
A�ex � An Ada Lexical Analyzer Generator

Version ���

John Self

Arcadia Environment Research Project

Department of Information and Computer Science

University of California� Irvine

UCI������ �

May ����

�This work was supported in part by the National Science Foundation under grants

CCR�������� and CCR���	��
� with cooperation from the Defense Advanced Research

Projects Agency� and by the National Science Foundation under Award No� CCR
�	
�����

�

Contents

� Introduction

A�ex is a lexical analyzer generating tool written in Ada designed for lexical pro�
cessing of character input streams� It is a successor to the Alex��� tool from UCI�
A�ex is upwardly compatible with alex ���� but is signi�cantly faster at generat�
ing scanners� and produces smaller scanners for equivalent speci�cations� Internally
a�ex is patterned after the �ex tool from the GNU project� A�ex accepts high level
rules written in regular expressions for character string matching� and generates Ada
source code comprising a lexical analyzer along with two auxiliary Ada packages�
The main �le includes a routine that partitions the input text stream into strings
matching the expressions� Associated with each rule is an action block composed of
program fragments� Whenever a rule is recognized in the input stream� the corre�
sponding program fragment is executed� This feature� combined with the powerful
string pattern matching capability� allows the user to implement a lexical analyzer
for any type of application e�ciently and quickly� For instance� a�ex can be used
alone for simple lexical analysis and statistics� or with ayacc ��� to generate a parser
front�end� Ayacc is an Ada parser generator that accepts context�free grammars�

A�ex is a successor to the Arcadia tool Alex��� which was inspired by the popular
Unix operating system tool� lex ����� Consequently� most of lex	s features and con�
ventions are retained in a�ex
 however� a few important di�erences are discussed in
section ��� There are also a few minor di�erences between a�ex and alex which will
be discussed in section ���

This paper is intended to serve as both the reference manual and the user manual
for a�ex� Some knowledge of lex� while not required� would be very useful in under�
standing the use ofa�ex� A good introduction to lex� as well as lexical and syntactic
analysis� can be found in ���� frequently referred to as �the Dragon Book�
 Topics
to be covered in this paper include the usage of a�ex� the operators	 description� the
source �le format� the generated output� the necessary interfaces with ayacc� and
ambiguity among rules� The appendices provide a simple example� a�ex dependen�
cies� the di�erences between a�ex�alex� and lex� known bugs and limitations� and
references�

�

� Command Line Options

Command line options are given in a di�erent format than in the old UCI alex�
A�ex options are as follows

�t Write the scanner output to the standard output rather than to a �le� The
default name of the scanner �le for base�l is base�a Note that this option is not
as useful with a�ex because in addition to the scanner �le there are �les for
the externally visible dfa functions �base dfa�a� and the external IO functions
�base io�a�

�b Generate backtracking information to a�ex�backtrack� This is a list of scanner
states which require backtracking and the input characters on which they do
so� By adding rules one can remove backtracking states� If all backtracking
states are eliminated and �f is used� the generated scanner will run faster �see
the �p �ag�� Only users who wish to squeeze every last cycle out of their
scanners need worry about this option�

�d makes the generated scanner run in debug mode� Whenever a pattern is recog�
nized the scanner will write to stderr a line of the form�

��accepting rule �n

Rules are numbered sequentially with the �rst one being �� Rule �� is ex�
ecuted when the scanner backtracks
 Rule ��n��� �where n is the number
of rules� indicates the default action
 Rule ��n��� indicates that the input
bu�er is empty and needs to be re�lled and then the scan restarted� Rules
beyond �n��� are end�of��le actions�

�f has the same e�ect as lex	s �f �ag �do not compress the scanner tables�
 the
mnemonic changes from fast compilation to �take your pick� full table or fast
scanner� The actual compilation takes longer� since a�ex is I�O bound writing
out the big table� The compilation of the Ada �le containing the scanner is
also likely to take a long time because of the large arrays generated�

�i instructs a�ex to generate a case�insensitive scanner� The case of letters given
in the a�ex input patterns will be ignored� and the rules will be matched
regardless of case� The matched text given in yytext will have the preserved
case �i�e�� it will not be folded��

�

�p generates a performance report to stderr� The report consists of comments
regarding features of the a�ex input �le which will cause a loss of performance
in the resulting scanner� Note that the use of the � operator and the �I �ag
entail minor performance penalties�

�s causes the default rule �that unmatched scanner input is echoed to stdout� to
be suppressed� If the scanner encounters input that does not match any of
its rules� it aborts with an error� This option is useful for �nding holes in a
scanner	s rule set�

�v has the same meaning as for lex �print to stderr a summary of statistics of
the generated scanner�� Many more statistics are printed� though� and the
summary spans several lines� Most of the statistics are meaningless to the
casual a�ex user� but the �rst line identi�es the version of a�ex� which is useful
for �guring out where you stand with respect to patches and new releases�

�E instructs a�ex to generate additional information about each token� including
line and column numbers� This is needed for the advanced automatic error
option correction in ayacc�

�I instructs a�ex to generate an interactive scanner� Normally� scanners generated
by a�ex always look ahead one character before deciding that a rule has been
matched� At the cost of some scanning overhead� a�ex will generate a scanner
which only looks ahead when needed� Such scanners are called interactive
because if you want to write a scanner for an interactive system such as a
command shell� you will probably want the user	s input to be terminated with
a newline� and without �I the user will have to type a character in addition
to the newline in order to have the newline recognized� This leads to dreadful
interactive performance�

If all this seems to confusing� here	s the general rule� if a human will be typing
in input to your scanner� use �I� otherwise don	t
 if you don	t care about how
fast your scanners run and don	t want to make any assumptions about the
input to your scanner� always use �I�

Note� �I cannot be used in conjunction with full i�e�� the �f �ag�

�L instructs a�ex to not generate �line directives �see below��

�T makes a�ex run in trace mode� It will generate a lot of messages to stdout
concerning the form of the input and the resultant non�deterministic and de�
terministic �nite automatons� This option is mostly for use in maintaining
a�ex�

�

�Sskeleton �le overrides the default internal skeleton from which a�ex constructs
its scanners� You	ll probably never need this option unless you are doing a�ex
maintenance or development�

� A�ex Output

A�ex generates a �le containing a lexical analyzer function along with two auxiliary
packages� all of which are written in Ada� The context in which the lexical analyzer
function is de�ned is �exible and may be speci�ed by the user� For instance� the �le
may only contain the lexical analyzer function as a single compilation unit which may
be called by ayacc� or it may be placed within a package body or embedded within a
driver routine� This scanner function� when invoked� partitions the character stream
into tokens as speci�ed by the regular expressions de�ned in the rules section of the
source �le� The name of the lexical analyzer function is yylex� Note that it returns
values of type token� Type token must be de�ned as an enumeration type which
contains� at a minimum� �End of Input� Error�� It is up to the user to make sure
that this type is visible �see Section ���� The general format of the output �le which
contains this function is found in Figure ��

The auxiliary packages include a DFA and an IO package� The DFA package con�
tains externally visible functions and variables from the scanner� Many of the vari�
ables in this package should not be modi�ed by normal user programs� but they are
provided here to allow the user to modify the internal behavior of a�ex to match
speci�c needs� Only the functions YYText and YYLength will be needed by most
programs�

The IO package contains routines which allow yylex to scan the input source �le�
These include the unput� input� output� and yywrap functions from lex�
plus Open Input� Create Output� Close Input and Close Output provided for com�
patibility with alex� It is also possible to write your own IO and DFA packages�

Rede�ning input is possible by changing the YY INPUT procedure� As an example
you might wish to take input from an array instead of from a �le� By changing the
calls to the TEXT IO routines to access elements of the array you can change the
input strategy� If you change the IO or DFA packages you should make a copy of the
generated �les under a di�erent name and change that� because a�ex will overwrite
them whenever you rerun a�ex�

�

with �rootname� DFA�

with �rootname� IO�

with TEXT IO�

�� User Speci�ed Context

function yylex return Token is

begin

�� Analysis of expressions

�� Execution of user�de�ned actions

end yylex�

�� User Speci�ed Context

Figure �� Example of File Containing Lexical Analyzer

Before showing the general layout of the speci�cation �le� we will describe the speci�cation

language of a�ex� namely� regular expressions�

� Regular Expressions

A�ex distinguishes two types of character sets used to de�ne regular expressions� text

characters and operator characters� A regular expression speci�es how a set of strings

from the input string can be recognized� It contains text characters 	which match the

corresponding characters in the strings being compared
 and operator characters 	which

specify repetitions� choices� and other features
� The letters of the alphabet and the digits

are always text characters�

A rule speci�es a sequence of characters to be matched� It must begin in column one�

The set of a�ex operators consists of the following�

� � � � � � � 	
 � �
 � � � � � �

The meaning of each operator is summarized below�

x �� the character �x�
�x� �� an �x�� even if x is an operator�

�x �� an �x�� even if x is an operator�

�x �� an x at the beginning of a line�

x	 �� an x at the end of line�

x� ��
 or more instances of x�

�

x� �� � or more instances of x�

x� �� an optional x�

�x� �� an x�

 �� any character but newline�

x�y �� an x or y�

�xy� �� the character x or the character y�
�x�z� �� the character x� y or z�

��x� �� any character but x�

y�x �� an x when a�ex is in start condition y�

�xx� �� the translation of xx from the de�nitions section�

If any of these operators is used in a regular expression as a character literal� it must be

either preceded by an escape character or surrounded by double quotes� For example� to

recognize a dollar sign 	� the correct expression is either �	 or �	�� Note a quote cannot

be quoted and should therefore be escaped�

A regular expression may not contain any spaces unless they are within in a quoted string

or character class or they are preceded by the ��� operator�

When in doubt� use parentheses� When an a�ex operator needs to be embedded in a

string� it is often neater to quote the entire string rather than just the operator� e�g� the

string �what�� is more readable than both What���� and What���

Rules Interpretations

����� ���������������

a or �a� The character a

Begin or �Begin� The string Begin

��Begin�� The string �Begin�

��t or ���t� The tab character �t at the beginning of line

�n	 The newline character �n at the end of line

There are a few special characters which can be speci�ed in a regular expression�

�n �� newline
�b �� backspace
�t �� tab
�r �� carriage return
�f �� form feed
�ddd �� octal ASCII code

Here is the precedence of the above operators that have precedence�

�

� �� �	 Highest

 � �
���

concatenation
���

 Lowest

Character Classes� Classes of characters can be speci�ed using the operator pair
�	� Within these square brackets� the operator meanings are ignored except
for three special characters� � and � and ��

Rules Interpretations

����� ���������������

��abc� Any character except a� b� or c

�abc� The single character a� b� or c

������� The � or � sign or any digit from � to �

��t�n�b� The tab� newline� or backspace character

Arbitrary and Optional Characters� The dot� ��
� operator matches all char�
acters except newline� The operator � indicates an optional character of an
expression�

Rules Interpretations

����� ���������������

ab�c Matches either abc or ac

ab
c Matches all strings of length � having a� b and

c as the first� second and fourth letter where the

third character is not a newline

Repeated Expressions� Repetitions of classes are indicated by the operators �
and ��

Rules Interpretations

����� ���������������

�a�z�� Matches all strings of lower case letters

�A�Za�z��A�Za�z����� Indicates all alphanumeric strings with a

leading alphabetic character

Alternation and Grouping� The operator
 indicates alternation and parenthe�
ses are used for grouping complex expressions�

�

Rules Interpretations

����� ���������������

ab�cd Matches either ab or cd

�ab�cd����ef�� Matches such strings as abefef� efefef� cdef�

or cddd� but not abc� abcd� or abcdef

Context Sensitivity� a�ex will recognize a small amount of surrounding context�
Two simple operators for this are � and �� If the �rst character of an expression
is �� the expression will only be matched at the beginning of a line� If the very
last character is �� the expression will only be matched at the end of a line�

Rules Interpretations

����� ���������������

�ab Matches ab at the beginning of line

ab	 Matches ab at the end of line

De�nitions� The operators f g enclosing a name specify a macro de�nition expan�
sion�

Rules Interpretations

����� ���������������

�INTEGER� If INTEGER is defined in the macro definition

section� then it will be expanded here

��� Prede�ned Variables � Routines

Once a token is matched� the textual string representation of the token may be
obtained by a call to the function yytext which is located in the dfa package� This
function returns type string�

The IO package contains routines which allow yylex to scan the input source �le�
These include the input� output� unput and yywrap functions from lex�
plus Open Input� Create Output� Close Input and Close Output provided for com�
patibility with alex� Note that in alex ��� it was mandatory to call the Open Input
and Create Output routines before calling YYLex� This is not required in A�ex�

The default input and output are attached to the �les that Ada considers to be the
standard input and standard output�

The following routines must be used in lieu of the normal text io routines because
of internal bu�ering and read�ahead done by a�ex�

�

input function input return character � inputs a character from the current a�ex

input stream�

unput procedure unput�c � character� � returns a character already read by input
to the input stream� Note that attempting to push back more than one char�
acter at a time can cause a�ex to
raise the exception pushback overflow�

output procedure output�c � character� � outputs a character to the current a�ex
output stream�

yywrap function yywrap return boolean � This function is called when a�ex reaches
the end of �le� If yywrap returns true� a�ex continues with normal wrapup
at end of input� If you wish to arrange for more input to arrive from a new
source then you provide a yywrap which returns false� The default yywrap
return true�

Open Input Open Input�fname � in String� � Uses the �le named fname as the
source for input to YYLex� If this function is not called then the default input
is the Ada standard input�

Open Input Create Output�fname � in String� � Uses the �le named fname as
output for YYLex� If this function is not called then the default output is the
Ada standard output�

Close Input and Close Output These functions have null bodies in a�ex and
are provided only for compatibility with alex�

There are a few prede�ned subroutines that may be used once a token is matched� In
many lexical processing applications� the printing of the string returned by yytext�
i�e� put�yytext	� is desired and this action is so common that it may be written
as ECHO�

� A�ex Source Speci�cation

The general format of the source �le is

definitions section

��

rules section

��

user defined section

����

user defined section

where �� is used as a delimiter between sections and �� indicates where function
yylex will be placed� Both �� and �� must occur in column one�

The de�nitions section is used to de�ne macros which appear in the rules section and
also to de�ne start conditions� The rules section de�nes the regular expressions with
their corresponding actions� These regular expressions� in turn� de�ne the tokens to
be identi�ed by the scanner� The user de�ned section allows the user to de�ne the
context in which the yylex function will be located� The user can include routines
which may be executed when a certain token or condition is recognized�

��� De�nitions Section

The de�nitions section may contain both macro de�nitions and start condition def�
initions� Macro and start condition de�nitions must begin in column one and may
be interspersed�

���� Macros

Macro de�nitions take the form�

name expression

where name must begin with a letter and contain only letters� digits and underscores�
and expression is any string of characters that name will be textually substituted to
if found in the rule section� At least one space must separate name from expression

in the de�nition� No syntax checking is done in the expression� instead the whole
rule is parsed after expansion� The macro facility is very useful in writing regular
expressions which have common substrings� and in de�ning often�used ranges like
digit and letter� Perhaps its best advantage is to give a mnemonic name to a rather

��

strange regular expression � making it easier for the programmer to debug the
expressions� These macros� once de�ned� can be used in the regular expression by
surrounding them with f and g� e�g�� �DIGIT�� For example� the rule

