Description and Comparison of the
Concurrency Concepts of Ada, Java, and CHILL

ProJECT ALFA CORE

(STUDIENARBEIT)

Friedrich-Schiller University Jena

Faculty of Mathematics and Computer Science
Institute of Computer Science

D-07740 Jena, Germany

submitted by: Peter Bromel, born July 25, 1973 in Eisenach
Frank Ecke, born October 22, 1974, in Sondershausen

Supervisor: Prof. Jirgen Winkler (FSU Jena)

Jena, January 13, 1999

ABSTRACT

In this paper, we will describe and compare the concurrency concepts of the lan-
guages Ada, CHILL, and Java. We shall cover basic topics such as definition,
creation, and termination of actors, and we will then procede to examine the exe-
cutional part of an actor. Following that is a treatise on direct and indirect actor
communication—the latter leading us to the discussion of objects with coordinated
access. In the final chapter, we try to give an overview of realtime programming
and the special requirements for realtime systems.

The work of writing this paper was distributed between the two authors as follows:

e Chapter 0: Frank Ecke

e Chapter 1: Frank Ecke

e Chapter 2: Peter Bromel

e Chapter 3: Frank Ecke

e Chapter 4: Frank Ecke

e Chapter 5: Peter Bromel

e Chapter 6: Frank Ecke, except for the PEARL section (which was written by Peter Bromel)
e The Glossary: Peter Bromel

Table of Contents

Table of Contents.o i
O Preliminarieso 1
0.1 General Introduction t0 CONCUITENCY tuut ittt et a e 1

0.2 Problems and Pitfalls. 2

0.3 How to read this Paper.o e e e e 4

1 Definition, Creation, Start, and Priorities of Actors................................. 7
1.1 Definition Of AcCtOr Ty Pes. ..ttt e e e e e e 7
1.1.1 Definition of Actor Types in Ada........oueiiniiiini i e e eaeaens 7

1.1.2 Definition of Actor Types in CHILLt et 8

1.1.3 Definition of Actor Types in Javat 10

1.2 Definition and Creation of ACEOIS.ttt e e 11
1.2.1 Definition and Creation of Actors in Ada........ ..o, 11

1.2.2 Definition and Creation of Actors in CHILL o i i 12

1.2.3 Definition and Creation of Actorsin Java...........ooiiiiiiiiiiiiii i, 13

1.3 Start Of ACHOTS - - e ettt ettt et e e 15
1.3.1 Start of Actors in Adaoouiniii i e e 15

1.3.2 Start of Actors in CHILLttt e e et 17

1.3.3 Start of Actors in Java.o e 17

I o 1 T 18
1.4.1 Priorities in Adao e 18

1.4.2 Priorities in CHILLttt et e e et ettt 19

1.4.3 Priorities in Java. i 19
Summary and COmPAariSONttt e e e e e e 19

2 Suspending, Resuming, and Terminating of Actors................................ 23
2.1 Suspending and Resuming of ACtOrsttt e e 23
2.1.1 Suspending and Resuming of Ada Tasks.........ouiiniiiiiiii ittt 23

2.1.1.1 The delay Statementttt e 23

2.1.1.2 Asynchronous Task Control..o et aeens 24

2.1.2 Suspending and Resuming of CHILL Processes and Tasks............c.cooviiiiiinin... 25

2.1.3 Suspending and Resuming of Java Threads...........ooviiiiiiiiiiiii i 25

2.2 Termination Of ACEOTSttt e e e e 29
2.2.1 Termination of Ada Tasks.t e e 29

2.2.1.1 Task Dependence and Termination.......... ..o, 29

2.2.1.2 Aborting a TasK c.un et e 32

2.2.2 Termination of CHILL Process Instances and Tasks..........cooviiiiiiiiiiiiinnn 34

2.2.2.1 Termination of CHILL Process inStancesoeueinerniniinineineneenennns 34

2.2.2.2 Termination of CHILL Tasksc.uueuintnnini i e i eens 34

2.2.3 Termination of Java Threadsouerr i e e 35

Summary and COmPArISOIttt ettt et et e 38

3 The Executional Part of an Actor.............. i 41
3.1 Procedural SEruCtUTesottt et e e e e e e 41
3.1.1 Ada Task Bodies.o 41
3.1.2 CHILL Process and Task Bodieso 41
3.1.3 Bodies of Java Threads e e 43

