
FRIEDRICH-SCHILLER-
UNIVERSITÄT JENA

FORSCHUNGSERGEBNISSE

Der Fakultät für Mathematik und Informatik

Eingang: 1998.11.07 Nr. Math / Inf / 98 / 13 Als Manuskript gedruckt

NEW PROOF RULES FOR FOR-LOOPS

Jürgen F. H. Winkler

Friedrich-Schiller University, Institute of Computer Science
D-07740 Jena, Germany

http://www1.informatik.uni-jena.de

New Proof Rules for FOR-Loops

NEW PROOF RULES FOR FOR-LOOPS

Jürgen F. H. Winkler
Friedrich-Schiller University, Institute of Computer Science

D-07740 Jena, Germany
http://www1.informatik.uni-jena.de

The FOR-loop is an element of many programming languages and is used in many programs. Despite this fact, it is
treated quite rarely in the literature on program verification. In this paper we develop a new proof rule for FOR-loops.
The derivation of the proof rule is done in two steps: (1) transform the FOR-loop into an equivalent ersatz program, and
(2) derive the proof rules or verification conditions from the ersatz program.
The main difference between the new rules and earlier proof rules for FOR-loops is that the new proof rules do not
require the invariant to hold before the first execution of the loop body and that the empty loop (zero repetitions) is also
covered. This simplifies the proof of certain loops. A second difference is that the proof rules work for FOR-loops as
they occur in existing programming languages, especially languages like Ada or Pascal. This means that the rule can be
readily applied by the program developer. In the literature on program verification often some idealized form of FOR-
loop is used, e.g. one in which the variables occurring in the iteration clauses cannot be modified within the loop body.
The only restriction of the new proof rule is that the evaluation of the expressions in the iteration clause may not have
any side effects.

„A cycle of operations, then, must be understood to signify any set of operations which is repeated more
than once.“ Ada Augusta Lovelace, 1843

„Ausser dieser allgemeinen W-Vorschrift werden noch einige spezielle, die besonders häufig vorkommen,
eingeführt.“1 Konrad Zuse, 1945

„Situations in which arrays are scanned strictly sequentially are so frequent that a special notation is intro-
duced to denote such actions.“ Alagic and Arbib, 1978

„We are always allowed to invent new syntax if we explain the rules for its use.“ Eric C. R. Hehner, 1993

1 Introduction
Repetition is an essential element of computation. Repetition can be done by loops, by goto, and by recur-
sion. Different forms of loops have been developed in programming languages. The main forms are the pre-
checked loop (WHILE), the postchecked loop (REPEAT), and the controlled loop (FOR). Of these the
WHILE-loop is the most general, but as the quotation of Alagic and Arbib above indicates, there are many
situations in which the FOR-loop is adequate. This has already been observed by Zuse in 1945, when he was
developing the Plankalkül. He first introduces the WHILE-loop [Zus 72: 4.32] and then mentions that for
special situations more specific loop constructs could be used. Among these he mentions also the FOR-loop
[Zus 72: 4.33] (he does not use the keyword FOR). A FOR-loop like construct is also mentioned by Ada A.
Lovelace in her notes on Menabreas paper on the Analytical Engine of Charles Babbage [Men 55: 392, 394].

The FOR-loop is an element of many programming languages. The Plankalkül has already been mentioned.
Of the other early high level languages, which were developed in the late fifties, Fortran [Bac 81], Algol 60
[BBG 63], and COBOL [Sam 69: 356] contain the FOR-loop. LISP [McC 81] uses recursion and does there-
fore not have loop constructs. We do not mention all those more recent programming languages which con-
tain the FOR-loop.

1 „Besides this general W-instruction, some other special ones are introduced for frequently recurring cases.“ [Zus 89:

63]

 1

New Proof Rules for FOR-Loops

In this paper we look at the verification of FOR-loops and propose a new verification scheme for FOR-loops.
This scheme consists of two steps: (1) replace the FOR-loop by an ersatz program, and (2) derive proof rules
or verification conditions from the ersatz program. Based on this scheme new proof rules for FOR-loops can
be derived which may be easier to apply and which cover also rather exotic cases. Such rules are needed
because the FOR-loop is used quite often in practical programming, but is treated quite rarely in the work on
program verification.

Proof rules or verification conditions allow us to show that a program (fragment) P fulfills a specification S.
A specification may be given as a pair of assertions: S = (pre, post). Together, P and S form a spec-prog (=
specified program) SP = {pre} P {post}. The fact that P fulfills S or that P and S are consistent can be ex-
pressed as [pre ⇒ wp(P, post)], where wp is the weakest precondition and [...] means „in all program states“
[DS 90: 8]. More abstractly, consistency between S and P means that P is a refinement of S [Win 96: 15]. In
the rest of the paper we mostly use the term „consistency between S and P“ or simply „consistency of a spec-
prog SP“. This terminology takes into account that in case of inconsistency, i.e. when consistency cannot be
proved, we can neither blame P nor S as the sole reason for the inconsistency. We only know that the spec-
prog is not consistent. The term „proof of a program P wrt a specification S“ on the other hand, is more
asymmetric: it suggests that the specification S is assumed to be correct and that in case of inconsistency the
program P is to blame. In practical development we have also the situation that the specification does not
mention all necessary facts to show the consistency of SP, but that the program P does the job. As a conse-
quence we use „to show the consistency of a spec-prog (S, P)“ instead of „verification of P wrt to S“, and
„consistency condition (CC)“ instead of „proof rule“. By „verification“ we now mean „to show the consis-
tency“. We still use sometimes the traditional terminology, especially when referring to the existing litera-
ture.

When wp(P, post) can be computed the verification can be done exactly. Sometimes (e.g. in the case of cer-
tain loops) wp(P, post) cannot be computed efficiently but some other scheme can be used to show some
weaker form of consistency. One example for this is the scheme for proving specified WHILE-loops using
an invariant and a termination function [Gri 83: 145]. More abstractly, this means we are using some condi-
tion pc(P, post) which implies wp(P, post). If [pre ⇒ pc(P, post)] then we have shown the consistency of
{pre} P {post}.

In this paper we use FOR-loops of existing languages and not some idealized form. The main reason for this
is that our goal is to provide consistency conditions, which can be used by the practicing software developer.
Up to now, this is usually not done in the literature on program verification. On the other hand, engineers in
other branches of engineering typically find in their literature formulas which are ready to be used [BK 94;
Dor 93]. [PR 97; Tuc 97] do not contain proof rules for FOR-loops. The FOR-loops used in this paper are
those from Pascal and Ada. Ada especially seems to be a good candidate for program verification because it
is mainly used in critical applications.

The paper is organized as follows. In section 2 we review existing proof rules for specified FOR-loops. Sec-
tion 3 introduces the ersatz program for the FOR-loop which is used to define the semantics of the FOR-
loop. Based on this ersatz program we derive new proof rules for specified FOR-loops in section 4. Section 5
contains specific rules for Ada FOR-loops and section 6 contains some examples for the use of the new rules.
In section 7 we transform a FOR-loop into an equivalent WHILE-loop and derive a consistency condition for
the specified FOR-loop. This way is somewhat more complicated than the derivation via the ersatz program
introduced in section 3.

2 Existing Proof Rules for the FOR-Loop
When the FOR-loop is used in serious program construction there should be rules at hand to prove the con-
sistency of a specification and such a loop. The literature on program verification typically discusses and
gives proof rules for the WHILE-loop. On the other hand, the FOR-loop is treated very rarely. [Abr 96; AO
94; Bab 87; Bab 91; Bes 95; Cou 92; Dij 76; Fra 92; Fut 89; Gri 83; Hoa 69] do not discuss the FOR-loop. It
is discussed in [AA 78; Dah 92; Flo 67; Heh 93; Hoa 72; HW 73]. [Flo 67] is the first to give a verification
condition for the FOR-loop. He discusses the very general FOR-loop of Algol60 which does not adhere to
the limitations of modern FOR-loops as they are mentioned in sec. 3. [Hoa 72] gives proof rules for FOR-

 2

New Proof Rules for FOR-Loops

loops similar to the loops we discuss in this paper. These rules are also used in [AA 78; HW 93]. [AA 78:
81..84] contains also a reduction of the FOR-loop to a combination of IF, SEQ and WHILE, but they do not
mention that the loop parameter and the bounds must not be changed/written inside the loop body. [Dah 92]
uses a more complicated rule which is derived from a more complicated scheme for the definition of the se-
mantics of the FOR-loop. [Heh 93] uses a different approach, in that he expresses statements as predicates
over the pre- and post-states. For the FOR-loop he does not give a direct definition but a refinement rule.
This approach is rather different from the approach used in this paper.

[Hoa 72] gives the following proof rule for the FOR-loop:

a ≤ x ≤ b & I([a . . . x)) {Q} I([a . . . x])

I([]) {for x := a to b do Q} I([a . . . b])

with the following restrictions:

i) a, b, x must not be changed within the loop;

ii) the invariant I must not contain the variable x.

A further restriction, which is not explicitly mentioned in [Hoa 72], is that the given rule does not cover the
case with an empty range (this was observed by Stefan Knappe [Kna 96]).

