
PROVING ASSERTIONS IS ALSO USEFUL

JÜRGEN F. H. WINKLER, STEFAN KAUER

Friedrich Schiller University, Institute of Computer Science, D-07740 Jena, Germany
http://www1.informatik.uni-jena.de

Appeared in: SIGPLAN Notices, 32,3 (1997) 38 .. 41

“Mathematics and Computer Science: Coping with Finiteness”

D.E. Knuth, 1976

Proving Assertions

Mike Marin’s paper [Mar 96] is a good example for the
use and benefits of assertions in program development.
Assertions can be applied in two ways:

a) as dynamic checks: the condition of the assertion is
evaluated during program execution. If the value of
the condition is false an error is reported. This is then
a hint to the programmer to improve the program. This
possibility is the topic of [Mar 96] (see e.g. also [Luc
90; Mag 93]). If the value of the condition is true this
shows that the assertion is fulfilled for the current set
of input data, but only for this specific set.

b) as a condition which must always hold when program
execution reaches the point of the assertion. In some
cases this can be proved before the program is execut-
ed. This possibility is the topic of the present paper.
Such a proof means that the assertion is fulfilled for all
possible sets of input data.

If we compare both approaches we see that b) is more
general, but on the other hand, it is usually also more
difficult than a). Both are useful in that the formulation of
(sharp) assertions usually improves the understanding of
the program and the underlying algorithm.

In order to be able to prove properties of programs the
semantics of programs and their components has to be
defined in an exact manner. Instead of semantics we may
also speak of the “effect” of a program or a program
fragment. Examples for such definitions are Hoare rules
[Hoa 69] or the weakest precondition (wp) of Dijkstra
[Dij 76; Gri 83].

A simple example is the definition of the effect of the
simple assignment statement:

 V := Expr;

We assume that V is a simple variable and that the evalua-
tion of Expr does not cause any side effects.

In the wp-calculus the effect of this statement is given by:

wp(“V := Expr;”, Post) 
 typeV (Expr)  PostV

Expr

where typeV (Expr) means that the value of Expr is one of
the values of the type of V and PostV

Expr means that the
variable V is substituted in Post by the expression Expr.
Informally PostV

Expr says: whatever holds of Expr imme-
diately before “V := Expr;” is executed will hold immedi-
ately after the execution of the assignment. A simple ex-
ample for this is (let v be of type int):

v := v + 1;
 --!Post: v > 0;

For this we have

 wp(“v:=v+1;”, v>0)
 -2**31 <= v+1  v+1 <= 2**31 -1  (v>0)v

v+1
 -2**31 <= v+1  v+1 <= 2**31 -1  v+1 > 0
 0 <= v  v <= 2**31 -2

If the assignment is preceded by the initialization:

v := 1;

we obtain

v :=1;
 --!Post: 0 <= v  v <= 2**31 -2;
 --!Pre: 0 <= v  v <= 2**31 -2;
v := v+1;
 --!Post: v > 0;

If we apply again the wp-rule for the initialization we
obtain:

 wp(“v:=1;”, 0 <= v  v <= 2**31 -2)
 (0 <= v  v <= 2**31 -2)v

1
 0 <= 1  1 <= 2**31 -2
 true

Since “true” is always true the result of our calculation is:
we may start “v:=1; v:=v+1;” in any program state and
have the guarantee that immediately after the execution
the assertion “v > 0” will hold.

On the other hand, if we have

v := 11;
 --!Post: v=1;

we obtain:

 wp(“v:=11;”, v=1)
 -2**31 <= 11  11 <= 2**31 -1  (v=1)v

11
 11 = 1
 false.

Since “false” is never true there exists no state in which
“v:=11;” may be started if its execution should establish
“v=1”. So we have a strong hint that the program or the
assertion is not correct (in this case this may just be due to
a typo).

As the examples show the calculation of such weakest
(i.e. most general) preconditions is in some cases a me-
chanical process which can be done by the computer.

A tool which supports such calculations is developed in
our group. The tool is called the Frege Program Prover
(FPP) and can be used via WWW under
(http://www1.informatik.uni-jena.de/FPP/FPP-main.htm).

FPP can also prove that a triple

{Pre} S {Post}

is consistent, i.e. that the following implication does hold
in all program states:

Pre  wp(S,Post)

Such a proof is often more difficult than computing weak-
est preconditions for assignment statements. One conse-
quence is that FPP may not be able to find a proof for
such an implication. One such example is:

{true} NULL; {Goldbach’s Conjecture}

Factorial Revisited

The use of assertions is shown in [Mar 96] using the fac-
torial function (p.30). Marin uses an iterative implementa-
tion of factorial which can in this form be found in text-
books (in most cases without the invariant). Unfortunate-
ly, this implementation of the factorial function is not
completely correct.

There are two defects in this program:

a) The loop invariant “r >= (i-1)” is not strong enough to
guarantee the postcondition “r = n!”. Such a situation
does not automatically mean that the program is not
correct, because a program which fulfills an assertion
A1 usually also fulfills an assertion A2 which is
weaker than A1. This is also the case in this example.
The basic idea of the program is correct, but due to the
second defect (see b)) the program is correct only for
a tiny fraction of the possible input data values.

b) The program implements the factorial function as a
mapping: int  long. If we assume that int means
32-bit numbers and long means 64-bit numbers (as
e.g. in Java [GJS 96: 31]) any value in -2**31 ..
2**31-1 is a legal input. If we take e.g. the value 1000
we see easily that 1000!, which has 2568 decimal dig-
its, is not in the range of long, because the largest
number in long has only 19 decimal digits.

