
Mechanical Generation of
Invariants for FOR-Loops

Stefan Kauer Jürgen F H Winkler
BU DE Institute of Informatics
EADS Deutschland GmbH Friedrich Schiller University
Immenstaad, Germany Jena, Germany

Course on “Mechanical Program Verification”
Budapest, ELTE, 08-12 Oct 2007

11.10.2007 2

Mechanical Generation of Invariants Overview

Overview

• Basic Approach

• Bound Transformation

• Determination of Common Conjuncts

• Adaptation of Proof Rules

11.10.2007 3

Mechanical Generation of Invariants Basic Approach

Basic Approach

• A specification S is given

• A program P has been developed

• Correctness ≡ P conforms to S

• Proof of correctness should be done mechanically
(free the SW engineer from tedious work)

• VCs based on wp(⋅,⋅)

11.10.2007 4

Mechanical Generation of Invariants Computation of wp

Computation of wp(⋅,⋅)

• For assignment, IF, CASE, Sequence: simple formula
manipulation

• For WHILE
- find a solution for H (e.g. Kauer) (〈∃k: 0 ≤ k: Hk(post) 〉)
- use a VC based on (pre, inv, post, term)

• For FOR: use a VC based on (pre, inv, post)

11.10.2007 5

Mechanical Generation of Invariants FOR-Loop

FOR-loop
-- pre

FOR i IN LO .. UP

LOOP Body

-- inv

END LOOP

-- post

i: loop variable: is a constant in BODY

strictly controlled loop

LO: lower bound: no side effects and referentially transparent in BODY

UP: upper bound : no side effects and referentially transparent in BODY

holds for many FOR-loops in practice (see summary)

11.10.2007 6

Mechanical Generation of Invariants FOR-loop: VC

FOR-loop: VC

[PRE ⇒ LO, UP ∈ Ti] ∧

[PRE ∧ LO > UP ⇒ POST] ∧

[PRE ∧ LO ≤ UP ⇒ wp(BODYi
LO, INVi

LO)] ∧

[LO ≤ i < UP ∧ INV ⇒ wp(BODYi
i+1, INVi

i+1)] ∧

[LO ≤ UP ∧ INVi
UP ⇒ POST]

Ti: set of admissible values of i

11.10.2007 7

Mechanical Generation of Invariants FOR Loop

FOR-loop: example

-- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N

FOR i in 1..n LOOP s := s+i;

END LOOP

-- POST: s = 〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N

11.10.2007 8

Mechanical Generation of Invariants Basic Approach

Verification of a FOR-loop requires
PRE, POST and INV

=> spec gives PRE and POST

=> program developer must find/invent INV

=> easier if INV can be computed by the program prover

11.10.2007 9

Mechanical Generation of Invariants How to compute INV?

How to compute INV?

Observation by Dijkstra and Gries for WHILE-loops:
[Dij 1976; Grie 1982]

=> INV can be seen as a weakening of POST
=> one weakening: replace a constant in POST by a variable (RCPV)

Example [Gri 1983: 199]

POST ≡ sum = 〈Σj: 0 ≤ j < n: b(j)〉 -- n is constant for this possibly iterative
-- process

HI ≡ sum = 〈Σj: 0 ≤ j < i: b(j)〉 -- i is a variable, possibly the loop
-- variable

Used in the development of the program from (PRE, POST)

11.10.2007 10

Mechanical Generation of Invariants How to compute INV?

How to compute INV?

Kauer for FOR-loop and verification of an existing loop against (PRE, POST):

-- PRE: s = 0 ∧ s ∈ int32
FOR i in 1..100 LOOP s := s+i;

-- HI: s = 〈Σj: 1..i: j〉 ∧ s ∈ int32
END LOOP

-- POST: s = 〈Σj: 1..100: j〉 ∧ s ∈ int32

Use UP as candidate for the constant to be replaced in POST

HI ≡ POST100
i ≡ (s = 〈Σj: 1..100: j〉 ∧ s ∈ int32)100

i
≡ s = 〈Σj: 1..i: j〉 ∧ s ∈ int32 is an invariant

11.10.2007 11

Mechanical Generation of Invariants How to compute INV

How to compute INV?
Naïve RCPV does often not work:

-- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N
FOR i in 1..n LOOP s := s+i; END LOOP