3.2 Sequential vs. Concurrent Execution within an Actor.........o oo, 43
Summary and COMPATISONottt et et e e et e e 44
4 Direct Interaction and Communication of Actors................................... 47
4.1 Direct Interaction and Communication of Actorsin Adacooviiiiiiiiiiii ... 47
4.1.1 Entries, Accept Statements, and the Rendezvous ittt 47
4.1.2 General Notes on the Rendezvousoviiii i 50
4.1.3 Select Statementsttt e e 51
4.1.4 The Requeue Statementttt ettt e e et et e aaeens 55
4.1.5 Asynchronous Transfer of Control (ATC)ouiiniiiit i 58

4.2 Direct Interaction and Communication of Actors in CHILLcooiiiiiiiiiiin... 64
4.2.1 Asynchronous Communication in CHILL ...ttt 64
4.2.2 Sending Signals between Actorsin CHILLo it 66
4.2.3 Noteworthy Points of the Signal Handling in CHILL ...t 70

4.3 Direct Interaction and Communication of Actorsin Java...........coooiiiiiiiiiiii .. 70
4.3.1 Invoking a Method of a Java Threadot 70
Summary and COmMPATISONttt et ettt et et 71
5 Objects with Coordinated ACCeSS...........oooiiiiiiiiiiii i 75
5.1 Objects with Coordinated Access in Adaooiiiiiiiii e 75
5.1.1 Protected ODJectS.vnun ettt e e 75
5111 Definitlon. . o v vttt ettt e e 75

5.1.1.2 Execution ResouUrce.t e 76

5.1.1.3 Protected Functions, Protected Procedures, and Protected Entries................. 76

5.1.1.4 Protected ACHIONS. . .ottt e e e 79

5.1.1.5 Bounded Errors and Protected Objects. 82

5.1.2 Control of Shared Variableso i 82
5.1.3 Synchronous Task Control. e 83

5.2 Objects with Coordinated Access in Java e 85
5.2.1 Locks 01 ODBjJECS . ..o net et e 85
5.2.2 Synchronized Methods i 85
5.2.3 Synchronized Statementst e 86
5.2.4 Drawback of Synchronized Methods/Statements.................oooiiiiiiiiiiiin. 87
5.2.5 Wait Sets and Notification i e 88

5.3 Objects with Coordinated Access in CHILL.ttt e ee e 91
5.3.1 REGIOMS . . ettt e 91

ii

.3, 2 EVemt S . o it e e e e 92

5.8, BUTers . . oot e 94
Summary and COmPATISOILttt et e e e et e e et e e 98

6 Elements for Realtime Programming.................. ... 101
6.1 Description of Realtime Systems. e e 101

6.2 Special Requirements for Realtime Systems....... ..ot it anss 102

6.3 Elements for Realtime Programming in Ada ... 104
6.3.1 Priorities, Scheduling and Dispatching.............ooiii i 104

6.3.2 Deadlines and Other Time-Related Issueso 115

6.4 Elements for Realtime Programming in CHILL 122
6.4.1 Priorities, Scheduling and Dispatching.............ooiiiiii it 122

6.4.2 Deadlines and Other Time-Related ISSUESouinenii e 123

6.5 Elements for Realtime Programming in Java......... ... 127
6.5.1 Priorities, Scheduling and Dispatching. ... 127

6.5.2 Deadlines and Other Time-Related ISSuesooeiiiiiiiiiii e 128

6.6 PE AR 00 . ..ot e 130
6.6.1 Priorities and Dispatching of Tasks......... 130

6.6.2 Scheduling of TasKs . ..« .uu ettt e e e 130
Summary and COmPATISOIL ut ettt e e ettt et 131
Tabular SUIMMATY e 133
GlOS S AT - oo 135
Bibliography 139

iii

iv

0 Preliminaries

0.1 General Introduction to Concurrency

Programs written in traditional languages such as Pascal, Algol, C, Fortran, Cobol, or Modula-2
share a common property—sequentiality. The programs start executing in some initial state
and enter, by obeying one statement at a time, subsequent states, until the program termi-
nates. The path through the program may differ due to variations in the input but for any
particular execution of the program, there is only one path. For the remainder of this paper,
this path shall be known as thread of control. From what we have mentioned so far, we can
conclude that sequential programs possess a single thread of control.

A concurrent program, on the other hand, may contain multiple threads of control, each
of which may be independent and executed separately. Roughly speaking, such programs
have the potential to do “several things at once”. For the sake of illustration, we can imagine
a concurrent program to consist of several parts that can be executed in parallel.

It is, by now, well understood that concurrency is of significant importance. The most
apparent reason is mankind’s desire to model the real world, which is the largest concurrent
system we know. Embedded systems, air traffic control, avionics systems, industrial robots,
and engine controllers—to name a few examples—are inherently parallel. To use the power
of computers in these areas, the software must control the concurrent activities and allocate
hardware resources appropriately.

