6 Elements for Realtime Programming

Introduction

In this final chapter, we will look at topics that are concerned with the issues of realtime
programming. We start by giving a description of realtime systems and by identifying their
special characteristics and requirements and proceed by examining how our three languages
allow a programmer to meet these requirements. This includes some considerations of “low
level” topics such as the impact of priorities (including priority inversion), interrupts, queuing
policies, scheduling, and dispatching mechanisms.

Following that, we will deal with the issue of time in a concurrent program: runtime
estimation, temporal arrangements for actions, periodic activities, and deadline specification
will be of paramount interest here.

The last part of this chapter gives an introduction to PEARL 90, the Process Experiment
Automation Real Time Language. This language was defined (and has been mainly used) in
Germany.

A note on terminology: Should we ever omit mentioning the fact that a realtime system
may well consist of several processors/computers, any statement concerning processors and
actors shall be preceded by for each processor, .

6.1 Description of Realtime Systems

“There are many interpretations of the exact nature of a realtime system; however, they
all have in common the notion of response time—the time taken for the system to generate
output from some associated input.” (Burns, 1989, [p. 2|)

(Laplante, 1993, [p. 10]) gives the following: “A realtime system is a system that must
satisfy explicit (bounded) response time constraints or risk severe consequences, including
failure.”

(Ben-Ari, 1990, [p. 164]) states: “Realtime programs are programs that must execute
within strict constraints on response time.”

Finally, the Oxford Dictionary of Computing gives the following definition: “Any system
in which the time at which output is produced is significant. This is usually because the
input corresponds to some movement in the physical world, and the output has to relate to
that same movement. The lag from input time to output time must be sufficiently small for
acceptable timeliness.”

We are not going to assess these definitions, but it should be clear that ¢ime is of crucial
importance in a realtime system. A realtime program is considered to be erroneous not
only if its result is logically incorrect, but also if this result (be it logically correct or not) is
delivered too late. In such systems, it would be better to not respond at all than to provide
too late a response!

From this point of view, it can be argued that virtually all systems are realtime since
we expect every system to react to input within a certain time. Even a text editor should
respond to commands quickly (say, within one second) or it will become a torture to work
with. However, the notion of failure can be used to discriminate realtime systems. Clearly,
the inability of a text editor to respond quickly to user input cannot be regarded as fatal
whereas for a nuclear reactor problem, failure to respond swiftly could result in a melt-down,
which is apparently a disaster.

Most of the researchers in the field of realtime systems, therefore, distinguish between
hard and soft realtime systems. “Hard realtime systems are those where it is absolutely
imperative that responses occur within the specified deadline. Soft realtime systems are those
where response times are important but the system will still function correctly if deadlines

101

are occasionally missed.” (Burns, 1989, [p. 2]) This chapter will be mainly concerned with
hard realtime elements.

The requirement that realtime systems be complex and of high performance is perhaps
a common misconception. Checking a nuclear reactor’s temperature (at given time rates)
may require only the simplest computations and “a system does not have to process data
in microseconds to be considered realtime; it must simply have response times that are
constrained and thus predictable.” (Laplante, 1993, [p. 11]) Of course, high efficiency is
advantageous for meeting deadlines and should not be despised.

Examples of hard realtime systems include: control systems for nuclear power plants,
avionics systems, navigation systems for spacecrafts or vessels, industrial production control
systems (assembly pipelines), airline reservation systems, bank transaction systems, simula-
tion systems, and the like.

A soft realtime system (besides, perhaps, the text editor), could be a network packet
router. It is more appropriate to delay the transmission of packets due to high traffic than
to ignore them completely.

“In a hard or soft realtime system, the computer is usually interfaced directly to some
physical equipment and is dedicated to monitoring or controlling the operations of that
equipment. A key feature of all these applications is the role of the computer as an infor-
mation processing component within a larger engineering system. It is for this reason that
such applications have become known as embedded computer systems.” (Burns, 1989, [p. 3])
The terms realtime and embedded can be used interchangeably.

6.2 Special Requirements for Realtime Systems

From the preceding discussion, it should be clear that the concept of time in realtime systems
is of utmost importance. We also note that virtually every realtime system is inherently
concurrent (which is why we address realtime elements in this paper). This stems from
the fact that a realtime system “will tend to consist of computers and several coexisting
external devices with which the computer programs must simultaneously interact.” (Burns,
1989, [p. 10])

The overall requirement is timeliness, especially deadline handling. The second major
requirement is “controlling concurrency”, i.e., to synchronize or coordinate actors (or, their
concurrent behaviour) in order to meet these stringent timing requirements. Clearly, a
realtime system will consist of many actors; some of which have hard deadlines while others
have none. We require that it be possible for actors having hard deadlines to be handled
in such a way that meeting these deadlines is possible. It is this handling that we would
like to refer to as “concurrency control” or, to use more appropriate terms, scheduling and
dispatching. In other words, after we have identified hard-deadline-actors and soft-deadline-
actors in our system, it must be possible for the hard-deadline-actors to execute in preference
to soft-deadline-actors in order to meet the hard deadlines.!

Before we actually go further into details, let us take a look at scheduling and dispatching.
For that purpose, consider a realtime system with several actors—for example, the controlling
system of a nuclear power plant: The scheduler of a realtime system is the component of the
realtime system that manages the state transitions of actors. Remember from Chapter 2 that
an actor, during its lifetime, can be in many states (although in only one at a given point
in time): running, runnable/ready, exiting, blocked, etc. Transitions between the individual
states were discussed in Chapter 2. We can imagine each state to have associated with it
a queue. This queue actually contains the actors of the respective state. For example, the
runnable queue, or ready queue, contains all actors that are ready to run, i.e., that could
immediately use a processor were one available. The queue of the blocked actors contains all

! Note that we do not require the functional behaviour of the system to depend upon the
order of the execution of actors. The timing behaviour—of course—is affected.

102

blocked actors, and so forth. Given an actor, should a transition from one state into another
be necessary, it is the scheduler that performs this transition; i.e., the scheduler takes the
actor from one queue and puts it into another.

When a blocked actor becomes ready, it is removed from the blocked queue and inserted
into the ready queue by the scheduler.

The dispatcher, then, is the component of a realtime system that is solely concerned with
the runnable queue and the processor(s). Each time it is appropriate for a new actor to be
dispatched to one of the processors, the dispatcher selects one of the actors from the ready
queue to become the currently running actor on that processor. The previously running
actor is removed from the processor (by the dispatcher) and placed into a particular queue
(by the scheduler), depending on its new state.? The dispatcher can thus be seen as a special
purpose scheduler removing an actor from the ready queue and inserting it into the running
queue, i.e., the processor. In essence, the dispatcher performs what is known as a context
switch.

“To distinguish scheduling programs from the input queue for entry into the computing
system from the problem of allocating the processor among the active processes already in
the system, the term scheduler is reserved for the former and dispatcher for the latter.”
(Cupper, 1997, [p. 1681])

It should be noted, however, that schedulers and dispatchers are not exclusively bound
to realtime systems. Any computer system (concurrent or not) has some kind of these
components; there are, however, special requirements imposed upon them in a realtime
system.

We can now reformulate the two major requirements for realtime systems: How can
actors be scheduled and dispatched so that deadlines can be met and how s it possible to
specify deadlines (and other time related things like periodic activities, temporal arrangements
for actions, and so on)?

“In a non-realtime system, it is acceptable for any task that is executable to use the
available processors. With realtime systems, control must be exercised over the use of
system resources.” (Burns, 1998, [p. 300]) This is because the system resources are scarce
and deadlines must be met.

The first step is to identify hard-deadline-actors in our system, their respective memory
and CPU-time requirements, and the collective workload of all actors that constitute the
system—this is clearly a design issue and thus beyond the scope of this paper. Then, after
having identified hard-deadline-actors, we must somehow be able to map the urgency of a
hard-deadline-actor onto the actor as it is represented in the program. That is, we must
give hard-deadline-actors priority over soft-deadline-actors. This is fairly simple since most
concurrent programming languages support the concept of actor priorities, which accomplish
exactly that. With these priorities, the programmer has the opportunity to state that one
actor should execute in preference to others. Priorities can be used to express urgency of
actors.

Unlike more complicated, however, is to ensure that the scheduler and the dispatcher
actually take advantage of the priorities given by the programmer. It is not enough to
specify urgency via priorities. The scheduling and dispatching algorithms must take priorities
into consideration and, respectively, schedule and dispatch actors with high priorities in
preference to actors with low priorities. This, at least, is a necessary prerequisite for hard-
deadline-actors (provided they are assigned high priorities) to be able to execute and thus
to meet their deadlines.

This, in essence, leads to the question as to how to ensure that actors with higher
priorities are scheduled and dispatched in preference to actors having a lower priority.

2 If this actor is still ready, then it is put back to the ready queue and it is said to have
been preempted by the (now) currently running actor.

103

In the following sections, we will consider how our three languages support the program-
mer in its strive to assure this and the timing issues mentioned above.3

6.3 Elements for Realtime Programming in Ada

The facilities Ada provides for the implementation of realtime systems are not part of the
core language but are defined in the optional Realtime Systems Annex, Annex D. According
to the Rationale for Ada 95, this is largely due to the fact that Ada is a general-purpose
programming language, which implies that not all the capabilities required to build appli-
cations can be sensibly put into the core language without prohibitively increasing its size
and hurting other application domains. It was mentioned earlier (in Chapter 1) that im-
plementing Annex D does not incur serious additional effort to the implementation of the
mandatory parts of the language.

Note that this section is written under the assumption that an Ada implementation
supports the Realtime Systems Annex.

