
Mechanical Program Verification – Part 2

Jürgen F H Winkler
Institute of Informatics
Friedrich Schiller University
Jena, Germany

ELTE, Budapest, 8 - 12 Oct 2007

10.10.2007 © J F H Winkler, 2006 2

Mechanical Program Verification Overview

Overview

• Historical Overview, Basic Concepts, Realistic Progr Verific

• Mechanical Program Verification (MPV)

• Comparison of 3 Automatic Program Provers (APP)

• The Frege Program Prover (FPP) in More Detail

• Mechanical Generation of Invariants for FOR-Loops

• Problems of FPP (and others)

• Towards Realistic Verification Conditions (VC)

• Summary

10.10.2007 © J F H Winkler, 2006 3

Mechanical Program Verification Overview

Part 2

• Mechanical Program Verification (MPV)

• Tools: FPP, NPPV, SPARK

10.10.2007 © J F H Winkler, 2006 4

Mechanical Program Verification Real Topic

My real topic / concern is

Mechanical Verification of Real Programs

=> before we can do verification (i.e. build an APP)

we need the VCs for real programs

i.e. we have to understand
how real programs really work: e.g. v := v;

10.10.2007 © J F H Winkler, 2006 5

Mechanical Program Verification MPV - 1

Mechanical Program Verification (MPV)

Verification : po ≤ (pre, post) is the really important thing

≤ : conformance relation

po ≤ (pre, post) : conformance condition (CC)
verification condition (VC)

Mechanical : compute the VC mechanically
and try to prove it mechanically

• by hand (tedious and error-prone ⇒ unfeasible)

• using a tool: automatic program prover (APP)

=> MPV = APP computes and tries to prove VC

10.10.2007 © J F H Winkler, 2006 6

Mechanical Program Verification MPV - Example: Mean

Mechanical Program Verification: Example

Computation of the mean of two numbers:
mathematically: mean(a,b) = (a +m b)/m2 especially: mean(a, a) = a

In 2006 the binary search in the Java class library worked incorrectly, because
it used the naive formula (a+b)/2 (Joshua Bloch) why ???
(http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html)

How to compute it in a finite domain [min, max] (min ≤ max)
–: 〈∀a, b∈[min, max]: min ≤ (a+mb)/m2 ≤ max〉 => mean is suited for fin dom

a/2 + b/2 ????

Not very good, even in float: succ(0.0)/2.0 + succ(0.0)/2.0) = ???

succ(0.0)/2.0 + succ(0.0)/2.0) = 0.0 !!!! (IEC 60559, IEEE 754)

10.10.2007 © J F H Winkler, 2006 7

Mechanical Program Verification MPV - Example: Mean

Mechanical Program Verification: Example

Better formula (improvement of Kahan‘s formula by Jürgen Winkler*)

mean(a, b) = if sig(a)=sig(b)
then if abs(a)<abs(b)

then a+(b-a)/2;
else b+(a-b)/2;
end if;

else (a+b)/2;
end if;

everything OK ???
Unfortunately not: use of abs() ⇒ domain: max ≥ |min|

*): Kahan, W.: Analysis and Refutation of the LCAS. SIGPLAN Notices 27,1 (1992) 61..74
Kahan and Winkler were only interested in the domains of IEEE 754 / IEC 60559

10.10.2007 © J F H Winkler, 2006 8

Mechanical Program Verification Mean in Finite Domain

--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100;

if sig(a)=sig(b) then
if abs(a)<abs(b) then

--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100 and
--!pre: sig(a)=sig(b) and abs(a)<abs(b) and -100<=(b-a) and (b-a)<=100 and
--!pre: -100<=a+(b-a)/2 and a+(b-a)/2<=100;
m:=a+(b-a)/2;
--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

else
--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100 and
--!pre: sig(a)=sig(b) and abs(a)>=abs(b) and -100<=(a-b) and (a-b)<=100
--!pre: and -100<=b+(a-b)/2 and b+(a-b)/2<=100;
m:=b+(a-b)/2;
--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

end if;
else

. . .
end if;

--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

10.10.2007 © J F H Winkler, 2006 9

Mechanical Program Verification Mean in Finite Domain

--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100;

if sig(a)=sig(b) then
if abs(a)<abs(b) then

--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100 and
--!pre: sig(a)=sig(b) and abs(a)<abs(b) and -100<=(b-a) and (b-a)<=100 and
--!pre: -100<=a+(b-a)/2 and a+(b-a)/2<=100;
m:=a+(b-a)/2;
--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

else
--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100 and
--!pre: sig(a)=sig(b) and abs(a)>=abs(b) and -100<=(a-b) and (a-b)<=100
--!pre: and -100<=b+(a-b)/2 and b+(a-b)/2<=100;
m:=b+(a-b)/2;
--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

end if;
else

. . .
end if;

--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

10.10.2007 © J F H Winkler, 2006 10

Mechanical Program Verification VCs

One VC (proof obligation) is
--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100 and
--!pre: sig(a)=sig(b) and abs(a)<abs(b) and -100<=(b-a) and (b-a)<=100 and
--!pre: -100<=a+(b-a)/2 and a+(b-a)/2<=100;
m:=a+(b-a)/2;
--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

