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SUMMARY

Computers are finite machines and, therefore, the arithmetic operations in a programming language are
different from their mathematical counterparts. These restrictions seem not to have been, in general,
fully appreciated in programming languages and in computer science textbooks. One example is the
programming language Java, which makes it difficult to warn the user in cases in which arithmetic
operations produce incorrect results. In this paper we look at integer arithmetic in Java and develop
a safe variant of the arithmetic operations in Java. The design of the safe variant of +, −un, −bin, ∗,
/ and ∗∗ for the types byte, short, int and long reveals a number of deficiencies of Java in integer
arithmetic, floating point arithmetic and program structure. Some of these deficiencies are also present in
other contemporary programming languages. The paper therefore ends with some proposals for the design
of the arithmetic elements of programming languages. Copyright  2002 John Wiley & Sons, Ltd.
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‘Now it is obvious that no finite machine can include infinity’

Charles Babbage, 1864

1. INTRODUCTION

Computers are finite machines and, therefore, the arithmetic operations in a programming language
are different from their mathematical counterparts. This has already been mentioned in the first
paper of Hoare on program correctness [1], but he does not usually mention it in later papers.
These restrictions seem not to have been, in general, fully appreciated in programming languages
and in programming [2,3]. One example is the programming language Java, which makes it difficult to
warn the user in cases in which arithmetic operations produce incorrect results. In this paper we look
at integer arithmetic in Java and develop safe variants of the arithmetic operations in Java.
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670 J. F. H. WINKLER

In the discussion of arithmetic operations in programming languages we have to distinguish between
the operation in the programming language (l-op) and their mathematical counterpart (m-op). We use
the following notation for this purpose:

(a) in program text the operation symbols +, − etc. denote the l-ops;
(b) outside the program text +, − etc. denote the m-ops in Z and +Jint , −Jint etc. denote the

l-ops in Java for the corresponding predefined integer type of Java. If we do not have a specific
programming language in mind we denote the l-ops by +L, −L etc.

For an integer type in a programming language the set of possible values is limited to a finite interval
[min . . . max] ⊂ Z. This also holds for long numbers in Lisp or Mathematica. In languages like Ada,
C, Java and Pascal the interval typically has the form [−2n−1 . . . 2n−1 − 1], where a typical value of
n is 32. In the rest of this paper we assume n � 2. n = 1 works also for +, −bin, ∗, /, but not for ∗∗
and −un.

The arithmetic operations which are closed in Z are usually not closed in [min . . . max], e.g. max +
1 /∈ [min . . . max]. There are different possibilities to define the semantics of such operations.
Hoare discusses three in [1].

Basically, there are two methods to cope with the problem that the m-ops are not closed in the
restricted domain (DR).

(a) Define the l-op in such a way that it is closed in DR, e.g.

a +L b =




a + b ∈ [min . . . max] 	→ a + b

a + b > max 	→ max

a + b < min 	→ min

This is analogous to case (2) in [1].
Java uses the following definition for a signed integer:

a +J b =




a + b ∈ [min . . . max] 	→ a + b

a + b > max 	→ a + b + 2 ∗ min

a + b < min 	→ a + b − 2 ∗ min

(1)

This definition is the same as machine arithmetic when ignoring overflow.
(b) Signal an abnormal behavior, e.g. by raising an exception (e.g. Ada) or aborting the program

(e.g. Pascal‡).

From a practical point of view method (a) is not useful because in most cases the result of abnormal
cases of the l-op is incorrect and makes no sense. If such an incorrect operation is used in the definition
of another function this function too may become incorrect. One example is the factorial function. In C
or Java we obtain 23! = 8128 29161 78948 25984, which is quite different from the correct value
258 52016 73888 49766 40000 [2].

‡This is not completely correct, because such errors need not be detected [4, 3.1, 6.7.2.2].
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In most cases method (b) is appropriate. The Java specification [5] is very much aware of the fact
that most operations may not be executable in a normal manner but may instead result in erroneous
or abnormal behavior, which is called ‘abrupt completion’ [4, 14.1]. Gosling et al. [5] specify in most
cases of non-normal behavior that an exception must be thrown. Unfortunately, this is not required for
almost all arithmetic errors; only division and remainder with a divisor 0 must result in an exception.
All other range violations are masked due to the definition of the l-op in a manner analogous to (1).
The language specification requires such a behavior and, therefore, a Java system is not even allowed
to throw an exception when a range violation occurs during the evaluation of an arithmetic expression
[5, ch. 15]. In this case compatibility to C++ (and C) does not seem to lead to good results. C# uses the
same strategy in the unchecked mode, but also provides a checked mode, in which overflow yields an
exception [6, 14.5.12].

If the incorrect results produced by the arithmetic operations in Java cannot be tolerated in the
program, the programmer must check the operands and the result explicitly. In this paper we present
safe implementations of the operations +, −, ∗, / and ∗∗, where ∗∗ is not predefined in Java. + and −
come in two forms, namely unary and binary, where −un is typically called negation. Unary + is the
identity and therefore does not pose any problems. Negation is not closed in the integer types of Java
and has therefore also to be implemented in a safe way.

This paper is organized as follows. In Section 2 we present the basic properties of integer machine
arithmetic as far as they are used later on in the paper. Section 3 describes the integer operations as they
are defined in Java. Some properties of floating point machine arithmetic are mentioned in Section 4
and Section 5 mentions the basic properties of floating point arithmetic in Java. Section 6 contains
the conditions which the arguments of the various operations must fulfill in order to obtain a correct
result. The implementation of the safe operations is derived in Section 7. Some programs are rather
complicated because Java does not allow the user to control the rounding of arithmetic operations.
From a structural point of view, pure object-orientation and the lack of generics lead to a somewhat
poor program structure and to a cumbersome syntax of the calls of the implemented functions. Section 8
lists the deficiencies of Java observed in this paper and Section 9 offers some conclusions, especially
concerning the definition of arithmetics in programming languages.

2. INTEGER MACHINE ARITHMETIC
Java defines integer arithmetic via two’s-complement arithmetic (TCA) as it is used in contemporary
processors. We therefore present briefly those aspects of machine arithmetic which are used in the rest
of the paper.

One characteristic of TCA is the use of bit vectors of a fixed number n of bits for the two’s-
complement representation (TCR) of numbers. We obtain two characteristic sets:

run = 0 . . . 2n − 1, the range of unsigned numbers with n bits

rsn = −2n−1 . . . 2n−1 − 1, the range of signed numbers with n bits.
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In TCA the numbers of rsn are internally represented as elements of run according to the following
mappings:

tcn ∈ rsn → run, the TCR of x with n bits

tcn(x) = {0 � x � 2n−1 − 1 	→ x | −2n−1 � x � −1 	→ x + 2n}
nbn ∈ run → rsn, the number represented by the internal value x

nbn(x) = {0 � x � 2n−1 − 1 	→ x | 2n−1 � x � 2n − 1 	→ x − 2n}
For the definition of a function consisting of several cases we also use, apart from the usual format
of (1), a linear format according to the following definition:

f (a) = {c1 	→ e1 | c2 	→ e1} :≡ (c1 ⇒ f (a) = e1)∧ (c2 ⇒ f (a) = e2)

This linear format is more convenient in proofs involving such a function. This can be seen in the proof
below.

It is easy to see that the following two identities hold:

nbn(tcn(x)) = x, tcn(nbn(x)) = x

When n is understood from the context we sometimes also omit the index n.
If we have two TCR formats of different lengths we can easily transform the TCRs of x. Let x ∈ rsn

and n < m. The transformation from tcn(x) into tcm(x) is done by sign extension, which means that the
additional bits are all the same as the most significant bit of tcn(x). In arithmetic terms this is defined
as follows:

tcm(x) = sen,m(tcn(x)),

where

sen,m ∈ run → rum, the sign extension of an n-bit TCR into an m-bit TCR

sen,m(y) = {0 � y � 2n−1 − 1 	→ y | 2n−1 � y � 2n − 1 	→ y + sum(2j , j, n . . .m − 1)}
We now have to show that sen,m does the job:

sen,m(tcn(x)) = {0 � tcn(x) � 2n−1 − 1 	→ tcn(x) | 2n−1 � tcn(x) � 2n − 1

	→ tcn(x) + sum(2j , j, n . . .m − 1)}
= {0 � x � 2n−1 − 1 	→ x | −2n−1 � x � −1

	→ x + 2n + sum(2j , j, n . . .m − 1)}, by definition of tcn

= {0 � x � 2n−1 − 1 	→ x | −2n−1 � x � −1 	→ x + sum(2j , j, 0 . . . n − 1) + 1

+ sum(2j , j, n . . .m − 1)}, as 2n = sum(2j , j, 0 . . . n − 1) + 1, n > 0

= {0 � x � 2n−1 − 1 	→ x | −2n−1 � x � −1

	→ x + sum(2j , j, 0 . . .m − 1) + 1}
= {0 � x � 2n−1 − 1 	→ x | −2n−1 � x � −1

	→ x + 2m}, as 2n = sum(2j , j, 0 . . . n − 1) + 1, n > 0

= tcm(x), by n < m, definition of tcm, −2n−1 � x � 2n−1 − 1
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sen,m has the additional property that sen,m(y) mod 2n = y which is based on the fact that
sum(2j , j, n . . .m − 1) is a multiple of 2n. If we apply this to tcn(x) we see that the transformation in
the opposite direction is even simpler: tcm(x) mod 2n = sen,m(tcn(x)) mod 2n = tcn(x).