In addition, recent progress in multi-processor hardware design calls for efficient exploita-
tion of these new possibilities. The ability to map a concurrent algorithm directly—by means
of a concurrent programming language—onto the hardware is clearly desirable. Increasing
reliability and fault tolerance are further motivations for concurrency.

“Some might argue that such matters are the concern of the operating system and are
better done by calls from an otherwise sequential program. However, built-in constructions
provide greater reliability, general operating systems do not provide the control and timing
needed by many applications, and every operating system is different.” (Barnes, 1996,
[p. 393])

(Burns, 1998, [p. 22]) cite Ben-Ari for the clarification of our subject: “Concurrent
programming is the name given to programming notations and techniques for expressing
potential parallelism and for solving the resulting synchronisation and communication prob-
lems. Implementation of parallelism is a topic in computer systems (hardware and software)
that is essentially independent of concurrent programming. Concurrent programming is im-
portant because it provides an abstract setting in which to study parallelism without getting
bogged down in the implementation details.”

We do not, in this paper, distinguish between true parallelism and pseudo-parallelism.
We define two actions to be concurrent, if they are overlapping in time. That is, given two
actions, A and B, there is at least one point in time at which both A and B are executed.
Two programs are concurrent, if they contain concurrent actions.

Note that it is not necessary to consider an “arbitrary” number of concurrent actors.
Although in reality there will almost ever be more, it suffices to study cases involving two
concurrent actors only. All problems that arise in such cases can be easily generalized to
any number of actors. In fact, a larger number does not give rise to new aspects.

Figure 0.1 shall serve as an illustration for actions that are concurrent (see below for
how to read figures throughout this paper).

To avoid interference with the terms used in the three languages, we will, on the abstract
level, use the term actor for entities that can be executed concurrently. We thus realize that
an actor is an entity possessing its own thread of control.

In general, there are more actors than physical processors—we will stick to that.

1

Area of over-

lapping
actions

Figure 0.1: Concurrent actions

0.2 Problems and Pitfalls

Concurrent programming offers many advantages but, unfortunately, has pitfalls, too. Due
to a possibly large number of concurrent activities, such programs tend to be much harder
to design, understand, and prove correct. Psychology reveals that, albeit the human brain is
capable of employing true parallelism otherwise, the very act of contemplating in the mind
is singled threaded.

The use of concurrent programming techniques introduces problems that are completely
unknown in sequential programming—multiple update, deadlock, livelock, race conditions,
and starvation being examples of these. For the update problem, consider the following
scenario: Assume that a globally accessible variable is to be updated. A set of otherwise
unrelated actors is permitted to add to or subtract from this variable. The update might
read as follows:

Read R1, Variable
Add Deltal, R1
Store R1, Variable

If there is only one actor doing the update, then nothing can go wrong, since at most
one actor has access at any time. Several actors, however, might interfere. Suppose that P1
starts updating by reading Variable into register R1 and then adding Deltal, say 10, to
register R1. But before P1 can finish its update, it is preempted by P2 which now reads the
value into R2, adds Delta2 (say 100), and is preempted by P1 which now finalizes its update
by writing R1’s contents back to Variable. As the last step, P2 writes R2 into Variable.
Example 0.1 illustrates this.

Having successfully finished its update, P1 now assumes that Variable has been in-
creased by 10 whereas P2 relies on an increase by 100. Clearly, P2 is right, but how can
P1 know that its assumption is faulty? The correctness of the transaction relies on timing.
This is not acceptable at all! A sufficient condition for the transaction to be correct is the
demand that the two updates be non-overlapping in time, i.e., P1 shall be capable to finish
its transaction before P2 is allowed to begin (or vice versa, with the roles of P1 and P2
interchanged).

Generally, n actions (n > 2) are said to be atomic, if they are non-overlapping in time.
More formally, let A; and A, be two actions. Furthermore, let Start(A) and End(A) denote,

2

P1 P2 Variable

Read R1, Variable 100
Add R1, 10
Read R2, Variable
Add R2, 100
Store R1, Variable 110

Store R2, Variable 200

Example 0.1: Faulty update
respectively, the start and the end (in time) of an action A. Then
A; and A, are atomic with respect to each other = A, precedes A, or A, precedes A,

A precedes B = End(A) < Start(B). Returning to our example from above, an atomic
update is given in Example 0.2.

P1 P2 Variable
Read R1, Variable 100
Add R1, 10
Store R1, Variable 110

Read R2, Variable
Add R2, 100

Store R2, Variable 210

Example 0.2: Correct update

In order to prevent such and related problems from causing serious damage (data in-
consistencies), a programmer must be aware of them and has to acquire the skills needed to
tackle them appropriately. The intention of this paper is, therefore, to provide a detailed
introduction to concurrency aspects of Ada, CHILL, and Java. Furthermore, we will compare
the three languages with respect to concurrency.

