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Mechanical Generation of Invariants Overview

Overview

• Basic Approach

• Bound Transformation

• Determination of Common Conjuncts

• Adaptation of Proof Rules
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Mechanical Generation of Invariants Basic Approach

Basic Approach

• A specification  S  is given

• A program  P  has been developed

• Correctness  ≡ P conforms to S

• Proof of correctness should be done mechanically
(free the SW engineer from tedious work)

• VCs based on  wp(⋅,⋅)
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Mechanical Generation of Invariants Computation of wp

Computation of wp(⋅,⋅)

• For  assignment, IF, CASE, Sequence:  simple formula 
manipulation

• For  WHILE  
- find a solution for  H  (e.g. Kauer)  ( 〈∃k: 0 ≤ k: Hk(post) 〉 )
- use a VC based on  (pre, inv, post, term)

• For  FOR:  use a VC based on  (pre, inv, post)
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Mechanical Generation of Invariants FOR-Loop

FOR-loop
-- pre

FOR i  IN  LO .. UP

LOOP Body

-- inv

END LOOP

-- post

i:  loop variable: is a constant in BODY

strictly controlled loop

LO:  lower bound: no side effects and referentially transparent in BODY

UP:  upper bound : no side effects and referentially transparent in BODY

holds for many FOR-loops in practice  (see summary)



11.10.2007 6

Mechanical Generation of Invariants FOR-loop: VC

FOR-loop: VC

[ PRE  ⇒ LO, UP ∈ Ti ]   ∧

[ PRE  ∧ LO > UP  ⇒ POST ]   ∧

[ PRE  ∧ LO ≤ UP  ⇒ wp( BODYi
LO, INVi

LO ) ]   ∧

[ LO ≤ i < UP  ∧ INV ⇒ wp( BODYi
i+1, INVi

i+1 ) ]   ∧

[ LO ≤ UP  ∧ INVi
UP ⇒ POST ] 

Ti: set of admissible values of i
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Mechanical Generation of Invariants FOR Loop

FOR-loop: example

-- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N

FOR i  in  1..n  LOOP      s := s+i; 

END LOOP

-- POST: s = 〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N
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Mechanical Generation of Invariants Basic Approach

Verification of a FOR-loop requires
PRE, POST and INV

=>  spec gives  PRE  and POST

=>  program developer must find/invent  INV

=>  easier if  INV  can be computed by the program prover
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Mechanical Generation of Invariants How to compute INV?

How to compute  INV?

Observation by Dijkstra and Gries for WHILE-loops:
[Dij 1976;  Grie 1982]

=>  INV  can be seen as a weakening of  POST
=>  one weakening:  replace a constant in POST by a variable (RCPV)

Example  [Gri 1983: 199]

POST  ≡ sum = 〈Σj: 0 ≤ j < n: b(j)〉 -- n is constant for this possibly iterative
-- process

HI  ≡ sum = 〈Σj: 0 ≤ j < i: b(j)〉 -- i is a variable, possibly the loop
-- variable

Used in the development of the program from (PRE, POST)
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Mechanical Generation of Invariants How to compute INV?

How to compute  INV?

Kauer for FOR-loop and verification of an existing loop against (PRE,  POST):

-- PRE: s = 0  ∧ s ∈ int32
FOR  i in 1..100  LOOP s := s+i; 

-- HI:  s = 〈Σj: 1..i: j〉 ∧ s ∈ int32
END LOOP

-- POST: s = 〈Σj: 1..100: j〉 ∧ s ∈ int32

Use  UP  as candidate for the constant to be replaced in POST

HI  ≡ POST100
i ≡ (s = 〈Σj: 1..100: j〉 ∧ s ∈ int32)100

i
≡ s = 〈Σj: 1..i: j〉 ∧ s ∈ int32                 is an invariant
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Mechanical Generation of Invariants How to compute INV

How to compute  INV?
Naïve RCPV does often not work:

-- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N
FOR i in 1..n LOOP s := s+i; END LOOP

-- POST: s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N

HI   ≡ POSTn
i ≡ (s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N)n

i

≡ s=〈Σj: 1..i: j〉 ∧ 0≤i≤65535 ∧ i=N

Since  N  is a constant  HI cannot be an invariant
=>  apply RCPV not to common conjuncts

HI‘ ≡ (s=〈Σj: 1..n: j〉)n
i ∧ 0≤n≤65535 ∧ n=N

≡ s=〈Σj: 1..i: j〉 ∧ 0≤n≤65535 ∧ n=N      is an invariant
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Mechanical Generation of Invariants Limitation of the Method

Method up to now only applicable if final bound is a simple variable

-- PRE: s = 0 
FOR  i  in 1..n+m LOOP  s := s+i;  END LOOP

-- POST: s = 〈Σj: 1..n+m: j〉

First idea: auxiliary variable for  UP
-- PRE: s = 0

vup := n+m; -- fresh variable
-- s = 0 ∧ vup = n+m -- sp(s=0, “vup := n+m;”)

FOR i in 1..vup LOOP s := s+i; END LOOP
-- POST: s = 〈Σj: 1..n+m: j〉

HI  ≡ POST   because  vup does not occur in POST
HI  is not an invariant
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Mechanical Generation of Invariants Translation Functions

Method up to now only applicable if final bound is a simple variable

Second idea:  bound transformation:  t(UP,n)(e) =  e – m (translation)

t(UP,n)(UP) = n+m-m  =  n is a  simple variable

Compensation in BODY:   BODYi
i+m

-- PRE: s = 0

-- FOR  i  in 1..n+m  LOOP  s := s+i;   END LOOP

FOR  i  in 1-m..n LOOP  s := s+(i+m);  END LOOP

-- POST: s = 〈Σj: 1..n+m: j〉 ≡ s = 〈Σj: 1-m..n: j+m〉
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Mechanical Generation of Invariants Loop Transformation