6.3.1 Priorities, Scheduling and Dispatching

Setting priorities, both statically and dynamically, has already been discussed in Chapter 1
and will not be repeated here. We will, however, reiterate Ada’s notion of a task priority as
it is of utmost importance for the rest of this subsection: “A task priority is an integer value
that indicates a degree of urgency and is the basis for resolving competing demands of tasks
for resources. Unless otherwise specified, whenever tasks compete for processors or other
implementation-defined resources, the resources are allocated to the task with the highest
priority value. The base priority of a task is the priority with which it was created, or to
which it was later set by Dynamic_Priorities.Set_Priority (see D.5). At all times, a task
also has an active priority, which generally reflects its base priority as well as any priority
it inherits from other sources. Priority inheritance is the process by which the priority of a
task or other entity (e.g., a protected object; see D.3) is used in the evaluation of another
task’s active priority.” (ARM, 1995, [D.1[15]]) We thus see that Ada supports expressing the
urgency of tasks via priorities. “The task’s active priority is used when the task competes for
processors.” (ARM, 1995, [D.1[19]]) Similarly, the task’s active priority is used to determine
the task’s position in an entry queue if Priority Queuing (see below) is used.

Hence, priorities do have an impact on scheduling and dispatching; this influence will be
scrutinized in the following. We are now going to cite quite large portions of the Realtime
Systems Annex and intersperse them, when we feel it is appropriate, with our comments.
To provide for visual distinction, we use horizontal rules (as we did in Chapter 4) to mark
the beginning and the end of the quotations.

This clause describes the rules that determine which task is selected for execution when
more than one task is ready (see 9.2). The rules have two parts: the task dispatching model
(see D.2.1), and a specific task dispatching policy (see D.2.2).

The task dispatching model specifies preemptive scheduling, based on conceptual pri-
ority-ordered ready queues.

An alternative term often found in the literature is priority-based preemptive scheduling.

3 There are, of course, other requirements for realtime systems such as reliability, robust-
ness, fault tolerance, conformance to specification, and the like. But they apply to “normal”
programs as well and are not specific to realtime systems.

104

A task runs (that is, it becomes a running task) only when it is ready (see 9.2) and the
execution resources required by that task are available. Processors are allocated to tasks
based on each task’s active priority.

It is implementation defined whether, on a multiprocessor, a task that is waiting for
access to a protected object keeps its processor busy.

Task dispatching is the process by which one ready task is selected for execution on a
processor. This selection is done at certain points during the execution of a task called task
dispatching points.

An alternative notion for a task dispatching point is scheduling event.

A task reaches a task dispatching point whenever it becomes blocked, and whenever
it becomes ready. In addition, the completion of an accept_statement (see 9.5.2), and task
termination are task dispatching points for the executing task. Other task dispatching points
are defined throughout this Annex.

Task dispatching policies are specified in terms of conceptual ready queues, task states,
and task preemption. A ready queue is an ordered list of ready tasks. The first position
in a queue is called the head of the queue, and the last position is called the tail of the
queue. A task is ready if it is in a ready queue, or if it is running. Each processor has one
ready queue for each priority value. At any instant, each ready queue of a processor contains
exactly the set of tasks of that priority that are ready for execution on that processor, but
are not running on any processor; that is, those tasks that are ready, are not running on any
processor, and can be executed using that processor and other available resources. A task
can be on the ready queues of more than one processor.

Note that it is somewhat confusing to regard a task to be ready if it is in a ready queue or if it
is running. When a task is running it does not only have the potential to execute—it executes.
Note further that, since an Annex D complying implementation is required to support at
least 30 priority values, each processor has at least 30 distinct ready queues; one for each
priority value. However, as these ready queues are purely notional, it is immaterial for the
implementation whether there are distinct queues or whether there is just one queue for all
priority values (or even for all processors and all priority values). We can, then, imagine
this single queue to be priority-ordered. Of course, from the standpoint of comprehension,
distinct queues are clearly more beneficial.

Each processor also has one running task, which is the task currently being executed
by that processor. [If there is no task that actually needs a processor, then (ARM, 1995,
[D.11[4]]) applies: “For each processor, there is a conceptual idle task, which is always ready.
The base priority of the idle task is below System.Any Priority’First.”, cmnt. by author]
Whenever a task running on a processor reaches a task dispatching point, one task is selected
to run on that processor. The task selected is the one at the head of the highest priority
nonempty ready queue; this task is then removed from all ready queues to which it belongs.

Ada guarantees that for each processor, the currently running task is always one with a
priority higher than or equal to the priority of any other ready task (equal to applies if the
highest priority nonempty ready queue has more than one queued task). However, the full
evidence can only be seen after we have fully understood what actually constitutes a task

105

dispatching point. Some were given above but there are more to come. They will be defined
in due course.

In addition, we would like to remark that the fact that “this [the currently running,
cmnt. by author] task is removed from all ready queues to which it belongs” is slightly in
contrast to Annex D’s (previous) concept of regarding a task to be ready if it is in a ready
queue or if it is running (which we find, as stated above, is confusing). We, personally, prefer
to consider a task to be ready if it has the potential to run (but is not running due to the
lack of a processor) and to consider it running if it is executing on a processor. That is, a
task is ready if and only if it is in a ready queue. The mixing introduced by the Annex D
slightly complicates the whole manner. Oh, and if there is a task at the head of the highest
priority ready queue, does not that imply that this queue is nonempty?

A preemptible resource is a resource that while allocated to one task can be allocated
(temporarily) to another instead. Processors are preemptible resources. Access to a pro-
tected object (see 9.5.1) is a nonpreemptible resource. When a higher-priority task is dis-
patched to the processor, and the previously running task is placed on the appropriate ready
queue, the latter task is said to be preempted.

A new running task is also selected whenever there is a nonempty ready queue with a
higher priority than the priority of the running task, or when the task dispatching policy
requires a running task to go back to a ready queue. These are also task dispatching points.

We thus see that high priority tasks are capable of preempting low priority tasks. This
is clearly a fateful issue in realtime systems since it enables hard-deadline-actors (provided
they are assigned high enough a priority) to gain access to the processor(s) whenever they
need it—-clearly a prerequisite for their associated deadlines to be met. Of course, since the
number of distinct priority values is limited and the number of hard-deadline-actors may
well rise above that limit, we face a problem if there are too many hard-deadline-actors. It
is beyond the scope of the chapter (and the paper) to discuss this thoroughly, but it must
be understood that one of the preliminary steps in developing a realtime systems is what is
called schedulability analysis, i.e., to determine whether all hard-deadline-actors, given the
finite set of distinct priority values, can reach their deadlines. If this question cannot be
answered in the affirmative, then a change/refinement of the system’s design is necessary
(for example, employing additional processors, trimming the runtime systems, reducing I/
O, ...). This, in fact, is what we understand by careful application of realtime facilities. One
cannot design a realtime system without paying heed to this subject.

We now turn our attention to the task dispatching policy. Ada defines a standard task
dispatching policy, FIFO_Within_Priorities, which can be requested by using the following
pragma:

pragma Task Dispatching Policy(FIFO_Within Priorities);

The pragma is a configuration pragma—hence, it is valid for the whole program/partition.
Note that when FIFO_Within_Priorities is in effect, then the Ceiling_Locking policy (see below)
shall also be specified for the partition. The language defines only one task dispatching
policy, FIFO_Within_Priorities, but an implementation is allowed to define additional ones
(and is then, of course, required to document these policies).

A task dispatching policy specifies the details of task dispatching that are not covered by
the basic task dispatching model. These rules govern when tasks are inserted into and deleted
from the ready queues, and whether a task is inserted at the head or the tail of the queue for

106

its active priority. The task dispatching policy is specified by a Task_Dispatching Policy
configuration pragma. If no such pragma appears in any of the program units comprising a
partition, the task dispatching policy for that partition is unspecified.

To be precise, we are talking about scheduling. But since dispatching is a special form of
scheduling, the difference is only marginal. Note that unspecified is the same as arbitrary (it
must not be confused with implementation-defined, however).

The language defines only one task dispatching policy, FIFO_Within_Priorities; when this
policy is in effect, modifications to the ready queues occur only as follows:

e When a blocked task becomes ready, it is added at the tail of the ready queue
for its active priority.

e When the active priority of a ready task that is not running changes, or the
setting of its base priority takes effect, the task is removed from the ready queue
for its old active priority and is added at the tail of the ready queue for its new
active priority, except in the case where the active priority is lowered due to the
loss of inherited priority, in which case the task is added at the head of the ready
queue for its new active priority.

e When the setting of the base priority of a running task takes effect, the task is
added to the tail of the ready queue for its active priority.

This is true regardless of whether the priority actually changes. The setting of a task’s base
priority as a result of a call to Set_Priority does not always take effect immediately when
Set Priority is called. The effect is deferred while the affected task performs a protected
action. If the active priority of a running task is lowered due to loss of inherited priority
(as it is upon completion of a protected operation) and there is a ready (i.e., not running)
task of the same active priority, the running task continues to run (provided that there is no
higher priority task).

For convenience, we give a survey of the situations in which the priority of a task changes
(see (ARM, 1995, [D.1])):

o the base priority of a task is established when the task is created; the task being
created inherits the active priority of its activator

o during a rendezvous, the accepting task inherits the active priority of the caller
(but executes the rendezvous with its active priority, which is the maximum of
all inherited priorities [including its own base priority])

o during a protected action, the caller inherits the ceiling priority (to be discussed
shortly) of the target protected object

o a call to Ada.Dynamic_Priorities.Set_Priority sets the base priority of the
specified task

e When a task executes a delay_statement that does not result in blocking, it is
added to the tail of the ready queue for its active priority.

This is the reason why a delay 0.0 or delay until Clock cannot be optimized away!
Using such delays, it is possible for a task to yield the processor to another (ready) task of

107

equal priority.* Hence, other scheduling and dispatching mechanisms, most notably voluntary
round robin of equal priority tasks, can be easily achieved.

Each of the events specified above is a task dispatching point (see D.2.1).
In addition, when a task is preempted, it is added at the head of the ready queue for its
active priority.

The name FIFO_Within_Priorities should be clear now: tasks sharing the same priority are
queued in FIFO order.

