1 Definition, Creation, Start, and Priorities of
Actors

Introduction

This chapter describes, in detail, the concepts and approaches which allow a user to define,
create, and start an actor in Ada, CHILL, and Java. Priorities are also mentioned. Examples
illustrating these ideas will be given.

1.1 Definition of Actor Types
1.1.1 Definition of Actor Types in Ada

“The execution of an Ada program consists of the execution of one or more tasks. Each
task represents a separate thread of control that proceeds independently and concurrently
between the points where it interacts with other tasks.” (ARM, 1995, [9(1)])

These words introduce the section of the Ada Reference Manual (henceforth called simply
ARM) that describes Ada’s features of concurrent execution. In particular, the word “task”
is mentioned and we will take the opportunity to explain the nature of a task. Roughly
speaking, a task is a part of a program that has its own thread of control and hence can
be executed concurrently. An Ada program can therefore have associated with it several
threads of control. As far as Ada is concerned, a task unit is a composed structure that
is described by a task declaration: a user can either define a named task type or a single
anonymous task object. The following rules illustrate this:

task_type_declaration ::=
TASK TYPE defining_identifier
[known _discriminant_part] [IS task_definition];

single_task_declaration ::=
TASK defining_identifier [IS task_definition];

task_definition ::=
{task_item}

[PRIVATE
{task_item}]

END [task_identifier]

task_item ::= entry_declaration | representation_clause

A task declaration, then, requires a completion, i.e., a task body. Every task declaration
shall have one body and every task body shall be the completion of a task declaration:

task_body ::=
TASK BODY defining_identifier IS
declarative_part
BEGIN
handled_sequence_of_statements
END [task_identifier];

Readers familiar with the language will realize that the concept of splitting up a task
into a specification and a corresponding body is a frequently encountered technique in Ada—
almost every program entity can be decomposed in such a way: subprograms, packages,

7

protected objects (to be introduced later), and tasks. The benefits of such an approach
are well known in software engineering; the specification contains the interface to the entity
which provides the client with just the information that are required for use. The visible
entries define those parts of a task that can be accessed by other entities; they indicate how
other tasks can communicate directly with the task. Entries that are not to be exported
are declared in the private part of the specification, making them only accessible internally.
The (probably involved) details of the implementation of the bodies of the entries can be
conveniently hidden (in the body) from the external user. This prevents direct manipulation
of crucial data (the interface is the sole access to the entity) and enables the programmer to
alter the actual implementation without affecting the client (provided that the new algorithm
is semantically equivalent, however).

1.1.2 Definition of Actor Types in CHILL

“CHILL allows for the concurrent execution of program units. A thread (process or task) is
the unit of concurrent execution.” Processes are then considered to be executed concurrently
with the starting thread. “CHILL allows for one or more processes with the same or different
definition to be active at one time.” (Z200, 1996, [1.11])

“A thread is either a process or a task. A process is the sequential execution of a series
of statements. It may be executed concurrently with other threads. The behaviour of a
process is described by a process definition that describes the objects local to a process and
the series of action statements to be executed sequentially.

A task is a sequential execution of a series of statements. It may be executed concurrently
with other threads. The behaviour of a task is described by a task mode definition.” (Z200,
1996, [11.1])

This is what the CHILL Reference Manual tells us and we will now look a bit closer to
process and task definitions. We begin with processes:

<process definition statement> ::=
<defining occurrence> : <process definition>
[<handler>] [<simple name string>]; |
<generic process instantiation>;

<process definition> ::=
PROCESS([<formal parameter list>]) <process body> END

Such a definition statement declares a sequence of executable statements, the <process
body>, that may be started for concurrent execution from different places in the program.
There is an important static semantic property that forbids a process to be included in
a region (to be introduced in Chapter 5) or a block other than the imaginary outermost
process. That is, processes cannot be nested. We continue with some examples (Z200, 1996,
[D14, D32)):

Call Distributer: PROCESSQ);
Wait:
PROC(X INT);
/* some wait action */
END Wait;
DO FOR EVER;
Wait (10 /* seconds */);
CONTINUE Operator_Is_Ready;
0D;
END Call Distributer;
Producer: PROCESS();

DCL Eleml RegionStackWithTopModel!ElementMode;
DO FOR EVER;
/* compute Eleml */
Stackl.Push(Eleml);
0D;
END Producer;

