
Telektronikk 4.2000

1 Introduction
This paper gives a tutorial overview of CHILL,
the ITU-T Programming Language [1]. CHILL
is an acronym with the original long form
“CCITT High Level Language”, which reflects
the fact that ITU-T was formerly called CCITT.

CHILL has been originally developed in CCITT
during the period 1975 – 1983. After this, it has
been continuously updated and used for the de-
velopment of many telecom systems around the
world [2]. This paper also contains more details
about the history and application of CHILL.

Today CHILL is a modern object-oriented lan-
guage, which also supports concurrency in an
object-oriented manner. In the last Study Period
(1997–2000) the following language elements
have been included:

• Interfaces;
• Support of Unicode;
• Friend-procedures;
• Overloading of procedures;
• Final (unmodifiable) components in objects.

In the body of the paper we give an overview of
the language elements of CHILL and describe in
more detail those elements of CHILL that were
added more recently.

In this paper we use the typical terminology of
the field of programming languages, especially
for basic terms. CHILL, as many other lan-
guages, has a number of specific terms. Espe-
cially for the following terms we use the tradi-
tional terminology:

type “mode” in CHILL
variable “location” in CHILL
statement “action” in CHILL

2 Language Overview
CHILL is a procedural and object-oriented lan-
guage, which contains a number of elements that
support the development of large programs, as
they are typical for the telecom field. The fol-
lowing tree shows the language elements of
CHILL 2000.

Data Structures
Scalar: integer, float, characters, Boolean,

enumerations, pointer, procedure type,
process type, event, time;

Composite: string, record, array, set, buffer,
signal.

Sequential Programming
Variable, constant, expression, function call;
Assignment;
Procedure call;
EXIT, RESULT, RETURN, GOTO;
Statement sequence;
Selection statements: IF, CASE (multidimen-
sional);
Repetition statements: DO, WHILE, FOR.

Object-oriented Programming
Sequential, unsynchronized object;
Sequential, synchronized object;
Concurrent, synchronized object;
Interface;
Friend.

Concurrent Programming
Process;
Start process;
Communication via buffer;
Communication via signal;
Critical region and co-ordination with events;
Concurrent, synchronized object.

Program Structure
Block;
Procedure / Function / Process;
Object-Type / Class;
Module / Region.

Genericity
Generic Procedure / Process;
Generic Module / Region;
Generic Object Type / Class;
Generic Interface.

Program Verification
Precondition and postcondition for methods;
Invariant for object type / class;
ASSERT statement.

CHILL 2000
J Ü R G E N F . H . W I N K L E R

CHILL is a programming language mainly used in the area of telecom systems. This paper
gives an overview of the language elements of CHILL and reports in more detail on new
language elements which have been added recently, especially object-orientation and
genericity.

Jürgen F.H. Winkler (57) has
since 1993 been a full professor
of Computer Science at the
Friedrich Schiller University in
Jena, Germany. His main inter-
ests are program correctness,
object-orientation, programming
languages and their implementa-
tion. Before joining the university
he was with the corporate re-
search of Siemens AG in Munich.
Among other projects he has
been involved in the definition
and implementation of Object-
CHILL, a forerunner of CHILL
2000, and with the Siemens Ada
compiler. He also founded the
“International Workshop on Soft-
ware Configuration Manage-
ment”. Dr. Winkler received his
PhD and his Diploma, both in
Computer Science, from the Uni-
versity of Karlsruhe, Germany.

jwinkler@acm.org

70

71Telektronikk 4.2000

Box 1 contains a number of small examples for most of the ele-
ments listed above, in order to give the reader some impression of
CHILL 2000 as a programming language.

Box 2 contains a comparison of CHILL2000 and Java based on
the tree structure of the overview on CHILL given above. If one
of the languages does not contain a certain element the corre-
sponding entry is empty (e.g. “Genericity” in Java).

3 New Elements in CHILL 2000
During the last two study periods (1993–1996, 1997–2000) new
and important language elements have been added to the language.
The most important of them are:

• Object-Orientation;
• Genericity.