Clearly, no one scheduling/dispatching policy can be acceptable to all users or suitable
for all applications. Ada addresses this issue by permitting other policies to be implemented
and used. Since it is not the intention of this chapter to provide a detailed introduction to
scheduling theory and alternative scheduling algorithms, the inclined reader is referred to
the rich set of literature pertinent to this subject.

Avoiding Priority Inversion—Ceiling Priorities

Clearly, the rules stated above try to ensure that for each processor, the currently running
task is always one with a priority higher than or equal to the priority of any other ready task
in the system. However, there are situations in which this attempt is thwarted, i.e., lower
priority tasks are preferred to higher priority tasks. Consider two examples:

Assume that task entry queues are FIFO ordered (this is the default in Ada, see below)
and suppose that a task T1 with priority 10 issues an entry call S.E (let S be a server task
with priority 8) which is queued. Now let T2 with priority 15 issue S.E and be queued as
well. S.E’s entry queue is thus given by Figure 6.1.

T2 T1

Prio 15 Prio 10

Figure 6.1: The entry queue of S.E

If S now reaches an accept statement corresponding to the entry E, then the rendezvous
is started with T1 since FIFO is in effect. Thus, a lower priority task is preferred to a higher
priority task. It can be argued that in the case of a rendezvous, the caller does not execute
on the processor (it voluntarily suspended itself), i.e., that it does not need the processor.
But since S executes on behalf of T1 with priority 10 and would execute on behalf of T2 with
priority 15 if T2 were first in the ready queue (note that this—as long as FIFO is in effect—
introduces a race condition!), the priority based preference of tasks is violated. One might
argue, however, that this example is a trifle peculiar since FIFO queuing contradicts entry
calls issued with priority, and that one should use priority queuing instead of FIFO. Granted,
but note that this might not be obvious at first glance, and Ada 83 (it is conceivable that
many systems have not yet been updated) offers only FIFO (which is why this is the default
in Ada 95). Anyway, this example once more illustrates that realtime facilities cannot be
applied rashly.

* in Java, the method java.lang.Thread.yield() does the same
5 We should add, for completeness, that a rendezvous is always executed with the priority

that is the maximum of the priorities of the caller and the callee. This, admittedly, is only
revealed by very careful study of (ARM, 1995, [D.1]).

108

The second example is taken from (Burns, 1998, [p. 280]): “Consider, for illustration,
a three-task system. The tasks have high, medium, and low priority, and will be identified
by the labels H, M, and L. Assume that H and L share data which is encapsulated in a
protected object, P. The following execution sequence is possible:

1. L is released, executes, and enters P.

2. M is released and preempts L while it is executing in P.
3. H is released and preempts M.
4

. H executes a call on P.

Now, H cannot gain access to P as L has the mutual exclusion lock. Hence, H is suspended.
The next highest priority task is M and, hence, M will continue. As a result, H must wait
for M to finish before it can execute again.” The situation is shown in Figure 6.2.

L
o o B executing
acquire o o
ok 1 | executing holding
of P lock
| o % preempted
| notrunnable
Z request £3F blocked while
5 lock waiting for lock
5
et of P
—é/ | | E:E:
o b
I I .“‘
o e
release o _acquire
lock L lock
of P Lo of P
==

Figure 6.2: Priority Inversion

Here, we have clearly the case of all the three tasks contending for the processor. There
is no “working on behalf of others”.

The phenomenon we came across in the two examples is called priority inversion as the
rules of priority based preference seem to have been inverted. As we have seen, priority
inversion bears the risk of preferring lower priority tasks to higher priority tasks and, thus,
has the potential of undermining the priority model and can, therefore, cause deadlines of
hard-deadline-actors to be missed. Hence, it is worth paying attention to it (and especially
to means that help prevent or, at least, limit the detrimental effect of priority inversion).

An implementation shall document:

e The maximum priority inversion a user task can experience due to activity of
the implementation (on behalf of lower priority tasks), and

109

o whether execution of a task can be preempted by the implementation processing
of delay expirations for lower priority tasks, and if so, for how long.

The first example can be ameliorated by having the entry queues be ordered by the
priority of the arriving calls (it is, of course, not possible, in general, to arrange for T2 to
have its call issued before T1). Note that this will be addressed below.

For the prevention/bounding of priority inversion, Ada integrates the concept of a ceil-
ing priority for a protected object into the general facilities provided by base and active
priorities. The ceiling priority of a protected object is an upper bound (hence the name)
on the active priority a task can have when it calls protected operations of that protected
object. Furthermore, the notion of priority inheritance is used to describe the semantics of
this mechanism. By requiring that a task’s active priority be raised to the ceiling priority of
a protected object, P, while the task executes a protected operation of P, priority inversion
can be effectively eliminated. This, of course, necessitates that P’s ceiling priority is higher
than the active priority of any task that calls a protected operation of P. Since, at runtime,
a check is made to verify this condition, and since a task that has an active priority higher
than P’s ceiling receives Program_Error upon calling one of P’s operations, we can indeed
say that for each task that executes a protected operation of P, the active priority of that
task is raised to P’s ceiling. The ceiling locking policy, which enables ceiling locking, can be
employed by using the following pragma:

pragma Locking Policy(Ceiling Locking);

The details follow:

This clause specifies the interactions between priority task scheduling and protected
object ceilings. This interaction is based on the concept of the ceiling priority of a protected
object.

A locking policy specifies the details of protected object locking. These rules specify
whether or not protected objects have priorities, and the relationships between these priori-
ties and task priorities. In addition, the policy specifies the state of a task when it executes
a protected action, and how its active priority is affected by the locking. The locking policy
is specified by a Locking_Policy pragma. For implementation-defined locking policies, the
effect of a Priority or Interrupt_Priority pragma on a protected object is implementa-
tion defined. If no Locking Policy pragma appears in any of the program units comprising
a partition, the locking policy for that partition, as well as the effect of specifying either

a Priority or Interrupt Priority pragma for a protected object, are implementation
defined.

Note that this is not unspecified as was the case when no task dispatching policy had been
requested.

There is one predefined locking policy, Ceiling_Locking; this policy is defined as follows:

o Every protected object has a ceiling priority, which is determined by either a
Priority or Interrupt_Priority pragma as defined in D.1. The ceiling priority
of a protected object (or ceiling, for short) is an upper bound on the active
priority a task can have when it calls protected operations of that protected
object.

e The expression of a Priority or Interrupt Priority pragma is evaluated as
part of the creation of the corresponding protected object and converted to the

110

subtype System.Any Priority or System.Interrupt_Priority, respectively.
The value of the expression is the ceiling priority of the corresponding protected
object.

e If an Interrupt Handler or Attach Handler pragma (see C.3.1) appears in a
protected_definition without an Interrupt_Priority pragma, the ceiling priority
of protected objects of that type is implementation defined, but in the range of
the subtype System.Interrupt_Priority.

e If no pragma Priority, Interrupt_Priority, Interrupt_Handler, or Attach-
_Handler is specified in the protected_definition, then the ceiling priority of the
corresponding protected object is System.Priority’Last.

o While a task executes a protected action, it inherits the ceiling priority of the
corresponding protected object.

Note that the task’s base priority is unaffected—its active priority is changed. And it is this
active priority that is used in all sorts of priority based contention. A couple of thoughts on
System.Any Priority vs. System.Interrupt_Priority:

subtype Any_Priority is Integer range <implementation-defined>;
subtype Priority is Any_Priority range

Any_Priority’First .. <implementation-defined>;
subtype Interrupt_Priority is Any_Priority range

Priority’Last + 1 .. Any_Priority’Last;

This approach ensures that task priorities and interrupt priorities are non-over-
lapping, i.e., a protected operation (of a protected object having an interrupt priority)
used as an interrupt handler is able, when called, to preempt any task. This seems
to be wise.

e When a task calls a protected operation, a check is made that its active priority is
not higher than the ceiling of the corresponding protected object; Program Error
is raised if this check fails.

We continue by citing the NOTES section of (ARM, 1995, [D.3]). These notes are not
mandatory but provide for further insight:

While a task executes in a protected action, it can be preempted only by tasks whose
active priorities are higher than the ceiling priority of the protected object (the task can only
loose the processor, not the mutual exclusion lock on the protected object, however [cmnt.
by author]).

If a protected object has a ceiling priority in the range of Interrupt_Priority, certain
interrupts are blocked while protected actions of that object execute. In the extreme, if the
ceiling is Interrupt_Priority’Last, all blockable interrupts are blocked during that time.

The ceiling priority of a protected object has to be in the Interrupt_Priority range if
one of its procedures is to be used as an interrupt handler (see C.3).

When specifying the ceiling of a protected object, one should choose a value that is at
least as high as the highest active priority at which tasks can be executing when they call
protected operations of that object. In determining this value, the following factors, which

111

can affect active priority, should be considered: the effect of Set_Priority, nested protected
operations, entry calls, task activation, and other implementation-defined factors.

Attaching a protected procedure whose ceiling is below the interrupt hardware priority
to an interrupt causes the execution of the program to be erroneous (see C.3.1).

On a single processor implementation, the ceiling priority rules guarantee that there is
no possibility of deadlock involving only protected subprograms (excluding the case where a
protected operation calls another protected operation on the same protected object) [this is
defined to be a bounded error as it is a potentially blocking operation, see Chapter 5, cmnt.
by author].

As with task dispatching policies, an implementation is allowed to define additional
implementation-defined locking schemes.

With these tools in hand, our simple three-task system will behave as follows (Burns,
1998, [p. 280]):

1. L is released, executes, and enters P; its priority is raised to that of H (at least).

2. M is released but does not execute as the priority of M is less than the current priority
of L.

3. H is released but does not execute as its priority is not higher than that of L at this
time.

4. L exists P and has its priority lowered.

5. H can now execute and will enter and leave P when required.

The situation is depicted in Figure 6.3.

