
Mechanical Generation of Invariants for FOR-Loops

Stefan Kauer1 and J rgen F H Winkler2 ü
1 EADS Deutschland GmbH, Business Unit Defence Electronics, Claude-Dornier-Str.

D-88090 Immenstaad, Germany
Stefan.Kauer@eads.com

2 Friedrich Schiller University, Institute of Informatics, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany

winkler@informatik.uni-jena.de

Abstract. In the mechanical verification of programs containing loops it is of-
ten necessary to provide loop invariants additionally to the specification in form
of pre- and postcondition. In this paper we present a method for the mechanical
generation of invariants for a class of FOR-loops. The invariant is derived from
the postcondition and the final bound of the loop only. The method is applicable
if the final bound of the FOR-loop is of a simple form. This is often the case in
practice. The incorporation of this method into an automatic program verifier
would make the task of the SW engineer easier, because he has only to provide
a pre-post-specification for a FOR-loop.

Keywords: mechanical verification, mechanical generation of loop invariants,
FOR-loop.

1 Introduction

Program verification involves a great amount of mechanical formula manipulation. If
done by hand, this is tedious and, even worse, error prone. Most of the theorems (veri-
fication conditions (VC)), which have to be proved, are quite trivial and can therefore
be proved automatically by an automatic theorem prover. If all VCs are generated and
proved automatically we speak of automatic program verification. A tool which per-
forms automatic program verification is then called an automatic program verifier
(APV). Examples of such tools are Boogie [BCD06], FPP [KW99a; Win97] and
NPPV [Gumxx]. Other tools use a combination of automatic and interactive theorem
proving and can therefore be called semi-automatic program verifiers (SAPV). Exam-
ples are KeY [ABB05], SPARK [Bar00] and Theorema [JKP03].

Most tools for the verification of concrete programs use the assertion based method
(ABM) for the specification of the required behavior of the program (e.g. Boogie,
FPP, KeY, NPPV, SPARK, Theorema). The specification is given by a pair (pre,
post) of assertions which refer to entities of the program, and may also refer to entities
which belong to the specification only.

ABM allows also the verification of program fragments and therefore can be used
by the SW engineer in a continuous manner during program development, and not
only for the verification of a finished program in one big step. In this situation, the use
of an APV is especially convenient.

In ABM automatic verification on the basis of (pre, post) is rather straightforward
for statements like declarations, assignment, IF, and CASE1. The verification of loops
usually requires also an invariant [Dij76; Hoa72; Tur49; Win98], and for WHILE-
loops additionally a termination function [Dij76; Flo67; Tur49]. It would be easier if
loops could also be verified by giving only (pre, post). This can be done in two ways:
(1) by computing wp(loop, post) resp. sp(pre, loop) and use this in the general
verification condition pre ⇒ wp(loop, post) resp. sp(pre, loop) ⇒ post, or (2) by
computing an invariant (and in case of a WHILE-loop a termination function) and
perform then the verification using the corresponding VCs. Automatic computation of
invariants from the code is seen as difficult in the general case [Bac06: 3]. Stefan
Kauer has developed methods for the mechanical verification of classes of loops
which are only specified by (pre, post) [Kau99]. For FOR-loops his method is based
on the heuristic “replacing a constant in the postcondition by a variable (RCPV)” for
the computation of an invariant. For WHILE-loops his method computes wp(loop,
post). In this paper we report about the method for the computation of invariants for
FOR-loops. For the verification of FOR-loops we use the proof rule of [Win98] which
is less restrictive than that of [Hoa72].

An annotated FOR-loop (AFL) in Ada syntax looks like
 -- PRE
FOR i in LO..UP LOOP BODY END LOOP (1)
 -- POST

where i is the loop variable, the value of LO is the lower bound and the value of
UP is the upper bound of the loop. (1) is an upwards counting loop. Many languages
contain also downwards counting loops. In this paper we deal mainly with upwards
counting FOR-loops. Downwards counting FOR-loops do not pose new problems and
can be treated in an analogous manner [KW00; Win98].

Basic idea. RCPV tries to derive an invariant INV from the postcondition POST

and the final bound of the FOR-loop only; the final bound of a FOR-loop is the upper
bound for upwards counting loops and is the lower bound for downwards counting
loops. Especially, BODY is not used for the derivation of INV, but it is used to check
whether INV is really an invariant of the loop. By not using BODY we avoid the
problem that a loop with an incorrect BODY may lead to the generation of invalid
invariants resulting in redundant work for the APV. Another aspect of only using
POST and the final bound is that nested loops have not to be treated as a special case
as e.g. in [Weg74], but can be treated in a recursive manner. The method for the gen-
eration of hypothetical invariants is formulated as an algorithm which can be used in
an APV.