�a�zA�Z������a�zA�Z��� �put�line ��Found an identifier����

������ �put�line ��Found a number����

de�nes identi�ers and integer numbers� With macros� the source �le is

LETTER �a�zA�Z�

DIGIT �����

��

�LETTER���DIGIT���LETTER��� �put�line ��Found an identifier����

�DIGIT�� �put�line ��Found a number����

It is customary� although not necessary� to use all capital letters for macro names�
This allows macros to be easily identi�ed in complex rules� Macro names are case
sensitive� e�g�� �DIGIT� and �Digit� are two di�erent macro names�

���� Start Conditions

Left context is handled in a�ex by start conditions that are de�ned in the macro
de�nition section� Start conditions are declared as follows�

�Start cond� cond� ���

where cond� and cond� indicate start conditions� Note that !Start may be abbre�
viated as !S or !s�

A condition is set only when the a�ex command ENTER in the action part is executed�
e�g� ENTER cond�
� Thus the expression which has the form �condition�rule will
only be matched when condition is set� Note that a�ex uses ENTER instead of
BEGIN which is used in lex� This is done because BEGIN is a keyword in Ada� The
ENTER command must have parentheses surrounding its argument�

ENTER�cond�	�

A�ex also provides exclusive start conditions� These are similar to normal start
conditions except they have the property that when they are active no other rules are
active� Exclusive start conditions are declared and used like normal start conditions
except that the declaration is done with !x instead of !s�

��

��� Rules Section

Contained in the rule section are regular expressions which de�ne the format of each
token to be recognized by the scanner� Each rule has the following format�

pattern �action�

where pattern is a regular expression and action is an Ada code fragment enclosed
between f and g� A pattern must always begin in column one�

While a pattern de�nes the format of the token� the action portion de�nes the opera�
tion to be performed by the scanner each time the corresponding token is recognized�
Therefore� the user must provide a syntactically correct Ada code fragment� a�ex

does not check for the validity of the program portion� but rather copies it to the
output package and leaves it to the Ada compiler to detect syntax and semantics
errors� There can be more than one Ada statement in the code fragment� For
example� the rule

��

begin�BEGIN �copy �yytext� buffer��

Install �yytext�symbol�table��

return RESERVED��

recognizes the reserved word �begin
 or �BEGIN
� copies the token string into the
bu�er� inserts it in the symbol table and returns the value� RESERVED�
Note that the user must provide the procedures copy and install along with all
necessary types and variables in the user de�ned section�

��� User De�ned Section

The user de�ned section allows the user to specify the context surrounding the yylex
function� �� is used to indicate where the yylex function should be placed� It must
be present in this section and must occur in the �rst column� Any text following ��
on the same line is ignored�

� Ambiguous Source Rules

When a set of regular expressions is ambiguous� a�ex uses the following rules to
choose among the regular expressions that match the input�

�� The longest string is matched�

��

�� If the strings are of the same length� the rule given �rst is matched�

For example� if input �aabb� matches both �a�� and �aab�� the action associated
with �aab�� is executed because it matches four as opposed to two characters�

	 A�ex and Ayacc

As brie�y mentioned in Section ��� a�ex can be integrated with ayacc to produce a
parser�

Since the parser generated by ayacc expects a value of type token� each a�ex rule
should end with

return �token�val	�

to return the appropriate token value� Ayacc creates a package de�ning this token
type from its speci�cation �le� which in turn should be with	ed at the beginning
of the user de�ned section� Thus� this token package must be compiled before the
lexical analyzer� The user is encouraged to read the Ayacc User Manual ��� for more
information on the interaction between a�ex and ayacc�

��

 Appendix A� A Detailed Example

This section shows a complete a�ex speci�cation �le for translating all characters to
uppercase� The following �le� example�l� de�nes rules for recognizing lowercase and
uppercase words� If a word is in lowercase� the scanner converts it to uppercase� In
addition� the frequencies of lower and uppercase words are retained in the two vari�
ables de�ned in the global section� All other characters �spaces� tabs� punctuation�
remain the same�

LOWER �a�z�

UPPER �A�Z�

��

�LOWER�� � Lower�Case �� Lower�Case � ��

TEXT�IO
PUT�To�Upper�Case�Example�DFA
YYText��� �

�� convert all alphabetic words in lower case

�� to upper case

�UPPER�� � Upper�Case �� Upper�Case � ��

TEXT�IO
PUT�Example�DFA
YYText�� �

�� write uppercase word as is

�n � TEXT�IO
NEW�LINE��

 � TEXT�IO
PUT�Example�DFA
YYText�� �

�� write anything else as is

��

with U�Env� �� VADS environment package for UNIX

procedure Example is

type Token is �End�of�Input� Error��

Tok � Token�

Lower�Case � NATURAL �� �� �� frequency of lower case words

Upper�Case � NATURAL �� �� �� frequency of upper case words

function To�Upper�Case �Word � STRING� return STRING is

Temp � STRING��

Word�LENGTH��

��

begin

for i in �

 Word�LENGTH loop

Temp�i� �� CHARACTER�VAL�CHARACTER�POS�Word�i�� � !��

end loop�

return Temp�

end To�Upper�Case�

�� function YYlex will go here""

��

begin �� Example

Example�IO
Open�Input �U�Env
argv���
s��

Read�Input �

loop

Tok �� YYLex�

exit Read�Input

when Tok � End�of�Input�

end loop Read�Input�

TEXT�IO
NEW�LINE�

TEXT�IO
PUT�LINE��Number of lowercase words is �� � #

INTEGER�IMAGE�Lower�Case���

TEXT�IO
PUT�LINE��Number of uppercase words is �� � #

INTEGER�IMAGE�Upper�Case���

end Example�

This source �le is run through a�ex using the command

� aflex example
l

a�ex produces an output �le called example�a along with two packages� exam�
ple dfa�a and example io�a� Assuming that the main procedure� Example� is used
to construct an object �le called example�out� the Unix command

� example
out example
l

prints to the screen the exact �le example�l with letters in uppercase� i�e� the output
to the screen is

��

LOWER �A�Z�

UPPER �A�Z�

��

�LOWER�� � LOWER�CASE �� LOWER�CASE � ��

TEXT�IO
PUT�TO�UPPER�CASE�EXAMPLE�DFA
YYTEXT��� �

�� CONVERT ALL ALPHABETIC WORDS IN LOWER CASE

�� TO UPPER CASE

�UPPER�� � UPPER�CASE �� UPPER�CASE � ��

TEXT�IO
PUT�EXAMPLE�DFA
YYTEXT�� �

�� WRITE UPPERCASE WORD AS IS

�N � TEXT�IO
NEW�LINE��

 � TEXT�IO
PUT�EXAMPLE�DFA
YYTEXT�� �

�� WRITE ANYTHING ELSE AS IS

��

WITH U�ENV� �� VADS ENVIRONMENT PACKAGE FOR UNIX

PROCEDURE EXAMPLE IS

TYPE TOKEN IS �END�OF�INPUT� ERROR��

TOK � TOKEN�

LOWER�CASE � NATURAL �� �� �� FREQUENCY OF LOWER CASE WORDS

UPPER�CASE � NATURAL �� �� �� FREQUENCY OF UPPER CASE WORDS

FUNCTION TO�UPPER�CASE �WORD � STRING� RETURN STRING IS

TEMP � STRING��

WORD�LENGTH��

BEGIN

FOR I IN �

 WORD�LENGTH LOOP

TEMP�I� �� CHARACTER�VAL�CHARACTER�POS�WORD�I�� � !��

END LOOP�

RETURN TEMP�

END TO�UPPER�CASE�

�� FUNCTION YYLEX WILL GO HERE""

��

��

BEGIN �� EXAMPLE

EXAMPLE�IO
OPEN�INPUT �U�ENV
ARGV���
S��

READ�INPUT �

LOOP

TOK �� YYLEX�

EXIT READ�INPUT

WHEN TOK � END�OF�INPUT�

END LOOP READ�INPUT�

TEXT�IO
NEW�LINE�

TEXT�IO
PUT�LINE��NUMBER OF LOWERCASE WORDS IS �� � #

INTEGER�IMAGE�LOWER�CASE���

TEXT�IO
PUT�LINE��NUMBER OF UPPERCASE WORDS IS �� � #

INTEGER�IMAGE�UPPER�CASE���

END EXAMPLE�

Number of lowercase words is �� ���

Number of uppercase words is �� �!�

��

� Appendix B� A�ex Dependencies

This release of a�ex was successfully compiled by VADS ��� and Telesoft ���a���
running under Sun Unix ������ Other machines�systems may support a�ex but have
not been tested�

	�� Command Line Interface

The following �les are host dependent �

command lineS�a

command lineB�a

�le managerS�a

�le managerB�a

The command line package function initialize command line breaks up the com�
mand line into a vector containing the arguments passed to the program� Note that
modi�cations may need to be made to this �le if the host system doesn	t allow di�er�
entiation of upper and lower case on the command line� The external �le manager

package is host dependent in that it chooses the names and su�xes for the generated
�les� It also sets up the �le type standard error to allow error output to appear
on the screen�

If a�ex is to be rehosted� only these �les should need modi�cation� For more detailed
information see the �le PORTING in the a�ex distribution�

��

�
 Appendix C� Di�erences between A�ex and

Lex

Although a�ex supports most of the conventions and features of lex� there are some
di�erences that the user should be aware of in order to port a lex speci�cation to
an a�ex speci�cation�

� Source �le	s format�

definitions section

��

rules section

��

user defined section

�� �� places yylex function

user defined section

� Although a�ex supports most lex	s constructs� it does not implement the fol�
lowing features of lex�

� REJECT
� !x " changes to the internal array sizes� but see below�

� Ada style comments are supported instead of C style comments�

� All template �les are internalized�

� The input source �le name must end with a ��l
 extension�

� In start conditions ENTER is used instead of BEGIN� This is done because
BEGIN is a keyword in Ada�

�� Appendix D� Di�erences between A�ex and

Alex

While a�ex is intended to be upwardly compatible with Alex� there are a few minor
di�erences� Any major inconsistencies with alex should be considered bugs and
reported�

�

� The ENTER calls must have parentheses around their arguments� Parentheses
were optional in alex�

� It is no longer mandatory to call Open Input and Create Output before calling
YYLex� Previously if output was to be directed to Standard Output it was
recommended that a call of

Create�Output���dev�tty�	�

be made� This will still work but because of di�erences in implementation
this may cause di�culties in redirecting output using the unix shell pipes
and redirection� Instead just don	t call Open Input and output will go to the
default standard output�

� Compilation order� In previous versions of alex the DFA and IO packages
could be compiled in any order� With a�ex it is necessary to compile the DFA
package �rst� because it contains declarations used by the IO package�

��

�� Appendix E� Known Bugs and Limitations

� Some trailing context patterns cannot be properly matched and generate warn�
ing messages �
Dangerous trailing context
�� These are patterns where the
ending of the �rst part of the rule matches the beginning of the second part�
such as
zx#�xy#
� where the 	x#	 matches the 	x	 at the beginning of the
trailing context� �Lex doesn	t get these patterns right either��

� variable trailing context �where both the leading and trailing parts do not have
a �xed length� entails a substantial performance loss�

� For some trailing context rules� parts which are actually �xed�length are not
recognized as such� leading to the abovementioned performance loss� In par�
ticular� parts using 	"	 or n are always considered variable�length�

� Nulls are not allowed in a�ex inputs or in the inputs to scanners generated by
a�ex� Their presence generates fatal errors�

� Pushing back de�nitions enclosed in ��	s can
result in nasty� di�cult�to�understand problems like�

�DIG� ����� �� a digit

In which the pushed�back text is
���� � � a digit�
�

� Due to both bu�ering of input and read�ahead� you cannot intermix calls
to text io routines� such as� for example� text io�get
� with a�ex rules and
expect it to work� Call input
� instead�

� There are still more features that could be implemented �especially REJECT��
Also the speed of the compressed scanners could be improved�

� The utility needs more complete documentation� especially more information
on modifying the internals�

��

