
JÜRGEN F. H. WINKLER

THE FREGE PROGRAM PROVER FPP

Abstract

The Frege Program Prover (FPP) is an experi-
mental system which supports the programmer
when calculating the effect or semantics of pro-
grams or program fragments. FPP supports two
kinds of such calculations:

a) Compute the weakest precondition: wp(PF,
Post). Compute the weakest precondition for a
given program (fragment) PF and a given post-
condition Post.

 Example: wp(„v:=v+1;“, v>4)
 v+1 type(v) v+1 > 4
 v+1 type(v) v 4.

b) Check the correctness of a program (frag-
ment): i.e. check whether a given program
(fragment) PF satisfies a given specification
(Pre,Post). This is usually expressed as a Hoare
triple {Pre} PF {Post}. If PF satisfies the spec-
ification the triple is called consistent. This
consistency is defined as: Pre wp(PF,Post).

 Example: {v>0} v:=v+1; {v>4}
 v>0 wp(„v:=v+1;“, v>4)
 v>0 v+1 type(v) v 4
 False.

FPP is implemented as a WWW application
(http://www1.informatik.uni-jena.de/FPP/FPP-
main.htm) and supports a subset of Ada: Integer
and Boolean variables, assignment, sequence, IF,
CASE, FOR, and WHILE.

1 Introduction

Software has become an important and often
essential part of technical systems. It is used
in small devices as e.g. pacemakers up to big
systems as e.g. airplanes. Both are examples
of systems which require a high degree of
reliability and safety. This means that all parts
of design must be checked whether they guar-
antee these requirements. For electrical or
mechanical designs there exist methods to
check properties in an exact manner: e.g. cir-
cuit analysis [Dor 93] or analysis of structure.
Such methods are routinely applied by elec-
trical or civil engineers.

In SW engineering such methods also exist
but are not as mature as those in other fields
of engineering and are therefore neither
taught nor used routinely during the develop-
ment of programs. Whereas any electrical
engineer can perform the calculations neces-
sary for the quantitative analysis of simple
circuits it is usually not he case that a soft-
ware engineer can calculate the effect of a
simple program or program fragment in a
quantitative way. One important reason for
this is the very rapid development of the field.

The Frege Program Prover (FPP) is an exper-
imental system to support the SW engineer in
such calculations.

FPP is implemented as a WWW application
(http://www1.informatik.uni-jena.de/FPP
/FPP-main.htm) and supports a subset of Ada:
Integer and Boolean variables, assignment,
sequence, IF, CASE, FOR, and WHILE.

2 Semantics or the Effect of
Programs

As Dijkstra has pointed out it is the task of
computers to execute the programs construct-
ed by the SW engineers. The purpose of pro-
gram execution is to put the computer in some
specific state. Such a required final state can
e.g. be a state in which a certain variable con-
tains the sum of some other variables. In pro-
grams running continuously, as e.g. in em-
bedded systems, this characterization holds
for each cycle. The effect of a program can
therefore be characterized by the relation be-
tween the initial state (in which it is started)
and the final state(s) (in which it terminates).
This is often also called the semantics of the
program. In this paper I use mostly the term
„effect“.

The most abstract description of the effect of
a program is the relation between initial and
final states [Win 96]. Usually programs are
constructed out of smaller pieces (as. e.g.
modules, routines, declarations, statements).

In order to compute the effect of the whole
program two things must be known: (1) the
effect of the smaller pieces and (2) how to
compute the effect of a composition. Exam-
ple: if we know the effect of the two assign-
ments „abs := x;“ and „abs := -x;“ we have to
be able to compute the effect of:

IF min < x < 0
THEN abs := -x;
ELSE abs := x; FI

The program state is therefore the basic entity
for the characterization of the effect of pro-
grams. The program state is characterized by
the values of all objects in the program. Espe-
cially important among these objects are the
variables. In this paper we will characterize
the program state by the values of the varia-
bles in the program [Win 96] :

DEF-1: V = { v1, v2, ..., vn } is the set of pro-
gram variables, where n 1.

 W1, W2, ..., Wn are nonempty, finite sets
of admissible values for the corresponding
vi: Wi = VS(vi).

 W = W1 W2 ... Wn .

 S = {s VW: (v V: s(v) VS(v))}
is the set of proper states, where V W
denotes the set of functions from V into W.

 S = S {} is the set of states.

 C = 2S is the set of proper conditions.

 C = 2S is the set of conditions.