Restriction i) does also hold in some contemporary FOR-loops. In Ada e.g. x is a constant within Q and the
range R is determined at the beginning in that a and b are evaluated once. a and b can be changed from
within Q but this has no influence on the values in R:

FOR i IN a .. b -- let a and b be integer variables
LOOP a := 1;
 b := 0;
 r := r * i;
END LOOP;

The situation is similar in Pascal [ISO 7185: 53] and Fortran [ISO 1539].

In C, C++, and Java the situation is rather different: a, b, and x may be changed from within the loop and b is
evaluated repeatedly [GJS 96: 280..282]. This may lead to rather bizarre behavior as it was possible in Algol
60.

Restriction ii) seems to be no restriction at all. [Hoa 72] gives no explicit reasoning for it. That it seems no
real restriction will be shown in a moment after the scheme for the consistency of a specified FOR-loop has
been introduced.

For the discussion of the consistency of a specified FOR-loop we use the following scheme:

 -- precondition pre
FOR i IN LO..UP
LOOP BODY
 -- invariant inv (1)
END LOOP;
 -- postcondition post

The invariant inv is intended to hold after one or more executions of BODY. Therefore, it will be typically
the case that inv contains the loop parameter i as e.g. in:

 -- pre ≡ r = 1 AND 0 <= n AND n <= 20
FOR i IN 1 .. n
LOOP r := r * i;
 -- inv ≡ r = i! AND 0 <= n AND n <= 20
END LOOP;
 -- post ≡ r = n! AND -2**63 <= r AND r <= 2**63-1

The invariant can also be formulated in the style of [Hoa 72] as:

 3

New Proof Rules for FOR-Loops

I([1..n]) ≡ r = n! ∧ 0 <= n ∧ n <= 20 ≡ invi
n

If the proof rule of [Hoa 72] is applied we obtain in the antecedent for I([1..i]):

I([1..i]) ≡ I([1..n])n
i ≡ r = i! ∧ 0 <= i ∧ i <= 20

which is the invariant of our loop.

As long as the loop parameter is not contained in the expressions defining the bounds a and b this approach
will always fulfill restriction ii). If the loop parameter is contained in these expressions the loop may look
like:

FOR i IN i .. i+10
LOOP r := r + i;
END LOOP;

which is e.g. not allowed in Ada [ISO 8652: 5.5]; in Ada the semantics would be rather bizarre because
newly declared variables are not automatically initialized. In Java a loop with such bounds is allowed [GJS
96: 82] and is well defined because i will be initialized with 0 [GJS 96: 46].

From this discussion we conclude that restriction ii) is no real restriction and that the form of the invariant in
[Hoa 72] using the interval notation is unnecessarily complicated.

3 The FOR-Loop and its Ersatz Program
The FOR-loops in different programming languages differ in detailed points, e.g. whether the loop parameter
(sometimes also called the controlling variable [Dah 92: 95]) is defined after termination of the loop and
what its value is in this situation.

We use in this paper the FOR-loop of Ada [ISO 8652: 112] as an example of modern FOR-constructs. It has
essentially the following form:

FOR loop_parameter IN RANGE
LOOP BODY END LOOP;

The loop_parameter is a scalar entity which is declared after the keyword FOR, i.e. it is declared locally to
the FOR-loop. The loop_parameter can be used only as a constant inside the BODY and it cannot occur in
RANGE.

The RANGE can be given in different syntactic forms. We assume for the rest of the paper the form „LO ..
UP“, which is quite common. RANGE always defines a contiguous sequence of discrete values, e.g. integer
numbers or elements of an enumeration type; rational numbers are not allowed. The sequence defined by
RANGE may be empty. In the rest of the paper we indicate this sequence by vlo..vup (from the value of the
lower bound, vlo, to the value of the upper bound, vup). vlo..vup = (vlo, succ(vlo), succ2(vlo), ..., vup). If
vup < vlo then the sequence is empty. The type of the loop_parameter is determined by the types of LO and
UP. That these types are legal is usually checked at compile time. If LO or UP cannot be computed within
the types provided by the implementation the normal execution of the FOR-loop will usually be abandoned.
On the description level we will mention the constraint on the values of LO and UP by: LO, UP ∈ TR ,
where TR is the value set of the type associated with the RANGE of the FOR-loop.

The BODY consists of a sequence of one or more statements. Since „NULL;“ (the empty statement) is also a
legal statement BODY may be equivalent to the empty statement.

A concrete example is [KW 97: 40]:

FOR i IN 1 .. n
LOOP r := r * i; END LOOP;

In this case „i“ is the loop parameter. The RANGE is the sequence of integer numbers 1, 2, ..., n. If n<1 then
the sequence is empty. The BODY consists of the statement „r := r*i;“.

The effect (semantics) of the FOR-loop

 4

New Proof Rules for FOR-Loops

FOR i IN LO..UP (2)
LOOP BODY END LOOP;

is given by the following ersatz program (3):

-- create vlo and vup

CASE
 true => vlo := LO; vup := UP;
[] -- nondeterministic choice (3)
 true => vup := UP; vlo := LO;
END CASE;

IF vlo <= vup
THEN -- let vlo..vup be v1, v2, ..., vn, where n ≥ 1
 BODYiv1 ; BODY

i
v2 ; ... BODY

i
vn ;

END IF;

-- destroy vlo and vup

For this definition (and the rest of the paper) we assume that

(a) vlo and vup are different from all identifiers occurring in the original program,

(b) the evaluation of LO and UP does not change the program state,

(c) i is local to the FOR-loop, i.e. it cannot occur in LO or UP, and it cannot be written in BODY .

If n is statically known, the correctness of the FOR-loop can be checked using the semantics of CASE, IF,
SEQ, and the elements of BODY. If n is not statically known some sort of induction proof is necessary. In
the ersatz program (3) we have expressed the fact that Ada e.g. allows the evaluation of LO and UP in an
arbitrary sequential order [ISO 8652: 3.5, 1.1.4]; Pascal, on the other hand, defines the order „LO, UP“ [ISO
7185: 6.8.3.9]. The ersatz program (3) has also the property that the range of values for which BODY is
executed is fixed at the beginning and cannot be changed by the executions of BODY. Even if LO and UP
are modified from within BODY this does not change the values assigned to vlo and vup in the CASE-
statement. Since vlo and vup are different from all identifiers occurring in the original FOR-loop vlo and vup
cannot be modified directly. Because of restrictions (a) and (b) the nondeterministic choice in (3) has no
influence on the semantics. Therefore, we will usually not mention the nondeterministic choice in the ersatz
programs in the rest of the paper.

A similar ersatz program is mentioned in [AA 78: 81]; but there it is not used as a basis for the derivation of
verification rules. They use the rule of Hoare [Hoa 72] which has been discussed in sec. 2.

The FOR-loop (2) can only be executed if the declaration of vlo and vup is possible, i.e. if there is e.g.
enough storage available. In this paper, we do not take this aspect into account.

4 New Proof Rules for the FOR-Loop
A proof rule or consistency condition should allow us to show {pre} FOR {post} which is equivalent to
[pre ⇒ wp(FOR, post)]. If the range LO..UP is dynamic we might not be able to compute wp(FOR, post)
explicitly in an efficient way. In this case, we make a proof by induction using an invariant. This proof con-
sists of four parts: (1) proof for the empty loop, (2) connection condition at the beginning, (3) connection
condition at the end, and (4) induction step for the invariant. In [Kau 98] it is shown that this implies [pre ⇒
wp(FOR, post)].

If we take

vlo, vup : Txy; -- where Txy is an appropriate type
 -- „vlo“ and „vup“ are new identifiers
vlo := LO; (4)
vup := UP;

 5

New Proof Rules for FOR-Loops

IF vlo <= vup
THEN -- let vlo..vup be v1, v2, ..., vn, where n ≥ 1
 BODYiv1; BODY

i
v2; ... BODY

i
vn;

END IF;

as the definition of the semantics of the FOR-loop (2) we obtain the annotated ersatz program (5), which
works also in those cases in which LO or UP are modified within BODY.

 -- precondition pre
vlo, vup : Txy; -- where Txy is an appropriate type
 -- „vlo“ and „vup“ are new identifiers
 -- precondition pre
vlo := LO;
vup := UP;
 -- pre ∧ vlo = LO ∧ vup = UP
IF vlo <= vup
THEN -- let vlo..vup be v1, v2, ..., vn, where n ≥ 1
 -- pre ∧ v1 ≤ vn ∧ v1 = LO ∧ vn = UP
 BODYiv1;
 -- v1 ≤ vn ∧ inviv1
 BODYiv2;
 -- v1 ≤ vn ∧ inviv2 (5)
 ...
 BODYivn;
 -- v1 ≤ vn ∧ invivn
END IF;
 -- postcondition post
 -- destroy vlo and vup
 -- postcondition post

In (5) we use a sequential evaluation strategy for the two bounds. It is very easy to derive CCs for an Ada
like evaluation strategy (as used in (3)). Since the evaluation strategy for the bounds is not essential to the
semantics of the repetitive aspect of the loop we use this simpler evaluation strategy. We furthermore assume
that neither declaration nor destruction of variables change the program state.