Original and transformed loop

L1: -- PRE

FOR i in  LO1..UP1  LOOP  BODY  END LOOP

-- POST 

L2: -- PRE

FOR i in  t(LO1) .. r(t(UP1))
LOOP  BODY(i # t*(i)) END LOOP

-- POST 
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Mechanical Generation of Invariants Translation Functions

Translation functions

We deal with translations  t(UP) such that
r(t(UP))   is   “v”  or  “-v”  for some  v ∈ free(UP)

“v”:  HI = POSTv
i

“-v”: HI = POSTv
(-i)

For a given UP there may exist several translations:

UP  =  n+m:   t1(UP,m)(e) =  e-n,   t2(UP,n)(e) = e-m
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Mechanical Generation of Invariants Translation Functions

Translation functions

HI is really hypothetical 

-- PRE: s = 0 ∧ m ≥ 0 ∧ n≤0
FOR i IN m .. m-n LOOP

s := s + i;

END LOOP;

-- POST: s = 〈Σ j: m..m-n: j〉

t1(m-n,m)(e) = e+n:  HI ≡ POSTm
i ≡ s = 〈Σ j: i..i-n: j〉 is not an invariant

t2(m-n,n)(e) = e-m:  HI ≡ POSTn
(-i) ≡ s = 〈Σ j: m..m+i: j〉 is an invariant
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Mechanical Generation of Invariants Translation Functions

Translation functions

Form of UP

o1 v e1 o2  v o1 v  o2  e1 e1 o2  v  o3  e2

t(UP,v)(e) e e-e1 e  o2-1 e1 e - e1 o3-1 e2

r(t(UP,v)(UP)) o1 v o2  v o1  v o2  v

t*(UP,v)(e) e e+e1 e  o2  e1 e + e1 o3  e2

t*(UP,v)(t(UP,v)(e)) e e-e1+e1 e  o2-1 e1  o2  e1 e - e1 o3-1 e2 + e1 o3  e2

v ∉ free(e1) ∪ free(e2),  o1 ∈ {+, -, ε},  o2, o3 ∈ {+, -},  +-1 = - ,  --1 = + 

For these translations the transformed loop is executed for the same sequence of 
values of the loop variable as the original loop
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Mechanical Generation of Invariants Common Conjuncts

Determination of Common Conjuncts

(a) transform PRE and POST into normal form NF

(b) determine the syntactically common conjuncts C  =  C1 ∧ … ∧ Cn

(c) determine those Ci for which    

noWrite(BODY, free(Ci))  ∨ [Ci ⇒ wp(BODY, Ci)]   holds
Ccom is the conjunctions of these  Ci

POST  ≡ POST‘ ∧ Ccom
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Mechanical Generation of Invariants Specialized Proof Rule

Specialized Proof Rules

(upwards counting, bounds not modified, “v”, i ∉ free(POST)) :

[ PRE  ⇒ LO, UP ∈ Ti ]   ∧

[ PRE  ∧ LO > UP  ⇒ POST’ ]   ∧

[ PRE  ∧ LO ≤ UP  ⇒ wp( BODYi
LO, POST’r(t(UP))

t(LO) ) ]   ∧

[ t(LO) ≤ i < t(UP)  ∧ POST’r(t(UP))
i ∧ Ccom ⇒

wp(BODYi
t*(i)+1, POST’r(t(UP))

i+1 ) ]
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Mechanical Generation of Invariants Summary

Summary

• mechanical derivation of an hypothetical invariant from  UP  and POST

based on  RCPV, translation functions, identification of common conjuncts

• it is a heuristic and not a general solution

BUT:  applicable to many practical FOR-loops:

BG 91: Gonnet, G. H.; Baeza-Yates, R.: Handbook of Algorithms and 
Data Structures. Addison Wesley, Wokingham, 1991:

in most FOR-loops (in this book)  UP  has one of the 3 forms: 
(a) variable, 
(b) sum of two variables 
(c) sum of a variable and a constant

these are already covered 
by the method
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Mechanical Generation of Invariants Summary

Summary

Randwertproblemlöser (boundary value problem solver) 
Fortran-program written by Hermann and Kaiser of FSU Dept. Math&CS
1015 FOR-loops  (DO-loop in Fortran)
998 of these loops are appropriate for the method

=>  this heuristic method seems to be quite good

• more translation schemes could be defined

• not yet implemented
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Mechanical Generation of Invariants Summary

Thank   You
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Mechanical Generation of Invariants Basic Approach

Specification and Program

• Specification is given by assertions: S = (pre, post)

pre

P

post

Verification condition  VC ≡ [pre  ⇒ wp(P, post)]      or
VC ≡ [sp(pre, P)  ⇒ post]
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Mechanical Generation of Invariants Basic Approach

Compositionality of wp(⋅,⋅)

• wp(S1 S2, post)  ≡ wp(S1, wp(S2, post))

• wp(if C then S1 else S2 fi, post)  ≡
well-defined(C)  cand  ( (C     ⇒ wp(S1, post) )    ∧

(¬C  ⇒ wp((S2, post) )

• wp(while C do S od, post) ≡
well-defined(C)  cand  ( (C     ⇒ wp(S  WHILE, post)  ∧

(¬C  ⇒ post) )  

• wp(while C do S od, post) ≡ (VCW) 
〈∃k: 0 ≤ k: Hk(post) 〉
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