 DEF-1

We call subsets of S or S conditions because
these subsets can be characterized by logical
expressions E where the logical expression
acts as the characteristic predicate of the sub-
set: e.g. {s S: E(s)}. Often it is simpler to
characterize a set of states (e.g. those in which
x > 0 for some program variable x) by a logi-
cal expression than by explicitly writing down
the set of states. In the computation of the
effects of programs we often deal with sets of
states rather than with single states. Therefore
conditions play a prominent role in program
analysis. The term „program analysis“ is used
in analogy to „circuit analysis“ [Dor 93, Ch.
3].

DEF-2: PROG = {P S x S: dom(P) = S }
is the set of abstract programs.

 An element (i,f) S x S is called a com-
putation with initial state i and final state f.

 If f then we say the computation (i,f)
terminates properly; if f = then the compu-
tation is a not(properly terminating) one.
This behavior can occur in different forms:
e.g. infinite loop or stop in the „middle“ of
the computation ; therefore the somewhat
unconventional expression „not(properly
terminating)“. DEF-2

In order to see how these abstract definitions
work for programs we look at some examples.

Exmp 1: the effect of the assignment x:= 10;
can be characterized as follows:

{ 10 VS(x) } x := 10; { x = 10 }.

This triple „condition statement condition“ is
a proposition which states: whenever the ini-
tial state is such that „10 VS(x)“ holds then
x:=10; is executable in this state and after
termination the program is in a state in which
x=10 holds. The precondition, in this case, is
very simple: it is either true or false. If it is
true it denotes the set S of all proper program
states: {s S: true}. If it is false it denotes the
empty set: {s S: false}. In the latter case
there exists no program state in which x:=10;
may be started and executed successfully.

Exmp 2: a second example is the assignment
x:=x+1; . Its effect can be characterized by:

{x=Kx x, x+1 VS(x) }
x:=x+1;

{x=Kx+1 x VS(x)}

If we assume VS(x) = 1..100 we see more
directly the sets of states characterized by the
precondition and by the postcondition:

{ x=Kx 1 x, x+1 100 }
x:=x+1;

{ x=Kx+1 1 x 100 }

which may be transformed into:

{ 1 x 99 x=Kx }
x:=x+1;

{ 2 x 100 x=Kx+1 }

In this case there are several states, in which
x:=x+1; may be successfully executed: 1 x
 99. If x=100 then an overflow will occur.
The detailed effect of x:=x+1; is described
using the specification variable Kx which
expresses the relation between x before and
after the execution of x:=x+1; .

Exmp 3: a third example is a conditional
statement which computes for certain values
of x the absolute value of x.
Let VS(x) = -128 .. +127.

{ x=-13 }
IF x < 0 THEN x := -x; FI

{ x = |-13| = 13 }

A more detailed annotation shows that the
statement really computes the absolute value
of the initial value of x:

{ x=-13 }
IF x < 0 THEN

{ x=-13 -128 -13 127 }
 x := -x;

{ -x=-13 -128 13 127 }
FI

{ x = |-13| = 13 }

Further simplification yields:

 { x=-13 }
IF x < 0 THEN
 { x=-13 } x := -x; { -x=-13 }
FI
 { x = |-13| = 13 }

In this case we have only looked at a single
starting state for the program (x = -13). In
section 4 we will do a more thorough analysis
of this statement.

3 The wp-Calculus

In section 2 we have seen some examples of
the precise characterization of the effect of
statements. The treatment was somewhat ad
hoc and we left it to the reader to be con-
vinced of the correctness of the annotated
program fragments. A more systematic treat-
ment is possible if we define the relation be-
tween the precondition and the postcondition
of a statement in a precise way. One possibil-
ity for this is the wp-calculus which computes

for a given pair (statement, postcondition) the
weakest i.e. most general precondition
wp(statement, postcondition) such that (1) the
statement is successfully executable in any
state of the wp(statement, postcondition), and
(2) the state after the execution of statement is
in postcondition [Dij 76; DS 90]. If we ex-
press it in the language of states
wp(statement, post) is the largest set of states
such that (1) the statement is successfully
executable in any state of wp(statement,
post), and (2) the state after the execution of
statement is in post [Win 96].

The effect of an assignment to a simple varia-
ble is defined by:

wp(„x:=expr;“, postcond)
def(expr) postcondx

expr

This means that (1) if expr is evaluated before
the execution of the assignment it must be
well defined and its value must be in VS(x),
and (2) whatever holds for the value of x after
the execution holds for the value of expr be-
fore the execution.

Exmp 4: (let VS(x) = 1..100)

wp(„x:=x+2;“, x > 50)

1 x+2 100 [x > 50]x
x+2

-1 x 98 x+2 > 50

49 x 98

If the expression on the right hand side is
more complicated the rule for def(expr) must
also express appropriate constraints for the
subexpressions.