For the derivation of the CCs, (5) can be rewritten in the following stylized form (6):

 -- pre
ASS

 -- pre ∧ vlo = LO ∧ vup = UP
IF vlo <= vup (6)
THEN BODY-Rep
END IF;
 -- post

We obtain the following consistency condition for (6):

 [pre ⇒ wp(„ASS; IF;“, post)]
≡ -- sequencing rule
 [pre ⇒ wp(„ASS;“, wp(„ IF;“, post))]
≡ -- IF rule
 [pre ⇒ wp(„ASS;“, (vlo ≤ vup ⇒ wp(„BODY-Rep“, post)) ∧ (vlo > vup ⇒ post))]
≡ -- strong conjunctivity of wp
 [pre ⇒ wp(„ASS;“, vlo ≤ vup ⇒ wp(„BODY-Rep“, post)) ∧ wp(„ASS;“, vlo > vup ⇒ post)]
≡ -- a ⇒ b ∧ c ≡ (a ⇒ b) ∧ (a ⇒ c)
 [(pre ⇒ wp(„ASS;“, vlo > vup ⇒ post)) ∧
 (pre ⇒ wp(„ASS;“, vlo ≤ vup ⇒ wp(„BODY-Rep“, post)))]
≡ -- vlo and vup do not occur in post; vlo does not occur in UP; wp
 [(pre ⇒ LO, UP ∈ TR ∧ (LO > UP ⇒ post)) ∧

 6

New Proof Rules for FOR-Loops

 (pre ⇒ wp(„ASS;“, vlo ≤ vup ⇒ wp(„BODY-Rep“, post)))]
≡ -- vlo and vup do not occur in wp(„BODY-Rep“, post); vlo does not occur in UP; wp
 [(pre ⇒ LO, UP ∈ TR ∧ (LO > UP ⇒ post)) ∧
 (pre ⇒ LO, UP ∈ TR ∧ (LO ≤ UP ⇒ wp(„BODY-Rep“, post)))]
≡ -- a ⇒ b ∧ c ≡ (a ⇒ b) ∧ (a ⇒ c)
 [(pre ⇒ LO, UP ∈ TR) ∧ (pre ⇒ (LO > UP ⇒ post)) ∧
 (pre ⇒ LO, UP ∈ TR) ∧ (pre ⇒ (LO ≤ UP ⇒ wp(„BODY-Rep“, post)))]
≡ -- a ⇒ (b ⇒ c) ≡ a ∧ b ⇒ c
 [(pre ⇒ LO, UP ∈ TR) ∧ (pre ∧ LO > UP ⇒ post) ∧ (7)
 (pre ∧ LO ≤ UP ⇒ wp(„BODY-Rep“, post))]

If n is statically known (7) can possibly be computed directly (depending on BODY). In this case it is not
necessary to provide an invariant. Sec. 6 contains an example for the application of (7) in this special case.

The more general case is that n is not statically known. For this case the third conjunct of (7) can be replaced
by the conjunction of three conditions (8, 9, 10) which we read off from (5).

 [pre ∧ v1 ≤ vn ∧ v1=LO ∧ vn=UP ⇒ wp(„BODYi

v1;“, v1 ≤ vn ∧ invi
v1)] (8)

 (∀j: 1 ≤ j < n: [v1 ≤ vn ∧ invi
vj ⇒ wp(BODYi

v(j+1), v1 ≤ vn ∧ invi
v(j+1))])

≡ -- [] is also a universal quantification (for all free variables)
 [1 ≤ j < n ∧ v1 ≤ vn ∧ invi

vj ⇒ wp(BODYi
v(j+1), v1 ≤ vn ∧ invi

v(j+1))] (9)

 [v1 ≤ vn ∧ invi
vn ⇒ post] (10)

At all observation points of (5) between „vup:=UP;“ and „destroy vlo and vup“ the condition

 vlo=v1 ∧ vup=vn (11)

holds and can be used if need arises. This condition will usually not be exploited because vlo and vup do not
occur in pre, BODY and post. Because of (10) vlo and vup will usually also not occur in inv. Therefore we
do not mention (11) in the CCs.

If we now replace the third conjunct in (7) by the conjunction of (8), (9) and (10) we obtain the CC (12) for
the FOR-loop (2).

 [(pre ⇒ LO, UP ∈ TR) ∧
 (pre ∧ LO > UP ⇒ post) ∧
 (pre ∧ v1 ≤ vn ∧ v1=LO ∧ vn=UP ⇒ wp(„BODYi

v1;“, v1 ≤ vn ∧ invi
v1)) ∧

 (1 ≤ j < n ∧ v1 ≤ vn ∧ invi
vj ⇒ wp(BODYi

v(j+1), v1 ≤ vn ∧ invi
v(j+1))) ∧

 (v1 ≤ vn ∧ invi
vn ⇒ post)]

≡ -- conjunctivity of wp; a ⇒ b ≡ a ⇒ a ∧ b; v1 and vn are not modified in BODY
 [pre ⇒ LO, UP ∈ TR] ∧
 [pre ∧ LO > UP ⇒ post] ∧
 [pre ∧ v1 ≤ vn ∧ v1=LO ∧ vn=UP ⇒ wp(„BODYi

v1;“, invi
v1)] ∧

 [1 ≤ j < n ∧ v1 ≤ vn ∧ invi
vj ⇒ wp(BODYi

v(j+1), invi
v(j+1))] ∧

 [v1 ≤ vn ∧ invi
vn ⇒ post]

≡ -- elimination of superfluous variables
 [pre ⇒ LO, UP ∈ TR] ∧
 [pre ∧ LO > UP ⇒ post] ∧
 [pre ∧ LO ≤ UP ⇒ wp(„BODYi

v1;“, invi
v1)v1,

LO,
vn,

UP] ∧ (12)
 [1 ≤ j < n ∧ v1 ≤ vn ∧ invi

vj ⇒ wp(BODYi
v(j+1), invi

v(j+1))] ∧
 [v1 ≤ vn ∧ invi

vn ⇒ post]

 7

New Proof Rules for FOR-Loops

(12) can now be used as a basis for CCs for specified FOR-loops of languages like Ada or Pascal. CCs for
the Ada FOR-loop are the topic of sec. 5. Due to the substitution lemma for wp [Kau 98: 50] the substitution
of v1 and vn in the third conjunct of (12) can only be applied after the evaluation of wp.

If LO and UP are not modified within BODY then the declaration of vlo and vup is not necessary and LO
and UP can be used instead of v1 and vn. This gives us the somewhat simpler CC (13) which can be used for
most of the FOR-loops used in practical program construction.

 [(pre ⇒ LO, UP ∈ TR) ∧
 (pre ∧ LO > UP ⇒ post) ∧
 (pre ∧ LO ≤ UP ⇒ wp(„BODYi

LO;“, invi
LO)) ∧ (13)

 (1 ≤ j < n ∧ LO ≤ UP ∧ invi
vj ⇒ wp(BODYi

v(j+1), invi
v(j+1))) ∧

 (LO ≤ UP ∧ invi
UP ⇒ post)]

The main difference to other proof rules for FOR-loops is that we take the evaluation of the bounds into ac-
count and that we do not require the invariant to hold before the first execution of BODY. This simplifies the
invariant in certain cases and, therefore, simplifies the task of finding the invariant. The reason for this is that
the invariant usually characterizes the effect of BODY, i.e. it is a sort of postcondition for BODY. This
characterization must allow to establish the validity of post when BODYi

vn has been executed. A state, in
which BODY has not yet been executed at all, will usually not show traces of the effect of BODY. Such a
state is the state immediately before the execution of BODYi

v1 .

One example for this is:
 v := 5;
 -- v = 5
 FOR i IN 1 .. 10
 LOOP v := i; (14)
 -- inv ???
 END LOOP;
 -- v = 10

It is easy to see that I1([1..i]) ≡ v = i is an invariant which fulfills (13).

If we apply the rule from [Hoa 72] to (14) we obtain for the invariant I1([1..10]) ≡ v=10, which is sufficient
to establish the postcondition. We then have to determine I1([]) such that

 (v=5 ⇒ I1([])) ∧ (I1([]) ⇒ wp(„v:=1;“, v=1)) (15)

Usually, I([]) has a form similar to I([a..b]), e.g. in a loop for summation Is([a..b]) ≡ sum =
SUM(i,i,a,b) 2) and Is([]) ≡ sum = 0 because for a ≥ 0 SUM(i,i,a,0) is usually defined as 0. Thus,
Is([]) is derived directly from Is([a..b]).

We could try I1([]) ≡ I1([1..10])10
pred(1) ≡ v=0. This does not work: v=5 ⇒ v=0 ≡ false .

It is easy to see that I1([]) ≡ true does the trick; it is maximal in that it is the weakest solution of (15). On
the other hand, it is not solely derived from I1([1..i]). A more specific solution of (15) is I1([]) ≡ v=5 ,
which is also not derived from I1([1..i]). In this case the solution is identical to the precondition.

