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D.E. Knuth, 1976 

Proving Assertions 

Mike Marin’s paper [Mar 96] is a good example for the 
use and benefits of assertions in program development. 
Assertions can be applied in two ways: 

a) as dynamic checks: the condition of the assertion is 
evaluated during program execution. If the value of 
the condition is false an error is reported. This is then 
a hint to the programmer to improve the program. This 
possibility is the topic of [Mar 96] (see e.g. also [Luc 
90; Mag 93]). If the value of the condition is true this 
shows that the assertion is fulfilled for the current set 
of input data, but only for this specific set.  

b) as a condition which must always hold when program 
execution reaches the point of the assertion. In some 
cases this can be proved before the program is execut-
ed. This possibility is the topic of the present paper. 
Such a proof means that the assertion is fulfilled for all 
possible sets of input data.  

If we compare both approaches we see that b) is more 
general, but on the other hand, it is usually also more 
difficult than a). Both are useful in that the formulation of 
(sharp) assertions usually improves the understanding of 
the program and the underlying algorithm. 

In order to be able to prove properties of programs the 
semantics of programs and their components has to be 
defined in an exact manner. Instead of semantics we may 
also speak of the “effect” of a program or a program 
fragment. Examples for such definitions are Hoare rules 
[Hoa 69] or the weakest precondition  (wp) of Dijkstra 
[Dij 76; Gri 83].  

A simple example is the definition of the effect of  the 
simple assignment statement: 

 V := Expr; 

We assume that V is a simple variable and that the evalua-
tion of Expr does not cause any side effects. 

In the wp-calculus the effect of this statement is given by: 

wp(“V := Expr;”, Post)        
 typeV (Expr)     PostV

Expr   

where typeV (Expr) means that the value of Expr is one of 
the values of the type of V and PostV

Expr  means that the 
variable V is substituted in Post by the expression Expr. 
Informally PostV

Expr says:  whatever holds of Expr imme-
diately before “V := Expr;” is executed will hold immedi-
ately after the execution of the assignment. A simple ex-
ample for this is (let v be of type int): 

v := v + 1; 
   --!Post:  v > 0; 

For this we have 

    wp(“v:=v+1;”, v>0)    
  -2**31 <= v+1    v+1 <= 2**31 -1     (v>0)v

v+1     
  -2**31 <= v+1    v+1 <= 2**31 -1      v+1 > 0     
   0  <= v      v  <=  2**31 -2 

If the assignment is preceded by the initialization: 

v := 1; 

we obtain 

v :=1; 
   --!Post: 0 <= v      v <= 2**31 -2; 
   --!Pre:  0 <= v      v <= 2**31 -2; 
v := v+1; 
   --!Post: v > 0; 



     

If we apply again the wp-rule for the initialization we 
obtain: 

    wp(“v:=1;”, 0  <= v      v  <=  2**31 -2)     
   (0  <= v      v  <=  2**31 -2)v

1   
   0  <= 1      1  <=  2**31 -2    
   true 

Since “true” is always true the result of our calculation is: 
we may start “v:=1;  v:=v+1;” in any program state and 
have the guarantee that immediately after the execution 
the assertion  “v > 0” will hold. 

On the other hand, if we have 

v := 11; 
   --!Post: v=1; 

we obtain:     

     wp(“v:=11;”, v=1)      
   -2**31 <= 11    11 <= 2**31 -1     (v=1)v

11      
   11 = 1     
   false. 

Since “false” is never true there exists no state in which 
“v:=11;” may be started if its execution should establish  
“v=1”. So we have a strong hint that the program or the 
assertion is not correct (in this case this may just be due to 
a typo). 

As the examples show the calculation of such weakest 
(i.e. most general) preconditions is in some cases a me-
chanical process which can be done by the computer.  

A tool which supports such calculations is developed in 
our group. The tool is called the Frege Program Prover 
(FPP) and can be used via WWW under 
(http://www1.informatik.uni-jena.de/FPP/FPP-main.htm). 

FPP can also prove that a triple 

{Pre}  S  {Post} 

is consistent, i.e. that the following implication does hold 
in all program states: 

Pre     wp(S,Post) 

Such a proof is often more difficult than computing weak-
est preconditions for assignment statements. One conse-
quence is that FPP may not be able to find a proof for 
such an implication. One such example is: 

{true}  NULL;  {Goldbach’s Conjecture} 

Factorial Revisited 

The use of assertions is shown in [Mar 96] using the fac-
torial function (p.30). Marin uses an iterative implementa-
tion of factorial which can in this form be found in text-
books (in most cases without the invariant). Unfortunate-
ly, this implementation of the factorial function is not 
completely correct.  

There are two defects in this program: 

a) The loop invariant “r >= (i-1)” is not strong enough to 
guarantee the postcondition “r = n!”.  Such a situation 
does not automatically mean that the program is not 
correct, because a program which fulfills an assertion  
A1 usually also fulfills an assertion A2 which is 
weaker than A1. This is also the case in this example. 
The basic idea of the program is correct, but due to the 
second defect (see  b) ) the program is correct only for 
a tiny fraction of the possible input data values. 

b) The program implements the factorial function as a 
mapping:    int    long.  If we assume that int means 
32-bit numbers and long means 64-bit numbers (as 
e.g. in Java [GJS 96: 31]) any value in -2**31 ..  
2**31-1 is a legal input. If we take e.g. the value 1000 
we see easily that 1000!, which has 2568 decimal dig-
its, is not in the range of long, because the largest 
number in long has only 19 decimal digits. 