In machine arithmetic, addition and other operations yield two results: a result value and flags which
indicate, e.g., whether the value is in rsn [7, 3.6.3]. Since Java requires that those flags are ignored we
define the operations only with respect to the result value.

For addition, we obtain

+sn ∈ rsn × rsn → rsn, addition in the set rsn using two’s-complement and ignoring overflow

a +sn b = nbn((tcn(a) + tcn(b)) mod 2n)

=




a � 0 ∧ b � 0 ∧ 0 � a + b � 2n−1 − 1 	→ a + b, mc (mathematically correct)

a � 0 ∧ b � 0 ∧ 2n−1 � a + b � 2n − 2 	→ a + b − 2n

a � 0 ∧ b < 0 	→ a + b, mc

a < 0 ∧ b � 0 	→ a + b, mc

a < 0 ∧ b < 0 ∧ −2n−1 � a + b < 0 	→ a + b, mc

a < 0 ∧ b < 0 ∧ −2n � a + b < −2n−1 	→ a + b + 2n

We observe that +sn does not always give the mathematically correct result:

1 000 000 000 +s32 1 000 000 000 = 2 000 000 000

2 000 000 000 +s32 2 000 000 000 = −294 967 296 = 4 000 000 000 − 232

For subtraction we obtain analogously

−sn ∈ rsn × rsn → rsn, subtraction in the set rsn using two’s-complement and ignoring overflow

a −sn b = nbn((tcn(a)+ tcn(−b)) mod 2n)

=




a � 0 ∧ b � 0 ∧ 0 � a − b � 2n−1 − 1 	→ a − b, mc

a � 0 ∧ b < 0 ∧ 2n−1 � a − b � 2n − 1 	→ a − b − 2n

a � 0 ∧ b > 0 	→ a − b, mc

a < 0 ∧ b � 0 	→ a − b, mc

a < 0 ∧ b > 0 ∧ −2n−1 � a − b < −1 	→ a − b, mc

a < 0 ∧ b > 0 ∧ −2n + 1 � a − b < −2n−1 	→ a − b + 2n

As for addition, we do not always obtain the mathematically correct result.
Negation can be derived from subtraction because −a = 0 − a. We therefore obtain

−sn ∈ rsn → rsn, negation in the set rsn using two’s-complement and ignoring overflow

−sna = nbn((tcn(0) + tcn(−a)) mod 2n)

=
{
−2n−1 + 1 � a � 2n−1 − 1 	→ −a, mc

a = −2n−1 	→ a

We observe that −sn works correctly for all but one value, which is the ‘additional’ negative value
−2n−1.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:669–701



674 J. F. H. WINKLER

For multiplication we obtain a more complicated definition:

∗sn ∈ rsn × rsn → rsn, multiplication in the set rsn using two’s-complement and ignoring overflow

a ∗sn b = nbn((tcn(a) ∗ tcn(b)) mod 2n)

=




a � 0 ∧ b � 0 ∧ 0 � a ∗ b � 2n−1 − 1

	→ a ∗ b, mc

a > 0 ∧ b > 0 ∧ 2n−1 − 1 < a ∗ b � 22n−2 − 2n + 1 ∧ 0 � (a ∗ b) mod 2n � 2n−1 − 1

	→ (a ∗ b) mod 2n

a > 0 ∧ b > 0 ∧ 2n−1 − 1 < a ∗ b � 22n−2 − 2n + 1 ∧ 2n−1 � (a ∗ b) mod 2n �2n − 1

	→ (a ∗ b) mod 2n − 2n

a � 0 ∧ b � 0 ∧−2n−1 � a ∗ b � 0

	→ a ∗ b, mc

a > 0 ∧ b < 0 ∧−22n−2 + 2n−1 � a ∗ b < −2n−1 ∧ 0 � (a ∗ b) mod 2n � 2n−1 − 1

	→ (a ∗ b) mod 2n

a > 0 ∧ b < 0 ∧−22n−2 + 2n−1 � a ∗ b < −2n−1 ∧ 2n−1 � (a ∗ b) mod 2n � 2n − 1

	→ (a ∗ b) mod 2n − 2n

a � 0 ∧ b � 0 ∧−2n−1 � a ∗ b � 0

	→ a ∗ b, mc

a < 0 ∧ b > 0 ∧−22n−2 + 2n−1 � a ∗ b < −2n−1 ∧ 0 � (a ∗ b) mod 2n � 2n−1 − 1

	→ (a ∗ b) mod 2n

a < 0 ∧ b > 0 ∧−22n−2 + 2n−1 � a ∗ b < −2n−1 ∧ 2n−1 � (a ∗ b) mod 2n � 2n − 1

	→ (a ∗ b) mod 2n − 2n

a � 0 ∧ b � 0 ∧ 0 � a ∗ b � 2n−1 − 1

	→ a ∗ b, mc

a < 0 ∧ b < 0 ∧ 2n−1 − 1 < a ∗ b � 22n−2 ∧ 0 � (a ∗ b) mod 2n � 2n−1 − 1

	→ (a ∗ b) mod 2n

a < 0 ∧ b < 0 ∧ 2n−1 − 1 < a ∗ b � 22n−2 ∧ 2n−1 � (a ∗ b) mod 2n � 2n − 1

	→ (a ∗ b) mod 2n − 2n

Since multiplication grows faster than addition we obtain an incorrect result in more cases.
Some examples are

4 ∗s32 536 870 911 = 2 147 483 644

4 ∗s32 536 870 912 = −2 147 483 648 = (2 147 483 648 mod 232) − 232

4 ∗s32 1 610 612 735 = 2 147 483 644 = 6 442 450 940 mod 232

4 ∗s32 1 610 612 736 = −2 147 483 648 = (6 442 450 944 mod 232) − 232

Division is different from the other three operations in that it often yields results outside Z, e.g. 5/2.
In programming languages integer division is usually defined in such a way that it yields integer
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numbers as a result, i.e. if necessary it includes some form of rounding. We use rounding towards
zero as is done in Java [8, 15.17.2] and obtain the following definition:

/sn ∈ rsn × rsn → rsn ∪ {exception}, division in the set rsn ignoring overflow

a/snb =




b = 0 	→ exception, mc

a � 0 ∧ b > 0 	→ �a/b�, mc

a � 0 ∧ b < 0 	→ �a/b�, mc

a < 0 ∧ b > 0 	→ �a/b�, mc

a < 0 ∧ b < −1 	→ �a/b�, mc

−2n−1 + 1 � a < 0 ∧ b = −1 	→ −a, mc

a = −2n−1 ∧ b = −1 	→ a

We almost always obtain the correct result, only the last case (a = −2n−1 ∧ b = −1) yields a wrong
result.

For the notation of exponentiation we use additionally to the traditional notation ab a notation with
an explicit operator a ∗∗ b. ∗∗ is the mathematical operation and ∗∗sn, ∗∗Jint etc. are the operations in
the machine, respectively in Java. Since exponentiation is not one of the five basic operations it is not
so well defined as these. In particular, the case 0 ∗∗ 0 may be defined differently: sometimes it is illegal
or undefined (e.g. Algol 60), or sometimes 0 ∗∗ 0 = 1 (e.g. Ada 83). We use the following definition:

∗∗ ∈ Z × Z → Z ∪ {undefined}

a ∗∗ b =




b = 0 	→ 1

b > 0 	→ a ∗ a ∗ · · · ∗ a, b times

a �= 0 ∧ b < 0 	→ 1/(a ∗ a ∗ · · · ∗ a), −b times, / ∈ Z × Z ↪→ Z

a = 0 ∧ b < 0 	→ undefined

(2)

We do not give a language or machine oriented definition for ∗∗ because Java does not contain ∗∗ as a
predefined integer operation. Java contains the operation ‘double pow (double a, double b)’ [9]. ∗∗ is
also typically not provided by contemporary microprocessors (e.g. the Intel Pentium [10]).