3.1 Object-Orientation
Object types, which are typically called classes in the area of
object-orientation [3, 4], come in CHILL 2000 in four different
flavors

• Module type
An object (or instance) of such a type has the typical properties
of a module. It has components, which can be public or internal,
and it does not do any co-ordination in case of concurrent
accesses to its components. With respect to concurrency module
objects are passive, i.e. they do not have an own thread of con-
trol.

• Region type
An object (or instance) of such a type has the typical properties
of a region. It has components, which can be public or internal,
and it co-ordinates concurrent accesses to its components. With
respect to concurrency, region objects are passive, i.e. they do
not have an own thread of control.

• Task type
An object (or instance) of such a type has a similar structure as
module and region objects. It has components, which can be
public or internal. With respect to concurrency it has its own
thread of control and it co-ordinates concurrent accesses to its
components. It is therefore similar to task objects in Ada [5] and
this is the reason for its name.

• Interface type
An interface type defines an interface, which consists of the
specification of public components. There are no objects of
interface types. Interface types are typically used as base types
of other object types.

Together the new object types are called moreta types, where
moreta has been formed from the first letters of module, region,
and task.

A common characteristic is that the definition of a non-interface
moreta type (= class) consists of a specification part and a body.
This separation is very useful from a software engineering point of
view. The interface describes what a user (client) of the given type
must know in order to use the type or its objects. The body con-
tains the internal implementation of the components specified in
the interface.

As an example we look at the definition of a stack type.

SYNMODE IntStackType1 = MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(INT)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length) INIT := 0;

END IntStackType1;

The type IntStackType1 is defined like other types in CHILL. The
keyword MODULE indicates that it is a module type and the key-
word SPEC indicates that it is the specification part of this type.
The procedures (methods) Push and Pop are exported and are there-
fore public components of IntStackType1. Length, StackData, and
TopOfStack are internal components. This is an example of encap-
sulation and is necessary to guarantee the stack protocol.

The corresponding body contains in this case the bodies of the two
procedures.

SYNMODE IntStackType1 = MODULE BODY

Push: PROC(Elem INT IN) EXCEPTIONS(Overflow)

IF TopOfStack = Length

THEN CAUSE Overflow;

ELSE TopOfStack +:= 1;

StackData(TopOfStack) := Elem;

FI;

END Push;

Pop: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

IF TopOfStack = 0

THEN CAUSE Underflow;

ELSE RESULT StackData(TopOfStack);

TopOfStack -:= 1;

FI;

END Pop;

END IntStackType1;

Objects of the type IntStackType1 are declared in the same way as
variables for the traditional types. The manipulation of these vari-
ables is done in the typical style of object-orientation.

DCL Stack1, Stack2 IntStackType1;

Stack1.Push(10);

Stack2.Push(100);

. . . Stack1.Pop(). . .

Stack1 and Stack2 are adequate for sequential programming. It
is now quite easy to define a stack type CIntStackType1 whose
objects co-ordinate concurrent calls of their methods. In CHILL
there are two ways to accomplish this:

a) change the keyword MODULE into REGION

SYNMODE CIntStackType1 = REGION SPEC

/* same as before */

END CIntStackType1;

And analogously for the body.

72 Telektronikk 4.2000

b)derive the type CIntStackType1 from the existing type IntStack-
Type1.

SYNMODE CIntStackType1 = REGION SPEC

BASED_ON IntStackType1

END CIntStackType1;

Since there are different kinds of object types there exist several
possibilities for the derivation of types from base types.

• A class can be directly derived from one base class (single
inheritance between classes);

• A class can be directly derived by combining an arbitrary num-
ber of base interface types (multiple inheritance between inter-
faces and classes);

• An interface type can be derived from an arbitrary number of
base interface types (multiple inheritance between interfaces).

These conditions can be summed up to the rule that CHILL uses
single inheritance for classes and multiple inheritance for inter-
faces.

Since module, region and task differ in their properties, the fol-
lowing derivation constraints have to be observed:

Base type: Permissible derived type:
module module, region, task
region region
task task

The derivation mechanism of object-orientation is a mechanism
for the realization of structural polymorphism. A derived type DT
and its objects contain the components inherited and possibly
additional components defined in DT. As an example, we define
a stack type IntStackType2, which is derived from IntStackType1
but contains the additional function Top() (INT) which returns the
value of the topmost element, but does not change the contents of
the stack.

