
Mechanical Program Verification – Part 4

Jürgen F H Winkler
Institute of Informatics
Friedrich Schiller University
Jena, Germany

ELTE, Budapest, 08 – 12 Oct 2007

12.10.2007 © J F H Winkler, 2006 2

Mechanical Program Verification Overview

Overview

• Historical Overview, Basic Concepts, Realistic Progr Verific

• Mechanical Program Verification (MPV)

• Comparison of 3 Automatic Program Provers (APP)

• The Frege Program Prover (FPP) in More Detail

• Mechanical Generation of Invariants for FOR-Loops

• Problems of FPP (and others)

• Towards Realistic Verification Conditions (VC)

• Summary

12.10.2007 © J F H Winkler, 2006 3

Mechanical Program Verification Overview

Part 4

• Problems of FPP (and others)

• Towards More Realistic VCs

• Summary

12.10.2007 © J F H Winkler, 2006 4

Mechanical Program Verification FPP is exp system

FPP is an Experimental System

small subset of Ada
arrays and subprograms are the elements most missed

somewhat naive verification conditions
e.g. assumption integer = Ÿ

program developer must write longer assertions
=> main problem: no soundness

if FPP says “proved“ the program may be incorrect !!!
no completeness is a smaller problem

based on Mathematica (2.2) and Analytica
Mathematica is also not sound: 0x = 0: 0-1 = 1/01 ??? [CZ 92: 27]

12.10.2007 © J F H Winkler, 2006 5

Mechanical Program Verification Correctness

Correctness - 1

AdaZ-Program = Program + Specification + Comments
(asserted program: ap)

Program p = non-comment part of the AdaZ-program
Specification q = assertion-part of the AdaZ-program
Asserted prog ap = (p, q)
Comments = the rest

Correctness ≡ p conforms to q (p ≤ q)
this is meant wrt to the two relations of p and q
we assume that these relations describe the behavior of
p as specified by the Ada lang spec

(e.g. finite domains for number types)
“ap is correct” or “ap is valid”

Incorrectness ≡ ¬correctness

12.10.2007 © J F H Winkler, 2006 6

Mechanical Program Verification FPP not sound

Correctness - 2

FPP-correctness ≡ FPP says „proved“

FPP-Soundness ≡ FPP-correctness ⇒ Correctness

If FPP says „not proved“ there are two possibilities:
¬(p ≤ q)
p ≤ q but FPP cannot prove it

correct ap‘s

FPP-correct ap‘s incorrect ap‘s

all ap‘s

12.10.2007 © J F H Winkler, 2006 7

Mechanical Program Verification Naive Counter

Integer = Ÿ

-- naive counter
--!pre: x = cx;

x := x+1;
--!post: x = cx+1;

--!pre : (x = cx)
--> wp : (1 + x = 1 + cx)
--> vc : (x = cx => 1 + x = 1 + cx)
--> Result: proved
x := x + 1;
--!post : (x = 1 + cx)

=> spec is idealistic (suitable for Cantor’s Paradise)

Execution with

xc = integer’last

raised CONSTRAINT_ERROR :
naive-count.adb:7
overflow check failed

12.10.2007 © J F H Winkler, 2006 8

Mechanical Program Verification Dangerous Consequence

Integer = Ÿ

That was the worst that can happen for an APP (the “deadly sin of PV”)

APP says “proved”

=> people feel secure and safe

but the program (may be that which controls an air-plane) crashes at runtime

12.10.2007 © J F H Winkler, 2006 9

Mechanical Program Verification Semi-naive Counter

Integer = Ÿ
-- semi-naive counter
--!pre: x = cx and -100 <= x and x <= 100;

x := x+1;
--!post: x = cx+1 and -100 <= x and x <= 100;

--!pre : (x = cx AND -100 <= x AND x <= 100)
--> wp : (1 + x = 1 + cx AND -100 <= 1 + x AND 1 + x <= 100)
--> vc : (x = cx AND -100 <= x AND x <= 100)
--> ==> (1 + x = 1 + cx AND -100 <= 1 + x AND 1 + x <= 100)
--> Result: not proved
--> fc : (-99 + cx >= 1 AND 100 - cx >= 0 AND 100 + cx >= 0)
x := x + 1;
--!post : (x = 1 + cx AND -100 <= x AND x <= 100)