Example 1.1: process definitions in CHILL
For tasks, a task mode definition can be used:

<task mode> ::=
<task mode specification> |
<task mode body>

<task mode specification> ::=
TASK SPEC [ABSTRACT] [<task inheritance>
{<task specification component>}[<invariant part>]
END [<simple name string>]

<task mode body> ::=
TASK BODY [ABSTRACT] [<task inheritance>
{<task body component>}[<invariant part>]
END [<handler>] [<simple name string>]

<task specification component> ::=
<region specification component>

<task body component> ::=
<region body component>

A region specification component can be: a declaration, a module component, a pro-
cedure specification (header), a signal definition (to be introduced later), or a visibility
extension statement. A region body component can be a module component and/or the im-
plementation of the procedures from the specification. As can be seen from the production
rules, the internal parts of regions and tasks coincide. We will return to this issue in the
subsequent chapters. Let us continue with an example:

SYNMODE StackModel = TASK SPEC
GRANT ElementMode, Push, Pop;
NEWMODE ElementMode = STRUCT (a INT, b BOOL);
Push: PROC(Elem ElementMode IN) EXCEPTIONS(Overflow) END Push;
Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow) END Pop;
SYN Length = 10_.000;
DCL StackData ARRAY (1:Length) ElementMode;
DCL TopOfStack RANGE(O:Length) INIT := 0;
END StackModel;

SYNMODE StackModel = TASK BODY
Push: PROC(Elem ElementMode IN) EXCEPTIONS(Overflow)
IF TopOfStack = Length THEN
CAUSE Qverflow;
ELSE
TopOfStack +:= 1;
StackData(TopOfStack) := Elem;
FI;
END Push;
Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow)

9

IF TopOfStack = 0 THEN
CAUSE Underflow;

ELSE
RESULT (StackData(TopOfStack)) ;
TopO0fStack -:= 1;
FI;
END Pop;

END StackModel;

Example 1.2: Abstract Data Type Stack in CHILL, see (7200, 1996, [D30])

1.1.3 Definition of Actor Types in Java

The concept for a concurrent entity in Java is the thread: “A thread is a single sequential flow
of control. Thread objects allow multi-threaded Java programming; a single Java Virtual
Machine can execute many threads in an interleaved or concurrent manner.” (JLS, 1996,
[20.20])

Java, being a class oriented language, provides intrinsic support for threading by means
of the class Thread which can be used as a building block for user defined actors types.
Any section of Java code that is to be executed within its own thread of control has to be
associated with the class Thread.

There are two ways a user can define a new thread: one approach is to let one’s class
extend the class Thread—that is, to use Java’s inheritance mechanisms to create a subclass
of Thread. This subclass, then, should override Thread’s run() method, which initially
contains only code that is not appropriate for this approach. A non-exhaustive presentation
of the class Thread is given below (see (JLS, 1996, [20.20]) for further details):

public class Thread implements Runnable {
public final static int MIN_PRIORITY = 1;
public final static int MAX_PRIORITY = 10;
public final static int NORM_PRIORITY = 5;
public Thread();
public Thread(String name);
public Thread(Runnable runObject);

public void run();
public void start() throws IllegalThreadStateException;
public final void stop() throws SecurityException;

public final void suspend() throws SecurityException;
public final void resume() throws SecurityException;

public final int getPriority();
public final void setPriority(int newPriority)
throws SecurityException, IllegalArgumentException;

public static void sleep(long millis) throws InterruptedException;

public void destroy();

Example 1.3: The essential parts of the class Thread

The work that is to be performed by the user thread can be accommodated in the
run() method. Thus, the class Thread acts merely as a framework for user threads; new
components (data and methods) can be added as required by the application.

10

class PrimeThread extends Thread {
long minPrime;
PrimeThread(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger than minPrime

Example 1.4: Actor type definition by extending the class Thread

In this example, we have derived PrimeThread from the class Thread by adding a new
data item and a constructor. We have also overridden Thread’s run () method to place useful
work inside it.

Alternatively, a class can be declared to implement the Runnable interface, which re-
quires this class to override the interface’s sole method—run():

public interface Runnable {
public abstract void run();

}
Our prime example (JLS, 1996, D[20.20]) in this new style then reads:

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger than minPrime

Example 1.5: Implementing the Runnable interface

As mentioned above, this is only the first step. We still need to associate PrimeRun
with the class Thread. See Section 1.2.3 for details and a pictorial illustration of the two
approaches.