SYNMODE IntStackType2 = MODULE SPEC

BASED_ON IntStackType1

GRANT Top;

Top: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

END Top;

END IntStackType2;

SYNMODE IntStackType2 = MODULE BODY

BASED_ON IntStackType1

Top: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

IF TopOfStack = 0

THEN CAUSE Underflow;

ELSE RETURN StackData(TopOfStack);

FI;

END Top;

END IntStackType2;

3.2 Genericity
The stack is a good example to demonstrate the concept of gener-
icity. In section 3.1 the element type of the stack is INT. If we
need stacks with other element types, we have to duplicate or in
general replicate the code for each new element type. From a soft-
ware engineering point of view, this code replication is very
unwelcome. There are two ways to try to avoid this problem.

a) Use “REF UltimateBaseType” as the element type of the stack
type. If the language does not have an ultimate base type, an
appropriate base type has to be used.

SYNMODE IntStackType3 = MODULE SPEC

GRANT Push, Pop, ElemType;

SYNMODE ElemType = REF UltimateBaseType;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) ElemType,

TopOfStack RANGE(0:Length) INIT := 0;

END IntStackType3;

The body of IntStackType3 is essentially the same as that of
IntStacktype1. The difference is in the identifiers IntStackType3
and ElemType.

The objects of IntStackType3 are now heterogeneous stacks, i.e.
due to polymorphism, they may contain objects of different
types.

DCL Stack3 IntStackType3;

Stack3.Push(new IntStackType1);

Stack3.Push(new IntStackType2);

Stack3.Push(new IntStackType3);

b)If we want to have homogeneous stack objects, as those of the
types IntStackType1, IntStackType2, or CIntStackType1 are,
genericity (or parametric polymorphism) is the right mechanism
to use. A generic entity is an entity which is parameterized in a
more general way than traditional procedures. In CHILL the fol-
lowing entities may be used as parameters of a generic entity:

values of arbitrary types;
types;
procedures and functions.

It is especially the possibility to use types as parameters which
provides new possibilities for the formulation of programs.

The use of genericity is typically done in two steps:

i) define a generic entity, i.e. an entity which has formal generic
parameters. Such a generic entity is a template for more spe-
cific entities.

ii)define an instantiation of the generic template by providing
actual generic parameters for the formal ones.

73Telektronikk 4.2000

A generic stack type may now look as follows:

GenericStackTemplate1:

GENERIC MODE ElemType = ANY_ASSIGN;

MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length) INIT := 0;

END GenericStackTemplate1;

As for IntStackType3, the body of GenericStackTemplate1 is
essentially the same as that for IntStackType1.

GenericStackTemplate1 has one formal generic parameter,
ElemType, which is of the kind ANY_ASSIGN. This means
that variables of type ElemType can be assigned inside the defi-
nition of GenericStackTemplate1. This property is needed in the
bodies of Push and Pop. On the other hand, any type which is
used as a corresponding actual generic parameter must at least
support the operation of assignment. This guarantees that any
legal instantiation will produce a legal type.

Using GenericStackTemplate1, we obtain non-generic stack
types by instantiating the template with an actual generic para-
meter. If we use INT as actual generic parameter, we obtain an
object type which is essentially equivalent to IntStackType1.

SYNMODE IntStackType4 = NEW GenericStackTemplate1

SYNMODE ElemType = INT;

END IntStackType4;

If we use FLOAT as actual generic parameter we obtain a type
FloatStackType whose objects can only take float values as ele-
ments.

SYNMODE FloatStackType = NEW GenericStackTemplate1

SYNMODE ElemType = FLOAT;

END FloatStackType;

After having created two generic instantiations of the template
GenericStackTemplate1 we see that with genericity the code
duplication is avoided.

We see that both structural polymorphism (through inheritance)
and parametric polymorphism (through genericity) are very useful
mechanisms for the formulation of programs.

