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Abstract 

The Frege Program Prover (FPP) is an experi-
mental system which supports the programmer 
when calculating the effect or semantics of pro-
grams or program fragments. FPP supports two 
kinds of such calculations: 

a) Compute the weakest precondition: wp(PF, 
Post). Compute the weakest precondition for a 
given program (fragment) PF and a given post-
condition Post.  

 Example:   wp(„v:=v+1;“, v>4)    
   v+1  type(v)    v+1 > 4    
   v+1  type(v)    v  4. 

b) Check the correctness of a program (frag-
ment): i.e. check whether a given program 
(fragment) PF satisfies a given specification 
(Pre,Post). This is usually expressed as a Hoare 
triple  {Pre} PF {Post}. If PF satisfies the spec-
ification the triple is called consistent. This 
consistency is defined as:  Pre  wp(PF,Post).  

 Example:   {v>0} v:=v+1; {v>4}    
   v>0    wp(„v:=v+1;“, v>4)     
   v>0    v+1  type(v)    v  4    
   False. 

FPP is implemented as a WWW application  
(http://www1.informatik.uni-jena.de/FPP/FPP-
main.htm) and supports a subset of Ada: Integer 
and Boolean variables, assignment, sequence, IF, 
CASE, FOR, and WHILE. 

1  Introduction 

Software has become an important and often 
essential part of technical systems. It is used 
in small devices as e.g. pacemakers up to big 
systems as e.g. airplanes. Both are examples 
of systems which require a high degree of 
reliability and safety. This means that all parts 
of design must be checked whether they guar-
antee these requirements. For electrical or 
mechanical designs there exist methods to 
check properties in an exact manner: e.g. cir-
cuit analysis [Dor 93] or analysis of structure. 
Such methods are routinely applied by elec-
trical or civil engineers. 

In SW engineering such methods also exist 
but are not as mature as those in other fields 
of engineering and are therefore neither 
taught nor used routinely during the develop-
ment of programs. Whereas any electrical 
engineer can perform the calculations neces-
sary for the quantitative analysis of simple 
circuits it is usually not he case that a soft-
ware engineer can calculate the effect of a 
simple program or program fragment in a 
quantitative way. One important reason for 
this is the very rapid development of the field.  

The Frege Program Prover (FPP) is an exper-
imental system to support the SW engineer in 
such calculations.  

FPP is implemented as a WWW application  
(http://www1.informatik.uni-jena.de/FPP 
/FPP-main.htm) and supports a subset of Ada: 
Integer and Boolean variables, assignment, 
sequence, IF, CASE, FOR, and WHILE. 

2  Semantics or the Effect of  
Programs 

As Dijkstra has pointed out it is the task of 
computers to execute the programs construct-
ed by the SW engineers. The purpose of pro-
gram execution is to put the computer in some 
specific state. Such a required final state can 
e.g. be a state in which a certain variable con-
tains the sum of some other variables. In pro-
grams running continuously, as e.g. in em-
bedded systems, this characterization holds 
for each cycle. The effect of a program can 
therefore be characterized by the relation be-
tween the initial state (in which it is started) 
and the final state(s) (in which it terminates). 
This is often also called the semantics of the 
program. In this paper I use mostly the term 
„effect“. 

The most abstract description of the effect of 
a program is the relation between initial and 
final states [Win 96]. Usually programs are 
constructed out of smaller pieces (as. e.g. 
modules, routines, declarations, statements). 



  

In order to compute the effect of the whole 
program two things must be known: (1) the 
effect of the smaller pieces and (2) how to 
compute the effect of a composition.  Exam-
ple: if we know the effect of the two assign-
ments „abs := x;“ and „abs := -x;“ we have to 
be able to compute the effect of: 

IF  min < x < 0    
THEN  abs := -x;   
ELSE  abs := x;   FI 

The program state is therefore the basic entity 
for the characterization of the effect of pro-
grams. The program state is characterized by 
the values of all objects in the program. Espe-
cially important among these objects are the 
variables. In this paper we will characterize 
the program state by the values of the varia-
bles in the program [Win 96] : 

DEF-1: V  = { v1, v2, ..., vn } is the set of pro-
gram variables, where n  1. 

 W1, W2, ..., Wn  are nonempty, finite sets 
of admissible values for the corresponding 
vi:  Wi = VS(vi). 

 W = W1  W2   ...  Wn . 

 S = {s VW: ( v  V: s(v)  VS(v) )} 
is the set of proper states, where V  W 
denotes the set of functions from V into W. 