The effect of an IF-statement is defined by:

wp(„IF be THEN stat1 ELSE stat2 FI“, poc)

def(be) [be wp(stat1, poc)
 be wp(stat2, poc)]

This rule expresses the following:

a) the expression be must be welldefined in
the state before execution of the IF-
statement

b) the evaluation of be does not change the
program state

c) if the value of be is true then stat1 is exe-
cuted

d) if the value of be is false then stat2 is exe-
cuted

This is what we expect to hold for the IF-
statement.

Exmp 5: we want to show that the following
IF-statement computes the absolute value of
the initial value of x (let VS(x) = -128 .. 127):

{-128 x 127 x = Kx}

IF x<0 THEN x:=-x; ELSE null; FI

{ -128 x 127 x = |Kx| }

wp(„IF x<0 THEN x:=-x; ELSE null; FI“,
x=|Kx|)

def(x<0) [x<0 wp(„x:=-x;“, x=|Kx|)
 x 0 wp(„null;“, x=|Kx|)]

-128 x 127
[x<0 -128 -x 127 -x=|Kx|
 x 0 x=|Kx|)]

-128 x 127
[-127 x -1 -x=|Kx|
 0 x 127 x=|Kx|)]

[-127 x -1 -x=|Kx|
 0 x 127 x=|Kx|)]

-127 x 127

We see immediately that the IF-statement
does not work for x=-128 because the weakest
precondition does not hold in this state:

-127 -128 127 false

4 The Frege Program Prover

It is quite tedious and error prone to perform
the calculations of the wp-calculus by hand.
This is a typical task for the computer. The
Frege Program Prover (FPP) is a tool to per-
form such calculations. FPP can essentially do
two things:

a) Compute the weakest precondition: wp(PF,
Post). Compute the weakest precondition

for a given program (fragment) PF and a
given postcondition Post.

 Example: wp(„v:=v+1;“, v>4)
 v+1 VS(v) v+1 > 4
 v+1 VS(v) v 4.

b) Check the correctness of a program (frag-
ment): i.e. check whether a given program
(fragment) PF satisfies a given specifica-
tion (Pre,Post). This is usually expressed as
a Hoare triple {Pre} PF {Post}. If PF sat-
isfies the specification the triple is called
consistent. This consistency is defined as:
Pre wp(PF,Post).

 Example: {v>0} v:=v+1; {v>4}
 v>0 wp(„v:=v+1;“, v>4)
 v>0 v+1 VS(v) v 4
 False.

FPP is implemented as a WWW application
(http://www1.informatik.uni-
jena.de/FPP/FPP-main.htm) and supports a
subset of Ada: Integer and Boolean variables,
assignment, sequence, IF, CASE, FOR, and
WHILE.

If we apply the FPP to the examples given
earlier in the paper we obtain:

Exmp 1: Input to FPP:

 --!Pre: -128 <= x and x < 127;
x := 10;
 --!Post: x = 10;

Answer of FPP:

1) --!pre:-128 <= x AND 127 >= 1
+ x
2) --> wp: True
3) --> vc: True
4) --> Result: proved
5) x := 10;
6) --!post: x = 10

The answer of FPP consists of the original
input (lines 1, 5, and 6) and the result of the
attempt to proof that the proposition

{ -128 x 127 } x := 10; { x = 10 }

is true. In FPP this proposition is called the
verification condition (vc). As mentioned
above

vc -128 x 127 wp(„x:=10;“, x=10)

FPP reports the weakest precondition in line 2
and the vc in line 3. In line 4 FPP says wheth-
er it could prove the vc. Since the vc is al-
ready true the proof is in this case a very sim-
ple one and has been successfully performed
by FPP. That vc true can be seen as fol-
lows: wp(„x:=10;“, x=10) 10 = 10 true
(FPP does in this step not take into account
VS(x)). With this we obtain:

vc -128 x 127 true true.

Exmp 2: Input to FPP:

--!Pre: x=kx and 1 <= x and
--!Pre: x <= 100 and 1 <= x+1 and
--!Pre: x+1 <= 100;
x := x+1;
--!Post: x=kx+1 and 1 <= x
--!Post: and x <= 100;

Answer of FPP:

--!pre: x = kx AND 1 <= x AND
--!pre: x <= 100 AND 1 <= 1 + x
--!pre: AND 1 + x <= 100
--> wp: 1 + x = 1 + kx AND
--> 1 <= 1 + x AND
--> 1 + x <= 100
--> vc: x = kx AND 1 <= x
--> AND x <= 100 AND 1 <= 1 + x
--> AND 1 + x <= 100
--> ==> 1 + x = 1 + kx
--> AND 1 <= 1 + x
--> AND 1 + x <= 100
--> Result: proved
x := x + 1;
--!post: x = 1 + kx AND 1 <= x
--!post: AND x <= 100

The answer of FPP shows that this program
fragment is consistent.