4 Use of CHILL in Telecom Systems
Since its birth, CHILL has been used quite widely in the world of
telecommunications. Rekdal mentions about 13 companies [2],
and if we account for the fact that several companies in Korea
have built systems using CHILL, we can say that about 15 signifi-
cant companies in the telecom field have built systems using
CHILL. Since large companies as e.g. Alcatel and Siemens sell
their systems all over he world, CHILL is passively used by hun-
dreds of millions of people. In Germany for example, the conven-
tional telephone network is essentially based on systems written in
CHILL. There are mainly two systems used: EWSD from Siemens
and System12 from Alcatel.

A lot more details about these aspects of CHILL are given in [2].

References
1 ITU-T. CHILL – The ITU-T programming language). ITU,

Geneva, 1999. (Recommendation Z.200 (11/99.)
(http://www.itu.int/itudoc/itu-t/approved/z/z200.html)

See also: ISO/IEC 9496:1998 CCITT high level language
(CHILL). http://www.iso.ch/cate/d30537.html

2 Rekdal, K. CHILL – the international standard language for
telecommunications programming. Telektronikk, 89 (2/3),
5–10, 1993.

3 Dahl, O, Myhrhaug, B, Nygaard, K. Common Base Language.
Oslo, Norwegian Computing Center, 1970.

4 Goldberg, A, Robson, D. Smalltalk-80 – The Language. Read-
ing, Mass., Addison Wesley, 1989. (ISBN 0-201-13688-0)

5 ISO/IEC. Information Technology – Programming Languages
– Ada. Geneva, ISO/IEC, 1995. (ISO/IEC 8652:1995(E).)

74 Telektronikk 4.2000

This box gives a tutorial overview on the language elements of
CHILL in three pieces:

Sequential programming
(types and statements)

Object-oriented programming and Genericity
Concurrent programming

Sequential Programming: Types
From a structural point of view we may distinguish between
scalar types and composite types. In this overview we follow
roughly this pattern.

Scalar Types
The values of scalar types are indivisible entities. Important
scalar types are numbers, enumerations and references.

As is usual in computing, we distinguish integer numbers and
types, and floating point numbers and types.

Integer numbers are written as usual:

1, 123, -450

Large numbers may be structured for better readability using the
underscore character: 1_721_119

We may write numbers using different bases:

Binary numbers: b’1010

Octal numbers: o’12367

Hexadecimal numbers: -h’12ABC

There are predefined integer types (e.g. INT) and the user may
also define his own types, especially types with specific value
ranges:

NEWMODE line = RANGE(1:8);

/* e.g. the lines of a chess board */

A variable of a given type is defined in a declaration statement:

DCL CurrentLine line INIT := 1;

Such a variable can be initialized with a specific value.

For rational numbers CHILL uses floating point types. FLOAT
is a predefined type, but it is also possible to define problem spe-
cific floating point types, e.g. a type for temperature in a given
range.

NEWMODE Temp = FLOAT(-273.15:1000.0);

For numbers the usual arithmetic operations are defined:

DCL I INT INIT := 25*25 + 17;

DCL J INT INIT := I/2;

The type BOOL contains the two truth values FALSE and TRUE
and can be used for conditions and computations in propositional
logic:

DCL CallFinished BOOL INIT := FALSE;

. . .

IF NOT CallFinished THEN . . .

Very useful are also the enumeration types, e.g.

NEWMODE ActionType = SET(A1, A2, A3);

NEWMODE ColorTy = SET(red, green, blue);

SYNMODE month = SET

(jan,feb,mar,apr,may,jun,

jul,aug,sep,oct,nov,dec);

Composite Types
The values of composite types consist of several components
which may themselves be scalar or composite values. The com-
posite types in CHILL are structures (records), arrays and
strings, buffer and signal, sets, and objects.

Structures are heterogeneous tuples:

NEWMODE DateType =

STRUCT (day INT(1:31),

mo month,

year INT(1:3000));

NEWMODE TimedActionType =

STRUCT (action ActionType,

date DateType);

The values of structures can be denoted by unlabelled or by
labelled tuples:

DCL Today DateType INIT := [24,aug,2000];

DCL Today DateType INIT :=

[day: 24, mo: aug, year: 2000];

If we want to implement a linked list of timed actions, we can
use a reference type (pointer type). The values of reference types
point to other values.