L M
L B executing
acquire
lock L 7] executing holding
of P o lock
~~ preempted
= _ =
_release
~ lock . 1 notrunnable
of P acquire
lock @ blocked while
of P waiting for lock
release
lock
of P
74/
=

Figure 6.3: Ceiling Priority Inheritance

112

Note that by using FIFO_Within_Priorities, Ceiling_Locking, and priority ordered entry
queues,’ priority inversion can be avoided. FIFO_Within_Priorities guarantees that for pro-
cessor contention, one of the highest priority task is the winner in that competition (it is
the task at the head of the highest priority ready queue). Ceiling_Locking assures that a
task executing a protected operation s the highest priority task for the duration of that
operation (provided, of course, ceiling locking is applied with a ceiling priority as least as
high as the highest active priority of all other tasks in the system). Hence, we can revert to
FIFO_Within_Priorities. Last but not least, priority ordered entry queues provide for requests
to be serviced in priority order. It is this issue that we will focus our attention on in the
following subsubsection.

Entry Queuing Policies

There is no need for yet another motivation since we already pointed out why it might be
beneficial to have entry queues be ordered by a certain criterion.” For upward compatibility
with Ada 83, FIFO queuing (which was mandatory in Ada 83) is still the default queuing
policy in Ada 95. But alternative policies can be defined and employed.

Here are the facts:

This clause specifies a mechanism for a user to choose an entry queuing policy. It also
defines one such policy. Other policies are implementation defined.
The form of a pragma Queuing Policy is as follows:

pragma Queuing_Policy(policy_identifier) ;

The policy_identifier shall be either FIFO_Queuing, Priority_Queuing or an implementation-
defined identifier.

A Queuing Policy pragma is a configuration pragma.

A queuing policy governs the order in which tasks are queued for entry service, and
the order in which different entry queues are considered for service. The queuing policy is
specified by a Queuing_Policy pragma.

Two queuing policies, FIFO_Queuing and Priority_Queuing, are language defined. If no
Queuing Policy pragma appears in any of the program units comprising the partition, the
queuing policy for that partition is FIFO_Queuing. The rules for this policy are specified in
9.5.3 and 9.7.1.

Compare this to the cases of omitting the pragmas Task_Dispatching Policy and Lock-
ing Policy. In the former, the dispatching policy is unspecified (arbitrary) whereas in the
latter, locking is implementation-defined. Here, now, entry queuing is FIFO_Queuing, the
Ada 83 default. Additionally, this does not only affect queuing. It also means that the
choice of open alternatives of a selective accept is arbitrary (Ada 83 style).

The Priority_Queuing policy is defined as follows:

e The calls to an entry (including a member of an entry family) are queued in an
order consistent with the priorities of the calls. The priority of an entry call is

¢ remember that FIFO_Within_Priorities and Ceiling_Locking must be used in conjunction
" In addition, priority based scheduling and dispatching is facilitated by the use of priority

ordered entry queues, for example.

113

initialized from the active priority of the calling task at the time the call is made,
but can change later. Within the same priority, the order is consistent with the
calling (or requeuing, or priority setting) time (that is, a FIFO order).

Corresponding to FIFO_Within_Priorities for task scheduling and dispatching—this is reason-
able since, after all, we are dealing with queues as well here.

o After a call is first queued, changes to the active priority of a task do not affect
the priority of the call, unless the base priority of the task is set.

e When the base priority of a task is set (see D.5), if the task is blocked on an
entry call, and the call is queued, the priority of the call is updated to the new
active priority of the calling task. This causes the call to be removed from and
then reinserted in the queue at the new active priority.

e When more than one condition of an entry_barrier of a protected object becomes
True, and more than one of the respective queues is nonempty, the call with the
highest priority is selected. If more than one such call has the same priority, the
call that is queued on the entry whose declaration is first in textual order in the
protected_definition is selected. For members of the same entry family, the one
with the lower family index is selected.

o If the expiration time of two or more open delay_alternatives is the same and
no other accept_alternatives are open, the sequence_of_statements of the delay-
_alternative that is first in textual order in the selective_accept is executed.

e When more than one alternative of a selective_accept is open and has queued calls,
an alternative whose queue has the highest-priority call at its head is selected. If
two or more open alternatives have equal-priority queued calls, then a call on the
entry in the accept_alternative that is first in textual order in the selective_accept
is selected.

The last three items are essentially the heart of the priority queuing as they provide for
what is desired by the developer using this queuing scheme. Note that the issue regarding
the textual order could be understood as FWFS—first written first served—thus fitting
smoothly into the FIFO_Within_Priorities and the like concepts.

As with the other policies, an implementation is permitted to define additional queuing
disciplines.

Neglected Topics

We have identified, at the beginning of this chapter, two major concerns that are pertinent to
realtime systems: meeting deadlines (including specifying such) and (as a prerequisite for the
former) scheduling and dispatching. There are, of course, other important aspects such as
reliability, fault tolerance, robustness, efficiency, careful design, etc. We have not addressed
them here since they are not exclusively bound to realtime systems. They are important
for “normal” programs, too. We, furthermore, believe that the general (not necessarily
concurrent) facilities of the Ada programming language are adequate for coping with these
requirements.

Note that we are done now with scheduling and dispatching. The next subsection will
deal with deadline-related issues and for the remainder of this subsubsection, we briefly

114

discuss further provisions made by the Realtime Systems Annex of Ada. For complete
reference, we encourage the reader to consult that annex.

Interrupts: To be precise, Ada’s interrupt handling facilities are not defined in Annex D
but in Annex C, Systems Programming. But since an Annex D complying implementation
is required to support Annex C as well, this is immaterial here. Interrupt handling, though
not solely bound to realtime systems, is of significant importance since a realtime system will
often consist of external devices, such as sensors, connected to computers. These devices,
then, typically create interrupts upon which the realtime systems is required to react. Task
entries and protected procedures can be used as interrupt handlers, they can be given a
special interrupt priority (which is higher than any active priority of a “normal” task), and
implementations are encouraged to execute the code of the interrupt handler by utilizing
special hardware features (such as special call protocols for interrupts). It is beyond the
scope of this chapter (even of this paper) to discuss Ada’s interrupt handling facilities in full
detail. The inclined reader is referred to Annex C.

Tasking Restrictions: These define restrictions (via the pragma Restrictions) that can
be used to construct highly efficient tailored tasking runtime systems. For example, if a
realtime system requires the number of tasks to be limited, the restriction Max_Tasks can be
used, or if no abort statements are to be allowed, No_Abort_Statements can be used. More
restrictions are defined in Annex D.

Synchronous/Asynchronous Task Control: This was discussed in Chapter 5.

Dynamic Priorities: These were briefly mentioned in Chapter 1.

6.3.2 Deadlines and Other Time -Related Issues

It has been mentioned several times already in this chapter that the concept of time is
of paramount importance in realtime systems. We will, in this subsection, consider the
following topics and analyze how Ada supports them:

o Access to a clock so that the passage of time can be measured

Delaying a task until some future time

Timeouts

Temporal arrangements

Runtime estimation (not a priori as part of the schedulability analysis but by asking the
runtime system to do so (i.e., at runtime))

Access to a clock: Ada gives access to a hardware clock “by providing two packages.
The main section of the ARM (Ada Reference Manual) defines a compulsory library pack-
age Ada.Calendar that provides an abstraction for a “wall clock” time that recognises leap
years, leap seconds, and other adjustments. In the Real-Time Systems Annex, a second rep-
resentation is given that defines a monotonic (that is, non-decreasing) regular clock (package
Ada.Real_Time). Both these representations should map down to the same hardware clock
but cater for different application needs. ... The current time is returned by the func-
tion Ada.Calendar.Clock. ... In addition, some arithmetic and boolean operations are
specified.” (Burns, 1998, [p. 34]) The package Ada.Real_Time is structurally equivalent to
Ada.Calendar; it defines additional requirements for the realtime clock such as: there shall
be no backward jumps, the amount of time that is allowed to elapse during which consecutive
calls to Ada.Real Time.Clock deliver the same result (the “tick”, which is required to be
no greater than one millisecond), or the range of time supported—at least fifty years. For a
more complete description, we refer the reader to the Realtime Systems Annex.

115

Note that when doing time measurements of the form

—-- assuming Ada.Calendar is with’ed and use’d
declare
Before, After : Time;
Elapsed : Duration;
begin
Before := Clock;
Action;
After := Clock;
Elapsed := After - Before;
end;

Elapsed will hold the amount of time it took Action to execute plus the amount of time (if
any) the executing task was descheduled between the calls to Clock. That is, we can only
measure the “wall time” that has elapsed between the calls to Clock.

Delaying a task: This can be achieved by using a delay statement (either a relative or
an absolute one). Executing a delay simply blocks the task for the specified duration or, in
case an absolute delay is employed, until the future time specified. It must be understood,
however, that delay is only an approximate time construct. It only guarantees that the
executing task, T, will be delayed for (or until) at least the time given. For when a higher
priority task, S, is executing at the time of the wakeup, S takes precedence (remember,
expiration of a delay is a scheduling event/task dispatching point) over the woken up task
T. “The task executing a delay_statement is blocked until the expiration time is reached, at
which point it becomes ready again.” (ARM, 1995, [9.6]) Thus, T is only inserted into the
ready queue for its active priority (by the scheduler)—there is no guarantee for it to be
actually dispatched to a processor. Therefore, the execution of T’s body might be stalled
considerably longer than intended. The task is ready (it is no longer blocked since the delay
has expired) but since it is inserted at the tail of its ready queue and since there might be
other tasks “in front of” it, it might not be able to get hold of a processor immediately.
Given this, T becomes overdue. An overdue task misses at least one of its deadlines. The
delay cannot be less than the expiration time specified, however.

“Real-time applications require that a task of sufficiently high priority be able to delay
itself for a period of time with the assurance that it will resume execution immediately
when the delay expires—i.e., that the duration of the interval between the start of the delay
and the time the task resumes execution must be equal to the requested duration, within a
predictable tolerance.

[RM95 9.6] only requires that execution of the task that executes the delay be blocked
for at least the duration specified. It is not, in general, possible to require an upper bound
on the duration of the execution of any statement, due to possible interleaved operations of
other tasks on the same processor. However, it is both possible and necessary to have an
upper bound on the duration of the interval between the start of a delay and the time the
expiration of the delay is detected. It is also possible to guarantee that if the task whose
delay has expired has higher priority than all the other tasks, it will resume execution as
soon as the expiration of the delay is detected.” (Rat, 1995, [D.9])

Note that an implementation is required (ARM, 1995, [D.9[12, 13]]) to document, among
other things,

e An upper bound on the lateness of a delay_relative_statement, for a positive value
of the delay expression, in a situation where the task has sufficient priority to
preempt the processor as soon as it becomes ready, and does not need to wait
for any other execution resources. The upper bound is expressed as a function

116

of the value of the delay expression. The lateness is obtained by subtracting the
value of the delay expression from the actual duration. The actual duration is
measured from a point immediately before a task executes the delay_statement to
a point immediately after the task resumes execution following this statement.

e An upper bound on the lateness of a delay_until_statement, in a situation where
the value of the requested expiration time is after the time the task begins exe-
cuting the statement, the task has sufficient priority to preempt the processor as
soon as it becomes ready, and it does not need to wait for any other execution
resources. The upper bound is expressed as a function of the difference between
the requested expiration time and the clock value at the time the statement be-
gins execution. The lateness of a delay_until_statement is obtained by subtracting
the requested expiration time from the real time that the task resumes execution
following this statement.

Given the bare definition of the verb preempt, “preempt the processor” is possible. But,
in our context, we would rather think of “one actor preempting another”.

Of course, if the woken up task does not have sufficient priority and there is a higher
priority task competing for the processor, the documented lateness is of little value. The
programmer, therefore, has to ensure that hard-deadline-actors are appropriately represented
(i.e., they must bear a distinctively high priority).

But even this is not entirely foolproof. We can, of course, imagine a “realtime system” in
which the number of hard-deadline-actors exceeds the number of processors available (we can,
in fact, restrict ourselves to a single processor). Now suppose that all hard-deadline-actors
are designed by careful application of realtime facilities. Since the number of these actors is
conceivably larger than the range of priority values supported, it is inevitable that several
(perhaps all) tasks share the same priority (let it be sufficiently high). Now assume that all
hard-deadline-actors wake up at once. Since there is only one processor (or, there are too
few), contention results. Since several hard-deadline-actors have the same highest priority,
competition is amongst them. As the winner of this competition is uniquely identified (it is
the task at the head of the highest priority ready queue, which, of course, is unique), exactly
one task is dispatched. All other tasks are held in the ready queue and are thus delayed longer
than intended. This, albeit somewhat contrived, discussion can clearly be generalized to any
positive number of processors less than the number of hard-deadline-actors. It indicates that
the one of the preliminary steps in developing a realtime system has not been carried out
with due attention—a priori schedulability analysis. If we cannot guarantee schedulability,
we must change the system design. After all, we are possibly talking about people’s lives.
This is yet another indication for the notorious complications that arise in connection with
realtime systems design and implementation. Among researchers engaged in the study of
realtime systems, it is unanimously agreed that it is the stringent time constraints that set
realtime system apart from “normal” computation systems.

Timeouts: Timeouts are used so that the non-occurrence of some event can be recognized
and reacted upon. As an example, reconsider the DBMS server from Chapter 4 which was to
reorganize the database if no requests were arriving within a certain period of time. Timeouts
in Ada are programmed by using a select statement with a delay alternative (or else part,
for immediate timeout) and a timed (or conditional) entry call for, respectively, a server and
a client. The semantics and examples were already given in Chapter 4.

Temporal arrangements: By temporal arrangements, we mean that it be possible to
attach timing constraints to an actor. For example, when an actor is being defined, it should
be possible to state (as part of the definition) timing requirements such as start time/
event, periodicity, the deadline—the time by which this actor’s execution must be finished,
minimum and maximum delay before start, maximum execution time, and the like. This list

117

is based on that given in (Burns, 1989, [p. 334]). A notion that has emerged in the literature
for an actor with associated time constraints is temporal scope. “Such scopes identify a
collection of statements with an associated timing constraint.” (Burns, 1996, [p. 378]) An
apparent benefit of a temporal scope is that a realtime systems developer is given assistance
in the process of white bor testing. This process might then even be done using tool support.

By taking into account that an actor has a deadline, the scheduler can, although not
in the general case, prefer this actor by, for example, increasing its priority as its deadline
becomes closer and closer. This is called shortest deadline first scheduling. Rate monotonic
scheduling could be used to adjust an actor’s priority based on its periodicity.

Unfortunately, Ada does not support any deadline specification or any other temporal
arrangement specification (by the way, none of our languages provides support for this; but
PEARL does, see the last section of this chapter). A task (type) definition does not enable a
programmer to state any timing constraints for the task being defined. Hence, the scheduler
cannot be aware of deadlines at all!

The good news is that they can be quite easily programmed using Ada’s facilities. But be
aware, deadline handling is generally (i.e., whether or not temporal scopes are supported by
a programming language) complicated by the risk of actors being delayed for too long. Also,
we now thrust into the topic of expressive power versus ease of use of language provided
constructs. “If a language does not support a particular notion or concept, those that use
the language cannot apply that notion and may even be totally unaware of its existence”
outside the language. (Burns, 1998, [p. 21]) If such a concept is needed, then workarounds
must be used to achieve expressive power but often at the expense of ease of use.

Following is a list of how the various timing requirements can be effectively simulated in
Ada.

Start time/event: This is somewhat complicated be the fact that Ada tasks are started
by the scope rules of the language (see Chapter 1) and the programmer is given only indirect
control. However, to simulate, a task is started as usual and then waits for either of the
conditions. A delay can be used for the “start” time and an accept statement for an “event”.
To wait for either of these two conditions, a selective accept with a delay alternative is used:

select

accept Start_Event;
or

delay until Start_Time;
end select;

This code fragment is sensibly put at the very beginning of a task body. Another possibility
is to create actors dynamically (using access values and the new allocator). As we recall from
Chapter 1, such actors are activated immediately (more precisely, before the access value is
returned). The programmer is thus given more control. A bit of a problem might be the fact
that creation and start are interwoven (what if creating an actor takes too long an amount
of time; what if the runtime system is, owing to a requirement in the specification of the
realtime system, not allowed to created tasks dynamically, ...). For an absolute start time,
the “delay until” is clearly more beneficial (Ada 83 had been much criticized for its lack of
an absolute delay since using a relative delay, in this case, is cumbersome).

Periodic tasks/activities: The naive approach

Period : constant Duration := ...;

loop
Some_Action;
delay Period;
end loop;

118

is not adequate for Some_Action to be executed every Period seconds. First, the time to
execute Some_Action is neglected and second, we have not considered the time it takes to
execute the loop jump and to evaluate Period. As a consequence, between two consecutive
executions of Some_Action, there might be a delay considerably longer than intended. It
would be appropriate to suspend the task only for the “rest” of the period:

declare
Next : Time;
Period : constant Duration := ...;

begin
Next := Clock + Period;
loop
Some_Action;
delay Next - Clock;
Next := Next + Period;
end loop;
end;

compensates for that but is not entirely satisfactory as it introduces a race condition; between
evaluating Next - Clock and starting the delay, there is the risk of the executing task being
preempted by a (higher priority) task. It would be desirable to ensure that evaluating the
expiration time and starting the delay are indivisible. This can be accomplished by using a
“delay until’ statement:

declare
Interval : constant Duration := ...;
Next_Time : Time := Clock;

begin
Next_Time := Next_Time + Interval;
loop
Action;
dealy until Next_Time;
Next_Time := Next_Time + Interval;
end loop;
end;

The deadline/mazimum execution time: Of course, a task’s execution can be forced to
come to an abrupt end (by a certain time) by having a watchdog abort the task. This,
however, is not really what we want for it is often way too disruptive and heavy-weight.
Furthermore, it does not at all address the case where only a fragment of the code of the
task has to meet the deadline. There is a cleaner way in Ada to achieve this: ATC using
a delay trigger (an absolute one for a deadline and a relative one for maximum execution
time):

select

delay until Deadline; -- or delay Max_Execution_Time_Span
then abort

-— code of the task
end select;

In essence, we have programmed a time supervision.

Minimum/mazimum delay before the start of a task/action: Minimum delay is trivial and
is guaranteed but maximum delay is not (neither trivial nor guaranteed) for reasons already
discussed. It is in the programmer’s hands, by a priori schedulability analysis, carefully

119

applying Ada’s facilities, and scrutinizing the documented lateness of delay, to assure this.
However, as stated above, this is generally the case with any realtime system written in any
language.

For completeness, we note that for all timing considerations, both Ada.Calendar-time
and Ada.Real_Time-time can be used.

Runtime estimation: As stated above, “it is not, in general, possible to require an
upper bound on the duration of the execution of any statement, due to possible interleaved
operations of other tasks on the same processor”. This, again, applies to any realtime system
written in any language.

“In summary, realtime developers analyze two quantities to demonstrate compliance
with realtime constraints: execution time and blocking time. Performing accurate analysis
is quite difficult. Consider the analogy of someone attempting to predict how much time
will be required to drive a car across a small town. The “execution time” is how long it
takes to drive from the starting point to the ending point assuming there are no delays along
the way. If the car gets a flat tire or experiences mechanical difficulties, the times required
to respond to these problems must be included in the worst-case execution time. But the
typical execution time ignores these possibilities. The person’s “blocking time” would be
the maximum amount of time needed to wait for red lights at intersections, for railroad
crossings, for traffic jams, and for coordination with emergency vehicles that are granted
priority access to the public roadways.” (Kelvin Nilsen, “Adding Real-Time Capabilities to
Java”; in Communications of the ACM, June 1998, Vol. 41, No. 6) Of course, runtime is the
sum of execution time and blocking time.

We conclude this subsection by considering a more elaborate example that will, after
the somewhat pessimistic discussion, provide a bit of relief (we hope so) and that tries to
combine all timing constraints mentioned above. This example can be found in (Burns, 1989,
[p. 345)).