VC ≡ 〈∀ vars: pre ⇒ wp(“m:=a+(b-a)/2;”, post)〉

Usually, a great number of such VCs: VC1, …, VCn

theoretically one big conjunction: VC1 ∧ … ∧ VCn

but it is easier to prove smaller VCs (Turing)

10.10.2007 © J F H Winkler, 2006 11

Mechanical Program Verification VCs

Proof by FPP:

--> vc : (a = a_i) AND (b = b_i) AND (-100 <= a) AND (a <= 100)
--> AND (-100 <= b) AND (b <= 100)
--> AND (sig(a) = sig(b))
--> AND (Abs(b) >= 1 + Abs(a))
--> AND (-100 <= -a + b) AND (-a + b <= 100)
--> AND (-100 <= a + (-a + b)/2) AND (a + (-a + b)/2 <= 100)
--> ==> (a = a_i)
--> AND (b = b_i)
--> AND (a + (-a + b)/2 = (a + b)/2)
--> AND (-100 <= a + (-a + b)/2) AND (a + (-a + b)/2 <= 100)

--> Result: proved
m := a + (b - a) / 2;
--!post : (a = a_i AND b = b_i AND m = (a + b)/2 AND -100 <= m AND m <= 100)

10.10.2007 © J F H Winkler, 2006 12

Mechanical Program Verification VCs

But FPP cannot prove the whole :
--!pre: a=a_i and b=b_i and -100<=a and a<=100 and -100<=b and b<=100;

--> vc : (a = a_i) . . .

--> pretty printed formula too long
--> Result: to many clauses generated; not proved
if sig(a)=sig(b) then

if abs(a)<abs(b) then
{ pre2 } m:=a+(b-a)/2; { post2 }

else
{ pre3 } m:=b+(a-b)/2; { post3 }

end if;
else

{ pre4 } m:=(a+b)/2; { post4 }
end if;

--!post: a=a_i and b=b_i and m=(a+b)/2 and -100<=m and m<=100;

10.10.2007 © J F H Winkler, 2006 13

Mechanical Program Verification Automatic Program Provers

Automatic Program Provers (APP)
There exist some systems, other program verifiers work interactively.

(In comparison with the theoretical work there are quite few systems)

Freining/Kauer/Winkler 2002 compare 3 APP (by 26 examples)

FPP : Frege Program Prover (FSU Jena)
NPPV : New Paltz Program Verifier (SUNY / Marburg)
SPARK 6.0 : SPADE Ada Real-Time Kernel, V 5.01, automatic + interactive

Feinerer 2005 compares 4 program provers (mostly usability)

FPP : Frege Program Prover (APP, FSU Jena)
KeY : interactive prover (Karlsruhe et al.)
Perfect Developer : APP (EscherTechnologies)
Prototype Verification System : interactive prover (SRI)

10.10.2007 © J F H Winkler, 2006 14

Rest

Mechanical Program Verification – Part 2

Jürgen F H Winkler
Institute of Informatics
Friedrich Schiller University
Jena, Germany

ELTE, Budapest, 25 – 29 Sep 2006

10.10.2007 © J F H Winkler, 2006 16

Mechanical Program Verification Overview

Overview

• Program Verification

• Historical Overview and Basic Concepts

• Mechanical Program Verification (MPV)

• Tools: FPP, NPPV, SPARK

• Problems with wp

• Summary

• References
• (Relational Approach

• Improved Adaptation Rule)

10.10.2007 © J F H Winkler, 2006 17

Mechanical Program Verification MPV - Example: Mean

Mechanical Program Verification: Example

Better formula (improvement of Kahan‘s formula by Jürgen Winkler
mean(a, b) = if sig(a)=sig(b) …

everything OK ???
Unfortunately not: use of abs() ⇒ domain must be symmetric interval

Yesterday evening it occurred to me that this is not completely true

Why ???

TYPE PosRangeTy IS range 20.0 .. 30.0;

In such a range abs() is the same as the identity function +()

Remark: +() is the only operation in the integer arithmetic of Java which
always computes the mathematically correct result ;-)

10.10.2007 © J F H Winkler, 2006 18

Mechanical Program Verification MPV - Example: Mean

Mechanical Program Verification: Example

Better formula (improvement of Kahan‘s formula by Jürgen Winkler
mean(a, b) = if sig(a)=sig(b) …

everything OK ???

Unfortunately not: use of abs() ⇒ domain must be symmetric interval

∨ domain ⊂ Ù

Observe: this refers only to abs() and does not imply that the

Kahan-Winkler algorithm works in 20.0 .. 30.0

	Mechanical Program Verification – Part 2
	Mechanical Program Verification	Overview
	Mechanical Program Verification	Overview
	Mechanical Program Verification	Real Topic
	Mechanical Program Verification	MPV - 1
	Mechanical Program Verification	MPV - Example: Mean
	Mechanical Program Verification	MPV - Example: Mean
	Mechanical Program Verification	Mean in Finite Domain
	Mechanical Program Verification	Mean in Finite Domain
	Mechanical Program Verification	VCs
	Mechanical Program Verification	VCs
	Mechanical Program Verification	VCs
	Mechanical Program Verification	Automatic Program Provers
	Mechanical Program Verification – Part 2
	Mechanical Program Verification	Overview
	Mechanical Program Verification	MPV - Example: Mean
	Mechanical Program Verification	MPV - Example: Mean

