAttribute, 120, 244

completion

abrupt, 10, 61, 185

normal, 16, 61

compound

term, see term, compound

type, see type, compound

concat_binary/1 BIF, 174{175

conditional compilation, 113{115

cons, 91{92

BIFs, 179{180

Erlang type, 39{40

constant/1 BIF, 165{166

context

input, 12, 60, 89

output, 12, 60

control character, 23, 240

not \naked", 28

ControlCharacter, 23, 240

ControlEscape, 25, 241

ControlName, 25, 241

conversion

arithmetic, 41, 54

cos/1 function of math library, 213{

214

cosh/1 function of math library,

214

count_in port property, 162

count_out port property, 162

CrClause, 97, 249

CrClauses, 97, 249

creation

node property, 148

port property, 161

process property, 139

current_function process prop-

erty, 139{140

current_gc node operation, 149

current_reductions node opera-

tion, 151

current_runtime node operation,

152

current_wall_clock node opera-

tion, 152

cycle

scheduling, 138

date/0 BIF, 207

decimal point (of oat literal), 27

DecimalLiteral, 56

DecimalLiteral, 26, 241

256 DRAFT (0.7) February 9, 1999 { 19 : 09

define directive, 108{109

delete_module/1 BIF, 181

denorm , 51

dictionary process property, 140

Digit[k], 26, 242

Digits[k], 26, 242

Directive, 108, 251

disconnect_node/1 BIF, 196

distribution_port node property,

149

div operator, 80{82

driver, 154

E character, 27

e character, 27

e�ect, 12{13, 59, 60

element/2 BIF, 38, 176{177

elementary

term, see term, elementary

type, see type, elementary

elif (reserved) directive, 115

else directive, 108, 113{115

ElseDirective, 114, 252

emax , 51

emin, 51

endif directive, 108, 113{115

EndifDirective, 114, 252

entry_points node property, 149

environment, 13, 59, 89

input, 60

is a mapping, 5

output, 60

EPMD, 144{145, 148, 149

equality

arithmetic, 44, 76

exact, 43{44, 76

EqualityOp, 75, 246

equational operators, 75{76

erase/0 BIF, 193

erase/1 BIF, 193{194

Erlang, 13

4.7.3, 1

erlang:check_process_code/2BIF,

180{181

erlang:delete_module/1BIF, 181

erlang:disconnect_node/1BIF,

144, 145, 149, 196

erlang:get_cookie/0 BIF, 196

erlang:hash/2BIF, 207{208, 231

erlang:load_module/2BIF, 181{

182

erlang:module_loaded/1BIF, 183

erlang:preloaded/0 BIF, 182

erlang:purge_module/1BIF, 182{

183

erlang:set_cookie/2 BIF, 200

erlang:set_node/2BIF, 200{201

erlang:set_node/3 BIF, 201

ErlangDigit, 22, 239

ErlangLetter, 21, 239

ErlangLowercase, 21, 239

ErlangUppercase, 21, 239

error

compile-time, see compile-time,

error

run-time, 61, see run-time, er-

ror

error_handler

module, 67

process property, 140

escape

character, 24{25

EscapeSequence, 24, 240

evaluation

in some order, 62

normal mode of, 61, 72

of arguments, 66

order of, 62{63

exceptional values, see arithmetic,

exceptional values

exit, 184{185

reason, 13{14

signal, 14, 130, 132, 136{137,

140, 157, 160, 185

receiving, 132{133

sending, 132, 146

trapping, 132{133, 136{137,

142, 185

February 9, 1999 { 19 : 09 DRAFT (0.7) 257

exit/1 BIF, 61, 132, 184{185

exit/2 BIF, 132, 137, 185

exp/1 function of math library, 214

expiry

of receive expression, 98{101,

134

ExplicitRadixLiteral, 57

ExplicitRadixLiteral, 26, 241

exponent (of oat literal), 27

ExponentIndicator, 27, 242

ExponentPart, 27, 242

export attribute, 118{119

ExportAttribute, 119, 244

Expr, 72, 246

expression, 14

Exprs, 71, 246

extent, see term, life time of

of function call, see function,

extent of call

external format, see term, exter-

nal format

F , 50

F
�, 53

false, 47

false, 34

�eld (of record), see record, decla-

ration

�le

inclusion of, 113

file attribute, 117, 120{121

FileAttribute, 121, 244

FileAttributes, 117, 243

Filter, 93, 248

�lter (in list comprehension), 93{

94

�xnum, see integer, �xnum

�xnum, 48

oat, 14

addition, 78{79

arithmetic operations, 51{54

coercion to, see coercion, to

oat

conversion from numeral, 57{

58

conversion to numeral, 57

division, 81

Erlang type, 34{35

identity, 83

literal, 27

multiplication, 81

negation, 83

properties, 50{51

subtraction, 78{79

unary minus, 83

unary plus, 83

float/1 BIF, 165{166, 168{169

float_to_list/1 BIF, 169{170

oating-point number, see oat

oating overow, 47

FloatLiteral, 58

FloatLiteral, 27, 242

oorS , 47{48

free variable, see variable, free

friend (of a node)