1.2 Definition and Creation of Actors
1.2.1 Definition and Creation of Actors in Ada

Once a task type’s definition has been successfully elaborated, it can be used to create task
objects explicitly in a way similar to the creation of objects of other types, say Integer.
For a single task declaration, the elaboration implicitly creates an object of an anonymous
task type.

Task types are limited types—hence, neither assignment nor comparison are available!,
but this is the only restriction. It is possible to define an access type to a task type and
to create task objects dynamically, using the new operator. We now give some examples of
task type declaration and task object creation (ARM, 1995, [9.1(22)]):

L it would be difficult to define an appropriate semantics

11

task type Server is
entry Next_Work_Item(WI : in Work_Item);
entry Shut_Down;

end Server;

task body Server is
begin
Work_Loop: loop
select
accept Next_Work Item(WI : in Work Item) do
-— do what has do be done
end Next Work Ttem;
or
accept Shut_Down do
-- bring the system down
exit Work_Loop;
end Shut_Down;
or
terminate;
end select;
end loop;
end Server;

task type Keyboard Driver(ID : Keyboard ID := New_ID) is
entry Read (C : out Character);
entry Write(C : in Character);

end Keyboard Driver;

task Controller is
entry Request(Level)(D : Item); -- a family of entries
end Controller;

task User; -- has no entries
Example 1.6: Task type definitions in Ada

The latter two declarations are examples of single task declaration. Being a type, the
first two declarations can be used to create task objects in a straightforward manner:

paxp02, pdecO1, pax10f, ipc405 : Server;
Teletype : Keyboard Driver (TTY);
Secure_Consoles : array(1l .. 100) of Keyboard Driver;

By declaring an access type, we can create tasks dynamically:

type Keyboard is access Keyboard_Driver;
Terminal : Keyboard := new Keyboard Driver(VT100);

1.2.2 Definition and Creation of Actors in CHILL

Again, let’s consider processes first: “A process is created by the evaluation of a start
expression... An unspecified number of processes with the same definition may be created
and may be executed concurrently... The creation of a process causes the creation of its
locally declared locations, except those declared with the attribute STATIC, and of locally
defined values and procedures. The locally declared locations, values and procedures are
said to have the same activation as the created process to which they belong. The imaginary
outermost process, which is the whole CHILL program under execution, is considered to be

12

created by a start expression executed by the system under whose control the program is
executing. At the creation of a process, its formal parameters, if present, denote the values
and locations as delivered by the corresponding actual parameters in the start expression.”
(7200, 1996, [11.1])

A start expression is as follows:

<start expression> :=
START <process name> ([<actual parameter list>])

Besides creating and starting an instance of the process definition, the start expression
delivers a so-called INSTANCE value that identifies the created process. Thus, a location of
mode INSTANCE can be declared and assigned the result of the start expression, as in:

DCL PID INSTANCE;
PID := START Call_Distributer;
START Producer;

The first creation causes an instance of Call Distributer to be bound to PID so that
it can be manipulated in the sequel, whereas throwing the INSTANCE value away results
in this instance of Producer being no longer reachable. Although a process definition is
the basis of a process instance creation, a process definition cannot be regarded as a mode
definition in general. Elaborating the START expression creates a process instance, but it is
not possible for a user to directly declare those instances, i.e., DCL My_Call Distributer
Call Distributer is not allowed. Instead, an instance of the process definition is created
implicitly in the context of the elaboration of the START expression. We will, thus, regard a
process definition as an actor type definition (on the program text level only, of course) that
has the above mentioned limitations.