There is a number of concurrent programming languages—our three are by no means the
first (or last!)—, but we felt that Ada, CHILL, and Java are especially suited for approaches
to concurrency. They all are high level languages and maintain the high level even in the
field of concurrent programming. Low level concurrent programming languages are those that
are used in massively parallel computing. Here, a programmer has—in addition to specifying
the problem—to distribute the workload explicitly among the available processors. Those
languages provide direct interfaces to the underlying hardware. Communication has to be
explicitly programmed and relies heavily on the architecture. The result is (often) a non-
portable program in which much of the effort is devoted to scheduling, dispatching, and

3

communicating. Our languages encourage software engineering principles that have been
found valuable and fostering the development process. And, last but not least, they are of
practical importance!.

0.3 How to read this Paper

This paper assumes familiarity with a high level imperative programming language and basic
understanding of the problems in concurrency (such as multiple update).

We actually distinguish between the definition of actor types and the definition of actors
based on actor types. That is, we consider type definition and variable/object definition to
be different. Several actor objects may correspond to one actor type definition. A type is a
template whereas a variable is an incarnation of a type.

Additionally, we would like to consider three distinct levels of “actor-related” occur-
rences: the static program structure, i.e., the program text, the dynamic program structure,
i.e., actor objects at runtime, and the execution, i.e., a particular execution of an actor’s
sequence of statements.

Actor types only exist in the program text. Simply think of this existence as the lines
of code that literally describe the type definition. Although there are languages (CHILL
and Java being examples) that allow a type to be equipped with type specific components
(often called static components) so that the type (descriptor) can be used to access these
components, we should not confuse type and object. An actor type is considered to be a
template from which objects/instances can be created. And, lastly, an actor type cannot be
active; hence, there cannot be a particular execution of an actor type.

If we, then, use actor types to create instances of these types, we note that an actor
definition in the program text is just that: the definition of an object of an actor type. The
result of such a definition is, at runtime, an actor object; hence, we have reached the stage
of the dynamic program structure. Finally, we can look at an actor under execution, i.e., we
examine an actor’s sequence of statements.

The transition from the static to the dynamic program structure is achieved by the
creation of an instance of the defined actor. Typically, an object is created whilst the
corresponding definition is elaborated or by means of dynamic object creation, using reference
types (see Chapter 1 for how this is done in our three languages). To reach the execution
stage requires an actor to become activated.

Should we ever mention an actor without specifying its context, we mean an actor object
in the dynamic program structure. Note that this somewhat theoretical framework is filled
step by step as we forge ahead. Table 1.1 at the end of Chapter 1 will then summarize what
we have explained.

In the diagrams that are used for illustrating time-related behaviour, time increases
from top to bottom and threads of control are shown as vertical lines. Solid lines are used
to represent activity, whereas a dashed line indicates that an actor is dormant. A sample
figure, Figure 0.2, is shown below; it illustrates the time-related behaviour of the faulty
update scenario presented earlier in this chapter.

References to the literature are given in the form (Author, Year, [Location]), where
Author is the primary author, Year the year of the current edition at the time of writing this
paper, and Location can be a page number (or a range of page numbers), section number,
etc. If not appropriate, Location is omitted.

Acknowledgements

We are deeply indebted to our supervisor, Prof. Dr. Jiirgen Winkler, for his invaluable hints

! Modula-3, for example, guarantees the first two issues as well, but—as far as we know—
nothing of significant importance has been programmed in this language

4

P1 P2

Read R1, Variable

Add R1, 10

Read R2, |
Variable

Add R2, 100

StoreR1,
Variable

Store R2,7
Variable

Figure 0.2: Faulty update

and for proofreading drafts of this paper. He has never got tired of harping on the subtle
points. We would also like to thank S. Tucker Taft and Robert A. Duff for explaining the
fine details of the Ada Standard. Furthermore, the folks on comp.lang.ada should not be
left out for they have contributed significantly to the discussions about Ada-related topics.
Last but by no means least, we express our gratitude to all the people whose books we have
used as input to this paper. A corresponding list can be found in the bibliography section
at the end of this paper.

The authors can be contacted for comments, additions, corrections, gripes, kudos, ver-
batim copies of this paper (PlainTgX, INTEX, DVI, POSTSCRIPT), etc. by e-mail. The
addresses are:

{broemel, franke}@informatik.uni-jena.de

Peter Bromel and Frank Ecke
Jena, 1998