Related work. Soon after the seminal work on program verification by Floyd and

Hoare [Flo67; Hoa69] began a phase of intensive work on developing methods for the
determination of loop invariants [e.g. Weg74; Cap75; KM76; MW77; Mis78; Bas80;
Tam80; Ell81; Gri82; BD84; GDM85; Pai86; CEG99; Kau99; CEG00; BMM01;
FQ02]. More recently several methods have been presented to determine especially

1 This refers primarily to the generation of the VCs. The verification proper may still be rather

difficult even for very simple statements: {True} skip; {Goldbach’s conjecture}.

polynomial invariants [MS03; MSS04; JK05; PS05; KR06]. Some methods are for
application by hand [e.g. Cap75; Mis78], some work in a semi-mechanized manner
[e.g. Weg74; Tam80; BMM01; FQ02] and some are fully mechanized [e.g. Kau99;
PS05; JK05; KR06].

The different approaches exploit the annotated loop in different ways:
Some methods use the loop only, i.e. derive invariants from the code [e.g. KM76;

Bas80; Tam80; Ell81; GDM85; Pai86; MS03; MSS04; JK05; PS05; KR06]. In
[CEG99, CEG00] the loop is instrumented in order to output interesting variables
(“trace variables”). The method then tries to infer an invariant from the values of the
trace variables for several executions of the loop. This is a special case of deriving an
invariant from the loop, because the values of the trace variables are determined by
the loop.

Another approach is to derive the invariant from the specification [Mis78; Gri82].
Misra [Mis78] mentions two approaches: “A loop invariant could be a proposition
about “what has been done” or a proposition about “what remains to be done” ”. Gries
[Gri81, Gri82] derives an invariant of the kind “what has been done” from POST.
Gries attributes this methodology to Dijkstra [Dij76]. Whereas Misra uses the invari-
ant for the verification of an existing loop, Gries uses the invariant for the develop-
ment of the loop itself.

Wegbreit [Weg74] and Kauer [Kau99] derive INV from POST and the loop-
condition. The method of Kauer is inspired by [Gri82], but is mechanized, and is
tailored to FOR-loops and to the verification of an existing loop. The details are the
topic of this paper.

Most methods work with WHILE-loops. Since FOR-loops can be transformed into
WHILE-loops these methods can also be applied to FOR-loops. If e.g. the method of
[Weg74] is applied to the WHILE-loop corresponding to example (4) in sect. 3.1 no
loop invariant seems to be produced, despite the fact that the candidates are also de-
rived from POST and the loop-condition.

The rest of the paper is organized as follows. In section 2 we present the verifica-

tion scheme for FOR-loops. Section 3 contains the method for the computation of an
invariant and some examples of its application. Section 4 concludes the paper.

2 An Improved Proof Rule for FOR-loops

The proof rule for FOR-loops in [Win98] is based on that in [Hoa 72]. The main dif-
ferences are that [Win98] does not require I([]) to hold before the first execution of
the loop body. The invariant I([LO .. i]) must only hold after executions of the loop
body. Secondly, the loop variable may occur in the invariant, and thirdly, the proof
rule also works for loops with zero repetitions. The strategy for the handling of the
invariant is based on the following observations:

(1) the invariant is intended to be an assertion which is established by any execu-
tion of the loop body, especially the last one; therefore, it seems not necessary that the
invariant holds before the FOR-loop. Collins calls such an invariant a “post-invariant”
[Col88];

(2) the invariant of a FOR-loop is typically an inductive assertion which involves
the loop variable. In [Hoa72] the loop variable must not occur in the invariant;

(3) in some programming languages the loop variable is declared locally in the
loop and does not exist outside the loop [e.g. Algol 68, Ada, C#]. If the invariant
contains the loop variable and must hold before the loop, this could lead to illegal
uses of the loop variable;

(4) there are examples in which it seems difficult to derive I([]) mechanically
from I([LO .. i]). One example for this is [Win 98: 9]:

 v := 5;
 -- v=5
 FOR i IN 1 .. 10
 LOOP v := i; (1a)
 -- inv ???
 END LOOP;
 -- v=10

It is easy to see that I([1..i]) ≡ v = i is an invariant which fulfills (1a).
I([1..i])i

10 ≡ I([1..10]) ≡ v=10 is sufficient to establish the postcondition. We
then have to determine I([]) such that
 [v=5 ⇒ I([])] ∧ [I([]) ⇒ wp(“v:=1;“, v=1] (1b)

holds. If we try I([]) ≡ I([1..i])i
pred(1) ≡ v=0 we observe that it does not work:

because [v=5 ⇒ v=0] ≡ False. On the other hand, I([]) ≡ true does the trick;
it is maximal in that it is the weakest solution of (1b). But it is not derived mechani-
cally from I([1..i]) .

Apart from these differences, the verification scheme is expressed in a form suit-
able for automatic verification using ABM, whereas the proof rule in [Hoa72] is for-
mulated as a logical derivation rule.