NEWMODE RefToTimedActionListType =

REF TimedActionListType;

NEWMODE TimedActionListType =

STRUCT(action TimedActionType,

next RefToTimedActionListType);

DCL TimedActionList TimedActionListType;

The following two assignment statements now create a linked
list containing two timed actions.

Box 1 CHILL in Examples

75Telektronikk 4.2000

TimedActionList :=

ALLOCATE(TimedActionListType,

[[A1, [16,sep,2000]],NULL]);

TimedActionList :=

ALLOCATE(TimedActionListType,

[[A3, [28,aug,2000]],

TimedActionList]);

For homogeneous tuples, as e.g. vectors or matrices, array types
can be used. They can have an arbitrary number of dimensions.

NEWMODE VectorType = ARRAY(1:3)FLOAT;

NEWMODE SqMatrixType =

ARRAY(1:3, 1:3) FLOAT;

DCL Vect1 VectorType

INIT := [1.0, 2.5, 5.0];

DCL Matrix1 SqMatrixType

INIT := [[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0],

[7.0, 8.0, 9.0]] ;

String types are similar to one-dimensional arrays with a special
element type, which is either CHARS (= Latin-1), WCHARS
(= Unicode) or BOOL.

NEWMODE NameType = CHARS(20) VARYING;

DCL MyName NameType INIT := “Winkler”;

DCL FirstLetter CHAR INIT := ‘W’;

Sequential Programming: Statements
The section on types already contains several assignment state-
ments. It is therefore not necessary to give further examples.

There are two kinds of selection statements: IF and CASE.

IF a>b THEN max := a; ELSE max := b; FI

The CASE-statement selects among more alternatives. The
CASE-statement of CHILL can also select an alternative using a
tuple of n selection values.

CASE A, B OF Bool, Bool;

(false),(false) : Res := false;

(false),(true) : Res := false;

(true), (false) : Res := false;

(true), (true) : Res := true;

ESAC

There are FOR-loops and WHILE-loops to express repetitive
computations.

DO WHILE sieve/=empty;

primes OR:= [MIN(sieve)];

DO FOR j := MIN(sieve)

BY MIN(sieve) TO max;

sieve -:= [j];

OD;

OD;

Object-Oriented Programming
and Genericity
CHILL supports object-oriented programming in a very versatile
way in that it combines object-orientation, concurrency and
genericity. We show the popular example of the stack data type.

First the specification / interface:

SYNMODE IntStackType1 = MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(INT)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length)

INIT := 0;

END IntStackType1;

The corresponding implementation/body looks like this:

SYNMODE IntStackType1 = MODULE BODY

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow)

IF TopOfStack = Length THEN

CAUSE Overflow;

ELSE

TopOfStack +:= 1;

StackData(TopOfStack) := Elem;

FI;

END Push;

/* body of Pop */

END IntStackType1;

Stack objects are declared in the same manner as variables of
other types.

DCL Stack1, Stack2 IntStackType1;

Stack1.Push(10);

Stack1.Push(20);

IF Stack1.Pop() > 10 ...

Since Stack1 and Stack2 have a finite capacity, it would be
better to check whether the operations have been executed
normally, i.e. check whether an exception has occurred.

Stack1.Push(30)

ON(Overflow): TempValStack1 := 30;

PushStack1 := True;

END;

IntStackType1 is a sequential stack without coordination of con-
current calls, i.e. Stack1 behaves very much like a module. It is
easy to define a stack type whose objects behave like regions:

Box 1 CHILL in Examples, continued

76 Telektronikk 4.2000

SYNMODE IntStackType2 = REGION SPEC

/* as in IntStackType1 */

END IntStackType2;

SYNMODE IntStackType2 = REGION BODY

/* bodies of Push and Pop */

END IntStackType2;

If we use inheritance such a stack type with coordination can be
obtained even simpler:

SYNMODE IntStackType2 = REGION SPEC

BASED_ON IntStackType1

END IntStackType2;

Both IntStackType1 and IntStackType2 have a fixed element
type. If we need stack types for other element types, we have
to duplicate the code.