=> spec is adequate => program is not adequate

Type condition

12.10.2007 © J F H Winkler, 2006 10

Mechanical Program Verification Semi-prof Counter

Integer = Ÿ
-- semi-professional counter
--!pre: x = cx and -100 <= x and x <= 100;

IF x<100
THEN x := x+1;
END IF;

--!post: ((cx<100 ∧ x=cx+1) or (cx=100 ∧ x=cx)) ∧ -100<=x ∧ x<=100;

--!pre : (x = cx AND -100 <= x AND x <= 100)
--> wp : (100 >= 1 + x) . . .
--> vc : (x = cx AND -100 <= x AND x <= 100) ==> (100 >= 1 + x) . . .
--> Result: proved
IF x < 100 THEN

x := x + 1;
END IF;
--!post (100 >= 1+cx ∧ x = 1+cx OR cx = 100 ∧ x=cx) ∧ (-100 <= x) ∧ (x <= 100)

=> professional counter ??? => exercise for the audience

12.10.2007 © J F H Winkler, 2006 11

Mechanical Program Verification Problematic Expressions

Problematic expressions - 1
--!pre: true;

b := 0/0 = 0/0;
--!post: b;

Ada-compilation

undef01.adb:6:10: division by zero

undef01.adb:6:10: static expression raises
„Constraint_Error“

Java

compilation successful
Exception in thread "main"
java.lang.ArithmeticException: / by zero

at Undef01.main(Undef01.java:5)

1): „Rules of Logic“: http://cerebro.xu.edu/csci370/00f/Assignments/LogicOverheads/
RulesOfLogic.pdf#search=%22logical%20laws%20equivalence%20reflexivity%22

2006.Sep.29

1. Reflexivity of equivalence: E ≡ E 1)

--!pre : (True)
--> wp : (True)
--> vc : (True)
--> Result: proved
b := 0 / 0 = 0 / 0;
--!post : (b)

12.10.2007 © J F H Winkler, 2006 12

Mechanical Program Verification Idealism

Problematic expressions - 2

=> mechanical program verification means that the APP must deal
in a sensible and SOUND manner with ANY INPUT

=> same situation as with naïve counter

In mathematics division by zero is just “forbidden” or at least evaded:

“At first sight we can't add a symbol to express 1/x, since all the named functions have to be defined
on the whole domain of the structure, and there is no such real number as 1/0. But on second
thoughts this is not a serious problem; any competent mathematician puts the condition ‘x is not zero’
before dividing by x, and so it never matters what the value of 1/0 is, and we can harmlessly take it to
be 42.
But most model theorists are uncomfortable with any kind of division by zero, so they
stick with plus, times and minus.”

http://plato.stanford.edu/entries/modeltheory-fo/ 2005.Jan.30

That is no solution here

12.10.2007 © J F H Winkler, 2006 13

Mechanical Program Verification Problematic Expressions

Problematic expressions - 4
X: integer;
. . .

--# assert True;
X := 1/(X-X);

--# assert 1/(X-X) = 1/(X-X);
X := 1;

--# assert X=1;

SPARK95 5.01 Examiner + Simplifier:

“all conclusions proved”

2004.Jul.13

12.10.2007 © J F H Winkler, 2006 14

Mechanical Program Verification Tertium non datur?

Problematic expressions - 3

let a and b be two numerical variables

What is the value of:

(a < b) ∨ (a >= b) ???

where “<“ and “>=“ are predeclared operations in some programming
language.

12.10.2007 © J F H Winkler, 2006 15

Mechanical Program Verification Realism

Towards realistic semantics and VCs
Semantics is specified by wp-rules
VC: pre ⇒ wp(progr, post)

schema for loops
adaptation rule for procedure calls

Assumptions
ap is syntactically legal
ap is legal wrt static context conditions of the resp language

all entities properly defined
legal typing
accessibility

no function calls in expressions

Must also be checked by APP but are not expressed in the VCs

12.10.2007 © J F H Winkler, 2006 16

Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs
Assignment

variable := expression; -- let v be scalar

v := e;

wp(“v := e;”, post) ≡ ec(‘e) |∧ (e ∈ Type(v) ∧ postve)

ec(‘e) : e can be effectively computed (eg no exceptions)
this includes also the eff computation of all intermediary results
‘e means: no evaluation or simplification of e

|∧ : evaluate from left to right
stop if value is definitely true or false

Type(v) : the value set of the type of v

12.10.2007 © J F H Winkler, 2006 17

Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs
ec(‘v) ≡ true

ec(‘literal) ≡ literal ∈ Type(literal)

v := v; -- Type(v) = [1, 10]

wp(“v := v;”, true) ≡ ec(‘e) |∧ (e ∈ Type(v) ∧ postve)