seenode, friendship, 144

friends node property, 145, 146,

149

full stop, 30

FullStop, 31, 243

fun expression, 68{69, 101{102

FunClause, 101, 122, 249

FunClauses, 101, 249

function, 14

application, 10, 66{71, 183{184

expression, 88{89

local, 67, 88

of fun expression, 68{69

of named function, 68{69

remote, 67, 88

arity, 10, 122

BIFs, 183{193

call, 12, 66{71

clause, 122

declaration, 121{122

Erlang type, 39

exported, 118{119, 127

258 DRAFT (0.7) February 9, 1999 { 19 : 09

extent of call, 70{71

imported, 119{120

last call, 70

name, 14, 122

not a distinct type, 39

optimization of last call, see

last call optimization

reserved names, 210

strict, 14

symbol, 14

tail recursive, 125

use of, 71

function/1

recognizer, 166

function/1 BIF, 165{166

FunctionClause, 121, 245

FunctionClauses, 121, 244

FunctionDeclaration, 121, 244

FunctionName, 119, 244

FunctionNameList, 119, 244

FunctionNames, 119, 244

FunctionSymbol, 119, 244

FunExpr, 101, 249

garbage collection, see memory man-

agement

garbage_collection node prop-

erty, 149

Generator, 93, 248

generator (in list comprehension),

93{94

get/0 BIF, 194

get/1 BIF, 194{195

get_cookie/0 BIF, 145, 150, 196

get_keys/1 BIF, 195

grammar

lexical, 8, 239{243

main, 9, 243{250

not LALR(1), 9

notation, 6{8

preprocessor, 251{252

production, 6{8

syntactic category, 6

terminal, 6

token, 18, 22

group (of processes), see process,

group

group_leader process property, 140

group_leader/0BIF, 138, 140, 185

group_leader/2BIF, 139, 140, 186

Guard, 97, 103, 249

guard, 15, 103{106

BIF, see BIF, guard

expression, 103, 105{106

test, 103{105

GuardAdditionShiftExpr, 105, 250

GuardApplicationExpr, 106, 250

GuardBIF, 106, 250

GuardExpr, 105, 250

GuardExprs, 106, 250

GuardListSkeleton, 106, 250

GuardListSkeletonTail, 106, 250

GuardMultiplicationExpr, 105, 250

GuardPre�xOpExpr, 105, 250

GuardPrimaryExpr, 106, 250

GuardRecognizer, 104, 249

GuardRecordExpr, 106, 250

GuardRecordTest, 104, 249

GuardTermComparison, 104, 250

GuardTest, 104, 249

GuardTupleSkeleton, 106, 250

halt/0 BIF, 197

hash/2 BIF, 207{208, 231

hd/1 BIF, 179

header

attribute, 118

header part, see module, header

part of declaration

HeaderAttribute, 118, 244

HeaderForm, 118, 243

HeaderForms, 118, 243

heap_size process property, 140

high process priority, 138, 141

I, 48

Ib, 48

If , 48

February 9, 1999 { 19 : 09 DRAFT (0.7) 259

I/O term

contents of, 154{155

de�nition of, 154

ID

port property, 161

process property, 139

if

(reserved) directive, 115

expression, 95{96

IfClause, 95, 248

IfClauses, 95, 248

ifdef directive, 108, 113{115

IfdefDirective, 113, 252

IfExpr, 95, 248

ifndef directive, 108, 113{115

IfndefDirective, 113, 252

immediate subterm, see subterm,

immediate

implementation, see Erlang 4.7.3,

implementation of

import attribute, 67, 119{120

ImportAttribute, 119, 244

in port property, 161

in_format port property, 161

include directive, 108, 113

include_lib directive, 108, 113

IncludeDirective, 113, 252

IncludeFileName, 113, 252

IncludeLibDirective, 113, 252

initial_call process property, 139

Input, 22, 239

input element, 22{23

InputCharacter, 22, 239

InputCharacters, 23, 240

InputElement, 22, 239

InputElements, 22, 239

integer

addition, 78{79

arithmetic operations, 49{50

bignum, 11, 48

bitwise and, 82

bitwise complement, 83

bitwise negation, 83

bitwise or, 79

bitwise shift, 79{80

bitwise xor, 79

conversion from numeral, 56{

57

conversion to numeral, 56

division, 82