Consider the important realtime activity of making and drinking instant coffee:

Get_Cup
Put_Coffee_In_Cup
Boil_Water
Put_Water_In Cup
Drink Coffee
Replace_Cup

The act of making a cup of coffee should take no more than ten minutes; drinking is
more complicated. A delay of three minutes should ensure that the mouth is not burnt; the
cup itself should be emptied within 25 minutes (it would then be cold) or before 17:00 (in
other words, 5 o’clock and time to go home). Two temporal scopes are required:

start elapse 10 do
Get_Cup
Put_Coffee_In _Cup
Boil_Water
Put_Water_In_Cup
end

start after 3 elapse 25 by 17:00 do
Drink Coffee
Replace_Cup

end

120

For a temporal scope that is executed repetitively, a time loop construct is useful:
from <start> to <end> every <period>
For example, many software engineers require regular coffee throughout the working day:

from 9:00 to 16:15 every 45 do
Make_And Drink _Coffee

where Make _And Drink Coffee could be made up of the two temporal scopes given above
(minus the by constraint on the drinking block). Note that if this were done, the maximum
elapse time for each iteration of the loop would be 35 minutes; correctly, less than the period
of the loop. An implementation of this scheme is given in Example 6.1.

task type Software_Engineer;
task body Software_Engineer is

Now : constant Time := Clock;
Time_To_Get_Started : constant Time := Time_0f(
Year => Year (Now),
Month => Month(Now),
Day => Day (Now),
Seconds => Day_Duration(9 * 3_600)); -- 9 a.m.
Let_Us_Call_It_A_Day : constant Time := Time_0f(
Year => Year (Now),
Month => Month(Now),
Day => Day(Now),
Seconds => Day_Duration(17 * 3_600)); -- tea time

begin
delay until Time_To_Get_Started;
select
delay until Let_Us_Call_It_A_Day;
then abort
Next_Time := Clock + 45 * Minutes;
loop
Coffee_Ready := False;
select
delay 10 * Minutes;
then abort
Get_Cup;
Put_Coffee_In_Cup;
Boil_Water;
Put_Water_In_Cup;
Coffee_Ready := True;
end select;

if Coffee_Ready then
delay 3 * Minutes;
select -- nested ATC
delay 25 * Minutes;
then abort

121

Drink_Coffee;
Replace_Cup;
end select;
end if;

delay until Next_Time;
Next_Time := Next_Time + 45 * Minutes;
end loop;
end select;

end Software_Engineer;
My_Company : array(l .. 10) of Software_Engineer;
Example 6.1: The life of a software engineer

Note the ease of writing temporal scopes at the beginning of our example and compare
this with the effort needed to realize that expressive power in Ada.

6.4 Elements for Realtime Programming in CHILL

CHILL, too, is aimed at addressing the field of realtime systems. This should not seem a
surprise—telecommunication systems are yet another example of realtime systems. Unlike
Ada, CHILL consists only of the core language defined in (Z200, 1996), there are no special-
ized needs annexes (but there is quite large a set of implementation-defined features as we
shall see in a moment). CHILL was designed to, among other things, “cater for realtime ap-
plications by providing built-in concurrency and time supervision primitives”. (Z200, 1996,
[1.1]) Incidentally, here, once again, evidence is given for concurrency being a prerequisite
for realtime issues.

6.4.1 Priorities, Scheduling and Dispatching

Unfortunately, when it comes to priorities, CHILL is unhelpful. It is not possible for a
programmer to specify that a priority be associated with a task or process. Exceptions
arise in the special cases of attaching a priority to a thread that is to be delayed on an
event, signal, or buffer (see chapters 4 and 5) and when issuing a call to one of a task’s
simple guarded procedures. But these are no real exceptions for they do not allow (or, at
most, only indirectly) these “priorities” to be used for preference specification in processor
contention. Furthermore, the priorities cease to be associated with the thread as soon as
their context (delaying and reactivation on an event, signal, or buffer, and selection of an
outstanding call on a task component) ceases to exist. Thus, priorities are not permanently
but only transiently associated with threads (and, of course, as it depends on the flow of
control whether or not the above mentioned contexts will ever be entered, not even this
can be taken for granted). In other words: priorities do, in general, not exist in CHILL.
Thus, although we might be able to, during systems specification and design, identify hard-
deadline-actors and soft-deadline-actors, it is impossible to map the intended preference of
the hard-deadline-actors onto the actors provided by the language.

Another drawback in CHILL is scheduling and dispatching. All that is said about it in
the definition is that it is implementation-defined (Z200, 1996, [13.7]). At least, it is not
unspecified. A realtime systems developer has, therefore, to study the vendor’s documen-
tation of the actual algorithms used. Note that implementation-defined is not as bad as
it might seem at first glance. Portability is, for obvious reasons stemming from the very

122

nature of realtime systems, not (cannot be!) an overriding concern. It is to be hoped (and
there is conviction as several hard realtime systems, written in CHILL, have been success-
fully employed) that scheduling and dispatching algorithms appropriate to realtime systems’
concerns are supported by an implementation.

6.4.2 Deadlines and Other Time -Related Issues

CHILL uses the notion of time supervision for what we are concerned with in this subsub-
section. Chapter 9 of (Z200, 1996) is dedicated to this topic; so all quotations in the sequel
originate from this chapter.

Access to a clock: CHILL provides access to a clock by means of the absolute time
built-in routine call ABSTIME, the syntax and semantics of which are as follows:

<absolute time built-in routine call>::=
ABSTIME(LLLLL[<year expression>,]
<month expression>,]
<day expression>,]
<hour expression>,]
<minute expression>,]
<second expression>])

Each of the above expressions shall be an integer expression.

The ABSTIME built-in routine call delivers an absolute time value denoting the point in
time in the Gregorian calendar indicated in the parameter list. The parameters indicate
the components of time in the following order: the year, the month, the day, the hour,
the minute, and the second. When higher order parameters are omitted, the point in time
indicated is the next one that matches the low order parameters present (e.g., ABSTIME (15,
12, 00, 00) denotes noon on the 15th in this or the next month. When no parameters are
specified, an absolute time value denoting the present point in time is delivered.

Thus, declaring two time mode locations, we can undertake simple time measurements:

DCL
Before, After TIME;
Elapsed DURATION;

Before := ABSTIME(Q);
Action();
After := ABSTIMEQ);

Note that Elapsed := After - Before is not allowed in CHILL since arithmetic operators
are not defined on values of mode TIME (the relational operators, interestingly, are defined
on them).

Note further that ABSTIME only gives access to a wall clock; it is not possible to directly
determine the amount of time Action() kept the processor busy. Additionally, this clock
might be subject to daylight savings or human operator adjustments.

Delaying a thread: For this purpose, we need to study CHILL’s notion of time supervision
more elaborately:

123

It is assumed that a concept of time exists externally to a CHILL program (system).
CHILL does not specify the precise properties of time, but provides mechanisms to enable a
program to interact with the external world’s view of time.

The concept of a timeoutable process exists in order to identify the precise points during
program execution where a time interrupt may occur, that is, when a time supervision may
interfere with the normal execution of a process. A process becomes timeoutable when it
reaches a well-defined point in the execution of certain actions. CHILL defines a process to
become timeoutable during the execution of specific actions; an implementation may define
a process to become timeoutable during the execution of further actions.

<timing action>::=
<relative timing action>
| <absolute timing action>
| <cyclic timing action>

A timing action specifies time supervisions of the executing process. A time supervision
may be initiated, it may expire, and it may cease to exist. Several time supervisions may
be associated with a single process because of the cyclic timing action and because a timing
action can itself contain other actions whose execution can initiate time supervisions. A
time interrupt occurs when a process is timeoutable and at least one of its associated time
supervisions has expired. The occurrence of a time interrupt implies that the first expired
time supervision ceases to exist; furthermore, it leads to the transfer of control associated
with that time supervision in the supervised process. If the supervised process was delayed,
it becomes re-activated. Time supervisions also cease to exist when control leaves the timing
action that initiated them. Note that if the transfer of control causes the process to leave a
region, the region will be released (see Section 11.2.1).

<relative timing action>::=
AFTER <duration primitive value>[DELAY]IN
<action statement list>
<timing handler> END

<timing handler>::=
TIMEOUT <action statement list>

The duration primitive value is evaluated, a time supervision is initiated, and then the action
statement list is entered. If DELAY is specified, the time supervision is initiated when the
executing process becomes timeoutable at the point of execution specified by the action
statement in the action statement list; otherwise, it is initiated before the action statement list
is entered. If DELAY is specified, the time supervision ceases to exist if it has been initiated
and the executing process ceases to be timeoutable. The time supervision expires if it has not
ceased to exist when the specified period of time has elapsed since initiation. The transfer
of control associated with the time supervision is to the action statement list of the timing
handler. If DELAY is specified, the action statement list must consist of precisely one action
statement that may itself cause the executing process to become timeoutable.

<absolute timing action>::=
AT <absolute time primitive value> IN
<action statement list>
<timing handler> END

124

The absolute time primitive value is evaluated, a time supervision is initiated, and then the
action statement list is entered. The time supervision expires if it has not ceased to exist
at (or after) the specified point in time. The transfer of control associated with the time
supervision is to the action statement list of the timing handler.

<cyclic timing action>::=
CYCLE <duration primitive value> IN
<action statement list> END

The cyclic timing action is intended to ensure that the executing process enters the action
statement list at precise intervals without cumulated drifts (this implies that the execution
time for the action statement list on average should be less than the specified duration value).
The duration primitive value is evaluated, a relative time supervision is initiated, and then
the action statement list is entered. The time supervision expires if it has not ceased to
exist when the specified period of time has elapsed since initiation. Indivisibly with the
expiration, a new time supervision with the same duration value is initiated. The transfer
of control associated with the time supervision is to the beginning of the action statement
list. Note that the cyclic timing action can only terminate by a transfer of control out of
it. The executing process becomes timeoutable if and when control reaches the end of the
action statement list.