3. INTEGER ARITHMETIC IN JAVA

In Java there are five integer types with the following ranges [4, 4.2.1]:

byte: − 128 . . .127 8-bit TCR

short: − 32768 . . .32767 16-bit TCR

int: − 2147483648 . . .2147483647 32-bit TCR

long: − 9223372036854775808 . . .9223372036854775807 64-bit TCR

char: ‘\u0000’ . . . ‘\uffff’ = 0 . . . 65535 16-bit unsigned representation

char is primarily a character type, but according to the traditional low-level viewpoint of C in the area
of data types the arithmetic operations are also defined for char. In the rest of the paper we limit the
discussion therefore to the types byte, short, int and long.
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In Java, integer arithmetic operations are actually only performed on values of type int or type
long:

‘Binary numeric promotion is performed on the operands (§5.6.2). The type of a
multiplicative expression is the promoted type of its operands. If this promoted type is
int or long, then integer arithmetic is performed; . . . If an integer multiplication overflows,
then the result is the low-order bits of the mathematical product as represented in some
sufficiently large two’s-complement format. As a result, if overflow occurs, then the sign of
the result may not be the same as the sign of the mathematical product of the two operand
values.’ [8, 15.17].

Addition and subtraction are defined analogously. The operation / yields an integer result by
rounding towards zero. If the value of the divisor of / is 0, then an ArithmeticException is thrown.
Apart from this, / is defined analogously to ∗. Promotion of operands of type byte and short means
conversion to type int by sign extension of the TCR and analogously for the promotion from int to
long.

Since the result type is the promoted type, we run into further problems when using byte or short
operands, as we see in the following example. The compilation of

short vs = 17;
// line 5

vs = vs-vs; // should lead to a compile-time error (5.2)

with JavaTM 2 SDK, Standard Edition, Version V1.3.0 leads to a compile-time error:

D:\JFHW\Projekte\Fin_Add\java-ex\assign-compat>javac AssignCompat04.java
AssignCompat04.java:6: possible loss of precision
found : int
required: short

vs = vs-vs; // should lead to a compile-time error (5.2)
ˆ

1 error

This error message is based on the following language rules:

‘A compile-time error occurs if the type of the right-hand operand cannot be converted to
the type of the variable by assignment conversion (§5.2).’ [8, 15.26]

‘5.2 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned (§15.26) to
a variable: the type of the expression must be converted to the type of the variable.
Assignment contexts allow the use of an identity conversion (§5.1.1), a widening primitive
conversion (§5.1.2), or a widening reference conversion (§5.1.4). In addition, a narrowing
primitive conversion may be used if all of the following conditions are satisfied:

- The expression is a constant expression of type byte, short, char or int.
- The type of the variable is byte, short, or char.
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- The value of the expression (which is known at compile time, because it is a constant
expression) is representable in the type of the variable.

If the type of the expression cannot be converted to the type of the variable by a conversion
permitted in an assignment context, then a compile-time error occurs. . . .

If the type of an expression can be converted to the type of a variable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type of
the variable.’ [8, 5.2]

If the variable has type int the program is legal and is executed without any warning, even in those
cases in which an incorrect result is computed:

int i = 0;
i = 2000000000+2000000000;
System.out.print("2000000000+2000000000 = " + i);

Execution:

D:\JFHW\Projekte\Fin_Add\java-ex\addition>java Addition02
2000000000+20000000000 = -294967296

If the type of the variable is short the program can easily be legalized by using a cast. This also
works in those cases in which an incorrect result is computed:

short vs = 20000;
vs = (short) (vs+vs); // should work (5.5)
System.out.print("20000+20000 = " + vs);

Execution:

D:\JFHW\Projekte\Fin_Add\java-ex\assign-compat>java AssignCompat06
20000+20000 = -25536

Whereas the definition of assignment compatibility and especially the conditions for the application
of a narrowing primitive conversion suggests that Java is very conscious of the finite ranges of integer
types, this is a fallacious idea. For the types int and long errors apart from division by zero are
completely ignored and the same holds for the other integer types when a cast is used. The situation is
especially confusing because the application of conversions (promotions) in the cases of short and
byte is asymmetric: the operands are automatically converted into int, but the result is int and
must, if need arises, be explicitly converted (cast) back to the original type.

If we sum up this discussion, we observe that integer arithmetic in Java is defined to be unsafe and
rather confusing.
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4. FLOATING POINT MACHINE ARITHMETIC

The topic of this paper is integer arithmetic. However, we will see in later sections that we could
use some floating point operations as, e.g., the function log( ). We therefore mention briefly some
properties of floating point machine arithmetic. Today most processors implement floating point
arithmetic according to the IEEE 754 standard. This standard defines four different formats for floating
point numbers: single (32 bit), single extended, double (64 bit) and double extended. The numbers are
defined as triples consisting of sign, mantissa and exponent. Apart from proper numbers, IEEE 754
defines some triples, which represent entities like positive infinity or negative infinity. Despite the
existence of these special triples, events such as overflow or underflow result in an exception§. These
exceptions may be enabled or disabled by the user.

In floating point arithmetic rounding occurs much more often than in integer arithmetic. IEEE 754
gives the programmer a very detailed control over the rounding mode of an operation. The following
rounding modes are defined:

RTN round to nearest

RTPI round toward positive infinity

RTNI round toward negative infinity

RTZ round toward zero

RTN is the default rounding mode, but depending on the computation it can be necessary to use one of
the other rounding modes.

5. FLOATING POINT ARITHMETIC IN Java

The floating point arithmetic of Java is based on IEEE 754, but it does not support this standard fully
and therefore has a number of deficiencies [11]. Java provides two floating point types, float and
double, which correspond to the IEEE 754 32-bit and 64-bit formats. The arithmetic operations for
floating point types in Java do not yield any error indication in case the result value is not a proper
number. All operations in Java use the rounding mode RTN. In this paper this limitation of Java will
lead to serious problems (see Section 7.1).

6. CONDITIONS FOR SAFE COMPUTATION

The safe integer operations we want to develop shall yield either the mathematically correct result or
throw an exception. For addition and the type rsn this leads to the following specification:

+sfn ∈ rsn × rsn → rsn ∪ {exception}
a +sfn b = {a + b ∈ rsn 	→ a + b | a + b /∈ rsn 	→ exception}

§What we call ‘exception’ is called ‘trap’ in IEEE 754. We use ‘exception’ because this is the typical term in the field of
programming languages.
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The ‘f’ in +sfn stands for ‘safe’. For the other operations and types we obtain analogous definitions.
For the Java type int we obtain, e.g.,

+Jfint ∈ int× int→ int ∪ {exception}
a +Jfint b = {a + b ∈ int 	→ a + b | a + b /∈ int 	→ exception}

Since we do not have + available in the program, we cannot use the condition a + b ∈ int directly.
It is also easy to see that it is fallacious to try to use a +Jint b ∈ int because this is always true.
The latter holds because +Jint = +s32. It is also not possible to use the conditions in the definitions
of Section 2 directly, because they are based on the mathematical operations. A general rule for the
construction of the conditions is to use Java operations only in such cases in which they yield the correct
result. A consequence of this is that we have to distinguish more cases than in a purely mathematical
formulation of the conditions.

We derive the safety conditions for the general case of TCA with n bits, where n � 2, rsn =
[min . . . max], min = −max− 1 and max = 2n−1 − 1. The safety condition can be either a correctness
condition or an incorrectness condition. The general correctness condition for operation ◦sfn is

min � a, b, a ◦sfn b � max

6.1. Addition

In the definition of +sn in Section 2, we observe that there are four cases in which the result is correct
and two cases in which it is incorrect. These two cases are:

a > 0 ∧ b > 0 ∧ max < a + b � 2 ∗ max 	→ a + b − (2 ∗ max + 2) ∈ min . . .− 2

a < 0 ∧ b < 0 ∧ 2 ∗ min � a + b < min 	→ a + b − 2 ∗ min ∈ 0 . . . max

As is well known, overflow only occurs when both operands have the same sign. The result of +sn then
has the opposite sign. This means that the incorrectness condition can also be written as

(a > 0 ∧ b > 0 ∧ a +sn b < 0) ∨ (a < 0 ∧ b < 0 ∧ a +sn b � 0)

In this case we can use +sn in the safety condition.

6.2. Subtraction

The two incorrect cases of −sn in Section 2 are

a � 0 ∧ b < 0 ∧ max < a − b � max − min 	→ a − b + 2 ∗ min ∈ min . . . − 1

a < 0 ∧ b > 0 ∧ min − max � a − b < min 	→ a − b − 2 ∗ min ∈ 1 . . . max

The incorrectness condition is

(a � 0 ∧ b < 0 ∧ a −sn b < 0)∨ (a < 0 ∧ b > 0 ∧ a −sn b > 0)

6.3. Negation

The incorrectness condition is
a = min
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6.4. Multiplication

The incorrectness condition is

(a > 0 ∧ (b < �min/a� ∨ b > �max/a�))
∨ (a = −1 ∧ b = min) ∨ (a < −1 ∧ (b < �max/a� ∨ b > �min/a�))

Since division is only used in cases in which /sn is mc we can use /sn which also does the necessary
rounding:

(a > 0 ∧ (b < min/sna ∨ b > max/sna))

∨ (a = −1 ∧ b = min) ∨ (a < −1 ∧ (b < max/sna ∨ b > min/sna))

6.5. Division

The incorrectness condition is
b = 0 ∨ (a = min ∧ b = −1)

6.6. Exponentiation

The first and the third alternative of (2) never result in a range violation. The fourth alternative is
already mathematically undefined.