It is simpler first to define a generic stack template StackTem-
plate1 and then define IntStackType1 and DateStackType1 as
generic instantiations of StackTemplate1.

GenericStackTemplate1: GENERIC

MODE ElemType = ANY_ASSIGN;

MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length)

INIT := 0;

END GenericStackTemplate1;

The corresponding implementation/body looks like this:

GenericStackTemplate1:

GENERIC MODE ElemType = ANY_ASSIGN;

MODULE BODY

/* bodies of Push and Pop */

END GenericStackTemplate1;

This template can be used to define object types as instantiations
of the template. We do not have to duplicate the code, but only
have to provide an actual generic parameter.

SYNMODE IntStackType4 =

NEW GenericStackTemplate1

SYNMODE ElemType = INT;

END IntStackType4;

SYNMODE DateStackType1 =

NEW GenericStackTemplate1

SYNMODE ElemType = DateType;

END DateStackType1;

IntStackType4 is essentially equivalent to IntStackType1.

Concurrent Programming
One essential difference between sequential and concurrent pro-
gramming is the presence of active entities, i.e. entities which
have their own thread of control. Such entities are called active
entities in contrast to passive entities, as e.g. procedures.

CHILL contains two kinds of active entities: the process and the
task object.

Processes typically communicate via buffers, signals or regions.
A traditional example is the producer-consumer problem, where
a number of processes produce data items and a number of pro-
cesses consume these data items.

ProducerConsumer: MODULE

DCL PCBuffer BUFFER(100)ItemType;

ProducerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

/* produce new data item */

Item := NewValue;

SEND PCBuffer(Item);

OD;

END ProducerType;

ConsumerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

RECEIVE (PCBuffer IN Item);

/* consume the data item */

OD;

END ConsumerType;

/* Two producers and one consumer */

START ProducerType();

START ProducerType();

START ConsumerType();

END ProducerConsumer;

If there are several kinds of consuming or processing the items
produced by the producers, we can define a task type with corre-
sponding methods.

ProducerConsumer2: MODULE

ProducerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

/* produce new data item */

Item := NewValue;

CASE KindOfProcessing OF

(Kind1): Consumer.Consume1(Item);

(Kind2): Consumer.Consume2(Item);

ESAC;

END ProducerType;

SYNMODE ConsumerType = TASK SPEC

GRANT Consume1, Consume2;

Consume1: PROC(Item ItemType IN);

Consume2: PROC(Item ItemType IN);

END ConsumerType;

Box 1 CHILL in Examples, continued

77Telektronikk 4.2000

SYNMODE ConsumerType = TASK BODY

Consume1: PROC(Item ItemType IN)

/* consume the data item */

END Consume1;

Consume2: PROC(Item ItemType IN)

/* consume the data item */

END Consume2;

END ConsumerType;

/* Two producers and one consumer */

DCL Consumer ConsumerType;

/* automatic start */

START ProducerType();

START ProducerType();

END ProducerConsumer2;

CHILL in Examples, continued

Box 2 CHILL vs. Java

CHILL

Data Structures
Scalar: integer, float, characters, boolean, enumerations,

pointer, procedure type, process type, event, time
range types

Composite: string, record, array, set, buffer, signal

Sequential Programming
Variable, constant, expression, function call
Assignment
Procedure call
EXIT, RESULT, RETURN, GOTO
Statement sequence
Selection statements: IF, CASE (multidimensional)
Repetition statements: DO, WHILE, FOR

Object-oriented Programming
Sequential, unsynchronized object
Sequential, synchronized object
Concurrent, synchronized object
Interface
Friend

Concurrent Programming
Process
Start process
Communication via buffer
Communication via signal
Critical region and coordination with events
Concurrent, synchronized object

Program Structure
Block
Procedure / Function / Process
Object-Type / Class
Module / Region

Genericity
Generic Procedure / Process
Generic Module / Region
Generic Object Type / Class
Generic Interface