An invariant which works for the rule of [Hoa 72], but is not so obvious, was found by Stefan Kauer:

 I1'([1..i]) ≡ v=i ∨ i=pred(LO) ≡ v=i ∨ i=0 (16)

From (16) we obtain I1'([]) ≡ I1'([1..i])i
pred(1) ≡ v=0 ∨ 0=0 ≡ true. This strategy does only work if

pred(vlo) exists, which is not the case when vlo is the first value of a type. Even if pred(vlo) exists the in-
variant (16) is not entirely satisfactory: i=0 may give the impression that i - at some point in time - will
assume the value 0. In Ada e.g. the type of i is „integer range 1..10“, which excludes that i assumes the value
0. (16) may do the trick, but it is questionable whether it should be used at all.

This discussion shows that things are simpler if we do not require the invariant to hold before the first execu-
tion of BODY .

2 We use a linear notation for the summation operation: SUM(expr, index, lower bound, upper bound)

 8

New Proof Rules for FOR-Loops

5 Proof Rules for the Ada FOR-Loop
The syntax of the Ada FOR-loop is given by:

FOR identifier IN [REVERSE] discrete_range (17)
LOOP sequence_of_statements END LOOP;

discrete_range may have different syntactic forms. Independent of these syntactic forms the evaluation of
discrete_range yields a finite (possibly empty) totally ordered set of values. This set can be characterized by
the two values vlo and vup as discussed in the preceding sections. Depending on the presence of REVERSE
we obtain different ersatz programs for (17). If REVERSE is not present we obtain the ersatz program (18).
For the specification of the effect we assume the same scheme (pre, inv, post) as given in (1).

vlo : Txy; -- where Txy is an appropriate type
vup : Txy;

CASE
 true => vlo := first(discrete_range);
 vup := last(discrete_range);
[] -- nondeterministic choice (18)
 true => vup := last(discrete_range);
 vlo := first(discrete_range);
END CASE;

IF vlo <= vup
THEN -- let vlo..vup be v1, v2, ..., vn, where n ≥ 1
 BODYiv1 ; BODY

i
v2 ; ... BODY

i
vn ; -- no REVERSE

END IF;

-- destroy vlo and vup

We use the abstract expressions „first(discrete_range)“ and „last(discrete_range)“ to indicate that the dis-
crete_range has to be evaluated. For the CC we abbreviate these two expressions by fdr and ldr respectively.
We now obtain the following CC (19) for the program (18). This CC is essentially the same as (12).

 [(pre ⇒ fdr, ldr ∈ TR) ∧
 (pre ∧ fdr > ldr ⇒ post) ∧
 (pre ∧ fdr ≤ ldr ⇒ wp(„BODYi

v1;“, invi
v1)) ∧ (19)

 (1 ≤ j < n ∧ fdr ≤ ldr ∧ invi
vj ⇒ wp(BODYi

v(j+1), invi
v(j+1))) ∧

 (fdr ≤ ldr ∧ invi
vn ⇒ post)]

Under the assumptions made for this paper the nondeterministic choice of the CASE-statement has no influ-
ence on the behavior, and therefore the nondeterministic choice has no influence on the CC.

If REVERSE is present an ersatz program may look like (20).

vlo : Txy; -- where Txy is an appropriate type
vup : Txy;

CASE
 true => vlo := first(discrete_range);
 vup := last(discrete_range);
[] -- nondeterministic choice (20)
 true => vup := last(discrete_range);
 vlo := first(discrete_range);
END CASE;

IF vlo <= vup
THEN -- let vlo..vup be v1, v2, ..., vn, where n ≥ 1
 BODYivn ; ... BODY

i
v2 ; BODY

i
v1 ;

END IF;

-- destroy vlo and vup

 9

New Proof Rules for FOR-Loops

For (20) we obtain the CC (21) which reflects the reverse order of the respective executions of BODY.

 [(pre ⇒ fdr, ldr ∈ TR) ∧
 (pre ∧ fdr > ldr ⇒ post) ∧
 (pre ∧ fdr ≤ ldr ⇒ wp(„BODYi

vn;“, invi
vn)) ∧ (21)

 (1 < j ≤ n ∧ fdr ≤ ldr ∧ invi
vj ⇒ wp(BODYi

v(j-1), invi
v(j-1))) ∧

 (fdr ≤ ldr ∧ invi
v1 ⇒ post)]

6 Examples

6.1 FOR-Loop with Statically Known Number of Repetitions
The first example contains a FOR-loop with a statically fixed range.

 --!pre: s=0;
FOR i in 1..10
LOOP s := s+i; END LOOP;
 --!post: s=sum(j,j,1,10); -- sum(exp,j,1,n) = (Σj:1≤j≤n: exp)

This is equivalent to:

 --!pre: s=0;
s := s+1;
s := s+2;
s := s+3;
s := s+4;
s := s+5;
s := s+6;
s := s+7;
s := s+8;
s := s+9;
s := s+10;
 --!post: s= sum(j,j,1,10);

If we give this to the Frege Program Prover (FPP) [KW 97], which supports the proof of such annotated pro-
grams, we obtain the following result:

FPP (Frege Program Prover) University of Jena, Germany
User: 141.35.14.241 At: 1998.04.29, 15:47
The answer to your query is:

--!pre : (s = 0)
--> wp : (55 + s = 55)
--> vc : (s = 0 ==> 55 + s = 55)
--> Result: proved

s := s + 1;
s := s + 2;
s := s + 3;
s := s + 4;
s := s + 5;
s := s + 6;
s := s + 7;
s := s + 8;
s := s + 9;
s := s + 10;
--!post : (s = 55)

 10

New Proof Rules for FOR-Loops

Other examples of this type are the sum over the elements of a fixed array or the sum over a statically fixed
sequence of input values as e.g. in [FWW 87: 70], where both the populations and the areas of the states of
the USA are summed up.

6.2 FOR-Loop with Dynamic Number of Repetitions
The second example is the same as the first but the upper bound is now variable:

 --!pre: s=0 and 104≥m>0;
FOR i in 1..m
LOOP s := s+i; (22)
 --!inv: s=sum(k,k,1,i) and 0≤s≤109 and 104≥m>0
END LOOP;
 --!post: s = sum(k,k,1,m);

Since the new consistency condition for FOR-loops has not yet been implemented in the FPP we check this
by hand. According to the bounds we may use (13), where the invariant is inv ≡ s=sum (k,k,1,i) and
0≤s≤109 and 104≥m>0. In our case we have also vj=j, and we assume TR = int32 = -231..+231-1 .

 [pre ⇒ LO, UP ∈ TR]
≡ [s=0 ∧ 104≥m>0 ⇒ 1, m ∈ int32]
≡ true

 [pre ∧ LO > UP ⇒ post]
≡ [s=0 ∧ 104≥m>0 ∧ 1 > m ⇒ s = sum(k,k,1,m)]
≡ [false ⇒ s = sum(k,k,1,m)]
≡ true

 [pre ∧ LO ≤ UP ⇒ wp(„BODYi

LO;“, invi
LO)]

≡ [s=0 ∧ 104≥m>0 ∧ 1 ≤ m ⇒ wp(„s:=s+1;“, s=sum (k,k,1,1) ∧ 0≤s≤109 ∧ 104≥m>0)]
≡ [s=0 ∧ 104≥m>0 ⇒ wp(„s:=s+1;“, s=1 ∧ 0≤s≤109 ∧ 104≥m>0)]
≡ [s=0 ∧ 104≥m>0 ⇒ s+1=1 ∧ 0≤s+1≤109 ∧ 104≥m>0]
≡ [s=0 ∧ 104≥m>0 ⇒ s=0 ∧ 0≤s+1≤109 ∧ 104≥m>0]
≡ true

 [1 ≤ j < n ∧ LO ≤ UP ∧ invi

vj ⇒ wp(BODYi
v(j+1), invi

v(j+1))]
≡ [1 ≤ j < n ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m>0 ⇒
 wp(„s:=s+(j+1);“, s=sum(k,k,1,j+1) ∧ 0≤s≤109 ∧ 104≥m>0)]
≡ -- in this example n = m holds; wp
 [1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m>0 ⇒
 s+(j+1)=sum(k,k,1,j+1) ∧ 0≤s+(j+1)≤109 ∧ 104≥m>0]
≡ -- j≥1 ⇒ sum(k,k,1,j+1)=sum(k,k,1,j)+(j+1)
 [1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m>0 ⇒
 s=sum(k,k,1,j) ∧ 0≤s+(j+1)≤109 ∧ 104≥m>0]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m>0 ⇒ 0≤s+(j+1)≤109]
≡ -- holds also for m=104 ∧ j=9_999 (then s=49_995_000, s+(j+1) = 50_005_000)
 true

 [LO ≤ UP ∧ invi

UP ⇒ post]
≡ [1 ≤ m ∧ s=sum (k,k,1,m) ∧ 0≤s≤109 ∧ 104≥m>0 ⇒ s=sum (k,k,1,m)]
≡ true

All five conditions are true and, therefore, (22) is consistent.

 11

New Proof Rules for FOR-Loops

Since the new consistency condition also covers the case UP < LO the precondition of (22) can be weak-
ened to s=0 and 104≥m≥-104 giving us the loop (23). For the invariant we use accordingly: inv ≡
s=sum(k,k,1,i) and 0≤s≤109 and 104≥m≥-104.