Therefore, we have only to analyze b > 0 ∧ min � a ∗∗ b � max.

If −1 � a � 1 then 1 � b � max.
If a � 2 then 1 � b � �lg max/lg a�(= �ld max/ld a�).
If a � −2 then the range of admissible values of b depends on the evenness of n.

If n is even then n− 1 is odd and therefore −2n−1 = (−2)n−1. For any a � −2 and b > 0
with |a ∗∗ b| = |min| b is odd, i.e. we never obtain a ∗∗ b = −min and thus the constraint
for b is 1 � b � �lg |min|/lg |a|�.
If n is odd then n − 1 is even.

If |a| = 2m then it depends on the fact whether m is a factor of (n − 1). In this case
|a|(n−1)/m = 2n−1.

If (n−1)/m is odd a ∗∗ ((n−1)/m) = −2n−1. The constraint for b is therefore
1 � b � �lg |min|/lg |a|�.
If (n− 1)/m is even a ∗∗ ((n− 1)/m) = 2n−1 = max+ 1. The constraint for b

is therefore 1 � b � �lg max/lg |a|�.

If |a| is not a power of 2 then |a|�lg |min|/lg |a|� � |min| − 1 = max and therefore, the
constraint on b is 1 � b � �lg max/lg a�.

In the case of Java n is always even.

For Java the incorrectness condition is therefore

(a = 0 ∧ b < 0) ∨ (a � 2 ∧ b > �lg max/lg a�)∨ (a � −2 ∧ b > �lg |min|/lg |a|�)
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7. IMPLEMENTATION

The implementation of the safe arithmetic functions has two aspects: (1) implementation of the
algorithm and (2) design of the program structure.

7.1. Implementation of the algorithm

Since there are four different integer types and six different operations we have to implement 24
operations of the following kinds:

op∈ rsn×rsn → rsn ∪ {exception}, where rsn ∈ {byte,short,int,long}∧op ∈ {+,−, ∗, /, ∗∗}
and

op ∈ rsn → rsn ∪ {exception}, where rsn ∈ {byte,short,int,long} ∧ op ∈ {−}
Since widening conversions between integer types do not lead to any loss of information [8, 5.1.2] we
have two alternatives for the implementation of these operations:

(1) perform first the computation, possibly in some larger type, and then check whether the result is
in the given type (post-check strategy); an example for this is

public static short Add(short L, short R) {
int result = (int)(L+R); // L and R are automatically widened to int
if (result<MinS || result>MaxS)

throw new IllegalArithArgsException(ShortTy, AddOp, L, R);
else return (short)result;

}

(2) check first whether the operand values are legal and compute then the result in the result type
(pre-check strategy); an example for this is

public static long Mul(long L, long R) {
if (( L>0 && (R<MinL/L || R>MaxL/L) ) ||

( L==-1 && R==MinL) || (L<-1 && (R<MaxL/L || R>MinL/L) ))
throw new IllegalArithArgsException(LongTy, MulOp, L, R);

else return L*R;
}

The post-checked solution is usually the simpler one. Since Java also supports arithmetic with
arbitrary long integer numbers (class BigInteger) we could, in principle, implement most of the
24 operations in the post-checked fashion¶. From a dynamic point of view the use of BigInteger
means that the operations will become rather slow. Therefore we do not use BigInteger in this
paper but develop implementations of the 24 operations using the basic types only.

¶Even BigInteger is not big enough. If we assume the representation used in BigInteger the value of −263 ∗∗ (263 − 1)

needs about 68 billion GB of storage.
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If an exception is thrown we add as additional information an indication of the type, an indication
of the operation and the two operands. For the indication of type and operation we define two
enumeration types using a scheme similar to that proposed by Cairns [12], because Java does not
support enumeration types directly.

For rsn ∈ {byte,short,int} ∧ op ∈ {+,−, ∗} the post-checked solution can be used. The most
critical of these is ∗. However, we observe that (−2n−1) ∗ (−2n−1) = 22n−2 < 22n−1 − 1 (for n � 2).
For rsn = long ∧ op ∈ {+,−, ∗} we have to use the pre-checked solution.

For negation we always use the pre-checked solution because the check of this solution involves
only one comparison operation.

The operation / is easy, because we only have to check for a = min∧ b = −1. The check for b = 0
is done by the predefined operation.

For ∗∗ we always have to use the pre-checked solution because two operands of type bytemay lead
to a result not in long : (−27) ∗∗ (27 − 1) = −2 ∗∗ (7 ∗ 127) = −2889 < −263. For the computation
of the result we can use StrictMath.pow which is of type double × double → double.
All values of byte, short and int can be converted to double without loss of information
[8, 5.1.2]. If the arguments of StrictMath.pow are integer values and the result R is in the range
of int then R will be an integer value represented in the format double [9, pow]. All integer
numbers of float and double, whose values are in byte, short, int or long, can be converted
without loss of information from floating point form into TCR [8, 5.1.3]. Together these facts imply
that StrictMath.pow can be used to compute ∗∗ for byte, short and int, if we first check
the values of the arguments. For long we cannot use StrictMath.pow because not all values of
long can be represented exactly in double [8, 5.1.2]. One example is Long.MAX VALUE which
has the value 263 − 1, whereas (double)Long.MAXVALUE = 263. To be more exact, beginning with
253 the difference between successive numbers of double is greater than 1. We will therefore use
repeated multiplication for this case. This problem could be avoided if Java also offered the double
extended format of IEEE 754, which contains at least 64 bits for the mantissa. Kahan and Darcy [11]
also propose support of the double extended format.

The algorithms for the 24 operations can now be represented by the following eight characteristic
patterns:

(1) post-checked: +, −bin, ∗ for byte, short, int (nine cases)

int Mul(int L, int R) {
long result = (long)L * (long)R;
if (result<MinI || result>MaxI)

throw new IllegalArithArgsException(IntTy, AddOp, L, R);
else return (int)result;

}

(2) post-checked: + for long

long Add(long L, long R) {
long result = L+R;
if (L>0 && R>0 && result<0 || L<0 && R<0 && result>=0)

throw new IllegalArithArgsException(LongTy, AddOp, L, R);
else return result;

}
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(3) post-checked: − for long

long Sub(long L, long R) {
long result = L-R;
if (L>=0 && R<0 && result<0 || L<0 && R>0 && result>0)

throw new IllegalArithArgsException(LongTy, SubOp, L, R);
else return result;

}

(4) pre-checked negation for byte, short, int, long (four cases)

short Neg(short L) {
if (L==MinS)

throw new IllegalArithArgsException(ShortTy, NegOp, L);
else return (short)(-L);

}

(5) pre-checked: ∗ for long

final long Mul(long L, long R) {
if ( ( L>0 && (R<MinL/L || R>MaxL/L) ) ||

( L==-1 && R==MinL) || (L<-1 && (R<MaxL/L || R>MinL/L) ) )
throw new IllegalArithArgsException(LongTy, MulOp, L, R);

else return L*R;
}

(6) pre-checked: / for byte, short, int, long (four cases)

short Div(short L, short R) {
if (L==MinS && R==-1)

throw new IllegalArithArgsException(ShortTy, DivOp, L, R);
else return (short)(L/R);

}

(7) pre-checked: ∗∗ for byte, short, int (three cases)

int Exp(int L, int R) {
if (L==0 && R<0) ||

(L>=2 && R > (int)StrictMath.floor(LogMaxI/StrictMath.log((double)L) )) ||
(L<=-2 && R > (int)StrictMath.floor(LogAbsMinI/StrictMath.log(-(double)L) ))
throw new IllegalArithArgsException(IntTy, ExpOp, L, R);

else return (int)StrictMath.pow((double)L,(double)R);
}

(8) pre-checked ∗∗ for long

long Exp(long L, long R) {
if (L==0 && R<0) ||

(L>=2 && R > (long)StrictMath.floor(LogMaxL/StrictMath.log((double)L) )) ||
(L<=-2 && R > (long)StrictMath.floor(LogAbsMinL/StrictMath.log(-(double)L) ))
throw new IllegalArithArgsException(LongTy, ExpOp, L, R);

else { if (R==0) return 1;
if (R==1) return L;
if (L==0 && R>0) return 0;
if (L==1) return 1;
if (L==-1) return ((R%2 == 0)? 1: -1)
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if (R < 0) return (long)1/Exp(L,-R);
{ long res = 1;

for (byte i=1; i<=R; i++) res = res*L;
return res; }

} // end if
} // end exp

In the eight patterns the expressions for the conditions are mostly transliterations of the
corresponding mathematical expressions given in Section 4. We now have to check whether the Java
expressions yield a correct result.

Patterns (1)–(4), (6). All operations are mathematically exact.