 S = S  {} is the set of states. 

 C  =  2S is the set of proper conditions. 

 C =  2S   is the set of conditions.   

  DEF-1 

We call subsets of  S or S conditions because 
these subsets can be characterized by logical 
expressions E where the logical expression 
acts as the characteristic predicate of the sub-
set: e.g.  {s  S: E(s)}. Often it is simpler to 
characterize a set of states (e.g. those in which  
x > 0  for some program variable x) by a logi-
cal expression than by explicitly writing down 
the set of states. In the computation of the 
effects of programs we often deal with sets of 
states rather than with single states. Therefore 
conditions play a prominent role in program 
analysis. The term „program analysis“ is used 
in analogy to „circuit analysis“ [Dor 93, Ch. 
3]. 

DEF-2:  PROG = {P    S x S: dom(P) = S } 
is the set of abstract programs. 

 An element (i,f)    S x S  is called a com-
putation with initial state i and final state f. 

 If f   then we say the computation (i,f) 
terminates properly; if f =  then the compu-
tation is a not(properly terminating) one. 
This behavior can occur in different forms: 
e.g. infinite loop or stop in the „middle“ of 
the computation ; therefore the somewhat 
unconventional expression „not(properly 
terminating)“.     DEF-2 

In order to see how these abstract definitions 
work for programs we look at some examples. 

Exmp 1: the effect of the assignment   x:= 10;  
can be characterized as follows:    

{ 10  VS(x) }   x := 10;   { x = 10 }.  

This triple  „condition statement condition“ is 
a proposition which states: whenever the ini-
tial state is such that „10  VS(x)“ holds then 
x:=10;  is executable in this state and after 
termination the program is in a state in which 
x=10 holds. The precondition, in this case, is 
very simple: it is either true or false. If it is 
true it denotes the set S of all proper program 
states: {s  S: true}. If it is false it denotes the 
empty set: {s  S: false}. In the latter case 
there exists no program state in which x:=10; 
may be started and executed successfully. 

Exmp 2: a second example is the assignment  
x:=x+1; . Its effect can be characterized by: 

{x=Kx    x, x+1  VS(x) }  
x:=x+1;  

{x=Kx+1  x  VS(x)} 

If we assume VS(x) =  1..100 we see more 
directly the sets of states characterized by the 
precondition and by the postcondition: 

{ x=Kx  1  x, x+1  100 }  
x:=x+1;  

{ x=Kx+1  1  x  100 } 

which may be transformed into: 

{ 1  x  99  x=Kx }  
x:=x+1;  

{ 2  x  100  x=Kx+1 } 



  

In this case there are several states, in which 
x:=x+1; may be successfully executed: 1  x 
 99. If x=100 then an overflow will occur. 
The detailed effect of  x:=x+1;  is described 
using the specification variable Kx which 
expresses the relation between x before and 
after the execution of   x:=x+1; . 

Exmp 3: a third example is a conditional 
statement which computes for certain values 
of x the absolute value of x.  
Let VS(x) = -128 .. +127. 

{ x=-13 }  
IF x < 0  THEN  x := -x; FI  

{ x = |-13| = 13 } 

A more detailed annotation shows that the 
statement really computes the absolute value 
of the initial value of x: 

{ x=-13 }  
IF x < 0  THEN 

{  x=-13    -128    -13   127 } 
  x := -x;  

{  -x=-13    -128    13   127  } 
FI  

{ x = |-13| = 13 } 

Further simplification yields: 

 { x=-13 }  
IF x < 0  THEN 
 {  x=-13  } x := -x; {  -x=-13  } 
FI  
 { x = |-13| = 13 } 

In this case we have only looked at a single 
starting state for the program (x = -13). In 
section 4 we will do a more thorough analysis 
of this statement. 

3  The wp-Calculus 

In section 2 we have seen some examples of 
the precise characterization of the effect of 
statements. The treatment was somewhat ad 
hoc and we left it to the reader to be con-
vinced of the correctness of the annotated 
program fragments. A more systematic treat-
ment is possible if we define the relation be-
tween the precondition and the postcondition 
of a statement in a precise way. One possibil-
ity for this is the wp-calculus which computes 

for a given pair (statement, postcondition) the 
weakest i.e. most general precondition 
wp(statement, postcondition) such that (1) the 
statement is successfully executable in any 
state of the wp(statement, postcondition), and 
(2) the state after the execution of statement is 
in postcondition [Dij 76; DS 90]. If we ex-
press it in the language of states 
wp(statement, post) is the largest set of states 
such that (1) the statement is successfully 
executable in any state of  wp(statement, 
post), and (2) the state after the execution of 
statement is in post [Win 96].  