Both defects are the reason that FPP says, that it cannot 
prove that the given loop computes the factorial of n:  
   --!pre : r = 1;  
   --!post: r = Factorial(n);  
   --!inv : r >= i-1; 
for i in 1 .. n  loop  
   r := r * i;  
end loop; 

Result: 
--!pre       : r = 1  
--!post      : r = Factorial(n)  
--!inv       : r >= -1 + i  
-->functionality --------------------- 
-->func: (initial AND induction AND  
-->     final AND null loop)  
-->initial:1 <= n AND r = 1 ==> r >= -1  
-->Result    : proved  
-->induction :1 <= n AND r >= -2 + i  
-->     ==> i*r >= -1 + i  
-->Result    : not proved  
-->final     : 1 <= n AND r >= -1 + n  
-->      ==> r = Factorial(n)  
-->Result    : not proved  
-->null loop :1 >= 1 + n AND r = 1  
-->     ==> r = Factorial(n)  
-->Result    : not proved  



     

for i in 1 .. n  loop  
   r := r * i;  
end loop; 

The syntax used in this example is Ada, because FPP 
supports currently a subset of Ada.  

If we look at both defects we obtain: 

a) an invariant, which is sufficient to derive the postcon-
dition, is  “r = (i-1)!” 

b) A closer analysis of the factorial function [NW 89] 
reveals that only values up to 20 lead to a correct re-
sult:  

 20!  =   2_432_902_008_176_640_000 
2**63-1 =   9_223_372_036_854_775_807 
21!  = 51_090_942_171_709_440_000 

 This means that factorial works correctly for 21 out of  
2_147_483_648 possible input values (we ignore the 
negative values for which the program always returns 
1); the admissible input values are   9.77889 10-7 %  of 
the possible input values. We may therefore say that 
the program is incorrect for almost all possible inputs. 

 Since C compilers usually do not generate code to 
react to arithmetic overflow the given program is es-
pecially fallacious. If we compute 23! we obtain 
8128291617894825984 which is quite different from 
the correct result. (The computation was done with gcc  
on OSF1 V3.2). In Java it seems not even to be al-
lowed for the compiler to generate such code [GJS 96: 
351, 352]. In such a case a thorough analysis of the al-
gorithm before implementation is even more im-
portant. 

 For n < 0 the program always yields  r=1. Whether this 
is wrong or not depends on the definition of the facto-
rial function. In [Knu 69: 45] for example factorial is 
not defined for n < 0, and Mathematica [Wol 94: 49] 
gives the definition “product of the integers 1, 2, ..., 
n”. Therefore, we formulate the improved program for 
the factorial function for the argument range 0  n  
20. 

With these observations in mind, we obtain an improved 
loop for the computation of the factorial function: 

--!pre : r = 1 AND 0 <= n AND n <= 20;  
--!post: r = Factorial(n) AND  
--!post: -2**63 <= r AND r <= 2**63-1;  
--!inv : r = Factorial(i) AND  
--!inv : 0 <= n AND n <= 20; 
for i in 1 .. n  loop  

   r := r * i;  
end loop;  

The invariant  “r = i!”  is different from that mentioned 
above (“r = (i-1)!”). This is due to the fact that FPP uses a 
scheme based on [Hoa 72] to prove the correctness of 
FOR-loops. 

The answer of FPP to this improved loop is: 

--!pre : r = 1 AND n >= 0 AND n <= 20  
--!post: r = Factorial(n) AND  
--!post: -9223372036854775808 <= r AND  
--!post: r <= 9223372036854775807 
--!inv : r = Factorial(i) AND n >= 0  
--!inv : AND n <= 20 
-->functionality ---------------------- 
-->func: (initial AND induction AND  
-->     final AND null loop)  
-->initial: 1 <= n AND r = 1 AND  
-->       n >= 0 AND n <= 20  
-->     ==> r = 1 AND n >= 0 AND n <= 20  
--> Result   : proved  
--> induction: 1 <= n AND  
-->            r = Factorial(-1 + i)  
-->            AND n >= 0 AND n <= 20  
-->        ==> i*r = Factorial(i) AND  
-->            n >= 0 AND n <= 20  
--> Result: proved  
--> final : 1 <= n AND r = Factorial(n)  
-->         AND n >= 0 AND n <= 20  
-->     ==> r = Factorial(n) AND  
-->     -9223372036854775808 <= r  
-->     AND r <= 9223372036854775807  
--> Result: proved  
--> null loop: 1 >= 1 + n AND r = 1 AND  
-->            n >= 0 AND n <= 20  
-->        ==> r = Factorial(n) AND  
-->           -9223372036854775808 <= r  
-->        AND r <= 9223372036854775807  
--> Result    : proved  
for i in 1 .. n  loop  
   r := r * i;  
end loop;  
 
All four parts of the functionality condition have been 
proved and therefore the system  loop+assertions  is con-
sistent. Since the postcondition states the desired result we 
have a correct implementation of the factorial function. 

A more efficient implementation of the factorial function 
can be found in [NW 89]. 

 



     

Conclusion 

As a conclusion we would like to appeal to 

a) the computing community at large: 

 to accept wholeheartedly and from the very beginning 
the fact that computers are finite machines and that 
therefore we have only finite ranges for numbers. If 
this is accepted one consequence is, that mathematical 
formulae cannot always be implemented by just trans-
literating them into a programming notation (e.g.  
“mean := (a+b)/2.0;” works for less values of a and b 
than “mean := a/2.0 + b/2.0;”  ). 

b) to the processor industry: 

 it would be very useful to define an integer arithmetic 
which takes the finite ranges fully into account. It 
would especially be useful to have two reserved bit 
patterns for - and for  +. For floating point there is 
e.g. IEEE 754, but for integers there is no such defini-
tion.  ( ISO/IEC 10967-1:1994(E) is quite conserva-
tive.) 

 
If the details are not correct,  

how should the big system be correct ? 
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