Pattern (5). Integer division involves rounding, which can lead to errors in an expression like R >

Max L/L if Max L/JL is too large. Fortunately, integer division in Java does RTZ [8, 15.17.2] which
means Max L/JL � Max L/L. An analogous reasoning holds for R < Min L/L.

Pattern (7), (8). The expression (long)StrictMath.floor(LogMaxL/StrictMath.log((double)L))

involves several operations which may lead to rounding errors. In fact these rounding errors
lead in several cases to an incorrect result. One example is exp((long)2, (long)63) which
gives the result −9223372036854775808 which is obviously wrong. The reason is that
(long)StrictMath.floor(LogMaxL/StrictMath.log((double)2)) = 63, whereas the mathematically
correct value is 62.

The expression

R > (long)StrictMath.floor(LogMaxL/StrictMath.log((double)2) ≡ R > LimitJ (3)

involves several kinds of rounding errors. We will therefore look at the computation of this expression
in more detail. We will see that the floating point arithmetic of Java has serious deficiencies.

The expression (3) is the condition for illegal values of R. In order to really catch all illegal values
of R

LimitJ � LimitM (4)

must hold, where LimitM means the mathematically correct value of Limit. (4) may be violated if
log(Max L)J is too large or if log(2)J is too small or if log(Max L)J/J log(2)J is too large. We call an
intermediate value v of the computation of LimitJ unsafe if v threatens the validity of (4) and we call v

incorrect if it implies that (4) does not hold.
Let us now look at the computation of LimitJ in detail. There are seven steps in this computation.

(1) Since Java only provides a log function for floating point arguments we have to compute
(double)MaxL, where Max L = java.lang.Long.MAX VALUE = 263 − 1. We obtain
DMax L = (double)MaxL = 263 > Max L because Max L is not an element of double and
because the conversion long → double uses RTN [8, 5.1.2]. In this case RTN is unsafe because
it is essentially RTPI, whereas RTNI is the appropriate rounding mode. However, despite the fact
that DMax L > Max L this is not the reason for the incorrect value of LimitJ. If we use RTNI we
obtain DMax LRTNI = pred(DMaxL) = DMax L − 1024. If we compute the logarithm using
StrictMath.log( ) we obtain

StrictMath.log(DMaxL) = 43.66827237527655 114490698906593024730682373046875
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and

StrictMath.log(DMaxLRTNI) = 43.66827237527655 114490698906593024730682373046875

i.e. the log( ) function, which computes an approximation of the natural logarithm, yields the
same value in both cases. Whether this value is safe is the topic of step (2).

(2) If we compute ln(Max L) using Mathematica 2.2.3 we obtain

N[Log[MaxL], 67]
= 43.66827237527655 449317720343461657334534988571285497540091999396589

which is greater than StrictMath.log(DMaxL), despite the fact that DMax L > Max L.
This means that in this case RTN is RTNI and that StrictMath.log(DMaxL) is safe.

(3) As in step (1) we first have to convert the integer argument value into double. We obtain
(double)2 = 2.0 which is mathematically exact and therefore safe.

(4) For the natural logarithm of 2.0 we obtain

StrictMath.log((double)2)

= 0.693147180559945 28622676398299518041312694549560546875

N[Log[2], 67]
= 0.693147180559945 3094172321214581765680755001343602552541206800094934

which means that the value computed in Java is smaller than the value computed by Mathematica
to 67 places and therefore the value computed in Java is unsafe because it threatens the
condition (4). Java uses RTN, which in this case is RTNI; but RTPI is the appropriate rounding
mode. Using RTPI the result would be

succ(StrictMath.log((double)2))

= 0.693147180559945 3972490664455108344554901123046875

which is greater than N[Log[2],67].
(5) Up until now we have had a somewhat indecisive situation in that the dividend of the fraction

is safe and the divisor is unsafe. Additionally division itself may round in the wrong direction.
In Java we obtain

FractJ = StrictMath.log(DMaxL)/J StrictMath.log((double)2) = 63.0

which is too large and therefore unsafe. In this step we observe already that the result is not only
unsafe but also incorrect.
The dominant reason is that /J uses RTN, which is RTPI in this case. If we use the division
operation of Mathematica and compute this fraction we obtain

StrictMath.log(DMaxL)/M StrictMath.log((double)2)

= 62.99999999999999 727708747175731987581211143936602

which is safe. For this division RTNI is the appropriate rounding mode. With this we obtain

StrictMath.log(DMaxL)/JRTNI StrictMath.log((double)2)

= pred(StrictMath.log(DMaxL)/J StrictMath.log((double)2))

= 62.99999999999999 289457264239899814128875732421875

which is even safer.
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(6) StrictMath.floor(FractJ) = StrictMath.floor(63.0) = 63.0. This result is also incorrect because
the argument is a whole number and is itself incorrect. The computation itself is exact in this step.
This step is always safe because floor( ) is a rounding operation with the properties of RTNI.

(7) (long)StrictMath.floor(DivJ) = (long)63.0 = 63. Again the result is incorrect because the
argument is incorrect and the conversion is exact in this case.

To obtain the correct result we have to compute

(long)StrictMath.floor(StrictMath.logRTNI((doubleRTNI)Max L)/JRTNI StrictMath.logRTPI((double)2)

(5)
If we simulate the computation of (5) in Java using the required rounding modes we obtain the

following results:

➀ = (doubleRTNI)Max L = pred((double)Max L) = 9223372036854774784 safe

➁ = StrictMath.logRTNI(➀)

= 43.66827237527655114490698906593024730682373046875 safe

➂ = (double)2 = 2.0 exact

➃ = StrictMath.logRTPI(➂)

= 0.6931471805599453972490664455108344554901123046875 safe

➄ = ➁/JRTNI ➃ = 62.9999999999999857891452847979962825775146484375 safe

➅ = StrictMath.floor(➄) = 62.0 safe

➆ = (long) ➅ = 62 safe and correct

Since the operations with the appropriate rounding modes are not available in Java we cannot use
the checks for exp( ) given in the patterns (7) and (8). We use therefore the following check for the
cases L � 2 or L � −2: we try to compute exp(L,R) in long (for byte, short and int) or in
double (for long). As soon as the value is too large or too small we signal an error. We thus obtain
the patterns (7′) and (8′):

(7′) pre-checked: ∗∗ for byte, short, int (three cases)

int Exp(int L, int R) {
if (L==0 && R<0) throw new IllegalArithArgsException(IntTy, ExpOp, L, R);
if ((L>=2 || L<=-2) && R>0)

{ long ExpVal = 1;
for (byte i = 1; i<=R; i++)

{ ExpVal = ExpVal*L;
if (ExpVal>(long)MaxI || ExpVal<(long)MinI)

throw new IllegalArithArgsException(IntTy, ExpOp, L, R); }
return (int)ExpVal; }

return (int)StrictMath.pow((double)L,(double)R);
}

(8′) pre-checked: ∗∗ for long

long Exp(long L, long R) {
if (L==0 && R<0) throw new IllegalArithArgsException(LongTy, ExpOp, L, R);
if ((L>=2 || L<=-2) && R>0)
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{ double ExpVal = 1.0;
double DL = (double)L;
double DMaxL = (double)MaxL; // DMaxL = MaxL+1
double DMinL = (double)MinL; // DMinL = MinL
for (byte i = 1; i<=R; i++)

{ ExpVal = ExpVal*DL;
if (ExpVal>=DMaxL || ExpVal<DMinL)

throw new IllegalArithArgsException(LongTy, ExpOp, L, R); }
} // end if

if (R==0) return 1;
if (R==1) return L;
if (L==0 && R>0) return 0;
if (L==1) return 1;
if (L==-1) return ((R%2 == 0)? 1 : -1);
if (R < 0) return (long)1/Exp(L,-R);
{ long res = 1;

for (byte i=1; i<=R; i++) res = res*L;
return res; }

}

Again support of the double extended format would be useful, because we could then also use
pattern (7′) for long.

Caveat. Despite our efforts these functions are only partially safe when compared with functions in a
language with range checks, as e.g. Ada. If we call Add(byte, byte) as Add(100+100, 20)we obtain the
result −36. In a language with range checking an exception will be thrown because 100+100 /∈ byte.

7.2. Design of the program structure

The design of the program structure does not only fix the structure of the program but also the possible
syntactic forms of the application (call) of the arithmetic functions. We will see that the rules of
Java do not allow the typical infix form, which is usually used for the basic arithmetic operations
in programming languages. Examples are the expressions 10000 ∗ 100000 and i ∗ 100000.

Due to the dominance of object-orientation in Java the definitions of the functions must be
components of some object type (class) TD. The functions can be defined either as static (i.e. type-
specific) or as dynamic (i.e. instance-specific) components of TD.

The application of the functions will usually be in some other class TA which is different from
TD. In general TA will not be a successor of TD but rather some ‘foreign’ class. In the following all
applications of the functions are formulated as if they were in some foreign class.