 --!pre: s=0 and 104≥m≥-104;
FOR i in 1..m (23)
LOOP s := s+i; END LOOP;
 --!post: s = sum(k,k,1,m);

The proof of the five conditions for the consistency of (23) is as follows.

 [pre ⇒ LO, UP ∈ TR]
≡ [s=0 ∧ 104≥m≥-104 ⇒ 1, m ∈ int32]
≡ true

 [pre ∧ LO > UP ⇒ post]
≡ [s=0 ∧ 104≥m≥-104 ∧ 1 > m ⇒ s = sum(k,k,1,m)]
≡ -- 1 > m ≡ sum(k,k,1,m) = 0
≡ true

 [pre ∧ LO ≤ UP ⇒ wp(„BODYi

LO;“, invi
LO)]

≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒
 wp(„s:=s+1;“, s=sum (k,k,1,1) ∧ 0≤s≤109 ∧ 104≥m≥-104)]
≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ wp(„s:=s+1;“, s=1 ∧ 0≤s≤109 ∧ 104≥m≥-104)]
≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ s+1=1 ∧ 0≤s+1≤109 ∧ 104≥m≥-104]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ s=0 ∧ 0≤s+1≤109]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ 0≤s+1≤109]
≡ true

 [1 ≤ j < n ∧ LO ≤ UP ∧ invi

vj ⇒ wp(BODYi
v(j+1), invi

v(j+1))]
≡ [1 ≤ j < n ∧ 1 ≤ m ∧ s=sum(k,k,1,j) and 0≤s≤109 ∧ 104≥m≥-104 ⇒
 wp(„s:=s+(j+1);“, s=sum(k,k,1,j+1) ∧ 0≤s≤109 ∧ 104≥m≥-104)]
≡ -- in this example n = m holds
 [1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m≥-104 ⇒
 s+(j+1)=sum(k,k,1,j+1) ∧ 0≤s+(j+1)≤109 ∧ 104≥m≥-104]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m≥-104 ⇒
 s=sum(k,k,1,j) ∧ 0≤s+(j+1)≤109]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤109 ∧ 104≥m≥-104 ⇒ 0≤s+(j+1)≤109]
≡ -- sum is monotonic; holds also for m=104 ∧ j=9_999 such that 0≤s+(j+1)≤109 ≡

-- 0≤50_005_000≤109 ≡ true
 true

 [LO ≤ UP ∧ invi

UP ⇒ post]
≡ [1 ≤ m ∧ s=sum (k,k,1,m) ∧ 0≤s≤109 ∧ 104≥m≥-104 ⇒ s=sum (k,k,1,m)]
≡ true

 12

New Proof Rules for FOR-Loops

6.3 „Exotic“ Example
Loop (24) is the somewhat exotic example mentioned already in sec. 4:

 v := 5;
 --pre: v = 5
 FOR i IN 1 .. 10
 LOOP v := i; (24)
 --inv: v = i
 END LOOP;
 --post: v = 10

If we substitute pre, inv and post of (24) in (13) we obtain the CC (25) for the loop (24). For TR we use
again Int32.

 [(pre ⇒ LO, UP ∈ TR) ∧
 (pre ∧ LO > UP ⇒ post) ∧
 (pre ∧ LO ≤ UP ⇒ wp(„BODYi

LO;“, invi
LO)) ∧

 (1 ≤ j < n ∧ LO ≤ UP ∧ invi
vj ⇒ wp(BODYi

v(j+1), invi
v(j+1))) ∧

 (LO ≤ UP ∧ invi
UP ⇒ post)]

≡
 [(v=5 ⇒ 1, 10 ∈ Int32) ∧
 (v=5 ∧ 1 > 10 ⇒ v=10) ∧
 (v=5 ∧ 1 ≤ 10 ⇒ wp(„v:=1;“, v=1)) ∧ (25)
 (1 ≤ j < 10 ∧ 1 ≤ 10 ∧ v=j ⇒ wp(v:=j+1;, v=j+1)) ∧
 (1 ≤ 10 ∧ v=10 ⇒ v=10)]
≡ -- arithmetic, logic, wp
 [(v=5 ⇒ true) ∧ (false ⇒ v=10) ∧ (v=5 ∧ 1 ≤ 10 ⇒ 1=1) ∧
 (1 ≤ j < 10 ∧ true ∧ v=j ⇒ j+1 = j+1) ∧ (true ∧ v=10 ⇒ v=10)]
≡ -- logic
 true

6.4 Inconsistently Specified FOR-Loop
This example is very much the same as example (23) in sec. 6.2. The only difference is in the invariant
which is now: inv ≡ s=sum (k,k,1,i) and 0≤s≤107 and 104≥m≥-104. This yields the FOR-loop (26).

 --!pre: s=0 and 104≥m≥-104;
FOR i in 1..m
LOOP s := s+i;
 --!inv: s=sum(k,k,1,i) and 0≤s≤107 and 104≥m≥-104;
END LOOP; (26)
 --!post: s = sum(k,k,1,m);

Since only the invariant is different it suffices to prove the last three conjuncts of (13).
 [pre ∧ LO ≤ UP ⇒ wp(„BODYi

v1;“, invi
v1)]

≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒
 wp(„s:=s+1;“, s=sum (k,k,1,1) ∧ 0≤s≤107 ∧ 104≥m≥-104)]
≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ wp(„s:=s+1;“, s=1 ∧ 0≤s≤107 ∧ 104≥m≥-104)]
≡ [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ s+1=1 ∧ 0≤s+1≤107 ∧ 104≥m≥-104]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ s=0 ∧ 0≤s+1≤107]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ⇒ 0≤s+1≤107]
≡ true

 13

New Proof Rules for FOR-Loops

 [1 ≤ j < n ∧ LO ≤ UP ∧ invi
vj ⇒ wp(BODYi

v(j+1), invi
v(j+1))]

≡ -- in this example n = m holds
 [1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥-104 ⇒
 wp(„s:=s+(j+1);“, s=sum(k,k,1,j+1) ∧ 0≤s≤107 ∧ 104≥m≥-104)]
≡ [1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥-104 ⇒
 s+(j+1)=sum(k,k,1,j+1) ∧ 0≤s+(j+1)≤107 ∧ 104≥m≥-104]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥1 ⇒ s=sum(k,k,1,j) ∧ 0≤s+(j+1)≤107]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥1 ⇒ 0≤s+(j+1)≤107]
≡ -- the negation is true

-- (∃ j, m, s: 1 ≤ j < m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥1 ∧
-- ¬ (0≤s+(j+1)≤107))
-- ≡ -- m = 5000, j = 4471, s = 9_997_156 ≤ 107, s+(j+1) = 10_001_628 > 107
-- true

 false

 [LO ≤ UP ∧ invi

UP ⇒ post]
≡ [1 ≤ m ∧ s=sum (k,k,1,m) ∧ 0≤s≤107 ∧ 104≥m≥-104 ⇒ s=sum (k,k,1,m)]
≡ true

Since one conjunct is false (26) is not consistent. We observe that the erroneous values are not the maximal
values for m and j. The idea to try to check the condition by using the maximal values for m and j is falla-
cious:
 1 ≤ j < m ∧ 1 ≤ m ∧ s=sum(k,k,1,j) ∧ 0≤s≤107 ∧ 104≥m≥-104 ⇒ 0≤s+(j+1)≤107

≡ -- m = 104, j = 9_999, s = 49_995_000 > 107, s+(j+1) = 50_005_000 > 107 (27)
 false ⇒ false
≡ true
The erroneous value for j gives exactly that value of the loop parameter i for which the execution of BODY
fails for the first time: i = j+1 = 4472. In typical implementations the normal execution of the loop would
then be abandoned. As a consequence the situation of (27) would never arise.

6.5 FOR-Loop in which BODY Modifies Bounds
This example (28) is very much the same as example (22) in sec. 6.2. The only difference is that BODY sets
the value of m to zero. According to the assumptions of sec. 3 this should not change the behavior wrt s.

 --!pre: s=0 and 104≥m>0 and m=Km;
FOR i in 1..m
LOOP m := 0;
 s := s+i; (28)
 --!inv: s=sum(k,k,1,i) and 0≤s≤109 and 104≥Km>0;
END LOOP;
 --!post: s = sum(k,k,1,Km);

Since the bounds are modified within BODY we have to use CC (12).