The verification scheme for FOR-loops used in this paper is:

 [PRE ⇒ LO, UP ∈ Ti] ∧
 [PRE ∧ LO > UP ⇒ POST] ∧
 [PRE ∧ LO ≤ UP ⇒ wp(BODYi

LO, INVi
LO)] ∧ (2)

 [LO ≤ i < UP ∧ INV ⇒ wp(BODYi
i+1, INVi

i+1)] ∧
 [LO ≤ UP ∧ INVi

UP ⇒ POST]
where

PRE is the precondition
POST is the postcondition
INV is the invariant
Ti is the value set of the type of the loop variable i
[...] denotes universal quantification over the program variables and the specifi-

cation variables

This form of the verification scheme assumes that
(r1) the evaluation of LO and UP has no side effects
(r2) any evaluation of LO, UP or any of their subexpressions at any point in the

FOR-loop yields the same value as in the initial evaluation at the beginning of the

execution of the FOR-loop. This means especially that LO and UP are not written to
in BODY and that they do not contain calls of functions which are not referentially
transparent.

Both restrictions hold for many loops used in practice. Restriction (r2) is not se-
vere; [Win98; KW00] contain a scheme which does not require restriction (r2) by
introducing two fresh variables vlo and vup which are assigned the values of LO and
UP before beginning the repetitions of the loop body. Since the method for the com-
putation of the invariant does not depend on the exact form of the loop verification
scheme, we use the simpler form of the verification scheme for the examples in this
paper.

In [KW00] we show that (2) implies the correctness of the loop (1) and that the
correctness of (1) implies the existence of an invariant INV, which satisfies (2).

3 A Method for Computing Invariants of FOR-Loops

3.1 Basic Idea

The general wp-rule for a FOR-loop cannot always be solved exactly. Usually,
some weaker form of correctness is used which uses a loop invariant [Gri81; Win98].
This means that the engineer has to determine a suitable invariant. If such an invariant
can be computed mechanically the task of the engineer will be easier. In this section
we present a method for the mechanical generation of invariants of FOR-loops, which
are annotated by PRE and POST only.

The method is based on the heuristic “replacing a constant in the postcondition by
a variable(RCPV)“ [Gri81: 199], where in our case the variable is always the loop
variable. The heuristic RCPV is typically applied by replacing the final bound in
POST by the loop variable. For upwards counting loops the final bound is UP, and for
downwards counting loops it is LO. In the following we show the derivation of the
method for upwards counting loops. How it works for downwards counting loops is
presented in [KW00].

The method works in two steps:
(1) try to derive a predicate HI (hypothetical invariant) from the AFL. There are cases

in which the method does not generate a predicate HI, e.g. if UP is a non-linear
expression. From a practical point of view those cases are rare. A check of [BG91]
gave the following result: in most FOR-loops UP has one of the forms: (a) vari-
able, (b) sum of two variables, or (c) sum of a variable and a constant. The Fortran
program RWPL (= Randwertproblemlöser = boundary value problem solver),
written by M. Hermann and D. Kaiser of our department, contains 1015 FOR-
loops (DO-loops in Fortran), of which 998, i.e. almost all, are appropriate for our
method.

(2) try to prove (FOR-rule)INV
HI . There are three possible answers:

a) the proof succeeds, i.e. HI is an invariant and the loop is correct.
b) the refutation succeeds. This can be due to the following reasons:

b1) the loop is correct, but HI is not an invariant.
b2) the loop is not correct. In this case HI may or may not be an invariant.

 c) neither proof nor refutation succeed, i.e. the prover “gives up” or does not termi-
nate. In this case it is unknown whether the loop is correct or incorrect, or
whether HI is or is not an invariant.

Only in case a) does the method say that the loop is correct.

The idea behind this method is that most FOR-loops compute their final result by
computing a sequence of partial intermediate results which approximate the final
result better and better. The final result is described by POST and often depends on a
characteristic constant or variable which usually is UP. POSTUP

i , which then depends
on i, often characterizes these partial results.

A very simple example is a loop for the summation of the first 100 natural num-
bers:

 -- PRE: s = 0 ∧ s ∈ int32
FOR i in 1..100 LOOP s := s+i; END LOOP (3)
 -- POST: s = 〈Σj: 1..100: j〉 ∧ s ∈ int32

In (3) we assume that the type of s is int32. In (3) RCPV can be applied directly
and gives the HI

 HI ≡ POST100
i ≡ (s = 〈Σj: 1..100: j〉 ∧ s ∈ int32)100

i
 ≡ s = 〈Σj: 1..i: j〉 ∧ s ∈ int32

The loop (3) with the invariant HI satisfies (2) and therefore, HI is an invariant of
(3) and (3) is correct. Since 〈∀i ∈ 0..100: 〈Σj: 1..i: j〉 ∈ int32〉 holds, we could have
ommitted s ∈ int32 in (3). We included it for documentation purposes.

(3) is a very special loop because the upper bound is the fixed number 100. Often
the upper bound will be a program variable whose value is constant in the FOR-loop.
Such a more general FOR-loop is given in (4).

