Mechanical Generation of Invariants for FOR-Loops

Stefan Kauer BU DE EADS Deutschland GmbH Immenstaad, Germany Jürgen F H Winkler Institute of Informatics Friedrich Schiller University Jena, Germany

Course on "Mechanical Program Verification" Budapest, ELTE, 08-12 Oct 2007

Overview

- Basic Approach
- Bound Transformation
- Determination of Common Conjuncts
- Adaptation of Proof Rules

Basic Approach

- A specification S is given
- A program P has been developed
- Correctness \equiv P conforms to S
- Proof of correctness should be done mechanically (free the SW engineer from tedious work)
- VCs based on $wp(\cdot, \cdot)$

Computation of $wp(\cdot, \cdot)$

- For assignment, IF, CASE, Sequence: simple formula manipulation
- For WHILE
 - find a solution for H (e.g. Kauer) ($\langle \exists k: 0 \le k: H_k(post) \rangle$)
 - use a VC based on (pre, inv, post, term)
- For FOR: use a VC based on (pre, inv, post)

FOR-loop

-- pre FOR i IN LO .. UP LOOP Body -- inv END LOOP -- post

i: loop variable: is a constant in BODY

strictly controlled loop

LO: lower bound: no side effects and referentially transparent in BODY

UP: upper bound : no side effects and referentially transparent in BODY holds for many FOR-loops in practice (see summary)

FOR-loop: VC

```
\begin{bmatrix} \mathsf{PRE} \Rightarrow \mathsf{LO}, \mathsf{UP} \in \mathsf{Ti} \end{bmatrix} \land
\begin{bmatrix} \mathsf{PRE} \land \mathsf{LO} > \mathsf{UP} \Rightarrow \mathsf{POST} \end{bmatrix} \land
\begin{bmatrix} \mathsf{PRE} \land \mathsf{LO} \leq \mathsf{UP} \Rightarrow \mathsf{wp}(\mathsf{BODY}^{i}_{\mathsf{LO}}, \mathsf{INV}^{i}_{\mathsf{LO}}) \end{bmatrix} \land
\begin{bmatrix} \mathsf{LO} \leq \mathsf{i} < \mathsf{UP} \land \mathsf{INV} \Rightarrow \mathsf{wp}(\mathsf{BODY}^{i}_{\mathsf{i+1}}, \mathsf{INV}^{i}_{\mathsf{i+1}}) \end{bmatrix} \land
\begin{bmatrix} \mathsf{LO} \leq \mathsf{UP} \land \mathsf{INV} \Rightarrow \mathsf{wp}(\mathsf{BODY}^{i}_{\mathsf{i+1}}, \mathsf{INV}^{i}_{\mathsf{i+1}}) \end{bmatrix} \land
```

Ti: set of admissible values of i

FOR-loop: example

-- PRE: $s=0 \land 0 \le n \le 65535 \land n=N$ FOR i in 1..n LOOP s := s+i; END LOOP -- POST: $s = \langle \Sigma j: 1..n: j \rangle \land 0 \le n \le 65535 \land n=N$

Verification of a FOR-loop requires PRE, POST and INV

- => spec gives PRE and POST
- => program developer must find/invent INV
- => easier if INV can be computed by the program prover

How to compute INV?

Observation by Dijkstra and Gries for WHILE-loops:

[Dij 1976; Grie 1982]

- => INV can be seen as a weakening of POST
- => one weakening: replace a constant in POST by a variable (RCPV)

```
Example [Gri 1983: 199]

POST \equiv sum = \langle \Sigma j: 0 \le j < n: b(j) \rangle -- n is constant for this possibly iterative

-- process

HI \equiv sum = \langle \Sigma j: 0 \le j < i: b(j) \rangle -- i is a variable, possibly the loop

-- variable
```

Used in the development of the program from (PRE, POST)

How to compute INV?

Kauer for FOR-loop and verification of an existing loop against (PRE, POST):

-- PRE: $s = 0 \land s \in int32$ FOR i in 1..100 LOOP s := s+i; -- HI: $s = \langle \Sigma j: 1..i: j \rangle \land s \in int32$ END LOOP -- POST: $s = \langle \Sigma j: 1..100: j \rangle \land s \in int32$

Use UP as candidate for the constant to be replaced in POST

How to compute INV?