≡ ec(‘v) |∧ (v ∈ [1, 10] ∧ truev
v)

≡ true |∧ (v ∈ [1, 10] ∧ truev
v)

≡ v ∈ [1, 10] ∧ truev
v

≡ v ∈ [1, 10] ∧ true

≡ v ∈ [1, 10]

=> this solves the Pascal example

12.10.2007 © J F H Winkler, 2006 18

Mechanical Program Verification Realistic Division

Towards realistic semantics and VCs

ec(‘(e1/e2)) ≡ -- integer division

ec(‘e1) |∧ ec(‘e2) |∧ (e2 ≠ 0 ∧ e1 ∈ Type(/.lo) ∧ e2 ∈ Type(/.ro))

wp(“x := 1/(x-x);”, true)

≡ -- assg rule: ec(‘e) |∧ (e ∈ Type(v) ∧ postve)

ec(‘(1/(x-x))) |∧ (1/(x-x) ∈ Type(x) ∧ truex
1/(x-x))

≡ [ec(‘1) |∧ ec(‘(x-x)) |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [1 ∈ Int |∧ ec(‘(x-x)) |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [[ec(‘x) |∧ ec(‘x) |∧ (x ∈ Type(-.lo) ∧ x ∈ Type(-.ro))]
|∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

12.10.2007 © J F H Winkler, 2006 19

Mechanical Program Verification Realistic Division

Towards realistic semantics and VCs

≡ [[ec(‘x) |∧ ec(‘x) |∧ (x ∈ Int ∧ x ∈ Int)]
|∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [x ∈ Int |∧ (x-x ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [x ∈ Int |∧ (0 ≠ 0 ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [x ∈ Int |∧ (False ∧ 1 ∈ Int ∧ x-x ∈ Int)]
|∧ (1/(x-x) ∈ Type(x) ∧ truex

1/(x-x))

≡ [x ∈ Int |∧ False] |∧ (1/(x-x) ∈ Type(x) ∧ truex
1/(x-x))

≡ False

=> better than FPP and SPARK

12.10.2007 © J F H Winkler, 2006 20

Mechanical Program Verification Realistic Assignment

Towards realistic semantics and VCs

wp(“v := e;”, post) ≡ ec(‘e) |∧ (e ∈ Type(v) ∧ postve)

everything OK now ?

what about problematic expressions in assertions ?

12.10.2007 © J F H Winkler, 2006 21

Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs
--!pre: y >= 0;

x := 0;
--!post: y/y > 0;

Sometimes people (and tools) apply naively: y/y = 1
--!pre: y >= 0;

x := 0;
--!post: 1 > 0;

wp(“x := 0;”, True) ≡ ec(‘0) |∧ (0 ∈ Type(x) ∧ Truex
0)

≡ True |∧ (0 ∈ Type(x) ∧ Truex
0)

≡ 0 ∈ Type(x) ∧ Truex
0

≡ True

pre ⇒ wp(“x := 0;”, True)
≡ y>=0 ⇒ True
≡ True

12.10.2007 © J F H Winkler, 2006 22

Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

Assume: y has a proper value: y=0 ∨ y≠0

Then (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ≡ True

--!pre: y >= 0;
x := 0;

--!post: y/y > 0;

wp(“x := 0;”, y/y > 0)
≡ ec(‘0) |∧ (0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ (y/y > 0)x

0)
≡ True |∧ (0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ (y/y > 0)x

0)
≡ 0 ∈ Type(x) ∧ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0
≡ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0

12.10.2007 © J F H Winkler, 2006 23

Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

〈∀x, y: pre ⇒ wp(“x := 0;”, y/y > 0) 〉
≡ 〈∀x, y: y >= 0 ⇒ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0 〉

≡ 〈y >= 0 ⇒ (y=0 ⇒ y/y = NaN) ∧ (y≠0 ⇒ y/y = 1) ∧ y/y > 0 〉y0 ∧ R
≡ 0 >= 0 ⇒ (0=0 ⇒ 0/0 = NaN) ∧ (0≠0 ⇒ 0/0 = 1) ∧ 0/0 > 0 ∧ R
≡ True ⇒ (True ⇒ 0/0 = NaN) ∧ (False ⇒ 0/0 = 1) ∧ 0/0 > 0 ∧ R
≡ 0/0 = NaN ∧ True ∧ 0/0 > 0 ∧ R
≡ 0/0 = NaN ∧ NaN > 0 ∧ R
≡ -- C#, Java: NaN > 0 ≡ False
≡ 0/0 = NaN ∧ False ∧ R
≡ False