 -- PRE: s=0 ∧ 0≤n≤65535 ∧ n=N
FOR i in 1..n LOOP s := s+i; END LOOP (4)
 -- POST: s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N

We assume that s and n are of type int32. N is a specification variable which is
used to guarantee that the value of n after the loop is the same as before the loop. If
we compute HI mechanically as POSTn

i we obtain
HI ≡ POSTn

i ≡ (s=〈Σj: 1..n: j〉 ∧ 0≤n≤65535 ∧ n=N)n
i

 ≡ s=〈Σj: 1..i: j〉 ∧ 0≤i≤65535 ∧ i=N
We observe immediately that HI is not an invariant of (4) because i has not al-

ways the value N (if N > 1).
A strategy for avoiding this problem is to apply the substitution (n # i) only to

those conjuncts of POST which are not also a conjunct of PRE. In the example this
results in

HI ≡ (s=〈Σj: 1..n: j〉)n
i ∧ 0≤n≤65535 ∧ n=N

 ≡ s=〈Σj: 1..i: j〉 ∧ 0≤n≤65535 ∧ n=N
The loop (4) with HI as invariant satisfies (2).
A method for the identification of common conjuncts is given in sect. 3.3.

3.2 Bound Transformation

The method developed so far works only if UP is a constant or a variable. This is a
severe restriction. One idea is to insert the assignment “vup := UP;” immediately
before the loop, where vup is a fresh variable, and then use vup as the upper bound.
But this does not work in general, since vup does not occur in POST. Replacing a
nonoccurring variable does not change POST, so that POST itself had to be consid-
ered as an invariant, which does not work in most cases.

In the loop (5) UP is not a variable but a more complicated expression.
 -- PRE: s = 0
FOR i in 1..n+m LOOP s := s+i; END LOOP (5)
 -- POST: s = 〈Σj: 1..n+m: j〉

In (5) we have omitted the type constraints on s, n and m because they are not
significant for the current discussion. In general, the value of n+m is constrained by
the type of s: in (4) the constraint for n guarantees that s ∈ int32.

The introduction of vup and the application of RCPV results in
vup := n+m;
 -- PRE: s = 0 ∧ vup = n+m
FOR i in 1..vup LOOP s := s+i; END LOOP (6)
 -- POST: s = 〈Σj: 1..n+m: j〉

Since vup does not occur in POST we obtain
HI ≡ POSTvup

i ≡ s = 〈Σ j: 1..n+m: j〉vup
i ≡ s = 〈Σj: 1..n+m: j〉 ≡ POST.

It is easy to see that HI is not an invariant.
It seems therefore better to try to transform the given loop L1 into an equivalent

loop L2 with upper bound UP2, such that UP2 = v and v ∈ free(UP1) ∩ free(POST)
holds.

In the following we distinguish between expressions such as LO and UP and
their value, which we denote by s1(LO) and s1(UP) where s1 is the state just before
the first execution of BODY.

In this paper we use transformations t which induce a translation of the range
s1(LO1) .. s1(UP1) by a constant k = s1(e), where e is some arithmetic expression.
The resulting range is then s1(LO1)+s1(e) .. s1(UP1)+s1(e) = s1(LO2) .. s1(UP2).

This means that the number of executions of BODY is the same in the transformed
loop L2. If we use a suitable transformation t* in BODY, which compensates for the
translation t of the values of the loop variable, we obtain a loop which is semanti-
cally equivalent to the given loop L1. This leads to the following scheme (for upward
counting loops):

L1: -- PRE
 FOR i in LO1..UP1 LOOP BODY END LOOP
 -- POST

L2: -- PRE
 FOR i in t(LO1)..r(t(UP1))
 LOOP BODY(i # t*(i)) END LOOP
 -- POST

r(•) is a function which reduces (simplifies) arithmetic expressions.
In L2 a translation t(•) is applied to LO and UP and a second translation t*(•) to

all occurrences of the loop variable i in BODY. The idea is that t*(•) neutralizes
t(•) and that therefore the BODY of L2 is executed for the same values of the loop
variable i as the BODY of L1. That this is really the case is shown below.

We apply the loop transformations only in such cases in which r(t(UP1)) has the
form “v” or “–v”. Since UP2 = r(t(UP1)) has this simple form we get the hypotheti-
cal invariant
HI = POSTv

i , if r(t(UP1)) has the form “v “, or
HI = POSTv

(-i) , if r(t(UP1)) has the form “-v” .
L2 is never really executed but is only used to determine HI and a corresponding

proof rule. On the level of proof rule and proof we assume the usual mathematical
sets of numbers, i.e. when applying t and t* we do not have to watch for range viola-
tions and can apply the usual laws of arithmetic.