Exmp 3: in this example we want to use FPP
to compute for which values of x the IF-
statement computes the absolute value of x.
We do this in two steps: (1) compute the
weakest precondition; this gives us the set of
values of x for which the IF-statement can be
successfully executed; (2) check whether the
IF- statement computes the absolute value of
x for the values determined in step (1).

Step 1: Input to FPP:

IF x < 0 THEN x := -x; END IF;
--!Post: -128 <= x and x <= 127;

Answer of FPP:

--> wp: 0 >= 1 + x AND -128 <= -x
--> AND -x <= 127
--> OR 0 <= x AND -128 <= x
--> AND x <= 127
IF x < 0 THEN
 x := -x;
end if;
--!post: -128 <= x AND x <= 127

The somewhat clumsy expression for wp can
be simplified to: -127 x 127 .

Step 2: Input to FPP:

--!Pre: -127 <= x and x <= 127
--!Pre: and x = Kx;
IF x < 0 THEN x := -x; END IF;
--!Post: -128 <= x and x <= 127
--!Post: and ((x=Kx and Kx >= 0)
--!Post: or (x = -Kx and Kx<0));

Answer of FPP (simplified):

--!pre: -127 <= x AND x <= 127
--!pre: AND x = kx
--> wp: -127 <= x AND x <= 127
--> vc: -127 <= x AND x <= 127
--> AND x = kx
--> ==> -127 <= x AND x <= 127
--> Result: proved
IF x < 0 THEN
 x := -x;
END IF;
--!post: -128 <= x AND x <= 127
AND
--!post: (x = kx AND kx >= 0 OR
--!post: x = -kx AND 0 > kx)

We see that the IF-statement computes the
absolute value of x.

Exmp 4: Input to FPP:

x := x+2;
--!Post: x > 50 and x <= 100;

Answer of FPP (simplified):

--> wp: x >= 49 AND x <= 98
x := x + 2;
--!post: x >= 51 AND x <= 100

5 Conclusions

If software engineers want to design programs
as other engineers are designing their artifacts
a framework for the quantitative analysis of
programs is necessary. There exist several

calculi to define the effect of a program in a
quantitative manner: e.g. the wp-calculus or
the relational calculus of Hehner [Heh 93]. As
for other calculations in engineering it is very
useful to let the computer do these calcula-
tions. In other branches of engineering the
calculations necessary are typically numerical
ones. For these a lot of tools are available. For
the calculations necessary to compute the
effect of programs no tools are readily availa-
ble.

In this paper we have described the Frege
Program Prover, an experimental tool which
supports the SW engineer in program analy-
sis.

Acknowledgments

The Frege Program Prover has been built by
Stefan Kauer and Stefan Knappe [Kna 95,
96].

References

Dij 76 Dijkstra, Edsger W.: A Discipline of
Programming. Prentice -Hall, Eng-
lewood Cliffs, 1976. 0-13-215871-X

Dor 93 Dorf, Richard C. (ed): The Electrical
Engineering Handbook. CRC Press, Bo-
ca Raton etc. 1993. 0-8493-0185-8

DS 90 Dijkstra, Edsger W.; Scholten, Carel S.:
Predicate Calculus and Program Seman-
tics. Springer, New York etc., 1990. 0-
387-96957-8

Heh 93 Hehner, Eric C. R.: A Practical Theory
of Programming. Springer, New York
etc., 1993. 0-387-94106-1

Kna 95 Knappe, Stefan: Berechnung der
schwächsten Vorbedingung für eine
Teilmenge von Ada. Term Project. Frie-
drich Schiller Univ., Inst. of Comp. Sci,
1995.Jun.18

Kna 96 Knappe, Stefan: Berechnung von Veri-
fikationsbedingungen für eine Teil-
menge von Ada. Diploma Thesis, Frie-
drich Schiller Univ., Inst. of Comp. Sci,
1996.May.02

Win 96 Winkler, Jürgen F. H.: Some Properties
of the Smallest Post-Set and the Largest
Pre-Set of Abstract Programs . Friedrich
Schiller University, Dept. of Math. &
Comp. Sci., Report Math / Inf / 96 / 32
1996.Oct.23

Prof. Dr. Jürgen F. H. Winkler
Friedrich-Schiller University
Institute of Computer Science
D-07740 Jena, Germany
http://www1.informatik.uni-jena.de

Occurred in:

42. Intern. Wissenschaftliches Kolloquium,
Techn. Universität Ilmenau,
22. – 25. 09. 1977
Band 1, p.116 .. 121
ISSN 0943-7207