Erlang type, 34{35

�xnum, 14, 48

identity, 83

literal, 25{26

multiplication, 81

negation, 83

properties, 48

remainder, 82

subtraction, 78{79

unary minus, 83

unary plus, 83

integer/1 BIF, 165{166

integer overow, 47

integer_to_list/1 BIF, 170

IntegerLiteral, 25, 241

is_alive/0 BIF, 148, 197

ISO 8859-1, see Latin-1

ISO/IEC 10967-1, see LIA-1

ISO/IEC 10967-2, see LIA-2

ISO/IEC 8859-1, 15

isolated node, see node, isolated

key

in an association list, 41

of a table row, 5

Keyword, 24, 240

keyword, 24

kill

exit signal, 132, 137, 160, 185

killed exit signal, 137

L, 223

last call optimization, 71, 125

Latin-1, 15, 19

left-to-right evaluation, see evalu-

ation, left-to-right

length/1 BIF, 179

LIA-1, 47

260 DRAFT (0.7) February 9, 1999 { 19 : 09

LIA-2, 47

line terminator, 22

not \naked", 28

Linefeed character, 22, 239

LineNumeral, 121, 244

LineTerminator, 22, 239

link/1 BIF, 131, 140, 160, 186

linked

port property, 162

process property, 140

linking (processes and ports), see

process, linking

list, 15, 39{41

addition, 77

association, 5, 41

BIFs, 179{180

comprehension, 92{95

concatenation operators, 76{

77

di�erence, 77

literal, 40

of 2-tuples, see association list

skeleton, 91{92

list/1 BIF, 165{166

list_to_atom/1 BIF, 167

list_to_binary/1 BIF, 175

list_to_float/1 BIF, 170{171

list_to_integer/1 BIF, 171

list_to_pid/1 BIF, 186{187

list_to_tuple/1, 91

list_to_tuple/1 BIF, 177

ListComprehension, 93, 248

ListComprehensionExpr, 93, 248

ListComprehensionExprs, 93, 248

ListConcExpr, 76, 246

ListConcOp, 76, 246

ListPattern, 63, 245

ListPatternTail, 63, 245

ListSkeleton, 91, 248

ListSkeletonTail, 92, 248

literal, 15

atomic, see atomic literal

term denoted by, 18

little-endian, 15{16

LittleEndianValue, 16

load_module/2 BIF, 181{182

local function application, see func-

tion, local application

log/1 function of math library, 214{

215

log10/1 function of math library,

215

low process priority, 138, 141

macro, 16

de�nition, 108{109

expansion, 108, 110{112

initial set, 112

unde�nition, 109{110

MacroApplication, 110, 251

MacroArgument, 110, 251

MacroArguments, 110, 251

MacroBody, 109, 251

MacroDe�nition, 108, 251

MacroName, 108, 251

MacroParams, 109, 251

MacroUnde�nition, 109, 251

magic cookie (of node), see node,

magic cookie

magic_cookie node property, 145,

146, 149{150

magic_cookies node property, 146,

150

make_ref/0 BIF, 208

mapping, 4{5

match expression, 11, 73{74

MatchExpr, 73, 246

math:acos/1 function, 212

math:asin/1 function, 212

math:atan/1 function, 212{213

math:atan2/2 function, 213

math:cos/1 function, 213{214

math:cosh/1 function, 214

math:exp/1 function, 214

math:log/1 function, 214{215

math:log10/1 function, 215

math:pi/0 function, 215

math:pow/1 function, 216

February 9, 1999 { 19 : 09 DRAFT (0.7) 261

math:pow/2 function, 215

math:sin/1 function, 216

math:sinh/1 function, 216

math:sqrt/1 function, 216{217

math:tan/1 function, 217

math:tanh/1 function, 217

maxatomlength, 34

max�xnum, 48

maxint, 48

maxtuplesize, 38

memory management, 14{15, 36,

46

memory_in_use process property,

141

message, 16

arrival, 133{134

communication, 130, 133

order, 134{135

queue, 133, 134, 136, 141

reception, 134

reception of, 98{101

sending, 133

message_queue process property,

141

metavariable, see variable, meta-

min�xnum, 48

minint, 48

module, 16

applying parse transform to,

see parse transform

attributes of, 124

BIFs, 180{183

code generation, 116