The transformation t depends on UP and v and is a mapping E × Var → (E →
E), i.e. t(UP,v) ∈ E → E , where E is the set of arithmetic expressions. When UP and
v are known from the context we also write t(e) instead of t(UP,v)(e). t(UP,v) is ap-
plied to both LO1 and UP1. In order to find t for a given expression UP1 and a given
variable v we determine the syntactic transformation necessary to semantically neu-
tralize all terms apart from v or -v.

E.g. if UP = m+10 we obtain t(UP, m)(e) = e -10 and for UP = n*a +b we
obtain t(UP, n)(e) = (e-b)/a and t(UP, b)(e) = e - n*a . We obtain the correspond-
ing t* by modifying t(e) analogously wrt e.

Not all such transformations lead to a translation of s1(LO1) .. s1(UP1). For UP1
= 2*n we obtain t(UP1,n)(e) = e/2 . If LO1 = 0 then the original range is 0..2*n
and the transformed range is 0..n whose lengths are different for n >0. On the other
hand, if we rewrite 2*n as n+n, we could transform the range 0..2*n into -n..n
which has the same length.

This means that the transformation of the range is only possible if UP1 has a suit-
able form. In this paper we limit the possible transformations to the cases in the fol-
lowing table:

Table 1. Definition of the mappings t and t*

 Form of UP
 o1 v e1 o2 v o1 v o2 e1 e1 o2 v o3 e2
 t(UP,v)(e) e e - e1 e o2-1 e1 e - e1 o3-1 e2
 r(t(UP,v)(UP)) o1 v o2 v o1 v o2 v
 t*(UP,v)(e) e e + e1 e o2 e1 e + e1 o3 e2
 t*(UP,v)(t(UP,v)(e)) e e - e1 + e1 e o2-1 e1 o2 e1 e - e1 o3-1 e2 + e1 o3 e2

where v ∉ free(e1) ∪ free(e2), o1 ∈ {+, -, ε}, o2, o3 ∈ {+, -}, +-1 = - , --1 = + ,

and e1 and e2 are parenthesized expressions. If e.g. UP = v-a+b we assume that UP
has been transformed into v-(a-b) or an equivalent parenthesized form. As already
mentioned in sect. 3.1 these restrictions seem not severe from a practical point of
view.

Since the expressions in table 1 operate over the mathematical sets of numbers the
usual algebraic rules apply. It is easy to see that the last row implies that
t*(UP,v)(t(UP,v)(e)) is semantically equivalent to e.

In order to show the equivalence of L1 and L2 we need one last property:
t(UP,v)(•) and t*(UP,v)(•) must be constant throughout the FOR-loop. This is guar-
anteed by the restriction (r2) in sect. 2. A consequence of this is: there is a k ∈ Ÿ
such that s(t(UP,v)(e)) = s(e) + k for any arithmetic expression e and for any state
s during the execution of the loop, where k can be derived from table 1. Analogously,
we have s(t*(UP,v)(e)) = s(e) - k .

With these properties we can now show that in L1 and in L2 BODY is executed
for the same sequence of values of the iteration expression. For L1 we obtain
BODYs1(LO1)..s1(UP1) . For L2 we obtain

 {BODYi
t*(i)}s1(t(LO1))..s1(t(UP1))

 = BODYs1(t*(s1(t(LO1)))) .. s1(t*(s1(t(UP1)))) -- s(t(e)) = s(e) + k
 = BODYs1(t*(s1(LO1)+k)) .. s1(t*(s1(UP1)+k)) -- s(t*(e)) = s(e) – k
 = BODYs1(s1(LO1)+k)-k .. s1(s1(UP1)+k)-k -- s(a+b) = s(a) + s(b), s(s(e)) = s(e)
 = BODYs1(LO1) .. s1(UP1)

3.3 Determination of Common Conjuncts

According to the observation in (4) we present a refinement of the basic strategy by
exempting common invariant conjuncts from RCPV. Common conjuncts often occur
in programs with nested loops. One example is example 17 in [FKW02; KW99b]. A
second example is the algorithm (7), which computes the ∞-norm p of the matrix a of
size m×n, which is defined as: p = 〈Max k: 1≤k≤m: 〈Σ c: 1≤c≤n: |a(k,c)| 〉 〉 [GL89].

 -- PREo: {m,n} ≥ 1 ∧ p = 0
FOR i IN 1..m LOOP
 s := 0;
 -- PREi: s = 0 ∧
 -- p = 〈Max k: 1..i-1: 〈Σ c: 1..n: |a(k,c)|〉〉
 FOR j IN 1..n LOOP
 s := s+abs(a(i,j)); (7)
 END LOOP;
 -- POSTi: s = 〈Σ c: 1..n: |a(i,c)|〉 ∧
 -- p = 〈Max k: 1..i-1: 〈Σ c: 1..n: |a(k,c)|〉〉
 IF s>p THEN p := s; END IF;
 -- p = 〈Max k: 1..i: 〈Σ c: 1..n: |a(k,c)|〉〉
END LOOP;
 -- POSTo: p = 〈Max k: 1..m: 〈Σ c: 1..n: |a(k,c)|〉〉

PREi and POSTi have one conjunct in common, in which the upper bound must
not be replaced by the loop variable to obtain an HI. This HI is an invariant of the
inner loop.