 [pre ⇒ LO, UP ∈ TR]
≡ [s=0 ∧ 104≥m>0 ∧ m=Km ⇒ 1, m ∈ Int32]
≡ true

 14

New Proof Rules for FOR-Loops

 [pre ∧ LO > UP ⇒ post]
≡ [s=0 ∧ 104≥m>0 ∧ m=Km ∧ 1 > m ⇒ s = sum(k,k,1,Km)]
≡ [false ⇒ s = sum(k,k,1,Km)]
≡ true

 [pre ∧ LO ≤ UP ⇒ wp(„BODYi

v1“, invi
v1)v1,

LO,
vn,

UP]
≡ [s=0 ∧ 104≥m>0 ∧ m=Km ∧ 1 ≤ m ⇒
 wp(„(m:=0; s:=s+i;)i

1“, (s=sum (k,k,1,i) ∧ 0≤s≤109 ∧ 104≥Km>0)i
1)v1,

1,
vn,

m]
≡ [s=0 ∧ 104≥m>0 ∧ m=Km ∧ 1 ≤ m ⇒
 wp(„m:=0; s:=s+1;“, s=sum (k,k,1,1) ∧ 0≤s≤109 ∧ 104≥Km>0)v1,

1,
vn,

m]
≡ -- wp
 [s=0 ∧ 104≥m>0 ∧ m=Km ⇒
 (s+1=sum (k,k,1,1) ∧ 0≤s+1≤109 ∧ 104≥Km>0)v1,

1,
vn,

m]
≡ [s=0 ∧ 104≥m>0 ∧ m=Km ⇒ s+1=1 ∧ 0≤s+1≤109 ∧ 104≥Km>0]
≡ -- eliminate Km
 [s=0 ∧ 104≥m>0 ⇒ s=0 ∧ 0≤s+1≤109 ∧ 104≥m>0]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=0 ∧ 104≥m>0 ⇒ 0≤s+1≤109]
≡ true

 [1 ≤ j < n ∧ v1 ≤ vn ∧ invi

vj ⇒ wp(BODYi
v(j+1), invi

v(j+1))]
≡ -- v1=1 ∧ vn=Km
 [1 ≤ j < n ∧ 1 ≤ Km ∧ (s=sum (k,k,1,i) ∧ 0≤s≤109 ∧ 104≥Km>0)i

j ⇒
 wp((„m:=0; s:=s+i;“)i

j+1, (s=sum (k,k,1,i) ∧ 0≤s≤109 ∧ 104≥Km>0)i
j+1))]

≡ -- n = Km
 [1 ≤ j < Km ∧ 1 ≤ Km ∧ s=sum (k,k,1,j) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒
 wp(„m:=0; s:=s+(j+1);“, s=sum (k,k,1,j+1) ∧ 0≤s≤109 ∧ 104≥Km>0)]
≡ -- wp
 [1 ≤ j < Km ∧ s=sum (k,k,1,j) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒
 s+(j+1)=sum (k,k,1,j+1) ∧ 0≤s+(j+1)≤109 ∧ 104≥Km>0]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c; j≥1 ⇒ sum(k,k,1,j+1)=sum(k,k,1,j)+(j+1)
 [1 ≤ j < Km ∧ s=sum (k,k,1,j) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒
 s+(j+1)=sum (k,k,1,j)+(j+1) ∧ 0≤s+(j+1)≤109]
≡ [1 ≤ j < Km ∧ s=sum (k,k,1,j) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒ s=sum (k,k,1,j) ∧ 0≤s+(j+1)≤109]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [1 ≤ j < Km ∧ s=sum (k,k,1,j) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒ 0≤s+(j+1)≤109]
≡ -- holds also for Km=104 ∧ j=9_999 (then s=49_995_000, s+(j+1) = 50_005_000)
 true

 [v1 ≤ vn ∧ invi

vn ⇒ post]
≡ [1 ≤ Km ∧ (s=sum (k,k,1,i) ∧ 0≤s≤109 ∧ 104≥Km>0)i

Km ⇒ s = sum(k,k,1,Km)]
≡ [1 ≤ Km ∧ s=sum (k,k,1,Km) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒ s = sum(k,k,1,Km)]
≡ -- a ∧ b ⇒ a
 true

Since all five clauses are true (28) is consistent.

We observe that in this case the fifth clause of (13) would give a wrong result.

 [(LO ≤ UP ∧ invi
UP ⇒ post)]

≡ [(1 ≤ m ∧ (s=sum (k,k,1,i) ∧ 0≤s≤109 ∧ 104≥Km>0)i
UP ⇒ s = sum(k,k,1,Km)]

≡ -- UP = m
 [1 ≤ m ∧ s=sum (k,k,1,m) ∧ 0≤s≤109 ∧ 104≥Km>0 ⇒ s = sum(k,k,1,Km)]
≡ -- m=1, Km=2, s=1

 15

New Proof Rules for FOR-Loops

 (1 ≤ 1 ∧ 1=sum (k,k,1,1) ∧ 0≤1≤109 ∧ 104≥2>0 ⇒ 1 = sum(k,k,1,2)) ∧ Q
≡ (1 ≤ 1 ∧ 1=1 ∧ 0≤1≤109 ∧ 104≥2>0 ⇒ 1 = 2) ∧ Q
≡ (true ⇒ false) ∧ Q
≡ false ∧ Q
≡ false

7 FOR-Loop as a special WHILE-Loop
As already mentioned in sec. 2 the FOR-loop is treated quite rarely in the literature on program verification.
If it is mentioned at all, it is often defined using an ersatz program based on the WHILE-loop [AA 78: 81;
Ams 87: 88, 89] Similarly, the Pascal standard defines the semantics of the FOR-loop by an ersatz program
based on the WHILE-loop [ISO 7185: 6.8.3.9]. Zuse also reduces the FOR-loop to a WHILE-loop [Zus 72:
4-34]. For the FOR-loop

FOR i := a TO b DO S (29)

[AA 78: 81] uses the ersatz program (30).

IF a ≤ b THEN
BEGIN i := a; S;
 WHILE i < b DO
 BEGIN i := succ(i); (30)
 S;
 END
END

Sometimes, a more naïve ersatz program (31) is proposed [Ams 87: 88, 89; App 97: 163].

LET VAR i := a
 VAR limit := b
IN WHILE i ≤ limit (31)
 DO (S; i := i+1)
END

Program (31) does not work correctly if b = last (type (i)), a fact which is also mentioned by Appel and by
Dahl [Dah 92: 95]. This means that (31) is not really an ersatz program for (29).

In (30) a is evaluated once or twice and b is evaluated (n+1) times, where n is the number of executions of S.
These repeated evaluations are avoided in the ersatz program given in the Pascal standard. Because of the
repeated evaluations of b (30) is in general not equivalent to (29). If b is modified from within S the behavior
may be different. If we combine (30) and (31) we obtain ersatz program (32), which is nearly the same as in
the Pascal standard. Apart from the nondeterministic evaluation of a and b (32) leads to essentially the same
computation as (3). Therefore, (32) is an ersatz program for the FOR-loop (29) according to the concept of
FOR-loop in this paper. (30) would be more appropriate for more dynamic FOR-loops as e.g. in Algol 60 or
Java.

BEGIN temp1 := a;
 temp2 := b;
 IF temp1 ≤ temp2
 THEN i := temp1;
 S; (32)
 WHILE i < temp2
 DO i := succ(i); S;
 END;
 END;
END;

The difference between (32) and the ersatz program given in the Pascal standard is that Pascal uses a differ-
ent condition in the WHILE-loop: „WHILE i <> temp2“. Dahl also gives a correct ersatz program based on

 16

New Proof Rules for FOR-Loops

a LOOP-WHILE-REPEAT-loop in which the WHILE clause appears after the loop body S. This avoids the
duplication of S in the ersatz program [Dah 92: 95]

A proof of [pre ⇒ wp((32), post)] involves the computation of wp(WHILE, post). If the number of
repetitions of the WHILE-loop is statically known this can be done as shown in the example in sec. 6.1. If
the number of repetitions is not statically known we can apply the scheme based on invariant and termination
function.3 The annotated program (33) uses the invariant inv and the termination function tf, whose range is
the set of positive integers. T is a fresh identifier of type Natural. For the sake of simplicity we assume that
the type of a, b and i is of kind Integer. Usually, general discrete types are allowed for the range of a FOR-
loop. But most languages provide mappings from discrete types to Integer, as e.g. the function Ord in Pascal
or the attribute Pos in Ada, and therefore, this is no serious restriction. In (33) we use the same names as in
(3) in order to make the comparison between the CCs easier.

 -- pre ∧ v1=LO ∧ vn=UP
BEGIN -- LO, UP ∈ TR
 vlo, vup, i : Txy;
 vlo := LO;
 vup := UP;
 IF vlo ≤ vup
 THEN -- vlo=LO ∧ vup=UP ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn
 i := vlo;
 -- vlo=LO ∧ vup=UP ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn ∧ i=vlo
 BODY;
 -- pre-while (33)
 -- inv ∧ tf ≥ 0 ∧ i=v1 ∧ vlo=v1 ∧ vup=vn ∧ v1 ≤ vn ∧ i ≤ vn
 WHILE i < vup
 LOOP -- inv ∧ tf > 0 ∧ T = tf ∧ i<vn ∧ vlo=v1 ∧ vup=vn ∧ v1<vn
 i := i+1; BODY;
 -- inv ∧ tf ≥ 0 ∧ tf < T ∧ i≤vn ∧ vlo=v1 ∧ vup=vn ∧ v1<vn
 END LOOP;
 -- i ≥ vn ∧ (inv ∧ tf ≥ 0 ∧ i=v1 ∧ vlo=v1 ∧ vup=vn ∧ v1=vn ∧ i=vn ∨
 (inv ∧ tf ≥ 0 ∧ tf < T ∧ i≤vn ∧ vlo=v1 ∧ vup=vn ∧ v1<vn)
 -- post-while
 ELSE NULL;
 END IF;
END BEGIN;
 -- destroy vlo, vup, i
 -- post

Apart from pre, post and inv we have three additional elements in (33): the assertions pre-while and post-
while, and the termination function tf. For tf we can always use „vn - i“. For post-while the best we can use
is post because the program state is the same after END LOOP, after END IF and after END BEGIN. For
pre-while the best we can use is

 sp(vlo≤vup ∧ sp(pre ∧ v1=LO ∧ vn=UP, „vlo:=LO; vup:=UP;“), „i:=vlo; BODY;“)

where sp means „strongest postcondition“.