7.2.1. Instance-specific functions

If we define the functions as instance-specific we can do this in two forms:

(I1) public int Mul(int R) { ... } // asymmetric

(I2) public int Mul(int L, int R) { ... } // symmetric

Form (I1) is more typical for instance-specific functions. The left operand is the current object
(= instance) to which Mul( ) is applied. A straightforward realization of SafeIntType would
then be
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class SafeIntType extends int {
public int Mul(int R) { ... }
. . .

}

Unfortunately, this is not possible because int is not a class in Java. Java contains the class Integer
which is a wrapper class of int. Using Integer as base type we obtain

class SafeIntType extends Integer {
public int Mul(int R) { ... }
. . .

}

However, this is also not legal because Integer is a final class.
We have therefore to implement SafeIntType as a new wrapper class of int:

class SafeIntType {
public int Mul(int R) { ... }
private int Val;
. . .

}

The main drawback of this solution is that it does not allow us to use an integer literal or an int
(or byte, short, long) variable as left operand, i.e. the following two applications are not legal:

1) ... 10000.Mul(100000) ...
2) int i = 5000;

... i.Mul(100000) ...

These applications have to be written as:

1a) SafeIntType TenThousand = new SafeIntType(10000);
... TenThousand.Mul(100000) ...

2a) SafeIntType i = new SafeIntType(5000);
... i.Mul(100000) ...

If we use the symmetric definition of Mul we obtain

class SafeIntType {
public int Mul(int L, int R) { ... }
. . .

}

We then have to do the two examples in the following way:

1b) SafeIntType Dummy = new SafeIntType();
... Dummy.Mul(10000, 100000) ...

2b) SafeIntType Dummy = new SafeIntType();
int i = 5000;
... Dummy.Mul(i, 100000) ...

which is also a little bit cumbersome. In particular, the object Dummy is only needed because it is
required by the language rules; apart from this it is superfluous.
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7.2.2. Type-specific functions

If we define the functions as type-specific we can do this only in the symmetric form. We obtain

class SafeIntType {
public static int Mul(int L, int R) { ... }
. . .

}

and have to formulate the two examples as follows:

1c) ... SafeIntType.Mul(10000, 100000) ...
2c) int i = 5000;

... SafeIntType.Mul(i, 100000) ...

If we want to compute a more complicated expression the name of the type clutters the notation:
i ∗ 1000 + 10 ∗ b becomes

SafeIntType.Add(SafeIntType.Mul(i, 1000), SafeIntType.Mul(10, b) ) .

The only thing we can do is to chose a shorter identifier for the class, e.g. sit (= safe int type). With this
we obtain

sit.Add(sit.Mul(i, 1000), sit.Mul(10, b) )

which is still more difficult to read than the infix notation. In a language with operator overloading
(Algol 68 [13], Ada [14], C++ [15, 13.5]) we could define the functions in such a way that the
expression could be written in the infix form i ∗ 1000 + 10 ∗ b. In Java the nearest approximation to
this is Add(Mul(i, 1000), Mul(10,b)) which is only possible inside the class ‘sit’ or in some successor
of ‘sit’. Java does not contain an import clause like the use clause of Ada which allows direct access
to components of foreign packages [14, 8.4]. Despite the fact that C# contains operator definitions and
allows for the direct use of newly defined operators we cannot define the operators in such a way that
i ∗ 1000+ 10 ∗ b is possible. The reason is that at least one of the parameters of a binary operator must
be of the type in whose definition the operator is declared. In our case the types of both parameters are
predefined types [5, 17.9].

7.2.3. One or more classes?

The last aspect of the design of the program structure is the question whether we should group the
functions into one or into different classes. There are three possibilities:

• one class for each integer type;
• one class for each operation;
• one class for all functions.

If we create one class for each integer type we obtain the following program structure:
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package SafeIntegerArithmetic;
classes for the new exception and for the enumeration types for the type

indication and the kind of the operation
class SafeByte //contains MinB, MaxB and the functions for +, − bin, − un, ∗, /, ∗∗
class SafeShort
class SafeInt
class SafeLong

A typical application then looks like

import SafeIntegerArithmetic.*;
class TA {

. . . SafeLong.Add(A, 2001) . . .

If we create one class for each operation we obtain the following program structure:

package SafeIntegerArithmetic
classes for the new exception and for the enumeration types for the type

indication, the operation kind and the constants MaxB, MinB, etc.
class SafeAdd // contains byte Add(byte, byte), . . .
class SafeSub
class SafeNeg
class SafeMul
class SafeDiv
class SafeExp

A typical application then looks like

import SafeIntegerArithmetic.*;
class TA {

. . . SafeAdd.Add(A, 2001) . . .

If we create one class for all operations we can do it in the following way:

package SafeIntegerArithmetic;
classes for the new exception and for the enumeration types for the type

indication, the operation kind and the constants MaxB, MinB, etc.
class sia; contains all 24 functions, sia = safe integer arithmetic

A typical application then looks like

import SafeIntegerArithmetic.*;
class TA {

. . . sia.Add(A, 2001) . . .

There is one problem with this design. At least the classes sia and IllegalArithArgsExcep-
tion must be public. In file-based Java implementations one compilation unit can contain at most one
public class [8, 7.6]. If we do not want to distribute the classes into several compilation units (= files)
we can just define one class sia which contains the classes for the enumeration constants and for the
new exception as nested classes. Such nested classes may be public or non-public. sia itself could be
a component of the package java.lang. We obtain thus the following program structure:
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package java.lang;
public class sia { // sia = safe integer arithmetic

public final static class PrimTypeIndTy // definition of an enumeration type
public final static class OperationKindTy // definition of an enumeration type
public static class IllegalArithArgsException extends IllegalArgumentException

// the exception type to signal illegal arguments
public static final byte Add(byte L, byte R)

// etc. until
public static final long Exp(long L, long R)

}

A typical application then looks like

import java.lang.*; // only for documentation purposes
class TA {

. . . sia.Add(A, 2001) . . .

In Appendix A, which contains all 24 functions, we use this design.
The code of the 24 functions contains much repetition and code duplication because of the

similarities given by the eight similarity patterns presented in Section 7.1. The elements of one of
those groups typically differ in the type of the operands and the result and by the basic operation.
This can be seen in the following three functions in which the differences are highlighted:

public static final byte Add(byte L, byte R) {
short result = (short)(L+R);
if (result<MinB || result>MaxB)

throw new IllegalArithArgsException(ByteTy, AddOp, L, R);
else return (byte)result;

}
public static final short Add(short L, short R) {

int result = (int)(L+R);
if (result<MinS || result>MaxS)

throw new IllegalArithArgsException(ShortTy, AddOp, L, R);
else return (short)result;

}
public static final byte Mul(byte L, byte R) {

short result = (short)(L*R);
if (result<MinB || result>MaxB)

throw new IllegalArithArgsException(ByteTy, AddOp, L, R);
else return (byte)result;

}

There are the following differences between these three functions:

• different argument type;
• different name of the function;
• different result type;
• different type of the local variable ‘result’;
• different base operation;
• different limits (MinB, MinS, etc.);
• different enumeration constants (ByteTy, AddOp, etc.).
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These kinds of variation candidates for the application of genericity. Since Java does not support
genericity these similarities cannot be exploited directly. Genericity is supported by Ada and C++.
We show how the nine functions of pattern (1) can be formulated as one generic function and nine
instantiations. We assume that ArgResType’First < 0 < ArgResType’Last holds. The functions work
equally well when we always use Long Long Integer as the type of result. We obtain the
following program, which differs from a legal Ada program only in some minor points:

GENERIC
TYPE ArgResType IS Range <>;
WITH FUNCTION BasicOp (L,R: IN ArgResType) Return ArgResType;

FUNCTION Pattern1(L, R: IN ArgResType) Return ArgResType IS
AFirst : constant ArgResType := ArgResType’First;
ALast : constant ArgResType := ArgResType’Last;
SUBTYPE BigResType IS Long_Long_Integer Range -(AFirst*AFirst) .. ALast*ALast;
Result : BigResType := BigResType(BasicOp(L, R));

BEGIN
IF Result < AFirst OR Result > ALast
THEN raise IllegalArithArgsException;
ELSE return ArgResType(result);
END IF;

END Pattern1;

The main difference to the Java programs is in exception handling. Ada has no facility to add additional
information to an exception as is possible in Java through the use of constructors with parameters and
corresponding fields in the exception type.

Using the generic function we can now create the specific functions as follows:

Function ‘‘+” IS new Pattern1(ArgResType => byte, BasicOp => ‘‘+”);
Function ‘‘+” IS new Pattern1(ArgResType => short, BasicOp => ‘‘+”);

etc. until

Function ‘‘*” IS new Pattern1(ArgResType => int, BasicOp => ‘‘*”);

If we use the functions developed in this paper in a Java program we are faced with two problems:

• the formulas get a little bit cumbersome;
• it takes longer to evaluate a formula.

If safe arithmetic is necessary in our program there are several possibilities to avoid or at least
mitigate these problems.