The effect of an assignment to a simple varia-
ble is defined by:  

wp(„x:=expr;“, postcond)   
def(expr)    postcondx

expr  

This means that (1) if expr is evaluated before 
the execution of the assignment it must be 
well defined and its value must be in VS(x), 
and (2) whatever holds for the value of x after 
the execution holds for the value of expr be-
fore the execution. 

Exmp 4:  (let VS(x) = 1..100) 

wp(„x:=x+2;“, x > 50)   

1  x+2  100    [x > 50]x
x+2     

-1  x  98    x+2 > 50    

49  x  98 

If the expression on the right hand side is 
more complicated the rule for def(expr) must 
also express appropriate constraints for the 
subexpressions. 

The effect of an IF-statement is defined by: 

wp(„IF be THEN stat1 ELSE stat2 FI“, poc)   

def(be)   [ be    wp(stat1, poc)    
   be   wp(stat2, poc) ] 

This rule expresses the following: 

a) the expression be must be welldefined in 
the state before execution of the IF-
statement 

b) the evaluation of be does not change the 
program state 



  

c) if the value of be is true then stat1 is exe-
cuted 

d) if the value of be is false then stat2 is exe-
cuted 

This is what we expect to hold for the IF-
statement. 

Exmp 5: we want to show that the following 
IF-statement computes the absolute value of 
the initial value of x (let VS(x) = -128 .. 127):  

{-128  x  127    x = Kx} 

IF x<0 THEN x:=-x; ELSE null; FI 

{ -128  x  127    x = |Kx| } 

 

wp(„IF x<0 THEN x:=-x; ELSE null; FI“, 
x=|Kx|)   

def(x<0)    [x<0    wp(„x:=-x;“, x=|Kx|)     
 x  0    wp(„null;“, x=|Kx|) ]    

-128  x  127     
[x<0    -128  -x  127  -x=|Kx|     
 x  0    x=|Kx|) ]    

-128  x  127     
[-127  x  -1  -x=|Kx|     
 0  x  127   x=|Kx|) ]   

[-127  x  -1  -x=|Kx|     
 0  x  127   x=|Kx|) ]   

-127  x   127  

We see immediately that the IF-statement 
does not work for x=-128 because the weakest 
precondition does not hold in this state: 

-127  -128   127    false 

4  The Frege Program Prover 

It is quite tedious and error prone to perform 
the calculations of the wp-calculus by hand. 
This is a typical task for the computer. The 
Frege Program Prover (FPP) is a tool to per-
form such calculations. FPP can essentially do 
two things: 

a) Compute the weakest precondition: wp(PF, 
Post). Compute the weakest precondition 

for a given program (fragment) PF and a 
given postcondition Post.  

 Example:   wp(„v:=v+1;“, v>4)    
   v+1  VS(v)    v+1 > 4    
   v+1  VS(v)    v  4. 

b) Check the correctness of a program (frag-
ment): i.e. check whether a given program 
(fragment) PF satisfies a given specifica-
tion (Pre,Post). This is usually expressed as 
a Hoare triple  {Pre} PF {Post}. If  PF sat-
isfies the specification the triple is called 
consistent. This consistency is defined as:   
Pre    wp(PF,Post).  

 Example:  {v>0} v:=v+1; {v>4}    
   v>0    wp(„v:=v+1;“, v>4)     
    v>0    v+1  VS(v)    v  4    
    False. 

FPP is implemented as a WWW application  
(http://www1.informatik.uni-
jena.de/FPP/FPP-main.htm) and supports a 
subset of Ada: Integer and Boolean variables, 
assignment, sequence, IF, CASE, FOR, and 
WHILE. 

If we apply the FPP to the examples given 
earlier in the paper we obtain: 

Exmp 1:            Input to FPP: 

  --!Pre: -128 <= x and x < 127; 
x := 10; 
  --!Post: x = 10; 

Answer of FPP: 

1) --!pre:-128 <= x AND 127 >= 1 
+ x  
2) --> wp: True  
3) --> vc: True  
4) --> Result: proved  
5) x := 10;  
6) --!post: x = 10  

The answer of FPP consists of the original 
input (lines 1, 5, and 6) and the result of the 
attempt to proof that the proposition  

{ -128  x  127 }   x := 10;   { x = 10 } 

is true. In FPP this proposition is called the 
verification condition (vc). As mentioned 
above 

vc    -128  x  127   wp(„x:=10;“, x=10) 



  

FPP reports the weakest precondition in line 2 
and the vc in line 3. In line 4 FPP says wheth-
er it could prove the vc. Since the vc is al-
ready true the proof is in this case a very sim-
ple one and has been successfully performed 
by FPP. That vc   true can be seen as fol-
lows: wp(„x:=10;“, x=10)  10 = 10    true  
(FPP does in this step not take into account 
VS(x)). With this we obtain:  

vc      -128  x  127   true        true. 