This is more realistic

12.10.2007 © J F H Winkler, 2006 24

Mechanical Program Verification Division in IEC 60 559

Towards realistic semantics and VCs

For floating point division x/y in C# (IEC 60 559) :
x, y means proper value ≠ 0
(Table from ECMA-334 June 2006)

+y –y +0 –0 +∞ –∞ NaN

+x +z –z +∞ –∞ +0 –0 NaN
–x –z +z –∞ +∞ –0 +0 NaN
+0 +0 –0 NaN NaN +0 –0 NaN
–0 –0 +0 NaN NaN –0 +0 NaN
+∞ +∞ –∞ +∞ –∞ NaN NaN NaN
–∞ –∞ +∞ –∞ +∞ NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

12.10.2007 © J F H Winkler, 2006 25

Mechanical Program Verification Problematic Expressions

Towards realistic semantics and VCs

Sometimes people (and tools) naively apply: (a*c)/(b*c) = a/b

--!pre: a>0 and b>0 and c=0;
cond := (a*c)/(b*c) = a/b;

--!post: cond;

User: 141.35.12.27 At: 2006.09.22, 8:59

--!pre : (a >= 1 AND b >= 1 AND c = 0)
--> wp : (True)
--> vc : (True)
--> Result: proved !!!!!
cond := (a * c) / (b * c) = a / b;
--!post : (cond)

12.10.2007 © J F H Winkler, 2006 26

Mechanical Program Verification Realistic IF

FPP: AdaZ: wp

d) if-statement

wp(“if Cond Then S1 Else S2 End If;”, post) ≡

Cond ∧ wp(“S1”, post) ∨ ¬Cond ∧ wp(“S2”, post)

Cond must also be effectively computable

wp(“if Cond Then S1 Else S2 End If;”, post) ≡

ec(‘Cond) |∧ [Cond ∧ wp(“S1”, post) ∨ ¬Cond ∧ wp(“S2”, post)]

Cond ∈ Boolean seems guaranted (at least in IEC 60559)

12.10.2007 © J F H Winkler, 2006 27

Mechanical Program Verification Realistic FOR

Towards realistic semantics and VCs
f) FOR-loop: VC (based on [Hoa 72])

-- pre
FOR id IN e1 .. e2
LOOP

-- e1≤e2 ∧ invid
pred(id)

statm-sequence (ss)
-- inv

END LOOP;
-- post

init ≡ e1≤e2 ∧ pre ⇒ invid
pred(e1)

null ≡ e1>e2 ∧ pre ⇒ post

ind ≡ e1≤e2 ∧ invid
pred(id) ⇒ wp(ss, inv)

final ≡ e1≤e2 ∧ invid
e2 ⇒ post

VC ≡ init ∧ null ∧ ind ∧ final

e1 and e2 must also be effectively computable

=> VC ≡ ec(‘e1) |∧ ec(‘e2) |∧ e1,e2 ∈ Type(id) ∧ init ∧ null ∧ ind ∧ final

12.10.2007 © J F H Winkler, 2006 28

Mechanical Program Verification Realistic WHILE

Towards realistic semantics and VCs
f) WHILE-loop: VC

-- pre
-- inv

WHILE cond
LOOP

-- inv ∧ term>0 ∧ term=T
statm-sequence (ss)

-- inv ∧ term<T
END LOOP;

-- post

initf ≡ pre ⇒ inv
nullf ≡ inv ∧ ¬cond ⇒ post

initt ≡ cond ∧ inv ⇒ term>0
indf ≡ cond ∧ inv ⇒ wp(ss, inv)
indt ≡ cond ∧ inv ⇒ [wp(ss, term<T)]Tterm

finalf ≡ inv ∧ ¬cond ⇒ post

VC ≡ initf ∧ indf ∧ finalf ∧ initt ∧ indt

cond must also be effectively computable

=> VC ≡ ec(‘cond) |∧ initf ∧ indf ∧ finalf ∧ initt ∧ indt

12.10.2007 © J F H Winkler, 2006 29

Mechanical Program Verification Summary

Summary
• Historical overview: GvN, Turing, Floyd, Hoare, Dijkstra

• Serious Program Verification

• Mechanical Verification of real programs
APP computes and tries to prove VC

• Comparison of APPs (FPP, NPPV, SPARK-aut)