(a) Develop safe functions with better performance. This might be possible because performance is
not the primary goal in this paper.

(b) Change the definition of Java such that the arithmetic operations are safe. The compiler can then
generate more efficient code because overflow is usually signalled by contemporary processors.

(c) Include all the operations in their safe form in the processor and change Java in such a way that
the arithmetic operations have the same semantics as those in the modified processor.
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We prefer solutions (c) and (b) (in this order) over (a) because (a) does not avoid the negative effect
on the readability of the formulas and because it may still result in some inefficiency. Last but not least
(b) and (c) are far better from the language user point of view. It is far better to provide well-designed
language elements, i.e. to spend the effort once in the language specification and the compiler than
to put the burden onto the language users with the consequence that the effort has to be spent several
times.

8. DEFICIENCIES OF Java

The following list mentions the deficiencies of the Java programming language, which we have
observed in this paper:

• unsafe definition of arithmetic operations;
• only one rounding mode for arithmetic operations;
• no support for the double extended format of IEEE 754;
• no possibility to structure numeric literals, as e.g. 100 000;
• no log( ) function for long;
• no operator definitions;
• no enumeration types;
• no possibility to access attributes of basic types, as e.g. int’First in Ada;
• no generics;
• no aliasing, as e.g. ‘renaming’ in Ada;
• no use clause;
• only one public class per compilation unit.

9. CONCLUSIONS

Apart from the deficiencies of Java, which have been pointed out in Section 8, there are some more
observations and conclusions, which concern programming and programming languages in general.

9.1. Finite arithmetic is different from infinite arithmetic

The definitions of arithmetic operations in finite domains are less elegant than their mathematical
counterparts. Examples are the definitions given in Section 2 or the definition of StrictMath.pow( ) in
Java, which consists of 17 cases [9]. Additionally, the arithmetic operations in programming languages
typically do not have all the algebraic properties of their mathematical counterparts. In a language
with range checking and the integer type Int32 the value of (2 000 000 000 + 2 000 000 000) −
2 000 000 000 may not be 2 000 000 000.

For rational numbers these aspects of real computers have been accepted to a certain degree as
the widespread implementation of IEEE 754 in microprocessors shows. However, they have not yet
found their way completely into programming languages and computer science textbooks. For integer
arithmetic they are not yet completely implemented in contemporary processors. The DIV and IDIV
instructions for integer values of the Intel processors, e.g., provide only the rounding mode RTZ [10].
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9.2. Good formulas for computations are not just transliterations of their mathematical
counterparts

One example is the formula for the arithmetic mean of two floating point numbers. The mathematical
definition is mean = (a + b)/2. If we use this formula in Ada or Java we get the correct answer only
in about 75% of the possible argument pairs (a, b). If we compute the mean of n values the percentage
for which the mathematical formula works on the computer decreases as n increases. The formula
a/2+ b/2 yields the correct answer for almost all possible argument pairs, but it may give an incorrect
result if one of the divisions involves rounding. One example is dPredDZero/2.0+dPredDZero/2.0 =
−0.0, whereas (dPredDZero+dPredDZero)/2.0 = dPredDZero, where dPredDZero is the predecessor
of zero in double including the denormalized numbers, i.e. it is the largest double value less
than 0.0; its value is approximately −4.9E-324 and its IEEE 754 representation as hexstring is
8000000000000001. A better but more complicated formula for the mean, which gives a reasonable
result for all pairs, is given in [16]; but even Kahan’s formula can be improved because it is not always
commutative. This leads to an even more complicated formula [17].

Fortran programmers must pay special attention to the fact that the compiler might replace a given
formula by a mathematically equivalent one [18, 7.1.7.3]. a/2.0 + b/2.0 could therefore be replaced
by (a + b)/2.0 which is mathematically equivalent. People building ‘optimizing’ compilers would
perhaps be proud if their compiler did such a transformation. The Fortran programmer would have
to write (a/2.0) + (b/2.0) because ‘any expression in parentheses shall be treated as a data entity’
[18, 7.1.7.2].

C and C++ programmers are also at risk because the language definitions suggest that there is no
problem at all: ‘the result of the binary + operator is the sum of the operands’ [19, 6.3.6, 15, 5.7(3)].

In computer science textbooks we typically find the formula (a + b)/2 which is especially annoying
because mean( ) is closed in float’min . . . float’max.

If the function is not closed, as e.g. a + b, then we have to live with the limitation that we cannot
compute the result for all possible argument pairs. However, for closed functions computer science
textbooks should contain formulas or algorithms which work for all possible argument pairs. Kahan and
Darcy propose that numerically good formulas should already be presented in school books [11].

9.3. The ranges of the arguments should be adapted to the range of the result

One infamous example for this is the factorial function, which is typically specified like

Function Fac (n: integer) return integer

If we assume integer = Int32 the largest value of n for which n! is contained in Int32 is 12. This means
a better specification is

Function Fac(n: Int32 range 0..12) return Int32

Functions can also be represented in a tabular form. In the case of the factorial with this very limited
argument range the tabular form is the most efficient one [20].
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9.4. What is needed in programming languages?

• Integer arithmetic with range checking and support for all four rounding modes for integer
division is required.

• The definition of some operations would be simpler if the ranges of integer types were symmetric
with respect to zero.

• For integer types it could also be useful to define some values which do not represent proper
numbers, e.g. infinities or NaNs. Among those values could also be a value to represent the
undefined value, which could be used to initialize variables which are not initialized by the
programmer at creation time as in

i : integer;

• Mathematical functions should also be implemented for the integer types of the language because
not all integer values can be represented exactly in the floating point type of the same length.
This may be relevant both for the types of the arguments and for the result type. Pascal, e.g.,
defines exp( ) for integer and for real arguments, but the result type is always real [6, 6.6.6.2].
This may lead to a loss of accuracy for the result.

• The language should provide to the programmer all properties defined in IEEE 754. This can
be done, e.g., by providing different modes of expression evaluation. Ada supports a strict and a
relaxed mode, where the strict mode is still different from IEEE 754 [14, G.2]. In Java and C# [5]
floating point arithmetic is based on IEEE 754, but as mentioned in [11] there are a number of
deficiencies in the floating point arithmetic of Java. The checked mode in C# only checks range
violations in integer arithmetic [5, 14.5.12]. Unfortunately, the default mode is ‘unchecked’.

• Functions, that yield approximate results, should support all four rounding modes. An example
for this requirement is formula (5), in which log is used with RTNI and with RTPI.

The bottom line of these requirements seems to be the observation already made by Babbage in the
19th century, ‘Now it is obvious that no finite machine can include infinity’ [21, 124], and the fact that
this observation has effects on arithmetic operations in machines and programs should no longer be
neglected.

APPENDIX A. THE CLASS FOR SAFE INTEGER ARITHMETIC

/**
* Title <p> Safe Integer Arithmetic
* Description <p>
* Copyright Copyright (c) <p> J F H Winkler, 2000, 2001
* Company <p> FSU, Jena, Germany
* @author J F H Winkler
* @version 1.0
* @date 2001.Mar.18
*/

import java.lang.Byte;
import java.lang.Short;
import java.lang.Integer;
import java.lang.Long;
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import java.lang.StrictMath;
import java.lang.IllegalArgumentException;

public class sia{ // sia = safe integer arithmetic

public final static class PrimTypeIndTy {
protected static final PrimTypeIndTy ByteTy = new PrimTypeIndTy("ByteTy");
protected static final PrimTypeIndTy ShortTy = new PrimTypeIndTy("ShortTy");
protected static final PrimTypeIndTy IntTy = new PrimTypeIndTy("IntTy");
protected static final PrimTypeIndTy LongTy = new PrimTypeIndTy("LongTy");
public String GetVal() {return this.Val;}
private PrimTypeIndTy(String Val) {this.Val = Val;}
private String Val;

}

public static final PrimTypeIndTy ByteTy = PrimTypeIndTy.ByteTy;
public static final PrimTypeIndTy ShortTy = PrimTypeIndTy.ShortTy;
public static final PrimTypeIndTy IntTy = PrimTypeIndTy.IntTy;
public static final PrimTypeIndTy LongTy = PrimTypeIndTy.LongTy;

public final static class OperationKindTy {
protected static final OperationKindTy AddOp = new OperationKindTy("AddOp");
protected static final OperationKindTy SubOp = new OperationKindTy("SubOp");
protected static final OperationKindTy NegOp = new OperationKindTy("NegOp");
protected static final OperationKindTy MulOp = new OperationKindTy("MulOp");
protected static final OperationKindTy DivOp = new OperationKindTy("DivOp");
protected static final OperationKindTy ExpOp = new OperationKindTy("ExpOp");
public String GetVal() {return this.Val;}
private OperationKindTy(String Val) {this.Val = Val;}
private String Val;