Program Verification
Precondition and postcondition for methods
Invariant for object type / class
ASSERT statement

Java

Data Structures
Scalar: integer, float, characters, boolean

no range types
Composite: string, array, set, and many others (in the prede-

fined APIs)

Sequential Programming
Variable, constant, expression, function call
Assignment
Procedure call
BREAK, RETURN
Statement sequence
Selection statements: IF, SWITCH (onedimensional)
Repetition statements: WHILE-DO, DO-WHILE, FOR

Object-oriented Programming
Sequential, unsynchronized object

Concurrent object
Interface

Concurrent Programming

Synchronized method and synchronized statement
Concurrent object

Program Structure
Block
Procedure / Function
Object-Type / Class
Package

Genericity

Program Verification

Additional Elements

Applet java.applet
Reflection java.lang.reflect
GUI definition javax.swing, java.awt
SW components java.beans, org.omg.CORBA
Remote Procedure Call java.rmi
Internet access java.net
Data security java.security
Data base access java.sql
Data compression java.util.zip
Painting java.awt
Music java.sound.midi

Feature:
Languages for Telecommunications Applications

1 Guest Editorial; Rolv Bræk

4 The ITU-T Languages in a Nutshell; Arve Meisingset and Rolv Bræk

20 SDL-2000 for New Millennium Systems; Rick Reed

36 SDL Combined with UML; Birger Møller-Pedersen

54 MSC-2000: Interacting with the Future; Øystein Haugen

62 A Tutorial Introduction to ASN.1 97; Colin Willcock

70 CHILL 2000; Jürgen F H Winkler

78 Object Definition Language; Marc Born and Joachim Fischer

85 Conformance Testing with TTCN; Ina Schieferdecker and Jens Grabowski

96 On Methodology Using the ITU-T Languages and UML; Rolv Bræk

107 Descriptive SDL; Steve Randall

113 Combined Use of SDL, ASN.1, MSC and TTCN; Anthony Wiles and Milan Zoric

120 Implementing from SDL; Richard Sanders

130 Validation and Testing; Dieter Hogrefe, Beat Koch and Helmut Neukirchen

137 Distributed Platform for Telecommunications Applications; Anastasius Gavras

146 Formal Semantics of Specification Languages; Andreas Prinz

156 Telelogic SDL and MSC Tool Families;
Philippe Leblanc, Anders Ek and Thomas Hjelm

164 Cinderella SDL – A Case Tool for Analysis and Design;
Anders Olsen and Finn Kristoffersen

172 The Evolution of SDL-2000; Rick Reed

181 Perspective on Language and Software Standardisation; Amardeo Sarma

Special

191 Quality of Service in the ETSI TIPHON Project; Magnus Krampell

196 QoS and SLA Structure in a VoIP Service Case;
Irena Grgic, Ola Espvik, Terje Jensen and Magnus Krampell

220 Some Physical Considerations Concerning Radiation of Electromagnetic
Waves; Knut N Stokke

229 Telektronikk Index 2000

Contents

Telektronikk

Volume 96 No. 4 – 2000

ISSN 0085-7130

Editor:

Ola Espvik

Tel: (+47) 63 84 88 83

email: ola.espvik@telenor.com

Status section editor:

Per Hjalmar Lehne

Tel: (+47) 63 84 88 26

email: per-hjalmar.lehne@telenor.com

Editorial assistant:

Gunhild Luke

Tel: (+47) 63 84 86 52

email: gunhild.luke@telenor.com

Editorial office:

Telenor Communication AS

Telenor R&D

PO Box 83

N-2027 Kjeller

Norway

Tel: (+47) 63 84 84 00

Fax: (+47) 63 81 00 76

email: telektronikk@telenor.com

Editorial board:

Ole P. Håkonsen,

Senior Executive Vice President.

Oddvar Hesjedal,

Vice President, R&D.

Bjørn Løken,

Director.

Graphic design:

Design Consult AS, Oslo

Layout and illustrations:

Gunhild Luke, Britt Kjus (Telenor R&D)

Prepress and printing:

Optimal as, Oslo

Circulation:

4,000