<duration built-in routine call>::=
MILLISECS(<integer expression>)
| SECS(<integer expression>)
| MINUTES(<integer expression>)
| HOURS(<integer expression>)
| DAYS(<integer expression>)

A duration built-in routine call delivers a duration value with implementation defined and
possibly varying precision (i.e., MILLISECS(1000) and SECS(1) may deliver different dura-
tion values); this value is the closest approximation in the chosen precision to the indicated
period of time. The argument of MILLISECS, SECS, MINUTES, HOURS, and DAYS indicate a
point in time expressed in milliseconds, seconds, minutes, hours, and days respectively.

With the help of timing built-in routine calls, a delay can be easily achieved. But first
things first:

<timing simple built-in routine call>::=
WAIT()
| EXPIRED()
| INTTIME(<absolute time primitive value>,
[[[[<year location>
<month location>,]
<day location>,]
<hour location>,]
<minute location>,]
<second location>)

Each of the above mentioned locations shall be an integer location.

WAIT unconditionally makes the executing process timeoutable: its execution can only ter-
minate by a time interrupt. (Note that the process remains active in the CHILL sense).
EXPIRED makes the executing process timeoutable if one of its associated time supervisions

125

has expired; otherwise, it has no effect. INTTIME assigns to the specified integer locations an
integer representation of the point in time in the Gregorian calendar specified by the absolute
time primitive value. The locations passed as arguments receive the components of time in
the following order: the year, the month, the day, the hour, the minute, and the second.

Note that there is a somewhat ambiguous formulation regarding WAIT, “WAIT uncondi-
tionally makes the executing process timeoutable: its execution can only terminate by a
time interrupt”. Whose execution can only terminate by a time interrupt? The process’ or
WAIT’s? We assume WAIT’s.

With these tools in hand, a relative delay is just as easy as

AFTER SECS(5) IN

WAITQ) ;
TIMEQUT

—-— Statements_After_The_Break
END;

while an absolute delay is expressed using

AT ABSTIME(12, 24, 18, 00, 00) IN -- X-mas!
WAITQ) ;

TIMEQUT
Deliver_Packages() ;

END;

Timeouts: These can be specified by employing essentially the same mechanism used in
the specification of delays. We simply replace WAIT by the event we would like to supervise
with a timeout. Not that it is not straightforward to impose a timeout on a call to a task
component owing to the asynchronous nature of such a call.

Temporal arrangements: As already briefly mentioned, this is not feasible in CHILL but,
again, the good news is that deadlines can be programmed; again, of course, with the same
caveats concerning expressive power versus ease of use (see the corresponding Ada part).
We briefly touch the various deadline-related topics:

Start time/event: For processes, this is easy. A programmer has full control over when
and under what preconditions, for the event, to issue a START expression. This is straight-
forward. For a task, the scope rules of the language determine when and if a task is started.
Of course, by deferring the dynamic creation of a task object or by making its creation
dependent upon some event, the intended effect can be simulated. But here again, creation
and start are interwoven so that the same caveats as in the case of Ada can be attributed
to this approach. Additionally, creating a task object simply enables it to receive requests.
A CHILL task object does not execute voluntarily—see Chapter 1.

Periodic threads: The cyclic timing action is clearly the candidate for this type of ap-
plication for it provides essentially what is needed. Note that no explicit loop is required as
the transfer of control caters for the turnaround. Perhaps a bit of a flaw, the cyclic timing
action allows only a duration primitive value to be specified—that is, the action statement
list is only entered at intervals relative to a given start point. Thus, for example, if a process
is to perform some action each day at noon, this must be programmed directly:

DO FOR EVER;
AT Noon IN
WAITQ) ;
TIMEQUT
Action();
END;
0D;

126

Note that if a task object is to execute a cyclic timing action, a trigger, i.e., a call from
a client, is required.

The deadline/mazimum execution time: Clearly, the absolute timing action is appropri-
ate for the former whereas the relative one is for the latter. Straightforward.

Minimum/mazimum delay before start of a thread/action: Again, minimum delay is
trivial and guaranteed but, again, maximum delay is not (neither trivial nor guaranteed)
for, again, reasons already discussed.

Runtime estimation: Again, the pessimistic statement made earlier regarding this issue
applies to CHILL as well—runtime estimation is complicated by the fact that both execution
time and blocking time must be taken into account.

It would be tedious to repeat the example of coffee making here. In fact, the tools
described in this subsubsection allow for easy realization. It would merely be a paraphrasing
from Ada to CHILL with some minor changes. It thus provides no further insight and is left
as an exercise (the only one in this paper) for the reader.

6.5 Elements for Realtime Programming in Java

“Java was originally called Oak, and designed for use in embedded consumer-electronic
applications by James Gosling. After several years of experience with the language, and
significant contributions by Ed Frank, Patrick Naughton, Jonathan Payne, and Chris Warth,
it was retargeted to the Internet, renamed Java, and substantially revised to be the language
specified here.” (JLS, 1996, [Preface])

The revision process—besides contributing Internet capabilities—must have removed
many of the realtime facilities that we assume were present in Oak. As we shall see in a
moment, Java is not suitable for the development of realtime systems (well, it is—as we
just have learnt—mnot aimed at realtime systems). We might as well skip Java and turn
our attention to PEARL instead. But for the sake of completeness (and for further insight,
hopefully), let us examine our list of topics with respect to Java.

6.5.1 Priorities, Scheduling and Dispatching

As we have seen in Chapter 1, priorities and the usual operations on them are available in
Java. Ten values constitute the range of priorities supported. Java’s notion of a priority is
as follows:

“Every thread has a priority. When there is competition for processing resources, threads
with higher priority are generally executed in preference to threads with lower priority.
Such preference is not, however, a guarantee that the highest priority thread will always be
running, and thread priorities cannot be used to reliably implement mutual exclusion.”

This is quite vague a description for it weakens the impact of priorities considerably.
For example, if an implementation chose to dispatch any thread—a malicious scheduler/
dispatcher—whenever there is competition, then this implementation would comply to (JLS,
1996) (note that dispatching the lowest priority thread is acceptable if this is clearly doc-
umented). But this implementation would be of little benefit for realtime systems devel-
opment. Note that generally is not always and that Java cannot guarantee that, for each
processor, the currently running thread is one of the threads with the highest priority. Pri-
ority inversion is thus possible, that is, Java provides no means for the prevention/bounding
of this detrimental phenomenon. Not only are Java’s priorities useless for realtime systems
(can be ignored), but they are also of little avail for general applications of concurrency.
Java’s priorities beg the question. The problem, clearly, is that too much of the details are
left unspecified by (JLS, 1996).

As a consequence, the impact of priorities on scheduling/dispatching is undefined (no
wonder as, after all, the meaning of priorities is). Moreover, neither (JLS, 1996) nor (JVM,

127

1996) define the scheduling/dispatching model to be used (nor do they require an implemen-
tation to document the chosen approach). Hence, we must assume that it is arbitrary, which
might be acceptable for general application of concurrency—but not for realtime systems.
Of interest is the static method java.lang.Thread.yield() which causes the current thread
to yield, allowing the thread scheduler to choose another runnable thread for execution.

These two issues impose severe restrictions upon Java being used for the development of
realtime systems.

6.5.2 Deadlines and Other Time -Related Issues

The class java.util.Date provides a system-independent abstraction of dates and times,
to a millisecond precision.

Access to a clock: Java gives access to a clock by the method getTime (), which is defined
in Date:

public long getTime()

“This method returns the time represented by this Date object, represented as the dis-
tance, measured in milliseconds, of that time from the epoch (00:00:00 GMT on January 1,
1970).”

For convenience, several other methods like getSeconds (), getMinutes(), etc. are de-
fined. To interrogate the current time, a call to java.lang.System.currentTimeMillis ()
can be used. It is essentially equivalent to new Date() .getTime(). Note that Java’s clock
is a wall clock, too.

Delaying a thread: A thread can sleep for a while by executing one of the following
methods:

public static void sleep(long millis) throws InterruptedException

“This method causes the current thread to yield and not to be scheduled for further
execution until a certain amount of real time has elapsed, more or less.

The amount of real time, measured in milliseconds, is given by millis.

If the current thread is interrupted by another thread while it is waiting, then the sleep
is ended and an InterruptedException is thrown.

public static void sleep(long millis, int nanos) throws
InterruptedException

This method causes the current thread to yield and not to be scheduled for further
execution until a certain amount of real time has elapsed, more or less.

The amount of real time, measured in nanoseconds, is given by:

1000000 * millis + nanos

In all other respects, this method does the same thing as the method sleep of one
argument. In particular, sleep(0, 0) means the same thing as sleep(0).

If the current thread is interrupted by another thread while it is waiting, then the sleep
is ended and an InterruptedException is thrown.”

Note that, since a thread may be interrupted anytime, Java cannot guarantee that a
thread executing sleep is delayed for at least the duration given. On the other hand,
an upper bound on the delay cannot be guaranteed either—but for reasons beyond Java
(in fact, beyond every programming language as already discussed). The lower bound on
the delay could be enforced by executing, in the exception handler corresponding to the

128

InterruptedException, a further delay if necessary. But since Java only supports relative
delays, determining whether there is a necessity (for a further delay) is awkward and error-
prone for there are race conditions.® For this purpose, an absolute delay would be more
favourable.

Using suspend/resume for delaying purposes is rather bad practice for it requires a
watchdog to issue the resume and this watchdog would be required to keep track of the
wakeup time.

Timeouts: Java provides no language constructs that allow for the recognition of the
non-occurrence of some event.

Temporal arrangements: Similarly to Ada and CHILL, temporal arrangements cannot
be attached to a thread. Even worse, simulating the various kinds of temporal arrangements
is complicated by the fact that not even minimum delay can be guaranteed. But let us
consider our list:

Start time/event: For the event, this is fairly easy since starting a thread is completely
subject to the whim of the programmer. In the case of start time, the drawback of sleep is
clearly a disadvantage.