For this condition we obtain:

 sp(vlo≤vup ∧ sp(pre ∧ v1=LO ∧ vn=UP, „vlo:=LO; vup:=UP;“), „i:=vlo; BODY;“)
≡ -- vlo, vup and i do not occur in pre, LO and UP
 sp(vlo≤vup ∧ pre ∧ v1=LO ∧ vn=UP ∧ vlo=LO ∧ vup=UP , „i:=vlo; BODY;“)
≡ -- sp
 sp(sp(vlo≤vup ∧ pre ∧ v1=LO ∧ vn=UP ∧ vlo=LO ∧ vup=UP, „i:=vlo;“), „BODY;“)
≡ -- i does not occur in vlo, vup, pre, LO and UP
 sp(vlo≤vup ∧ pre ∧ v1=LO ∧ vn=UP ∧ vlo=LO ∧ vup=UP ∧ i=vlo, „BODY;“)

3 In special cases it is possible to compute wp(WHILE, post) using the method of Kauer [Kau 98].

 17

New Proof Rules for FOR-Loops

If we apply these observations to (33) we obtain the annotated program (34). As in sec. 4 we do no longer
mention vlo and vup in the assertions and CCs but use v1 and vn instead.

 -- pre ∧ v1=LO ∧ vn=UP
BEGIN -- LO, UP ∈ TR
 vlo, vup, i : Txy;
 vlo := LO;
 vup := UP;
 -- pre ∧ v1=LO ∧ vn=UP
 IF vlo ≤ vup
 THEN -- pre ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn
 i := vlo;
 -- pre ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn ∧ i=v1
 BODY;
 -- sp(pre ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn ∧ i=v1, „BODY;“) (34)
 -- inv ∧ vn-i ≥ 0 ∧ i=v1 ∧ v1 ≤ vn ∧ i ≤ vn
 WHILE i < vup
 LOOP -- inv ∧ vn-i > 0 ∧ T = vn-i ∧ i<vn ∧ v1<vn
 i := i+1; BODY;
 -- inv ∧ vn-i ≥ 0 ∧ vn-i < T ∧ i≤vn ∧ v1<vn
 END LOOP;
 -- i ≥ vn ∧ (inv ∧ vn-i ≥ 0 ∧ i=v1 ∧ v1=vn ∧ i=vn ∨
 (inv ∧ vn-i ≥ 0 ∧ vn-i < T ∧ i≤vn ∧ v1<vn)
 -- post
 ELSE
 -- pre ∧ v1=LO ∧ vn=UP ∧ v1 > vn
 NULL;
 -- post
 END IF;
END BEGIN;
 -- destroy vlo, vup, i
 -- post

Some assertions in (34) can be further simplified, leading to the annotated ersatz program (35)

 -- pre ∧ v1=LO ∧ vn=UP
BEGIN -- LO, UP ∈ TR
 vlo, vup, i : Txy;
 vlo := LO;
 vup := UP;
 -- pre ∧ v1=LO ∧ vn=UP
 IF vlo ≤ vup
 THEN -- pre ∧ v1=LO ∧ vn=UP ∧ v1≤vn
 i := vlo;
 -- pre ∧ v1=LO ∧ vn=UP ∧ v1≤vn ∧ i=v1
 BODY;
 -- sp(pre ∧ v1=LO ∧ vn=UP ∧ v1≤vn ∧ i=v1, „BODY;“) -- (*) (35)
 -- inv ∧ i=v1 ∧ v1≤vn ∧ i≤vn
 WHILE i < vup
 LOOP -- inv ∧ T=vn-i ∧ i<vn ∧ v1<vn
 i := i+1; BODY;
 -- inv ∧ vn-i<T ∧ i≤vn ∧ v1<vn
 END LOOP;
 -- i=vn ∧ inv ∧ (v1=vn ∨ v1<vn ∧ vn-i<T)
 -- post
 ELSE
 -- pre ∧ v1=LO ∧ vn=UP ∧ v1>vn
 NULL;
 -- post
 END IF;
END BEGIN;
 -- destroy vlo, vup, i

 18

New Proof Rules for FOR-Loops

 -- post

Most of the CC can be read off directly from (35). For the induction step we obtain
 [inv ∧ T = vn-i ∧ i<vn ∧ v1<vn ⇒ wp(„i := i+1; BODY;“, inv ∧ vn-i < T ∧ i≤vn ∧ v1<vn)]
≡ -- v1, vn, i and T are not modified within BODY, strong conjunctivity of wp
 [inv ∧ T = vn-i ∧ i<vn ∧ v1<vn ⇒ vn-i-1 < T ∧ i+1≤vn ∧ v1<vn ∧ wp(„i := i+1; BODY;“, inv)]
≡ -- T does not occur in BODY and inv; eliminate T
 [inv ∧ i<vn ∧ v1<vn ⇒ (vn-i)-1 < vn-i ∧ i+1≤vn ∧ v1<vn ∧ wp(„i := i+1; BODY;“, inv)]
≡ -- arithmetic; a ⇒ b ≡ a ⇒ a ∧ b
 [inv ∧ i<vn ∧ v1<vn ⇒ wp(„i := i+1; BODY;“, inv)]

Using this we obtain the complete CC (36).

[pre ⇒ LO, UP ∈ TR] ∧
[pre ∧ LO > UP ⇒ post] ∧ (36)
[sp(pre ∧ v1=LO ∧ vn=UP ∧ v1 ≤ vn ∧ i=v1, „BODY;“) ⇒ inv ∧ i=v1 ∧ v1 ≤ vn ∧ i ≤ vn] ∧
[inv ∧ i<vn ∧ v1<vn ⇒ wp(„i := i+1; BODY;“, inv)] ∧
[i=vn ∧ inv ∧ (v1=vn ∨ v1<vn ∧ vn-i < T) ⇒ post]

(36) corresponds to (12) but looks somewhat more complicated.

Again, as in sec. 4 the CC can be simplified if LO and UP are not modified from within S giving us the CC
(37).

[pre ⇒ LO, UP ∈ TR] ∧
[pre ∧ LO > UP ⇒ post] ∧
[sp(pre ∧ LO ≤ UP ∧ i=LO, „BODY;“) ⇒ inv ∧ i=LO ∧ LO ≤ UP ∧ i ≤ UP] ∧ (37)
[inv ∧ i<UP ∧ LO<UP ⇒ wp(„i := i+1; BODY;“, inv)] ∧
[i=UP ∧ inv ∧ (LO=UP ∨ LO<UP ∧ UP-i < T) ⇒ post]

If we use (37) with the inconsistently specified FOR-loop (26) we obtain the result below. As invariant we
use inv ≡ s=sum (k,k,1,i) and 0≤s≤107 and 104≥m≥-104 and i≥1 . The first two clauses in (37) are the
same as the first two in (13). They have already been proved in sec. 6.2. We therefore only need to prove the
remaining three clauses of (37).

 [sp(pre ∧ LO ≤ UP ∧ i=LO, „BODY;“) ⇒ inv ∧ i=LO ∧ LO ≤ UP ∧ i ≤ UP]
≡ [sp(s=0 ∧ 104≥m≥-104 ∧ 1 ≤ m ∧ i=1, „s:=s+i;“) ⇒
 s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m≥-104 ∧ i≥1 ∧ i=1 ∧ 1 ≤ m ∧ i ≤ m]
≡ -- sp
 [s=1 ∧ 104≥m≥1 ∧ i=1 ⇒ s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m≥1 ∧ i=1 ∧ i ≤ m]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c
 [s=1 ∧ 104≥m≥1 ∧ i=1 ⇒ s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ i ≤ m]
≡ true

 [inv ∧ i<UP ∧ LO<UP ⇒ wp(„i := i+1; BODY;“, inv)] ∧
≡ [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m≥-104 ∧ i≥1 ∧ i<m ∧ 1<m ⇒
 wp(„i := i+1; s:=s+i;“, s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m≥-104 ∧ i≥1)]
≡ [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1 ∧ i<m ⇒
 wp(„i := i+1; s:=s+i;“, s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1)]
≡ -- wp
 [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1 ∧ i<m ⇒
 wp(„i := i+1;“, s+i=sum (k,k,1,i) ∧ 0≤s+i≤107 ∧ 104≥m>1 ∧ i≥1)]

 19

New Proof Rules for FOR-Loops

≡ -- wp
 [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1 ∧ i<m ⇒
 s+(i+1)=sum (k,k,1,i+1) ∧ 0≤s+(i+1)≤107 ∧ 104≥m>1 ∧ i+1≥1]
≡ [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1 ∧ i<m ⇒
 s=sum (k,k,1,i) ∧ 0≤s+(i+1)≤107 ∧ i≥0]
≡ -- a ∧ b ⇒ a ∧ c ≡ a ∧ b ⇒ c; i≥1 ∧ i≥0 ≡ i≥1
 [s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m>1 ∧ i≥1 ∧ i<m ⇒ 0≤s+(i+1)≤107]
≡ -- the same condition as in sec. 6.4
 false

 [i=UP ∧ inv ∧ (LO=UP ∨ LO<UP ∧ UP-i < T) ⇒ post]
≡ [i=m ∧ s=sum (k,k,1,i) ∧ 0≤s≤107 ∧ 104≥m≥-104 ∧ i≥1 ∧ (1=m ∨ 1<m ∧ m-i < T) ⇒
 s=sum (k,k,1,m)]
≡ -- eliminate i
≡ [s=sum (k,k,1,m) ∧ 0≤s≤107 ∧ 104≥m≥-104 ∧ m≥1 ∧ (1=m ∨ 1<m ∧ m-m < T) ⇒
 s=sum (k,k,1,m)]
≡ -- true

We obtain essentially the same result as in sec. 6.4 but the derivation is somewhat more complicated.