We determine common conjuncts as follows
(a) transform PRE and POST into normal form NF
(b) determine the syntactically common conjuncts C = C1 ∧ … ∧ Cn
(c) determine those Ci for which

 noWrite(BODY, free(Ci)) ∨ [Ci ⇒ wp(BODY, Ci)] holds;
 noWrite(S, M) means that no variable in the set of variables M is written to
 in the statement S.
 Let Ccom be the conjunction of these Ci.

The condition in (c) seems to be unnecessarily complex because, from a theoretical
point of view, trans(BODY, Ci) ≡ [Ci ⇒ wp(BODY, Ci)] is necessary and suffi-
cient. From a practical point of view we have to bear in mind that a theorem prover
may not be able to prove a theorem. On the other hand, noWrite(BODY, free(Ci))
can often be checked more easily, especially in the absence of function calls. Fur-
thermore it is sufficient but not necessary. Therefore, using the combination of both
conditions may classify more Ci as an invariant versus using either one alone.

The details of the normal form are given in [KW00].
If the method finds any invariant common conjuncts the normalized POST can be

written as POST’ ∧ Ccom , where POST’ does not contain any conjunct of Ccom. The
hypothetical invariant is then

 HI ≡ POST’r(t(UP))
i ∧ Ccom or

 HI ≡ POST’r(-t(UP))
(-i) ∧ Ccom.

3.4 Adaptation of the Proof Rule

The bound transformation and the common conjuncts must now be considered in
the proof rule for the FOR-loop. There are four factors which influence the adaptation
of the proof rule:

a) direction of the loop: upwards / downwards
b) bound modification in BODY: bounds are modified / bounds are not modified
c) form of the transformed final bound: v / -v
d) occurrence of the loop variable in POST: i ∈ free(POST) / i ∉ free(POST)
The proof rule for the case
 (upwards, not modified, v, i ∉ free(POST))
is given in (8).

[PRE ⇒ LO, UP ∈ Ti] ∧
[PRE ∧ LO > UP ⇒ POST’] ∧ (8)
[PRE ∧ LO ≤ UP ⇒ wp(BODYi

LO, POST’r(t(UP))
t(LO))] ∧

[t(LO) ≤ i < t(UP) ∧ POST’r(t(UP))
i ∧ Ccom ⇒ wp(BODYi

t*(i)+1, POST’r(t(UP))
i+1)]

The proof rules for the other cases are given in [KW00].

3.5 Algorithm for the Application of the Method

We are now ready to put the pieces together and present the application of the
method as an algorithm, which works for both upwards and for downwards counting
AFLs.

-- INPUT: PRE, POST, i, LO, UP, BODY, UpwardsCounting?
AFLCorrect?: enum(proof, open) := open;
FinalBound: expression;

IF UpwardsCounting?
THEN FinalBound := UP; ELSE FinalBound := LO; END IF;

IF FinalBound is suitable (see table 1)
THEN Ccom: expression := true;
 HI: expression;
 Post’: expression := POST;

 IF there is a common conjunct c with
 noWrite(BODY, free(c)) ∨ [c ⇒ wp(BODY,c)]
 THEN Ccom := 〈Ÿ c: c is common conjunct:
 noWrite(BODY, free(c)) ∨
 [c ⇒ wp(BODY, c)]〉;
 POST’ := con(set(POST) - set(Ccom));
 END IF;

 -- create the set T of all possible translations
 -- t(FinalBound,v),
 -- where v ∈ free(FinalBound) ∩ free(POST);
 FOR EACH t ∈ T DO
 -- r(t(FinalBound)) = v ∨ r(t(FinalBound))= -v
 IF r(t(FinalBound))= v
 THEN POST’ := POST’vi;
 ELSE POST’ := POST’v(-i);
 END IF;
 IF the AFL can be proved using POST’ and Ccom in the
 appropriate rule in sect. 3.4
 THEN AFLCorrect? := proof; EXIT;
 END IF;
 END FOR;
END IF;

-- OUTPUT: AFLCorrect?

The functions con(⋅) and set(⋅) are defined as follows:
 set(C1 ∧ … ∧ Cn) = { C1 , … , Cn },
 con({ C1 , … , Cn }) = C1 ∧ … ∧ Cn
The meaning of the three possible outcomes (proof, open, nontermination) has al-

ready been explained in section 3.1.

3.6 Examples

In the following example (9) the natural numbers in the range m .. m-n (for n≤0)
are summed up.