Naïve RCPV does often not work:

-- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N FOR i in 1..n LOOP s := s+i; END LOOP -- POST: s=⟨Σj: 1..n: j⟩ ∧ 0≤n≤65535 ∧ n=N

$$HI \equiv POST_{i}^{n} \equiv (s = \langle \Sigma j; 1..n; j \rangle \land 0 \le n \le 65535 \land n = N)_{i}^{n}$$

$$\equiv s = \langle \Sigma j; 1..i; j \rangle \land 0 \le i \le 65535 \land i = N$$

Since N is a constant HI cannot be an invariant

=> apply RCPV not to common conjuncts

$$HI' \equiv (s = \langle \Sigma j; 1..n; j \rangle)^{n}_{i} \land 0 \le n \le 65535 \land n = N$$

$$\equiv s = \langle \Sigma j; 1..i; j \rangle \land 0 \le n \le 65535 \land n = N \qquad \text{is an invariant}$$

Method up to now only applicable if final bound is a simple variable

```
-- PRE: s = 0

FOR i in 1..n+m LOOP s := s+i; END LOOP

-- POST: s = \langle \Sigma j: 1..n+m: j \rangle

First idea: auxiliary variable for UP

-- PRE: s = 0

Vup := n+m; -- fresh variable

-- s = 0 \wedge vup = n+m -- sp(s=0, "vup := n+m;")

FOR i in 1..vup LOOP s := s+i; END LOOP

-- POST: s = \langle \Sigma j: 1..n+m: j \rangle
```

HI = POST because vup does not occur in POSTHI is not an invariant

Method up to now only applicable if final bound is a simple variable

Second idea: bound transformation: t(UP,n)(e) = e - m (translation)

t(UP,n)(UP) = n+m-m = n is a simple variable

Compensation in BODY: BODYⁱ_{i+m}

-- PRE: s = 0

-- FOR i in 1...n+m LOOP s := s+i; END LOOP FOR i in 1-m...n LOOP s := s+(i+m); END LOOP -- POST: s = $\langle \Sigma j$: 1...n+m: j $\rangle \equiv s = \langle \Sigma j$: 1-m...n: j+m \rangle Original and transformed loop

L1: -- PRE

FOR i in LO1..UP1 LOOP BODY END LOOP -- POST

L2: -- PRE

FOR i in t(LO1) .. r(t(UP1)) LOOP BODY(i ↦ t*(i)) END LOOP -- POST

Translation functions

```
We deal with translations t(UP) such that r(t(UP)) is "v" or "-v" for some v \in free(UP)
```

"v": $HI = POST_{i}^{v}$

"-v": HI = POST_(-i)

For a given UP there may exist several translations:

UP = n+m: t1(UP,m)(e) = e-n, t2(UP,n)(e) = e-m

Translation functions

HI is really hypothetical

-- PRE: $s = 0 \land m \ge 0 \land n \le 0$ FOR i IN m .. m-n LOOP s := s + i;END LOOP; -- POST: $s = \langle \Sigma j: m..m-n: j \rangle$

t1(m-n,m)(e) = e+n: HI = POST^m_i = s = $\langle \Sigma j: i..i-n: j \rangle$ is not an invariant

t2(m-n,n)(e) = e-m: HI = POSTⁿ_(-i) = $s = \langle \Sigma j: m..m+i: j \rangle$ is an invariant

Translation functions

Form of UP

	.1			
	01 V	e1 02 V	01 V 02 01	e1 02 V 03 e2
t(UP,v)(e)	е	e-e1	e o2 ⁻¹ e1	e - e1 o3 ⁻¹ e2
r(t(UP,v)(UP))	o1 v	o2 v	01 V	o2 v
t*(UP,v)(e)	е	e+e1	e o2 e1	e + e1 o3 e2
t*(UP,v)(t(UP,v)(e))	е	e-e1+e1	e o2 ⁻¹ e1 o2 e1	e - e1 o3 ⁻¹ e2 + e1 o3 e2