-- POST: s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N

HI ≡ POSTn
i ≡ (s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N)n

i

≡ s=〈Σj: 1..i: j〉 ∧ 0≤i≤65535 ∧ i=N

Since N is a constant HI cannot be an invariant
=> apply RCPV not to common conjuncts

HI‘ ≡ (s=〈Σj: 1..n: j〉)n
i ∧ 0≤n≤65535 ∧ n=N

≡ s=〈Σj: 1..i: j〉 ∧ 0≤n≤65535 ∧ n=N is an invariant

11.10.2007 12

Mechanical Generation of Invariants Limitation of the Method

Method up to now only applicable if final bound is a simple variable

-- PRE: s = 0
FOR i in 1..n+m LOOP s := s+i; END LOOP

-- POST: s = 〈Σj: 1..n+m: j〉

First idea: auxiliary variable for UP
-- PRE: s = 0

vup := n+m; -- fresh variable
-- s = 0 ∧ vup = n+m -- sp(s=0, “vup := n+m;”)

FOR i in 1..vup LOOP s := s+i; END LOOP
-- POST: s = 〈Σj: 1..n+m: j〉

HI ≡ POST because vup does not occur in POST
HI is not an invariant

11.10.2007 13

Mechanical Generation of Invariants Translation Functions

Method up to now only applicable if final bound is a simple variable

Second idea: bound transformation: t(UP,n)(e) = e – m (translation)

t(UP,n)(UP) = n+m-m = n is a simple variable

Compensation in BODY: BODYi
i+m

-- PRE: s = 0

-- FOR i in 1..n+m LOOP s := s+i; END LOOP

FOR i in 1-m..n LOOP s := s+(i+m); END LOOP

-- POST: s = 〈Σj: 1..n+m: j〉 ≡ s = 〈Σj: 1-m..n: j+m〉

11.10.2007 14

Mechanical Generation of Invariants Loop Transformation

Original and transformed loop

L1: -- PRE

FOR i in LO1..UP1 LOOP BODY END LOOP

-- POST

L2: -- PRE

FOR i in t(LO1) .. r(t(UP1))
LOOP BODY(i # t*(i)) END LOOP

-- POST

11.10.2007 15

Mechanical Generation of Invariants Translation Functions

Translation functions

We deal with translations t(UP) such that
r(t(UP)) is “v” or “-v” for some v ∈ free(UP)

“v”: HI = POSTv
i

“-v”: HI = POSTv
(-i)

For a given UP there may exist several translations:

UP = n+m: t1(UP,m)(e) = e-n, t2(UP,n)(e) = e-m

11.10.2007 16

Mechanical Generation of Invariants Translation Functions

Translation functions

HI is really hypothetical

-- PRE: s = 0 ∧ m ≥ 0 ∧ n≤0
FOR i IN m .. m-n LOOP

s := s + i;

END LOOP;

-- POST: s = 〈Σ j: m..m-n: j〉

t1(m-n,m)(e) = e+n: HI ≡ POSTm
i ≡ s = 〈Σ j: i..i-n: j〉 is not an invariant

t2(m-n,n)(e) = e-m: HI ≡ POSTn
(-i) ≡ s = 〈Σ j: m..m+i: j〉 is an invariant

11.10.2007 17

Mechanical Generation of Invariants Translation Functions

Translation functions

Form of UP

o1 v e1 o2 v o1 v o2 e1 e1 o2 v o3 e2

t(UP,v)(e) e e-e1 e o2-1 e1 e - e1 o3-1 e2

r(t(UP,v)(UP)) o1 v o2 v o1 v o2 v

t*(UP,v)(e) e e+e1 e o2 e1 e + e1 o3 e2

t*(UP,v)(t(UP,v)(e)) e e-e1+e1 e o2-1 e1 o2 e1 e - e1 o3-1 e2 + e1 o3 e2

v ∉ free(e1) ∪ free(e2), o1 ∈ {+, -, ε}, o2, o3 ∈ {+, -}, +-1 = - , --1 = +

For these translations the transformed loop is executed for the same sequence of
values of the loop variable as the original loop

11.10.2007 18

Mechanical Generation of Invariants Common Conjuncts

Determination of Common Conjuncts

(a) transform PRE and POST into normal form NF

(b) determine the syntactically common conjuncts C = C1 ∧ … ∧ Cn

(c) determine those Ci for which

noWrite(BODY, free(Ci)) ∨ [Ci ⇒ wp(BODY, Ci)] holds
Ccom is the conjunctions of these Ci