Exmp 2:            Input to FPP: 

--!Pre: x=kx and 1 <= x and  
--!Pre: x <= 100 and 1 <= x+1 and 
--!Pre: x+1 <= 100; 
x := x+1; 
--!Post: x=kx+1 and 1 <= x  
--!Post: and x <= 100; 

Answer of FPP: 

--!pre: x = kx AND 1 <= x AND  
--!pre: x <= 100 AND 1 <= 1 + x  
--!pre: AND 1 + x <= 100 
--> wp: 1 + x = 1 + kx AND  
-->     1 <= 1 + x AND  
-->     1 + x <= 100  
--> vc:   x = kx AND 1 <= x  
-->   AND x <= 100 AND 1 <= 1 + x  
-->   AND 1 + x <= 100  
-->  ==>  1 + x = 1 + kx  
-->   AND 1 <= 1 + x  
-->   AND 1 + x <= 100  
--> Result: proved  
x := x + 1;  
--!post: x = 1 + kx AND 1 <= x   
--!post: AND x <= 100  

The answer of FPP shows that this program 
fragment is consistent. 

Exmp 3:  in this example we want to use FPP 
to compute for which values of x the IF-
statement computes the absolute value of x. 
We do this in two steps: (1) compute the 
weakest precondition; this gives us the set of 
values of x for which the IF-statement can be 
successfully executed; (2) check whether the 
IF- statement computes the absolute value of 
x for the values determined in step (1). 

Step 1:          Input to FPP: 

IF x < 0 THEN x := -x; END IF; 
--!Post: -128 <= x and x <= 127; 

Answer of FPP: 

--> wp: 0 >= 1 + x AND -128 <= -x 
-->                AND -x <= 127  
-->     OR 0 <= x AND -128 <= x  
-->               AND x <= 127  
IF x < 0 THEN   
   x := -x;  
end if;  
--!post: -128 <= x AND x <= 127  

The somewhat clumsy expression for wp can 
be simplified to:   -127  x  127  . 

Step 2:          Input to FPP: 

--!Pre: -127 <= x and x <= 127 
--!Pre:           and x = Kx; 
IF x < 0 THEN x := -x; END IF; 
--!Post: -128 <= x and x <= 127  
--!Post: and ((x=Kx and Kx >= 0)   
--!Post: or (x = -Kx and Kx<0)); 

Answer of FPP (simplified): 

--!pre: -127 <= x AND x <= 127  
--!pre:           AND x = kx  
--> wp: -127 <= x AND x <= 127 
--> vc: -127 <= x AND x <= 127  
-->      AND x = kx  
--> ==>  -127 <= x AND x <= 127         
--> Result: proved  
IF x < 0 THEN   
   x := -x;  
END IF;  
--!post: -128 <= x AND x <= 127 
AND 
--!post: (x = kx AND kx >= 0  OR 
--!post:  x = -kx AND 0 > kx ) 

We see that the IF-statement computes the 
absolute value of x. 

Exmp 4:        Input to FPP: 

x := x+2; 
--!Post: x > 50 and x <= 100; 

Answer of FPP (simplified): 

--> wp: x >= 49 AND x <= 98  
x := x + 2;  
--!post: x >= 51 AND x <= 100  

5  Conclusions 

If software engineers want to design programs 
as other engineers are designing their artifacts 
a framework for the quantitative analysis of 
programs is necessary. There exist several 



  

calculi to define the effect of a program in a 
quantitative manner: e.g. the wp-calculus or 
the relational calculus of Hehner [Heh 93]. As 
for other calculations in engineering it is very 
useful to let the computer do these calcula-
tions. In other branches of engineering the 
calculations necessary are typically numerical 
ones. For these a lot of tools are available. For 
the calculations necessary to compute the 
effect of programs no tools are readily availa-
ble.  

In this paper we have described the Frege 
Program Prover, an experimental tool which 
supports the SW engineer in program analy-
sis. 
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