 -- PRE: s = 0 ∧ m ≥ 0 ∧ n≤0
FOR i IN m .. m-n LOOP
 s := s + i; (9)
END LOOP;
 -- POST: s = 〈Σ j: m..m-n: j〉

UP is suitable, Ccom ≡ true, free(UP) ∩ free(POST) = {m, n},
2 transformations are possible:
t1(m-n, m)(e) = e+n and t2(m-n, n)(e) = e-m.
t1 does not yield an invariant, but t2 gives
 HI ∫ s = 〈Σ j: m..m+i: j〉
which is an invariant of the transformed loop. The transformed loop and HI satisfy

(8).
The second example is from [PS05] and computes the sum of squares of the first n

natural numbers. An equivalent AFL is (10).

 -- PRE: n≥0 ∧ n≤1860 ∧ n=N ∧ x=0
FOR y IN 0..n LOOP
 x := y*y + x; (10)
END LOOP;
 -- POST: x=(2n3+3n2+n)/6 ∧ x∈int32 ∧ n≥0 ∧ n≤1860 ∧ n=N

Additionally to [PS05] we assume that x ∈ int32 and use n in POST instead of y,
which may not be in scope. Since UP is a simple variable we obtain directly

HI ≡ x = (2y3 + 3y2 + y)/6 ∧ x ∈ int32 ∧ n ≥ 0 ∧ n ≤ 1860 ∧ n = N
HI is an invariant and the loop (10) together with HI satisfies (8).

4 Conclusion

We have developed a method for the mechanical generation of invariants for a
practically relevant class of FOR-loops. The method can be incorporated into auto-
matic program provers and would lead to a simplification of program verification
using such a tool. By extending the suitable forms of the final bound the applicability
of the method could be extended to further classes of FOR-loops.

Acknowledgments. We are grateful for the very useful hints of an anonymous referee
which led to a number of improvements of the paper.

References

ABB05 Ahrendt, Wolfgang; Baar, Thomas; Beckert, Bernhard; et al.: The KeY tool. Software
Syst Model 4 (2005) 32..54. DOI 10.1007/s10270-004-0058-x

Bar00 Barnes, John: High Integrity Ada - The SPARK Approach -. Addison-Wesley, 2000.
Bas80 Basu, S. K.: A Note on Synthesis of Inductive Assertions. IEEE TSE 6, 1 (1980)

32..39
BCD06 Barnett, M; Chang, B-Y E.; DeLine, R. et al.: Boogie: A Modular Reusable Verifier

for Object-Oriented Programs. Springer, LNCS 4111, Berlin, 2006, pp. 364..387
BD84 Dunlop, D. D.; Basili, V. R.: A Heuristic for Deriving Loop Functions. IEEE TSE 10,

3 (1984) 275..285
BG91 Gonnet, G. H.; Baeza-Yates, R.: Handbook of Algorithms and Data Structures. Addi-

son Wesley, Wokingham, 1991. ISBN-10: 0-201-41607-7
BMM01 Ball, T.; Majumdar, R.; Millstein, T.; Rajamani, S. K.: Automatic Predicate Abstrac-

tion of C Programs. ACM PLDI 2001, 203..213
Cap75 Caplain, Michel: Finding Invariant Assertions for Proving Programs. SIGPLAN

Notices 10, 6 (1975) 165..171
CEG99 Ernst, M. D.; Cockrell, J.; Griswold, W. G.; Notkin, D.: Dynamically Discovering

Likely Program Invariants to Support Program Evolution. ICSE ’99, 213..224
CEG00 Ernst, M. D.; Czeisler, A.; Griswold, W. G.; Notkin, D.: Quickly Detecting Relevant

Program Invariants. ICSE 2000, 449..458
Col88 Collins, W. J.: The Trouble with FOR-Loop Invariants. ACM SIGCSE Bull. 20, 1

(1988) 1..4
Dij76 Dijkstra, Edsger W.: A Discipline of Programming. Prentice-Hall, Inc., 1976.
Ell81 Ellozy, H. A.: The Determination of Loop Invariants for Programs with Arrays. IEEE

TSE 7, 2 (1981) 197..206
FKW02 Ein Vergleich der Programmbeweiser FPP, NPPV und SPARK. Ada-Deutschland

Tagung 2002. Shaker Verlag, Aachen, 2002. p. 127..145. ISBN-10: 3-8265-9956-X
Flo67 Floyd, R. W.: Assigning Meaning to Programs. In: Schwartz, J. T. (ed.): Mathemati-

cal Aspects of Computer Science. AMS, 1967, pp. 19 .. 32. ISBN-10: 0-8218-1319-6
FQ02 Flanagan, C.; Qadeer, S: Predicate Abstraction for Software Verification. ACM

POPL’02, 191..202
GDM85 Mili, A.; Desharnais, J.; Gagné, J.-R.: Strongest Invariant Functions: Their Use in the

Systematic Analysis of While-Statements. Acta Informatica 22 (1985) 47..66
GL89 Golub, G.H.; Loan, C.F. van: Matrix Computations. John Hopkins Press, 1989
Gri81 Gries, D.: The Science of Programming. Springer, New York, 1981
Gri82 Gries, D.: A Note on a Standard Strategy for Developing Loop Invariants and Loops.

