3 The Executional Part of an Actor

Introduction

We have seen so far how to define, create, start, and terminate actors in the three languages.
Although these operations are important, they do not directly contribute to concurrent
matters—they are, after all, merely preliminary actions. Actors are meant to be active and
the question therefore should read: What constitutes the executional part of an actor? How
can activity be employed within an actor? The executional part of an actor shall be the part
of an actor that is executed automatically by the actor after starting the actor.

We will, in this chapter, shed light on this issue.

3.1 Procedural Structures
3.1.1 Ada Task Bodies

When a task has finished its activation stage successfully, the execution of the handled
sequence of statements of its body begins. As this sequence is not further specified, any legal
Ada statement can be used: loops, case statements, ifs, ordinary sequences, subprogram
calls. Entry calls and accept statements are also allowed; these will be dealt with in the next
chapter. Thus, the executional part of an Ada task consists of the sequence of statements
(excluding accept statements) in the task body.

Furthermore, new scope blocks can be introduced so that new data items can be declared.
There is no restriction imposed on the variety of such declarations; it is even possible to
declare a task inside a task body—actors can be nested in Ada (a task body may also have
a declarative part in which these declarations can be executed as well). The important
point to keep in mind is sequentiality. Any task body contains a sequence of statements
which is executed in a strictly sequential manner. There is exactly one thread of control per
task—hence, a task can execute at most one statement at a time.

3.1.2 CHILL Process and Task Bodies

A process instance, once started, begins executing the statements that comprise its body,
which is regarded as the executional part of the process instance. A process body contains a
data statement list and an action statement list. The former may include declarations and
definitions. There is a static semantic property that forbids a process to be nested within
another, however!

An action statement can be any CHILL action. A started process instance is deemed to
be the sequential execution of its contents.

A CHILL task object is somewhat different. Though it possesses its own thread of control
after creation and start, it does not execute “voluntarily”. Remember that a task body
can contain definition statements and the implementations of the procedure specifications
introduced in the task specification. There is no room for “code to be run when the task is
activated”. Instead, a running task object needs a trigger to do useful work—an external
actor has to call one of the task’s procedures explicitly. At runtime, a location of a task
mode simply waits until one of its procedures is called, it then executes this procedure and
enters the waiting state again. In the framework of a client/server architecture, we would
thus consider a location of task mode to be a pure server—i.e., a server that works only on
demand. Since a task has no code that is executed automatically, a task cannot naively be
used as a substitute for a process. In order to illustrate this matter, we will give an example:
Let S be a sequence of statements that is to be performed (1) by a process and (2) by a
task. For (1), we simply write:

41



P : PROCESS; /* to define */
S;
end P;

start P; /* to create and start P, thereby executing S */

Compare this to (2), which requires us to define:

SYNMODE T = TASK SPEC

GRANT Do_It;

Do_It : PROC() END Do_It;
END T;

SYNMODE T = TASK BODY
Do_It : PROC()
S;
END Do_It;
END T;

create and start:
DCL Executer T;

as before with (1). So far, however, nothing important has happened. Executer is active
but far from doing anything except waiting. To achieve our goal, we must issue the following
call:

Executer.Do_It();

We thus see that the executional part of a CHILL task does not exist since any execution
of a task’s procedures must be explicitly requested from “outside” the task. This kind of
triggering is connected with actor communication, which will be dealt with in the next
chapter.

CHILL tasks can, as they are allowed to contain common module components, be nested.
Task mode locations have associated with them a single thread of control. As a consequence,
although multiple clients may have issued calls to a task’s simple guarded procedures, at
most one—at any time—of these simple guarded procedures is being executed by the task.
That is, tasks provide for mutually exclusive access to their components. This holds for
regions (see Chapter 5) as well and indeed, a task resembles a region in many ways. A task
specification component is defined to be a region specification component and a task body
component is a region body component. What, then, is the difference between the two? A
task mode location, at runtime, possesses a thread of control whereas a region is a passive
entity. That is, if we call a task’s component (simple guarded procedure), then the task
object itself executes the code of that component. For a region object, a call issued to one of
its guarded procedures results in a transfer of control taking place. The caller itself executes
the procedure.

Since a task object executes the requested procedure, the caller is allowed to carry on
immediately after the call has been issued. When the task object begins executing, the caller
can therefore execute the statements following the call-—calls to task components are said
to be asynchronous. A call to a region component, on the other hand, is of synchronous
nature, meaning that the caller cannot execute the next statement before the call has been
finished (this seems logical since the caller executes the code of the component).