8 Conclusions
In this paper we have developed new proof rules for FOR-loops. These rules are appropriate for FOR-loops
in existing programming languages as e.g. Ada or Pascal and therefore, may be readily applied to programs
in those languages. In the literature we often find rules which are based on some idealized form of FOR-
loops. A second improvement is that the new rules do not require the invariant to hold before the first execu-
tion of the loop body and that they also cover the case in the which the loop body is not executed at all. It
still remains to develop proof rules for more complicated FOR-loops as e.g. those of Java or C++.

Acknowledgment
I am grateful to M. Hartmeier and S. Kauer for useful hints to earlier drafts of this paper. F. Ecke gave very
useful hints which improved my English.

References

AA 78 Alagic, Suad; Arbib, Michael A.: The Design of Well-Structured and Correct Programs. Springer, New York

etc., 1978. 0-387-90299-6
Abr 96 Abrial, J.-R.: The B-Book - Assigning Programs to Meanings. Cambridge University Press, 1996.

0-521-49619-5
Ams 87 Amstel, J. J. van: Die Entwicklung von Algorithmen in Pascal. Addison-Wesley, Bonn etc, 1987.

3-925118-19-5
AO 94 Apt, Krysztof R.; Olderog, Ernst-Rüdiger: Programmverifikation. Springer, Berlin etc., 1994.

3-540-57479-4
App 97 Appel, Andrew W.: Modern Compiler Implementation in Java. Cambridge University Press, Cambridge,

1997. 0-521-58387-X
Bab 87 Baber, Robert Laurence: The Spine of Software. John Wiley & Sons, Chichester etc., 1987.

0-471-91474-6
Bab 91 Baber, Robert Laurence: Error Free Software. John Wiley & Sons, Chichester etc., 1991. 0-471-93016-4
Bac 81 Backus, John: The History of FORTRAN I, II, and III. = [Wex 81: 25 .. 45]

 20

New Proof Rules for FOR-Loops

BBG 63 Backus, J.W.; Bauer, F.L.; Green, J.; Katz, C.; McCarthy, J.; Naur, P.; Perlis, A.J.; Rutishauser, H.; Samel-
son, K.; Vauquois, B.; Wegstein, J.H.; Wijngaarden, A. van; Woodger, M.: Revised Report on the Algo-
rithmic Language ALGOL 60. CACM 6, 1 (1963) 1 .. 17

Bes 95 Best, Eike: Semantik. Friedr. Vieweg & Sohn, Braunschweig, 1995. 3-528-05431-X. (also in English: 0-13-
460643-4)

BK 94 Beitz, W.; Küttner, K.-H. (eds.): DUBBEL - Handbook of Mechanical Engineering. Springer, Berlin etc.
1994. 3-540-19868-7

Bow 55 Bowden, B. V. (ed.): Faster Than Thought. Sir Isaac Pitman & Sons, London, 1955
Cou 92 Cousot, Patrick: Methods and Logics for Proving Programs. = Leeuwen, Jan van: Handbook of Theoretical

Computer Science, Volume B, Formal Models and Semantics. Elsevier / MIT Press, Amsterdam etc. / Cam-
bridge, 2nd pr. 1992, 841..993. 0-444-88074-7

Dah 92 Dahl, Ole-Johan: Verifiable Programming. Prentice Hall, New York etc., 1992. 0-13-951062-1
Dij 76 Dijkstra, Edsger W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, 1976.

0-13-215871-X
Dor 93 Dorf, Richard C. (ed.): The Electrical Engineering Handbook. CRC Press, Boca Raton etc., 1993.

0-8493-0185-8
DS 90 Dijkstra, Edsger W.; Scholten, Carel S.: Predicate Calculus and Program Semantics. Springer, New York

etc., 1990. 0-387-96957-8
Flo 67 Floyd, Robert W.: Assigning Meanings to Programs. AMS Proc. of Symposia in applied Mathematics, Vol.

19, Am. Math. Soc., Providence, Rhode Island, 1967, 19..32
Fra 92 Francez, Nissim: Program Verification. Addison-Wesley, Wokingham etc., 1992. 0-201-41608-5
Fut 89 Futschek, Gerald: Programmentwicklung und Verifikation. Springer, New York etc., 1989.

0-387-81867-7
FWW 87 Watt, David A.; Wichmann, Brian A.; Findlay, William: ADA - Language and Methodology. Prentice/Hall

Int., Englewood Cliffs etc., 1987. 0-13-004078-9
GJS 96 Gosling, James; Joy, Bill; Steele, Guy: The Java™ Language Specification. Addison-Wesley 1996.

0-201-63451-1
Gri 83 Gries, David: The Science of Programming. Springer, New York. etc., 1983. 0-387-90641-X
Heh 93 Hehner, Eric C. R.: A Practical Theory of Programming. Springer, New York etc., 1993. 0-387-94106-1
Hoa 69 Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. CACM 12, 10 (1969) 576..580, 583
Hoa 72 Hoare, C.A.R.: A Note on the FOR Statement. BIT 12,3 (1972) 334..341
HW 73 Hoare, C.A.R.; Wirth, N.: An Axiomatic Definition of the Programming Language Pascal. Acta Informatica

2,4 (1973) 335...355
ISO 1539 ISO/IEC 1539:1991: Information technology -- Programming languages -- FORTRAN. ISO / IEC, Genève,

1991
ISO 7185 ISO / IEC 7185:1990(E): Information Technology - Programming Languages - Pascal. ISO / IEC, Genève,

1990
ISO 8652 ISO / IEC 8652:1995(E): Information Technology - Programming Languages - Ada. ISO / IEC, Genève,

1995
Kau 98 Kauer, Stefan: Automatische Erzeugung von Verifikations- und Falsifikationsbedingungen sequentieller

Programme. Dissertation, Friedrich Schiller University, 1998
Kna 96 Knappe, Stefan: Computation of the Verification Conditions for a Subset of Ada. Diploma Thesis, Friedrich

Schiller University, Dept. of Computer Science, Jena, 1996.May.02. (in German)
KW 97 Winkler, Jürgen F. H.; Kauer, Stefan: Proving Assertions is also Useful. SIGPLAN Notices 32,3 (1997)

38..41
McC 81 McCarthy, John: History of LISP. = [Wex 81: 173 .. 185]
Men 55 Menabrea, L. F.: Sketch of the Analytical Engine invented by Charles Babbage, Esq. =

[Bow 55: 341..408] = Reprint from Taylor’s Scientific Memoirs, Vol. III, 1843, 666..731
PR 97 Rechenberg, Peter; Pomberger, Gustav (eds.): Informatik-Handbuch. Carl Hanser, München usw. 1997.

3-446-18691-3
Sam 69 Sammet, Jean E.: Programming Languages: History and Fundamentals. Prentice Hall, Englewood Cliffs,

1969

 21

New Proof Rules for FOR-Loops

Tuc 97 Tucker, Allen B. Jr. (ed.): The Computer Science and Engineering Handbook. CRC Press, Boca Raton,
1997. 0-8493-2909-4

Wex 81 Wexelblat, Richard L. (ed.): History of Programming Languages. Academic Press, New York etc., 1981.
0-12-745040-8

Win 96 Winkler, Jürgen F. H.: Some Properties of the Smallest Post-Set and the Largest Pre-Set of Abstract Pro-
grams. Friedrich Schiller University, Jena, Dept. of Math. and Computer Science, Report Math / Inf / 96 / 32,
http://www1.informatik.uni-jena.de/themen/pap-talk/wp-stat5.ps

Zus 72 Zuse, Konrad: Der Plankalkül. Gesellschaft für Mathematik und Datenverarbeitung, Bonn, Bericht BMBW-
GMD-63, 1972

Zus 89 Zuse, Konrad: The Plankalkül. Oldenbourg, München, Wien, 1989. 3-486-21288-5

 22