• Mechanical generation of invariants for FOR-loops
• No Soundness due to idealistic APPs (e.g. integer = Ÿ)

• Towards more realistic VCs
how do real programs work ? ((a < b) ∨ (a ≥ b))

• Undefined expressions have to be tackled ((a*c)/(b*c) = a/b)

• More logic at school and university necessary (e ⇒ true)
especially: more practice in logical calculations

12.10.2007 © J F H Winkler, 2006 30

Mechanical Program Verification PV History

Program Verification: History

1947 Goldstine / v. Neumann : flow diagrams + assertions

1949 Turing : flow diagrams + assertions

1967 Floyd : flow diagrams + assertions

1969 Hoare : derivation system for valid triples

1976 Dijkstra : function (wp) and schemas for valid triples

2003 Hoare : Verifying compiler as a grand challenge

2006 Hoare (Budapest*)) : Program Verifier as
Grand Challenge of Informatics

*): http://www.cs.bme.hu/~szeredi/ae-is-budapest/symp.html#SECTION00031000000000000000

12.10.2007 © J F H Winkler, 2006 31

Mechanical Program Verification Serious Progr Verif

Program Verification (serious viewpoint)

ps ≤ (pre, post) is not sufficient

po ≤ (pre, post) is the really important thing

po ≤ ps ∧ ps ≤ (pre, post) ⇒ po ≤ (pre, post)

Correctness of the compiler

{pre} ps {post}

Comp

po

And you gave the hint: correctness of the OS, Processor, Loader, …

And we all forgot: correctness of the APP

was the first question to Hoare after his talk on 2006.Sep.19

12.10.2007 © J F H Winkler, 2006 32

Mechanical Program Verification No Soundness

Correctness - 2

Soundness: FPP-correctness ⇒ Correctness

--!pre : (a >= 1 AND b >= 1 AND c = 0)
--> wp : (True)
--> vc : (True)
--> Result: proved !!!!!
cond := (a * c) / (b * c) = a / b;
--!post : (cond)

correct ap‘s

FPP-correct ap‘s incorrect ap‘s

all ap‘s

12.10.2007 © J F H Winkler, 2006 33

Mechanical Program Verification Conclusion

Conclusion

Mechanical Program Verification

• promises great advantages

• is still in its infancy

• requires a realistic logic and realistic VCs

• is a whole new technology (as e.g. compiling)

• a “Great Challenge”

=> a lot of work to do (beginning at school)

and … don’t be afraid of heuristics

12.10.2007 © J F H Winkler, 2006 34

Mechanical Program Verification

Thank you very much

I hope you‘ve learnt something

Good Bye

12.10.2007 © J F H Winkler, 2006 35

Rest

Mechanical Program Verification – Part 4

Jürgen F H Winkler
Institute of Informatics
Friedrich Schiller University
Jena, Germany

ELTE, Budapest, 25 – 29 Sep 2006

	Mechanical Program Verification – Part 4
	Mechanical Program Verification	Overview
	Mechanical Program Verification	Overview
	Mechanical Program Verification	FPP is exp system
	Mechanical Program Verification	Correctness
	Mechanical Program Verification	FPP not sound
	Mechanical Program Verification	Naive Counter
	Mechanical Program Verification	Dangerous Consequence
	Mechanical Program Verification	Semi-naive Counter
	Mechanical Program Verification	Semi-prof Counter
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Idealism
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Tertium non datur?
	Mechanical Program Verification	Realism
	Mechanical Program Verification	Realistic Assignment
	Mechanical Program Verification	Realistic Assignment
	Mechanical Program Verification	Realistic Division
	Mechanical Program Verification	Realistic Division
	Mechanical Program Verification	Realistic Assignment
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Division in IEC 60 559
	Mechanical Program Verification	Problematic Expressions
	Mechanical Program Verification	Realistic IF
	Mechanical Program Verification	Realistic FOR
	Mechanical Program Verification	Realistic WHILE
	Mechanical Program Verification	Summary
	Mechanical Program Verification	PV History
	Mechanical Program Verification	Serious Progr Verif
	Mechanical Program Verification	No Soundness
	Mechanical Program Verification	Conclusion
	Mechanical Program Verification	
	Mechanical Program Verification – Part 4