To overcome these obstacles, for example, to define actor types/modes as “true” types
from which instances can be derived by the user or which can be used as formal parameters
in subprogram specifications, CHILL has the concept of a task mode, the definition of which
we have already encountered. “A task is created as part of the creation and initialisation of
a task mode location. It is called to belong to this task mode location.” (Z200, 1996, [11.1])

DCL paxp02, pdecOl Server; /* paxp02 and pdecOl are ‘‘up’’ */

Likewise, a task mode can be used as a formal parameter in subprogram parameter pro-
files or to create task locations dynamically. For the latter, the approach is straightforward:
first, a reference mode to a task mode has to be defined which can then be used to allocate
space for the task locations dynamically, using the intrinsic CHILL routines ALLOCATE or
GETSTACK:

SYNMODE Parser_Ptr = REF Parser;
DCL GNAT_Parser Parser_Ptr;
GNAT_Ptr := ALLOCATE(Parser); /* ready to perform lexical analysis */

1.2.3 Definition and Creation of Actors in Java

Remember that there are two approaches of defining actor types in Java. As a result, we
have a class. In the first case, it is a descendant of Thread and hence can be used directly
to create a Thread object, using Java’s features of instance creation. So we can write:

PrimeThread P; // to set up a reference variable and
P = new PrimeThread(143); // to create a new object

13

interface

. - Runnabl e
implements I
- -t TSt T TS TS T T T ':
! cl ass Thread I
extends
I-TT-T = =-=-=-=-- 1
1 1
| cl ass |
I , Crestes
' PrinmeThread ; P
1 1
a

Figure 1.1: The first approach of actor type definition in Java

The JVM must now create a separate thread of control for P in which P can be executed.
See Figure 1.1 for an illustration of this first approach, deriving directly from Thread.

For the second approach to define an actor type, remember that we have, as a first step,
already implemented the interface Runnable (in the class PrimeRun), but there remains work
to do in order to create a complete thread based on this class. As mentioned above, the JVM
cannot put code into a separate thread of control unless this code happens to be associated
with Thread: “Creating a Thread object creates a thread and that is the only way to create a
thread.” (JLS, 1996, [17.12]) To achieve this binding, an instance of our class can be used to
create a new Thread object by means of one of Thread’s specialized constructors—namely,
Thread (Runnable runObject). This constructor initializes a newly created Thread object
so that it has the given runObject as its separate run object. The run() method of class
Thread simply calls this run object’s run() method, i.e., the method we have implemented
in PrimeRun.

It is now straightforward to realize these thoughts:

PrimeRun P = new PrimeRun(143); // an instance of our class
Thread PrimeRunThread = new Thread(P); // a new Thread object

Figure 1.2 shows the second approach of defining actor types and declaring actors.

At a first glance, both approaches of defining and creating threads seem quite different,
but careful study reveals similarities. For the definition of threads, it can be noted that
the class Thread itself implements the Runnable interface. So if we are inheriting from
Thread, our subclass also implements this interface. And, lastly, thread creation always
requires Thread object creation, either by instantiating a subclass of Thread or by directly
creating Thread objects that take a runnable object as a parameter. Hence, the invariant
for separate threads of control (association with Thread, see Figure 1.1 and Figure 1.2) is
always maintained.

14

interface

Runnabl e
implements Ty LR _
*, implements
| e | | I ——————— - |
1 1 1 1
: cl ass Thread : : cl ass PrineRun :
1 1 1 1
creates creates
v v
uses as
Pri meRunThr ead P
separate
run object

Figure 1.2: The second approach of actor type definition in Java

1.3 Start of Actors
1.3.1 Start of Actors in Ada

“The execution of a task of a given task type consists of the execution of the corresponding
task body. The initial part of this execution is called the activation of the task; it consists of
the elaboration of the declarative part of the task body. Should an exception be propagated
by the elaboration of its declarative part, the activation of the task is defined to have failed,
and it becomes a completed task.” (ARM, 1995, [9.2(1)])

We have seen so far that task objects can be created in three ways: explicitly via object
declaration, implicitly by means of single task declaration, and dynamically, using access
types and the new allocator. Let’s consider the former two first: Once the creation has been
successfully done, the task objects exist as entities. These tasks, however, are not active
yet. Tasks in Ada are started automatically. For a given declarative region, R, all task of R
that are subject to explicit object declaration (including single tasks) are activated together.
This event takes place within the context of the handled sequence of statements of R, just
prior to executing these statements. Less formally, such tasks become activated when the
Ada Machine reaches the begin of the block in which they are declared.

Tasks that are created dynamically are activated whilst their allocators are being eval-
uated, after any per-object initializations, but before the access value is returned. Their
activation is thus not deferred until the ensuing begin—they are activated immediately
after creation.