A more detailed introduction to regions will be given in Chapter 5. Following below is
the detailed semantics of both a call to a task component and a region component (7200,

42



1996, [6.7]). If the called procedure is applied to a task mode location, TL, the caller performs
the following steps:

1. evaluation of the actual parameters

2. send procedure identification, actual parameters, and priority to TL

3. continue with the next action

TL performs the following steps:

. receive procedure identification and actual parameters according to priority
. check of the precondition
. check of the complete invariant

1
2
3
4. execution of the body of the procedure
5. check of the complete invariant

6

. check of the complete postcondition

If the called procedure is applied to a region mode location, RL, the caller performs the
following steps:
1. evaluation of the actual parameters
. wait until RL is free and lock RL
. check of the precondition
. check of the complete invariant
. execution of the body of the procedure

. check of the complete postcondition

2
3
4
5
6. check of the complete invariant
7
8. release RL

9

. return to the calling point

3.1.3 Bodies of Java Threads

A thread that has been started calls its run() method and executes the sequence of state-
ments that is included within that method. The executional part of a Java thread is just
that run() method. There is nothing special about this sequence—therefore, any kind of
Java statement can be used. It is, however, important to realize that a started thread can
only execute its run() method. Other public methods that the thread offers in its interface
cannot be executed by the thread unless, of course, their calls appear in run(). We will
return to this issue in the next chapter.

Java classes can be nested—hence, an actor can be declared inside another!. A Java
thread executes the body of its run() method sequentially.

3.2 Sequential vs. Concurrent Execution within an Actor

We have mentioned that, in all three languages, the executional part of a running actor
has associated with it exactly one thread of control. As a result, whatever statements are
contained in the executional parts, they are executed in a strictly sequential manner. Since

! these information cannot, at the time of writing this paper, be found in the primary
reference for the Java language, (JLS, 1996), but Sun Microsystems has published the so-
called Annex D of the manual in the WWW,; see
java.sun.com/docs/books/jls/html/1.1Update.html (July 6, 1998) for more information
on changes for Java 1.1

43



an actor has exactly one executional part, it follows that an actor has associated with it
exactly one thread of control.

A Java thread is somewhat special, however. Let A and B be two Java threads. Assume
that A offers a method, S(), and that both threads are currently executing their run()
methods (we have a multi-processor machine). So far, there is exactly one thread of control
per actor (executing the respective run() method). Now imagine that B’s run() contains the
statement A.S(). When this call is issued, it is B (not A) that executes A.S(). To be even
more precise, the call of A.S() in B.run() is simply an ordinary procedure call. Meanwhile,
A is still executing its run(), but now two threads of control are active within the (single)
Thread object that represents A—A’s (executing A.run() and B’s (executing A.S()). Look
at Figure 3.1, which depicts this scenario.

—— A run()

B. run()

Figure 3.1: Two threads of control are active within one Java actor

Of course, this second thread of control is not active within the executional part of A—
A.run()—but within the thread A as a whole. Even if B.run() contains the call to A.run(),
the situation is the same. Calling A.run() in B.run() still happens to be a simple procedure
call. We conclude that there is still exactly one thread of control that “works on behalf” of
the executional part of A. In fact, there could be an arbitrary number of threads of control
executing code that belongs to A by having further threads call A.S(). This is as much as if
a procedure in an Ada package or CHILL module were called by multiple tasks. However,
and this is the special point of the discussion, neither an Ada package nor a CHILL module
can be considered as an actor (since they are passive). A Java thread combines the feature
of being a module with that of being an actor and thus having a thread of control.

In Ada, an interesting issue regarding threads of control arises when we employ asyn-
chronous transfer of control (ATC). Unfortunately, we cannot, in this chapter, address these
ideas since ATC remains to be introduced in the next chapter.

Summary and Comparison

We have taken, in this chapter, the opportunity to study the executional parts of actors in
our three languages in more detail. We saw that these parts can incorporate easily almost
any kind of statement the actor should execute. The languages are very similar with respect

44



to that issue—almost any statement that can occur elsewhere is allowed to be placed inside
an actor. Nesting of actors is possible with Ada tasks, CHILL tasks (but not processes), and
Java classes.

This chapter is somewhat special in that it contains material that would not fit elsewhere:
We pointed out the difference between a CHILL process and a CHILL task. Following that,
we turned to the somewhat subtle topic of concurrency within an actor. We could rank the
languages with respect to that matter: Ada, CHILL, Java. This is an ordered list and a
language precedes another whenever the number of threads of control an actor can have in
this language is less than or equal to that in the other language. All Ada and CHILL actors
are single threaded. In Java, the situation is different: an arbitrary number of thread objects
(and hence, threads of control) can simultaneously be executing code belonging to another
thread object 0.

45



46