Periodic threads: We could not find a satisfactory solution. Influencing factors include:
general lack of minimum delay, lack of absolute delay (so that, for example, cumulative drifts
have to be eliminated by hand—this introduces a race condition: between determining the
remaining time the thread must sleep and actually being put to sleep, the thread might be
descheduled).

The deadline/mazimum execution time: Java provides no constructs that allow for either
to be programmed.

Minimum/mazimum delay before start of an action: Minimum delay is trivial but not
guaranteed, and maximum delay is neither trivial nor guaranteed (again, we cannot blame
Java).

Runtime estimation: We can only repeat the statements regarding this issue made earlier
in the Ada and CHILL sections.

Not only would it be tedious to repeat the coffee making example, but it is also—or, first
of all—virtually impossible. As we were incapable to provide workarounds for the deadline
issues, it is not clear how to achieve a satisfactory implementation. Of course, we could use
a brute-force approach by heavily making use of watchdogs and other agent threads, but we
are loath to adopt this strategy. In short, this approach is too low-level, suffers from race
conditions, and baffles sound principles of software engineering. We do not encourage the
reader to work it as an exercise!

Instead, we would like to draw the reader’s attention to the following article, which was
already mentioned in this chapter:

Kelvin Nilsen, Adding Real-Time Capabilities to Java; in Communications of the ACM,
June 1998/Vol. 41, No. 6

Nilsen, in this article, mentions further aspects of Java that are disadvantageous for its use
in the development of realtime systems. He provides hints what could be ameliorated and
has also undertaken practical work in the design of PERC—a realtime variant of the Java
language.

This article is worth reading.

This completes this section and our journey into the consideration of the realtime facil-
ities supported by our three languages. The next section is devoted to a brief introduction

8 We have assumed that this additional sleep is not interrupted—there is, however, no
guarantee.

129

to PEARL. It mainly focuses on the two topics we have laid emphasis upon in the previous
parts of this chapter: scheduling/dispatching and deadline issues.

6.6 PEARL 90
6.6.1 Priorities and Dispatching of Tasks

Each PEARL 90 task has a priority that is represented by a number in the range of 1 to 255.
The number 1 corresponds to the highest priority whereas the number 255 corresponds to
the lowest priority. If no priority is specified in the definition of a task T, then T implicitely
gets the lowest priority (number 255).

Processors and other resources are allocated to tasks according to the priority of each
task. Tasks with higher priorities take precedence over tasks with lower priorities. Tasks
that have the same priority are treated according to the round robin strategy.

A new priority based allocation of the processor takes place each time one of the pro-
cessor’s operations concerning the operating system is executed. Such operations are, for
instance, the occurrence of an interrupt, statements for controlling tasks, statements for
synchronizing tasks, and input/output operations.

If there are more tasks than processors, the tasks have to compete for the processors.
The same holds for other resources that are used by several tasks (for instance, input/output-
devices). If there is only one processor, P, that is allocated to a task T, and T wants to access
another system resource, then P is taken away from T and allocated to one task (from the
set of tasks competing for P) with the highest priority.

6.6.2 Scheduling of Tasks

In PEARL 90, it is possible to schedule a given task to be executed at certain points in
time. These points in time are explicitely specified or they are given by the occurrence of
interrupts. This scheduling is done by a Task_Start statement, the syntax of which reads

Task_Start ::= [Start_Condition | ACTIVATE Task_Name [Priority |;
Priority ::= {PRIORITY | PRIO} Number
Start_Condition ::= AT Time [Frequency |
| AFTER Duration | Frequency |
| WHEN Interrupt [AFTER Duration | [Frequency |
| Frequency
Frequency ::= ALL Duration [{UNTIL Time} | DURING Duration |

The task given by Task_Name becomes runnable at the point in time specified by the
Start_Condition. If the Start_Condition is omitted, then the given task becomes runnable
immediately.

If AT Time is specified, then the task will become runnable at the point in time given by
Time.

If AFTER Duration is specified, then the task will become runnable after the period of
time given by Duration has expired.

If WHEN Interrupt is specified, then the task becomes runnable whenever the interrupt
given by Interrupt occurs. Should AFTER Duration be specified as well, then the task becomes
runnable after the interrupt given by Interrupt has occurred and then the period of time given
by Duration has expired.

If AT, AFTER, and WHEN are not specified, then the task becomes runnable immediately.

Periodic execution of a task T can be achieved by specifying Frequency. ALL Duration
defines the time between two activations of T.

130

If UNTIL Time is specified, then no further activation of T is possible after reaching the
point in time given by Time.

If DURING Duration is specified, then no further activation of T is possible after the
period of time given by Duration has elapsed.

The Start_Condition has no effect (and the associated task T is not activated) if

e the Start_Condition contains UNTIL Time and the point in time given by Time
has already been reached

¢ the Start_Condition contains DURING Duration and the period of time given by
Duration has already elapsed

e the Start_Condition has the form AFTER Duration and the period of time given
by Duration has already elapsed

e anew lask_Start statement concerning T is executed and the new Start_Condition
replaces the old one

a PREVENT statement with T as Task_Name is executed (see below).

The PREVENT statement is used to make a Start_Condition inoperative. The syntax is
PREVENT [Task_Name |;

If Task_Name is not specified, then the PREVENT statement only effects the Start_Con-
dition of the task executing this statement. The PREVENT statement has no effect on the
current execution of the task given by Task_Name.

We conclude this section with some examples illustrating the use of the scheduling facilities
of PEARL 90.

AT 20:0:0 ACTIVATE Ti;
The task T1 will become runnable at the next time when it is twenty o’clock.

ACTIVATE T1;
T1 becomes runnable immediately.

ALL 2 HRS ACTIVATE Ti;
T1 becomes runnable immediately and it will become runnable every two hours.

WHEN Alarm ACTIVATE T1,;
Whenever the interrupt Alarm occurs, T1 becomes runnable.

Summary and Comparison

This chapter is special in that it tries to portray a field of concurrent programming that poses
quite subtle problems and grand challenges to its adepts—the field of realtime programming.
After a brief introductory explanation, two overriding concerns regarding realtime systems
were identified: the aspect of stringent deadlines and scheduling/dispatching. We claim
that it is these two requirements that actually set realtime systems apart from “normal”
computation systems. A prerequisite for realtime concerns is concurrency as virtually all
realtime systems are inherently concurrent. We then turned our attention to how our three
languages support a developer in her/his strive to cope adequately with the above mentioned
requirements. Note that only Ada and CHILL were designed with the issue of realtime
systems in mind. Note further that in the general application of concurrency, there is no
compelling need to be this much concerned with things like priorities, scheduling/dispatching,

131

stringent deadlines, or the number of processors available. But, as stated, realtime systems
somehow are the grand challenges of concurrency for they incur all the “usual” problems of
concurrency and introduce additional ones. A realtime systems developer has to deal with
this bulk of additional problems. We have programming, we have concurrent programming,
and then we have realtime programming.

Priorities, understood as a means for preference specification in resource contention,
were considered first. Only Ada could be identified as having an appropriate priority model.
CHILL generally lacks priorities while Java’s priority model is not clearly defined and, thus,
futile for the intended aim. Ada guarantees that for each processor, one of the highest
priority tasks is the winner in resource contention and provides means to avoid/limit the
effect of priority inversion. Neither CHILL nor Java do address either topic at all.

The priority model is expected to fit seamlessly into the mechanisms of scheduling/
dispatching—that is, the algorithms used for the latter should take advantage of the former.
Again, only Ada can fulfill this requirement since it supports a priority based preemptive
scheduling/dispatching policy, which warrants for higher priority tasks to be able to gain ac-
cess to a processor whenever necessary by preempting lower priority tasks. This is regarded
as being a fateful prerequisite for hard-deadline-actors to meet their deadlines. CHILL’s
scheduling/dispatching algorithm is implementation-defined, which, to some extent, is tol-
erable. The developer is required to scrutinize the compiler vendor’s documentation and
trace down the actual algorithm used. Java’s approach, however—leaving the actual pro-
cedure unspecified—, is thwarting the analysis of schedulability of threads and, therefore,
makes impossible the programmer’s chore of determining whether all hard-deadline-actors a
capable of meeting their deadlines.

Temporal arrangements, most notably deadlines, then, were identified as timing con-
straints that are associated with an actor (as part of its definition). Unfortunately, in none
of our three languages, it it is feasible to associate deadlines with actors. A clear benefit
of having actors with deadlines (temporal scopes) is that the scheduler/dispatcher can be
made aware of the deadlines so as to try to prefer hard-deadline-actors by techniques such as
earliest deadline first scheduling or rate monotonic scheduling. We mentioned various forms
of timing constraints. In order to achieve expressive power, we tried to provide workarounds.
As regards ease of use, Ada and CHILL posed only little problems since the language pro-
vided constructs allow for easy realization. Java lacks many of the needed (basic) constructs
and, consequently, satisfactory solutions could not be found in all cases.

Java, in its current form, is neither targeted to nor appropriate for the development
of realtime systems. As a consequence of the former, it falls short in virtually all aspects
pertaining to this kind of concurrent programming. Ada 83, originally designed to—in
particular—address the sector of embedded systems, had been much criticized for providing
too few (or inappropriate) means to tackle the problems of realtime systems. Its successor,
Ada 95, has been equipped with a rich set of additional tools that, at least, help us approach
the desired aim. CHILL is as expressive a language as Ada and should be included into the
consideration when it comes to the choice of the language to be used for the implementation.

Clearly, no one language is perfect—general purpose languages, the set of which all our
three language must be regarded as being a member of, cannot address all application areas
while special purpose languages are limited in their usability. PEARL is is an exception—a
general purpose language designed to address the field of realtime systems development.
From the brief introduction given in Section 6.6, it should be obvious that PEARL deals
adequately with the requirements of realtime systems. It has an appropriate priority model
that is taken advantage of by the scheduler/dispatcher and, how gratifying, supports the
specification of deadlines—ezpressive power can be achieved with ease of use here.

132