POST ≡ POST‘ ∧ Ccom

11.10.2007 19

Mechanical Generation of Invariants Specialized Proof Rule

Specialized Proof Rules

(upwards counting, bounds not modified, “v”, i ∉ free(POST)) :

[PRE ⇒ LO, UP ∈ Ti] ∧

[PRE ∧ LO > UP ⇒ POST’] ∧

[PRE ∧ LO ≤ UP ⇒ wp(BODYi
LO, POST’r(t(UP))

t(LO))] ∧

[t(LO) ≤ i < t(UP) ∧ POST’r(t(UP))
i ∧ Ccom ⇒

wp(BODYi
t*(i)+1, POST’r(t(UP))

i+1)]

11.10.2007 20

Mechanical Generation of Invariants Summary

Summary

• mechanical derivation of an hypothetical invariant from UP and POST

based on RCPV, translation functions, identification of common conjuncts

• it is a heuristic and not a general solution

BUT: applicable to many practical FOR-loops:

BG 91: Gonnet, G. H.; Baeza-Yates, R.: Handbook of Algorithms and
Data Structures. Addison Wesley, Wokingham, 1991:

in most FOR-loops (in this book) UP has one of the 3 forms:
(a) variable,
(b) sum of two variables
(c) sum of a variable and a constant

these are already covered
by the method

11.10.2007 21

Mechanical Generation of Invariants Summary

Summary

Randwertproblemlöser (boundary value problem solver)
Fortran-program written by Hermann and Kaiser of FSU Dept. Math&CS
1015 FOR-loops (DO-loop in Fortran)
998 of these loops are appropriate for the method

=> this heuristic method seems to be quite good

• more translation schemes could be defined

• not yet implemented

11.10.2007 22

Mechanical Generation of Invariants Summary

Thank You

Mechanical Generation of
Invariants for FOR-Loops

Stefan Kauer Jürgen F H Winkler
BU DE Institute of Informatics
EADS Deutschland GmbH Friedrich Schiller University
Immenstaad, Germany Jena, Germany

WING 2007
RISC, Hagenberg, Austria

2007.Jun.26

11.10.2007 24

Mechanical Generation of Invariants Basic Approach

Specification and Program

• Specification is given by assertions: S = (pre, post)

pre

P

post

Verification condition VC ≡ [pre ⇒ wp(P, post)] or
VC ≡ [sp(pre, P) ⇒ post]

11.10.2007 25

Mechanical Generation of Invariants Basic Approach

Compositionality of wp(⋅,⋅)

• wp(S1 S2, post) ≡ wp(S1, wp(S2, post))

• wp(if C then S1 else S2 fi, post) ≡
well-defined(C) cand ((C ⇒ wp(S1, post)) ∧

(¬C ⇒ wp((S2, post))

• wp(while C do S od, post) ≡
well-defined(C) cand ((C ⇒ wp(S WHILE, post) ∧

(¬C ⇒ post))

• wp(while C do S od, post) ≡ (VCW)
〈∃k: 0 ≤ k: Hk(post) 〉

	Mechanical Generation of �Invariants for FOR-Loops
	Mechanical Generation of Invariants	Overview
	Mechanical Generation of Invariants	Basic Approach
	Mechanical Generation of Invariants	Computation of wp
	Mechanical Generation of Invariants	FOR-Loop
	Mechanical Generation of Invariants	FOR-loop: VC
	Mechanical Generation of Invariants	FOR Loop
	Mechanical Generation of Invariants	Basic Approach
	Mechanical Generation of Invariants	How to compute INV?
	Mechanical Generation of Invariants	How to compute INV?
	Mechanical Generation of Invariants	How to compute INV
	Mechanical Generation of Invariants	Limitation of the Method
	Mechanical Generation of Invariants	Translation Functions
	Mechanical Generation of Invariants	Loop Transformation
	Mechanical Generation of Invariants	Translation Functions
	Mechanical Generation of Invariants	Translation Functions
	Mechanical Generation of Invariants	Translation Functions
	Mechanical Generation of Invariants	Common Conjuncts
	Mechanical Generation of Invariants	Specialized Proof Rule
	Mechanical Generation of Invariants	Summary
	Mechanical Generation of Invariants	Summary
	Mechanical Generation of Invariants	Summary
	Mechanical Generation of �Invariants for FOR-Loops
	Mechanical Generation of Invariants	Basic Approach
	Mechanical Generation of Invariants	Basic Approach