Sci Comp Progr 2 (1982) 2007..214
Gumxx Gumm, H: New Paltz Program Verifier. http://www.mathematik.uni-marburg.de/

~gumm/NPPV/nppv.html. Visited 2007.Feb.21
Hoa69 Hoare, C. A. R.: An Axiomatic Basis of Computer Programming. CACM 12, 10

(1969) 576..580, 583
Hoa72 Hoare, C. A. R.: A Note on the FOR Statement. BIT 12 (1972) 334..341
JK05 Kovács, L. I.; Jebelean, T.: An Algorithm for Automated Generation of Invariants for

Loops with Conditionals. Research Institute for Symbolic Computation, Johannes
Kepler University, Linz, Austria, 2005

JKP03 Kovács, L. I.; Popov, N.; Jebelean, T.: Verification of Imperative Programs in Theo-
rema. Research Institute for Symbolic Computation, Johannes Kepler University,
Linz, Austria, 2003

Kau99 Kauer, S.: Automatische Erzeugung von Verifikations- und Falsifikationsbedingun-
gen sequentieller Programme. Dissertation, Friedrich Schiller University, 1999.Jan.27

KM76 Katz, S.; Manna, Z.: Logical Analysis of Programs. CACM 19, 4 (1976) 188..206

http://www.mathematik.uni-marburg.de/%7Egumm/NPPV/nppv.html.%20%20Visited%202007.Feb.21
http://www.mathematik.uni-marburg.de/%7Egumm/NPPV/nppv.html.%20%20Visited%202007.Feb.21

KR06 Rodríguez-Carbonell, E.; Kapur, D.: Automatic generation of polynomial invariants
of bounded degree using abstract interpretation. Sci Comp Progr 64 (2007) 54..75.
Available online 28 Sept 2006 at http://www.sciencedirect.com/; visited 2007.Jan.22

KW99a Kauer, S.; Winkler, J. F. H.: FPP: An Automatic Program Prover for Ada Statements.
Workshop ”Objektorientierung und sichere Software mit Ada“. Karlsruhe,
1999.Apr.21-22

KW99b Kauer, S.; Winkler, J. F. H.: A Comparison of the Program Provers NPPV and FPP.
Report Math / Inf / 1999 / 28, Friedrich Schiller University, Dept. of Math. & Comp.
Sci., 1999

KW00 Kauer, S.; Winkler, J.F.H.: Automatic Generation of Invariants for FOR-Loops Based
on an Improved Proof Rule. Report Math / Inf / 2000 / 26, Friedrich Schiller Univer-
sity, Dept. of Math. & Comp. Sci., 2000

Mis78 Misra, J.: Some Aspects of the Verification of Loop Computations. IEEE TSE 4, 6
(1978) 478..486

MS03 Müller-Olm, M.; Seidl, H.: Computing Polynomial Program Invariants. October 2,
2003. 2007Feb11 from: http://www.informatik.fernuni-hagen.de/forschung/ infor-
matikberichte/pdf-versionen/310.pdf

MSS04 Sankaranarayanan, S.; Sipma, H. B.; Manna, Z.: Non-Linear Loop Invariant Genera-
tion using Gröbner Bases. ACM POPL 2004, 318..329

MW77 Morris, J. H. Jr.; Wegbreit, B.: Subgoal Induction. CACM 20, 4 (1977) 209..222
Pai86 Paige, R.: Programming with Invariants. IEEE Software 3, 1 (1986) 56..69
PS05 Seidl, H.; Petter, M.: Inferring Polynomial Invariants with Polyinvar. Technische

Universität München, Garching, Germany. 2007.Feb.12 from:
http://www2.cs.tum.edu/ ~petter/papers/nsad05.pdf

Tam80 Tamir, M.: ADI: Automatic Derivation of Invariants. IEEE TSE 6, 1 (1980) 40..48
Tur49 Turing, A.: Checking a Large Routine. In: Williams, L. R.; Campbell-Kelly, M.

(eds.): The Early British Computer Conferences. MIT Press, Cambridge, 1989, 70..72
Weg74 Wegbreit, Ben: The Synthesis of Loop Predicates. CACM 17,2 (1974) 102..112
Win97 Winkler, J.F.H.: The Frege Program Prover. 42. Int. Wiss. Koll., Ilmenau, 1997.

Vol.1 116..121
Win98 Winkler, J.F.H.: New Proof Rules for FOR-loops. Report Math / Inf / 98 / 13, Frie-

drich Schiller University, Dept. of Math. & Comp. Sci., 1998

http://www.sciencedirect.com/
http://www.informatik.fernuni-hagen.de/forschung/%20informatikberichte/pdf-versionen/310.pdf
http://www.informatik.fernuni-hagen.de/forschung/%20informatikberichte/pdf-versionen/310.pdf
http://www2.cs.tum.edu/%7Epetter/papers/nsad05.pdf