code part of declaration, 117

compilation, 107

compiler options for, 120

declaration, 117{123

exported functions of, 118{119,

124, 127

header part of declaration, 117,

118

imported functions of, 119{120,

124

information about compilation,

124

loaded on a node, 127

loading, see module, making

current version

making version current, 127

making version old, 128

name, 117, 124

parsing, 115

preloaded on a node, 148

preprocessing of, 17, 107{115

purging old version, 128

reloading, see module, replac-

ing a version

replacing a version, 126

used by process, 128

version of, 126

current, 126

old, 126

module attribute, 117

module_info/0

function, 123

reserved, 210

module_info/1

function, 121, 124

reserved, 210

module_lambdas/4 reserved, 210

module_loaded/1 BIF, 183

module_table node property, 150

ModuleAttribute, 118, 243

ModuleDeclaration, 117, 243

ModuleName, 118, 243

modulo, 48{49

monitor_node/2, 150

monitor_node/2BIF, 147, 197{198

monitored_nodes node property,

150

monitoring

a node, see node, monitoring

MultiplicationExpr, 80, 246

MultiplicationOp, 81, 247

multiplicative operators, 80{82

mutual recursion, see recursion, mu-

tual

262 DRAFT (0.7) February 9, 1999 { 19 : 09

name node property, 148

NameChar, 29, 242

NameChars, 29, 242

nearestS , 47{48

net_kernel process name, 143{146,

149

Newline character, 22, 239

next_ref node operation, 151

nil

Erlang type, 39{40

nocookie magic cookie, 146

node, 16

alive, see node, communicat-

ing

atom table, 145, 148{149, 235{

236

BIFs, 196{202

changing state of, 13

communicating, 143, 148, 197,

200{202

communication, 37

friendship, 144{145, 149, 235

isolated, 143{144, 148

magic cookie, 144{146, 149{

150, 196, 200

module table, 150

monitored, 150

monitoring, 147, 197{198

name, 143, 148

process registry, see process,

registry

state, 147{152

termination, 197

node

port property, 161

process property, 139

node/0 BIF, 148, 198

node/1 BIF, 161, 199

nodes/0 BIF, 149, 199

nonode@nohost node name, 143,

148

noproc exit signal, 136

normal

exit signal, 132, 137, 160, 185

process priority, 138, 141

not operator, 82{84

now/0 BIF, 208{209

number

BIFs, 167{173

is integer or oat, 34{35

number/1 BIF, 165{166

OctalDigit, 25, 241

OctalEscape, 25, 241

Open Telecom Platform, see OTP

open_port/2 BIF, 155, 204

operand (of operator), 16, 17

Operator, 24, 240

operator, 24

binary, 16

pre�x, 16{17

unary, see operator, pre�x

opt (subscript), 7{8

or operator, 78{80

OTP, 17

out port property, 161

owner port property, 157, 159, 162{

163

p, 51

packeting port property, 158, 161

parenthesized expression, 103

ParenthesizedExpr, 103, 249

ParenthesizedGuardExpr, 106, 250

ParenthesizedGuardTest, 104, 250

parse transform, 115{116

parse tree

in parse transform, 115{116

input to code generation, 116

result of parsing, 115

standard representation, 223{

230

parse_transform/1 function, 115,

223

parsing, see module, parsing

Pattern, 63, 245

pattern, 17

de�nition of, 63{64

February 9, 1999 { 19 : 09 DRAFT (0.7) 263

universal, see universal pattern

pattern matching

coding of, 65{66

de�nition of, 64{65

in match expression, see match

expression

Patterns, 63, 245

pi/0 function of math library, 215

PID, 17, 74, 129

Erlang type, 36{37

pid/1 BIF, 165{166

pid_to_list/1 BIF, 187

port, 17, 74

BIFs, 204{207

binary mode, 156, 159

changing state of, 13

closing, 157, 160, 204{205

communication, 153{154

control, 157{158

direction, 153, 156

Erlang type, 37{38

identi�er, see port, identi�er

information, 205{206

linking, 153, 157, 160, 162, see

also process, linking

list mode, 156, 159

opening, 155{157, 204

ownership, 153, 159

packet mode, 156, 158{159

receiving from a, 158{159

sending to a, 158

state, 160{163

stream mode, 156, 158{159

port/1 BIF, 165{166

port_close/1 BIF, 160, 204{205

port_info/1 BIF, 205

port_info/2 BIF, 205{206

port_info/2 BIF, 161{163

ports node property, 150

ports/0 BIF, 150, 206{207

pow/1 function of math library, 216

pow/2 function of math library, 215

Pre�xOp, 83, 247

Pre�xOpExpr, 83, 247

preloaded node property, 148

preloaded/0 BIF, 148, 182

preprocessing, see module, prepro-

cessing of

primary expressions, 89{103

PrimaryExpr, 89, 247

printname, see atom, printname

priority (of a process), see process,

priority

priority process property, 141

process, 17, 36{37, 129{142

BIFs, 183{193

changing state of, 13

communication, 59, 130

completion, 131{132, see also

completion

dictionary, 140

BIFs, 193{196

ag, 187{188

group, 137{140, 185{186

identi�er, see PID

information, 188{190

initial call, 129

linking, 130{132, 136{137, 140,

186, 192{193

name, see process, registry

PID, 186{187

priority, 138, 141

registry, 74, 130, 141, 147, 151

BIFs, 202{204

scheduling, 137{138

spawning a, 129{130, 191{192

state, 139{142

status, 141{142, see process,

scheduling

using a module, 128

process_flag/2BIF, 140, 187{188

process_info/1 BIF, 188

process_info/2BIF, 141, 188{190

processes node property, 151

processes/0 BIF, 151, 190, 199{

200

processing mode, 107{108, 114{115

264 DRAFT (0.7) February 9, 1999 { 19 : 09

production, see grammar, produc-

tion

program, 117

form, 121{122

ProgramForms, 121, 244

programming

concurrent, 59

functional, 59

purge_module/1 BIF, 182{183

put/2 BIF, 195{196

query expression, 102

QueryExpr, 102, 249

QuotedCharacter, 29, 243

QuotedCharacters, 29, 242

R (the reals), 47, 50

r, 51

radix (of integer literal), 25

<[�], 55
<�1[�], 55
reason (for abrupt completion), 10,

61

receive expression, 98{101, 134,

137

ReceiveExpr, 98, 249

recognizer, see BIF, recognizer

RecognizerBIF, 104, 249

record

creation expression, 86

declaration, 122{123

Erlang type, 39

expression, 84{87

�eld access expression, 85

�eld index expression, 85

�eld name, 39

is a tuple, 39, 84

update expression, 86{87

record

attribute, 122{123

expression, see record/2

record/2

recognizer, 104{105, 166

reserved, 210

record/2 BIF, 165{166

record �eld , 84

record �eld
�1, 84

record_index/2 reserved, 210

record_info/2 reserved, 210

RecordDeclaration, 122, 245

RecordDeclTuple, 122, 245

RecordExpr, 84, 102, 247, 249

RecordFieldDecl, 122, 245

RecordFieldDecls, 122, 245

RecordFieldName, 64, 245

RecordFieldPattern, 64, 245

RecordFieldPatterns, 64, 245

RecordFieldUpdate, 84, 247

RecordFieldUpdates, 84, 247

RecordFieldValue, 84, 247

RecordPattern, 63, 245

RecordPatternTuple, 63, 245

RecordType, 63, 245

RecordUpdateTuple, 84, 247

recursion

mutual, see mutual recursion

reductions

node property, 151

process property, 141

ref, 17

creating new, 208

Erlang type, 35{36

ref_state node property, 151

reference, see ref

reference/1 BIF, 165{166

register/2 BIF, 141, 147, 202{

203

registered/0 BIF, 147, 203

registered_name process property,

141

registry node property, 147, 151

relational operators, 75{76

RelationalOp, 75, 246

rem operator, 80{82

remote function application, see func-

tion, remote application

Rep, 223{230

round/1 BIF, 172

February 9, 1999 { 19 : 09 DRAFT (0.7) 265

rounding function, 47, 54

run-time

de�nition of, 18

error, 13

runnable process status, 137, 141{

142

running process status, 137, 141{

142

runtime node property, 152

section:character-classes, 21

security, 146

self/0 BIF, 129, 190

send expression, 74{75, 133

SendExpr, 74, 246

Separator, 24, 240

separator, 24

set notation, 4

set_cookie/2 BIF, 146, 150, 200

set_node/2 BIF, 143, 200{201

set_node/3 BIF, 201

setelement/3 BIF, 38, 177{178

shift operators, 78{80

ShiftOp, 78, 246

Sign, 27, 242

signal

arrival, 136{137

communication, 130, 135, 145

order, 136

sending, 136

sin/1 function of math library, 216

sinh/1 function of math library,

216

size, 42

size/1 BIF, 175, 178

skeleton, 18

skipping mode, 107{108, 114{115

space character, 23, 240

spawn/3 BIF, 191

spawn/4 BIF, 191

spawn_link/3 BIF, 131, 191{192

spawn_link/4 BIF, 131, 192

split_binary/2 BIF, 175{176

sqrt/1 function of math library,

216{217

stack_trace process property, 141

statistics/1 BIF, 152, 201{202

status process property, 141{142

strict function, see function, strict

string, 40

is a list, 40

literal, 28

use instead of atom, 34

StringCharacter, 28, 242

StringCharacters, 28, 242

StringLiteral, 28, 242

StringLiterals, 90, 248

subterm

immediate, 33, 38, 39

sugar

syntactic, see syntactic sugar

syntactic

category, see grammar, syn-

tactic category

sugar, 18

table, 5

tan/1 function of math library, 217

tanh/1 function of math library,

217

term, 18

comparison, 44{45, 75{76, 105

compound, 33{34

elementary, 33

external format, 174, 176, 235{

238

generic, 46

hashing, 207{208, 231{233

identity, 45{46

life time of, 45{46

order, see term, comparison

size, 42

term_to_binary/1 BIF, 176, 235

terminal, see grammar, terminal

TerminatedTokens, 30, 243

test

266 DRAFT (0.7) February 9, 1999 { 19 : 09

comparison, see term, compar-

ison

parenthesized, 105

recognizer, see BIF, recognizer

record, see record/2

trivially true, see true expres-

sion

throw, 18

throw/1 BIF, 61, 62, 132, 209

time/0 BIF, 209{210

timer process property, 142

tl/1 BIF, 179{180

Token, 22, 239

token, 6, see grammar, token

Tokens, 31, 243

TokenSequence, 30, 243

TokenSequences, 30, 243

translation

lexical, 21

trap_exit process property, 142

trapping exit signal, see exit, sig-

nal, trapping

true, 47

true, 34

true expression, 104

trunc/1 BIF, 172{173

truncateS , 47{48

tuple, 18

BIFs, 176{178

Erlang type, 38{39

literal, 38

skeleton, 91

tuple/1 BIF, 165{166

tuple_to_list/1 BIF, 178

TuplePattern, 63, 245

TupleSkeleton, 91, 248

type, 19

compound, 33{34

elementary, 33

notation, 5

Ullman, Je�rey D., 6

unary operators, 82{84

undef directive, 108{110

unde�ned, 47

undefined_function/3 function,

67

underow, 47

Unicode, 19

universal pattern, 30

UniversalPattern, 30, 243

unlink/1 BIF, 131, 140, 160, 192{

193

unregister/1BIF, 141, 147, 203{

204

value

in an association list, 41

of a table row, 5

of an expression, 60

Variable, 30, 243

variable, 19, 29{30

applied occurrence, 61, 89

binding, 60

binding occurrence, 61

expression, 89{90

free, 14

meta-, 3

scope, 61

unbound, 60

Variables, 109, 251

Virding, Robert, 1

waiting process status, 137, 141{

142

wall_clock node property, 152

whereis/1 BIF, 141, 147, 204

white space, 23

not after $, 27

WhiteSpace, 23, 240

Wikstr�om, Claes, 1

wild attribute, 121

WildAttribute, 121, 244

Williams, Mike, 1

xor operator, 78{80

Z (the integers), 47, 48