 $v \notin free(e1) \cup free(e2), o1 \in \{+, -, \epsilon\}, o2, o3 \in \{+, -\}, +^{-1} = -, -^{-1} = +$

For these translations the transformed loop is executed for the same sequence of values of the loop variable as the original loop

Determination of Common Conjuncts

(a) transform PRE and POST into normal form NF

(b) determine the syntactically common conjuncts $C = C_1 \land \ldots \land C_n$

(c) determine those C_i for which

noWrite(BODY, free(C_i)) \vee [C_i \Rightarrow wp(BODY, C_i)] holds

 C_{com} is the conjunctions of these C_{i}

 $POST \equiv POST' \land C_{com}$

Specialized Proof Rules

```
(upwards counting, bounds not modified, "v", i \notin free(POST)) :
```

```
 \begin{bmatrix} \mathsf{PRE} \Rightarrow \mathsf{LO}, \mathsf{UP} \in \mathsf{Ti} \end{bmatrix} \land 
 \begin{bmatrix} \mathsf{PRE} \land \mathsf{LO} > \mathsf{UP} \Rightarrow \mathsf{POST'} \end{bmatrix} \land 
 \begin{bmatrix} \mathsf{PRE} \land \mathsf{LO} \leq \mathsf{UP} \Rightarrow \mathsf{wp}(\mathsf{BODY^{i}}_{\mathsf{LO}}, \mathsf{POST'^{r(t(\mathsf{UP}))}}_{t(\mathsf{LO})}) \end{bmatrix} \land 
 \begin{bmatrix} \mathsf{t}(\mathsf{LO}) \leq \mathsf{i} < \mathsf{t}(\mathsf{UP}) \land \mathsf{POST'^{r(t(\mathsf{UP}))}}_{\mathsf{i}} \land \mathsf{C_{com}} \Rightarrow 
 \mathsf{wp}(\mathsf{BODY^{i}}_{\mathsf{t^{*}(i)+1}}, \mathsf{POST'^{r(t(\mathsf{UP}))}}_{\mathsf{i+1}}) \end{bmatrix}
```

Summary

- mechanical derivation of an hypothetical invariant from UP and POST based on RCPV, translation functions, identification of common conjuncts
- it is a heuristic and not a general solution
- BUT: applicable to many practical FOR-loops:
 - BG 91: Gonnet, G. H.; Baeza-Yates, R.: Handbook of Algorithms and Data Structures. Addison Wesley, Wokingham, 1991:

in most FOR-loops (in this book) UP has one of the 3 forms:

- (a) variable,
- (b) sum of two variables

(c) sum of a variable and a constant

these are already covered by the method

Summary

Randwertproblemlöser (boundary value problem solver) Fortran-program written by Hermann and Kaiser of FSU Dept. Math&CS 1015 FOR-loops (DO-loop in Fortran) 998 of these loops are appropriate for the method

=> this heuristic method seems to be quite good

- more translation schemes could be defined
- not yet implemented

Thank You

Mechanical Generation of Invariants for FOR-Loops

Stefan Kauer BU DE EADS Deutschland GmbH Immenstaad, Germany Jürgen F H Winkler Institute of Informatics Friedrich Schiller University Jena, Germany

WING 2007 RISC, Hagenberg, Austria 2007.Jun.26

Specification and Program

• Specification is given by assertions: S = (pre, post)

pre P post

Verification condition $VC \equiv [pre \Rightarrow wp(P, post)]$ or $VC \equiv [sp(pre, P) \Rightarrow post]$

Compositionality of $wp(\cdot, \cdot)$

- $wp(S1 S2, post) \equiv wp(S1, wp(S2, post))$
- wp(if C then S1 else S2 fi, post) = well-defined(C) cand ((C \Rightarrow wp(S1, post)) \land (\neg C \Rightarrow wp((S2, post))
- wp(while C do S od, post) ≡ well-defined(C) cand ((C ⇒ wp(S WHILE, post) ∧ (¬C ⇒ post))
- wp(while C do S od, post) = (VCW) $\langle \exists k: 0 \le k: H_k(post) \rangle$