The task that is responsible for the creation (in either of the three above mentioned
ways) is known as “activator”. This can actually be another task or, in case the new
tasks are declared in the main procedure or one of main’s subprocedures, the so-called
hypothetical main task?. While such activations are in progress, the activator is suspended.
If all activations complete successfully, the activator carries on normally with its execution;
otherwise, if any activation fails, Tasking Error is raised in the activator (not in the new
task!) and the task that failed becomes terminated and is never activated at all. This

2 tasks that were declared in library packages (library tasks) are started in the context of
the elaboration (withing) of the corresponding library packages

15

should be contrasted with the case where an exception is raised in a declarative part of an
entity other than a task body; here, all tasks that were created during that elaboration
become terminated. The reason why activators must be suspended whilst their children are
being activated is that any problems with the creation and activation of the children must
be reported to the parent. The inclined reader is referred to (Burns, 1998, [Sec. 4.3]) for a
wonderful introduction to task hierarchies and dependence during creation, activation, and
termination.

The following example is taken from (Barnes, 1996, [p. 421)); it illustrates the behaviour
of a block containing the declarations of two tasks, A and B (Figure 1.3 illustrates the time-
related behaviour):

Parent A B
declare
 declared T
| ' declared
begin 1
activation activation
"""""" | _ execution
execution
end

Figure 1.3: Ada task activation

—-—- executed by Parent

declare
A : T;
B : T;

begin

end;

For the sake of illustration, we show task A finishing its activation after task B so that
the parent resumes execution when task A enters its execution stage. We also show task A

16

finishing its execution and therefore becoming completed and terminated before task B. The
parent is shown reaching its end and therefore completing execution of the block after task
A has terminated but before task B has terminated. The parent is therefore suspended until
task B is terminated when it can then resume execution with the statements following the
block. (For more information on task termination and completion, see Chapter 2).

Once a task has been successfully activated, the execution of the sequence of statements
of its task body commences—concurrently with all other tasks.

1.3.2 Start of Actors in CHILL

A CHILL task is started as part of the creation and initialization of a task mode location.
A dynamically created task is started as soon as the ALLOCATE or GETSTACK routine returns
successfully.

A process is started by the evaluation of a START expression. “It becomes active (i.e.,
under execution) and is considered to be executed concurrently with other threads. The
created process is an activation of the definition indicated by the process name of the process
definition. An unspecified number of processes with the same definition may be created and
may be executed concurrently... (Note that each evaluation of the START expression yields
a new instance of the corresponding process definition.) Each process is uniquely identified
by an INSTANCE value, yielded as the result of the START expression or the evaluation of the
THIS operator.” (Z200, 1996, [11.1]) Since creation and start of actors are interwoven in
CHILL, the reader is referred to Section 1.2.2 for examples.

1.3.3 Start of Actors in Java

As a result of a Thread object creation, we have a Thread object, but the thread it represents
is not active yet (this holds for both ways of defining and creating threads). A thread, A,
is activated when another thread, B, calls the start() method of the Thread object that
represents A.

public void start() throws IllegalThreadStateException

“Invoking this method causes this thread to begin execution; this thread calls the run()
method of this Thread object. The result is that two threads are running concurrently: the
current thread (which returns from the call to the start() method) and the thread repre-
sented by this Thread object (which executes its run() method).” (JLS, 1996, [20.20.14])

Returning to our framework, we conclude that A then invokes the Thread object’s run()
method.

public void run()

“The general contract of this method is that it should perform the intended action of the
thread. The run() method of class Thread simply calls the run() method of the separate
run object, if there is one; otherwise, it does nothing.” (JLS, 1996, [20.20.13])

If we used the first approach to create a thread, calling run() simply executes the
(Thread’s overridden) run() method of the subclass (there is no separate run object),
whereas providing a separate run object (the second approach), causes Thread’s run() to
invoke the run() method of the runnable object—that is, the class that implemented the
interface Runnable in the first place.

After we have introduced all the necessary details concerning actor types and actors, let
us now return to our theoretical framework presented in Chapter 0: Table 1.1 below lists the
summary of what we have worked out so far. For each language, the interpretation of actors

17

on the three levels—static program structure, dynamic program structure, and execution—is
given.