}
public static final OperationKindTy AddOp = OperationKindTy.AddOp;
public static final OperationKindTy SubOp = OperationKindTy.SubOp;
public static final OperationKindTy NegOp = OperationKindTy.NegOp;
public static final OperationKindTy MulOp = OperationKindTy.MulOp;
public static final OperationKindTy DivOp = OperationKindTy.DivOp;
public static final OperationKindTy ExpOp = OperationKindTy.ExpOp;

public static class IllegalArithArgsException extends IllegalArgumentException {
public IllegalArithArgsException (PrimTypeIndTy type, OperationKindTy operation,

long L, long R) {
this.TypeIndication = type;
this.OperationKind = operation;
this.L = L; this.R = R;
System.out.println("illegal args: " +

"op = " + OperationKind.GetVal() +
", type = " + TypeIndication.GetVal() +
", L = " + L + ", R = " + R);

}

public IllegalArithArgsException (PrimTypeIndTy type,
OperationKindTy operation, long L) {

this.TypeIndication = type;
this.OperationKind = operation;
this.L = L;
System.out.println("illegal args: " +

"op = " + OperationKind.GetVal() +
", type = " + TypeIndication.GetVal() + ", L = " + L );
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}

public PrimTypeIndTy GetType() { return this.TypeIndication; }
public OperationKindTy GetOperation() { return this.OperationKind; }
public long GetLeftOp() { return this.L; }
public long GetRightOp() { return this.R; }

protected PrimTypeIndTy TypeIndication;
protected OperationKindTy OperationKind;
protected long L;
protected long R;

}

public static final byte MaxB = java.lang.Byte.MAX_VALUE;
public static final byte MinB = java.lang.Byte.MIN_VALUE;
public static final short MaxS = java.lang.Short.MAX_VALUE;
public static final short MinS = java.lang.Short.MIN_VALUE;
public static final int MaxI = java.lang.Integer.MAX_VALUE;
public static final int MinI = java.lang.Integer.MIN_VALUE;
public static final long MaxL = java.lang.Long.MAX_VALUE;
public static final long MinL = java.lang.Long.MIN_VALUE;

// ------------------------------- ADDITION ------------------------------

public static final byte Add(byte L, byte R) {
short result = (short)(L+R);
if (result<MinB || result>MaxB)

throw new IllegalArithArgsException(ByteTy, AddOp, L, R);
else return (byte)result;

}

public static final short Add(short L, short R) {
int result = (int)(L+R);
if (result<MinS || result>MaxS)

throw new IllegalArithArgsException(ShortTy, AddOp, L, R);
else return (short)result;

}

public static final int Add(int L, int R) {
long result = (long)L + (long)R;
if (result<MinI || result>MaxI)

throw new IllegalArithArgsException(IntTy, AddOp, L, R);
else return (int)result;

}

public static final long Add(long L, long R) {
long result = L+R;
if (L>0 && R>0 && result<0 || L<0 && R<0 && result>=0)

throw new IllegalArithArgsException(LongTy, AddOp, L, R);
else return result;

}

// ------------------------------- SUBTRACTION ------------------------

public static final byte Sub(byte L, byte R) {
short result = (short)(L-R);
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if (result<MinB || result>MaxB)
throw new IllegalArithArgsException(ByteTy, AddOp, L, R);

else return (byte)result;
}

public static final short Sub(short L, short R) {
int result = (int)(L-R);
if (result<MinS || result>MaxS)

throw new IllegalArithArgsException(ShortTy, AddOp, L, R);
else return (short)result;

}

public static final int Sub(int L, int R) {
long result = (long)L - (long)R;
if (result<MinI || result>MaxI)

throw new IllegalArithArgsException(IntTy, AddOp, L, R);
else return (int)result;

}

public static final long Sub(long L, long R) {
long result = L-R;
if (L>=0 && R<0 && result<0 || L<0 && R>0 && result>0)

throw new IllegalArithArgsException(LongTy, SubOp, L, R);
else return result;

}

// ------------------------------- NEGATION --------------------------

public static final byte Neg(byte L) {
if (L==MinB)

throw new IllegalArithArgsException(ByteTy, NegOp, L);
else return (byte)(-L);

}

public static final short Neg(short L) {
if (L==MinS)

throw new IllegalArithArgsException(ShortTy, NegOp, L);
else return (short)(-L);

}

public static final int Neg(int L) {
if (L==MinI)

throw new IllegalArithArgsException(IntTy, NegOp, L);
else return (int)(-L);

}

public static final long Neg(long L) {
if (L==MinL)

throw new IllegalArithArgsException(LongTy, NegOp, L);
else return (long)(-L);

}

// ------------------------------- MULTIPLICATION -----------------------

public static final byte Mul(byte L, byte R) {
short result = (short)(L*R);
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if (result<MinB || result>MaxB)
throw new IllegalArithArgsException(ByteTy, AddOp, L, R);

else return (byte)result;
}

public static final short Mul(short L, short R) {
int result = (int)(L*R);
if (result<MinS || result>MaxS)

throw new IllegalArithArgsException(ShortTy, AddOp, L, R);
else return (short)result;

}

public static final int Mul(int L, int R) {
long result = (long)L * (long)R;
if (result<MinI || result>MaxI)

throw new IllegalArithArgsException(IntTy, AddOp, L, R);
else return (int)result;

}

public static final long Mul(long L, long R) {
if ( ( L>0 && (R<MinL/L || R>MaxL/L) ) ||

( L==-1 && R==MinL) || (L<-1 && (R<MaxL/L || R>MinL/L) ) )
throw new IllegalArithArgsException(LongTy, MulOp, L, R);

else return L*R;
}

// ------------------------------- DIVISION -------------------------

public static final byte Div(byte L, byte R) {
if (L==MinB && R==-1)

throw new IllegalArithArgsException(ByteTy, DivOp, L, R);
else return (byte)(L/R);

}

public static final short Div(short L, short R) {
if (L==MinS && R==-1)

throw new IllegalArithArgsException(ShortTy, DivOp, L, R);
else return (short)(L/R);

}

public static final int Div(int L, int R) {
if (L==MinI && R==-1)

throw new IllegalArithArgsException(IntTy, DivOp, L, R);
else return (int)(L/R);

}

public static final long Div(long L, long R) {
if (L==MinL && R==-1)

throw new IllegalArithArgsException(LongTy, DivOp, L, R);
else return L/R;

}

// ------------------------------- EXPONENTIATION ----------------------

public static byte Exp(byte L, byte R) {
if (L==0 && R<0) throw new IllegalArithArgsException(ByteTy, ExpOp, L, R);
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if ((L>=2 || L<=-2) && R>0)
{ short ExpVal = 1;
for (byte i = 1; i<=R; i++)

{ ExpVal = (short)(ExpVal*L);
if (ExpVal>(short)MaxB || ExpVal<(short)MinB)

throw new IllegalArithArgsException(ByteTy, ExpOp, L, R); }
return (byte)ExpVal; }

return (byte)StrictMath.pow((double)L,(double)R);
}

public static short Exp(short L, short R) {
if (L==0 && R<0) throw new IllegalArithArgsException(ShortTy, ExpOp, L, R);
if ((L>=2 || L<=-2) && R>0)

{ int ExpVal = 1;
for (byte i = 1; i<=R; i++)

{ ExpVal = ExpVal*L;
if (ExpVal>(int)MaxS || ExpVal<(int)MinS)

throw new IllegalArithArgsException(ShortTy, ExpOp, L, R); }
return (short)ExpVal; }

return (short)StrictMath.pow((double)L,(double)R);
}

public static int Exp(int L, int R) {
if (L==0 && R<0) throw new IllegalArithArgsException(IntTy, ExpOp, L, R);
if ((L>=2 || L<=-2) && R>0)

{ long ExpVal = 1;
for (byte i = 1; i<=R; i++)

{ ExpVal = ExpVal*L;
if (ExpVal>(long)MaxI || ExpVal<(long)MinI)

throw new IllegalArithArgsException(IntTy, ExpOp, L, R); }
return (int)ExpVal; }

return (int)StrictMath.pow((double)L,(double)R);
}

public static long Exp(long L, long R) {
if (L==0 && R<0) throw new IllegalArithArgsException(LongTy, ExpOp, L, R);
if ((L>=2 || L<=-2) && R>0)

{ double ExpVal = 1.0;
double DL = (double)L;
double DMaxL = (double)MaxL; // DMaxL = MaxL+1
double DMinL = (double)MinL; // DMinL = MinL
for (byte i = 1; i<=R; i++)

{ ExpVal = ExpVal*DL;
if (ExpVal>=DMaxL || ExpVal<DMinL)

throw new IllegalArithArgsException(LongTy, ExpOp, L, R); }
} // end if

if (R==0) return 1;
if (R==1) return L;
if (L==0 && R>0) return 0;
if (L==1) return 1;
if (L==-1) return ((R%2 == 0)? 1 : -1);
if (R < 0) return (long)1/Exp(L,-R);
{ long res = 1;

for (byte i=1; i<=R; i++) res = res*L;
return res; }

}
} // end of class sia
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