Concept Static program Dynamic program Ezecution
structure structure

Neutral actor def actor object seq of actions

Ada task objects object dcl task object seq of actions

CHILL process instances START expr process instance seq of actions

CHILL task objects loc decl task object seq of actions

Java thread objects object def thread object seq of actions

Table 1.1: Actor types and Actors as they appear in our three languages

1.4 Priorities
1.4.1 Priorities in Ada

Each task can be given a priority: “A task priority is an integer value that indicates a degree
of urgency and is the basis for resolving competing demands of tasks for resources. Unless
otherwise specified, whenever tasks compete for processors or other implementation-defined
resources, the resources are allocated to the task with the highest priority value. The base
priority of a task is the priority with which it was created, or to which it was later set by
Dynamic_Priorities.Set_Priority. At all times, a task also has an active priority, which
generally reflects its base priority as well as any priority it inherits from other sources. The
task’s active priority is used when the task competes for processors. Similarly, the task’s
active priority is used to determine the task’s position in any queue when Priority_Queuing
is specified. Priority inheritance is the process by which the priority of a task or other entity
is used in the evaluation of another task’s active priority.” (ARM, 1995, [D1(15)])

Ada’s Task Dispatching Model (to be introduced in Chapter 6) guarantees that the task
with the highest priority is the winner in the competition for resources. The package System
defines the type Any_Priority to be a subtype of Integer with an implementation defined
range (30 values at least shall be included). The type Priority, which is the reference for
all priority issues, is declared to be a subtype of Any Priority.

There are two ways for specifying task priorities. The first—using pragma Priority—is
known as static setting. The pragma is allowed to occur immediately within a task definition
and contains an expression that represents the desired priority. For example,

task type T(Desired Priority : Priority := Default_Priority) is
pragma Priority(Desired_Priority);

end T;

results in objects of type T being assigned Desired_Priority as their base priority:
T1 : T(0); -- an urgent task
Lazy : T(Priority’Last);

Moderate : T; -- same as Moderate : T(Default Priority);

For the dynamic setting of priorities, Ada provides the package Dynamic Priorities in
which the procedure Set_Priority resides. The latter can be used to alter a task’s priority

18

after it is in existence. Tasks that don’t come with their own pragma Priority inherit the
base priority from their respective activators. In the absence of such a pragma for the main
procedure, the environmental task’s priority is set to Default Priority.

Task priorities are dealt with in the Annex D, “Real-Time Systems”, of the Ada
Reference Manual. An implementation need not conform to this annex, however.
The core languages itself says nothing about priorities, so priorities may not be
available to everyone. This is somewhat awkward since in Ada 83, priorities were
included in the core language (Ada 83 did not have any annexes that might have
been ignored by an implementation). On the other hand, the authors are firmly
convinced that whenever a compiler vendor is able to produce an Ada 95 compiler
that complies to the core languages, the extra effort of conforming to Annex D is
only little.

1.4.2 Priorities in CHILL

The CHILL manual says little about priorities—they are only mentioned in the context of
choosing a thread from a set of delayed processes or tasks. In particular, the author was not
able to find information pertinent to a general association of priorities and threads.

For the special case of delaying a running thread (see Chapter 2), a priority can be
specified that is later used to decide which thread is to be reactivated.

1.4.3 Priorities in Java

“Every thread has a priority. When there is competition for processing resources, threads
with higher priority are generally executed in preference to threads with lower priority.
Such preference is not, however, a guarantee that the highest priority thread will always
be running, and thread priorities cannot be used to implement mutual exclusion. When
code running in some thread creates a new Thread object, the newly created thread has
its priority initially set equal to the priority of the creating thread. But the priority of a
thread T may be changed at any time if some thread invokes the setPriority() method
of the Thread object that represents T (and the security manager approves execution of the
setPriority() operation).”

public final static int MIN_PRIORITY = 1;

The constant value of this field is 1, the smallest allowed priority for a thread.
public final static int MAX_PRIORITY = 10;

The constant value of this field is 10, the largest allowed priority for a thread.
public final static int NORM_PRIORITY = 5;

The constant value of this field is 5, the normal priority for a thread that is not a daemon.
(JLS, 1996, [20.20.1-3])

Summary and Comparison

Having outlined all the details of declaring, creating, and starting of actor types and actors in
the three languages, we will now—as promised in the introduction to this chapter—compare
these issues. We stick to the order implied by the whole chapter: definition, creation, and
start. Priorities will be touched only briefly; we shall discuss them in length (and compare
the ways the languages tackle priority matters) in Chapter 6, when we address Real-Time
aspects.

19

The reader should be warned, however, since it is the inherent nature of a comparison
to be subjective and interspersed by the author’s opinion. I will, to the best of my abilities,
try to keep to the criteria stated above.

Definition

Actor (type) definition—because it is the first stage of all concurrent programming—is of
crucial importance. All three languages cater for this by providing detailed means for the
definition of actor types and actors. Albeit the names are different—task, process or task,
and thread, respectively—it is possible to map a concurrent application’s requirements onto
the structures provided. Data and “work to be performed” can be directly associated with
variables and entries, locations and statements/procedures, and fields and methods (espe-
cially, run()), respectively. This should not seem a surprise—one should bear in mind that
the three languages were designed with the intention of supporting the development of con-
current systems. One requirement of such programming languages is clearly the demand
that they should facilitate modelling of real world issues within the languages. Perhaps a
little flaw, Java fails to support directly the distinction between specifications and imple-
mentations with respect to methods and the actor itself®.

If we consider the possibility to define single actors directly—that is, without a type
from which they can be derived—, we remember that Ada allows for such declarations—a
task can be declared as a single task. In CHILL, a process definition is special actor type
definition: an instance cannot be declared (by the user in the natural way) but is implicitly
provided when the START expression is evaluated. A CHILL task can only be derived from a
task mode. In either of Java’s approaches, classes are involved. Single actors are convenient
if an application requires exactly one incarnation of a certain actor—for example, to prevent
multiple starts of this actor. Ada achieves this by a single task; in CHILL and Java, we
would use a technique known as Singleton Design Pattern. A task type and, respectively, a
class is equipped with a constructor that takes care of this. A static counter inside the task
type and the class, respectively, could be used to ensure that exactly one instance is created.

On the other hand, all three languages permit actors types to be defined so that they
can be used as components in subsequent structures.

If versatility were a criterion, Ada would be the winner here.

Creation

Ada single tasks and CHILL processes are implicitly created while elaborating the definition
and evaluating the START expression, respectively. Note that an Ada single task declaration
results in exactly one incarnation being created, whereas each evaluation of the START ex-
pression creates a new instance that is independent of all other instances (of the same or of
a different process definition).

CHILL tasks are created in the context of the creation and initialization of a task mode
location. Java thread incarnation requires the instantiation of a subclass of Thread and
named Ada tasks come into existence by explicitly declaring objects of the respective task
type. It can be summarized that the approaches to explicit actor creation bear resemblance
in the three languages.

Ada, CHILL, and Java support dynamic creation of actors by means of access or reference
types. Strictly speaking, Java has only this possibility, since classes are reference types by
definition.

3 interfaces, however, can be used to overcome this obstacle

20

Start

There are two extremes: Ada tasks are always started automatically by the scope rules
of the language model (it is, therefore, not possible to start a task twice). Whenever the
Ada Machine reaches the begin of a declarative region, R, all static tasks of R (if any) are
(activated and then) started. Dynamically created tasks are started as part of the evaluation
of their allocators. Java, on the other hand, gives the programmer free control over when
a thread is to be started. In particular, a thread may be defined and created, but actual
start is subject to the whim of the programmer only. Although the call to start() is of
asynchronous nature—once the call has been issued, the caller can proceed independently—,
a given Java thread instance cannot be started several times. Any attempt to start a thread
while it is still active results in the exception I1legalThreadStateException being raised.

CHILL, with processes and tasks, lies somewhat in between. A process has to be started
explicitly (but cannot be started several times, since each time a START expression is eval-
uated, a new distinct instance is created); whereas tasks are started when corresponding
objects are declared (again, they cannot be started several times). It should be noted,
however, that tasks cannot be substituted for processes and vice versa?*.

Priorities

Ada and Java support priorities and the operations one would expect: priorities can be
set, changed, and inherited. CHILL seems to exclude direct manipulation of priorities. It is
neither clear how they can be associated with processes or tasks nor how they can be altered.

A discussion of the impacts of priorities on scheduling and dispatching is inappropriate
here and therefore deferred to Chapter 6.

1 the reason will be given in Chapter 3

21

22