Both defects are the reason that FPP says, that it cannot
prove that the given loop computes the factorial of n:
 --!pre : r = 1;
 --!post: r = Factorial(n);
 --!inv : r >= i-1;
for i in 1 .. n loop
 r := r * i;
end loop;

Result:
--!pre : r = 1
--!post : r = Factorial(n)
--!inv : r >= -1 + i
-->functionality ---------------------
-->func: (initial AND induction AND
--> final AND null loop)
-->initial:1 <= n AND r = 1 ==> r >= -1
-->Result : proved
-->induction :1 <= n AND r >= -2 + i
--> ==> i*r >= -1 + i
-->Result : not proved
-->final : 1 <= n AND r >= -1 + n
--> ==> r = Factorial(n)
-->Result : not proved
-->null loop :1 >= 1 + n AND r = 1
--> ==> r = Factorial(n)
-->Result : not proved

for i in 1 .. n loop
 r := r * i;
end loop;

The syntax used in this example is Ada, because FPP
supports currently a subset of Ada.

If we look at both defects we obtain:

a) an invariant, which is sufficient to derive the postcon-
dition, is “r = (i-1)!”

b) A closer analysis of the factorial function [NW 89]
reveals that only values up to 20 lead to a correct re-
sult:

 20! = 2_432_902_008_176_640_000
2**63-1 = 9_223_372_036_854_775_807
21! = 51_090_942_171_709_440_000

 This means that factorial works correctly for 21 out of
2_147_483_648 possible input values (we ignore the
negative values for which the program always returns
1); the admissible input values are 9.77889 10-7 % of
the possible input values. We may therefore say that
the program is incorrect for almost all possible inputs.

 Since C compilers usually do not generate code to
react to arithmetic overflow the given program is es-
pecially fallacious. If we compute 23! we obtain
8128291617894825984 which is quite different from
the correct result. (The computation was done with gcc
on OSF1 V3.2). In Java it seems not even to be al-
lowed for the compiler to generate such code [GJS 96:
351, 352]. In such a case a thorough analysis of the al-
gorithm before implementation is even more im-
portant.

 For n < 0 the program always yields r=1. Whether this
is wrong or not depends on the definition of the facto-
rial function. In [Knu 69: 45] for example factorial is
not defined for n < 0, and Mathematica [Wol 94: 49]
gives the definition “product of the integers 1, 2, ...,
n”. Therefore, we formulate the improved program for
the factorial function for the argument range 0  n 
20.

With these observations in mind, we obtain an improved
loop for the computation of the factorial function:

--!pre : r = 1 AND 0 <= n AND n <= 20;
--!post: r = Factorial(n) AND
--!post: -2**63 <= r AND r <= 2**63-1;
--!inv : r = Factorial(i) AND
--!inv : 0 <= n AND n <= 20;
for i in 1 .. n loop

 r := r * i;
end loop;

The invariant “r = i!” is different from that mentioned
above (“r = (i-1)!”). This is due to the fact that FPP uses a
scheme based on [Hoa 72] to prove the correctness of
FOR-loops.

The answer of FPP to this improved loop is:

--!pre : r = 1 AND n >= 0 AND n <= 20
--!post: r = Factorial(n) AND
--!post: -9223372036854775808 <= r AND
--!post: r <= 9223372036854775807
--!inv : r = Factorial(i) AND n >= 0
--!inv : AND n <= 20
-->functionality ----------------------
-->func: (initial AND induction AND
--> final AND null loop)
-->initial: 1 <= n AND r = 1 AND
--> n >= 0 AND n <= 20
--> ==> r = 1 AND n >= 0 AND n <= 20
--> Result : proved
--> induction: 1 <= n AND
--> r = Factorial(-1 + i)
--> AND n >= 0 AND n <= 20
--> ==> i*r = Factorial(i) AND
--> n >= 0 AND n <= 20
--> Result: proved
--> final : 1 <= n AND r = Factorial(n)
--> AND n >= 0 AND n <= 20
--> ==> r = Factorial(n) AND
--> -9223372036854775808 <= r
--> AND r <= 9223372036854775807
--> Result: proved
--> null loop: 1 >= 1 + n AND r = 1 AND
--> n >= 0 AND n <= 20
--> ==> r = Factorial(n) AND
--> -9223372036854775808 <= r
--> AND r <= 9223372036854775807
--> Result : proved
for i in 1 .. n loop
 r := r * i;
end loop;

All four parts of the functionality condition have been
proved and therefore the system loop+assertions is con-
sistent. Since the postcondition states the desired result we
have a correct implementation of the factorial function.

A more efficient implementation of the factorial function
can be found in [NW 89].

Conclusion

As a conclusion we would like to appeal to

a) the computing community at large:

 to accept wholeheartedly and from the very beginning
the fact that computers are finite machines and that
therefore we have only finite ranges for numbers. If
this is accepted one consequence is, that mathematical
formulae cannot always be implemented by just trans-
literating them into a programming notation (e.g.
“mean := (a+b)/2.0;” works for less values of a and b
than “mean := a/2.0 + b/2.0;”).

b) to the processor industry:

 it would be very useful to define an integer arithmetic
which takes the finite ranges fully into account. It
would especially be useful to have two reserved bit
patterns for - and for +. For floating point there is
e.g. IEEE 754, but for integers there is no such defini-
tion. (ISO/IEC 10967-1:1994(E) is quite conserva-
tive.)

If the details are not correct,

how should the big system be correct ?

References

Dij 76 Dijkstra, Edsger W.: A Discipline of Programming.

Prentice-Hall, 1976. 0-13-215871-X

GJS 96 Gosling, James; Joy, Bill; Steele, Guy: The Java

Language Specification. Addison-Wesley 1996. 0-201-

63451-1

Gri 83 Gries, David: The Science of Programming. Springer,

2nd pr. 1983. 0-387-90641-X

Hoa 69 Hoare, C.A.R.: An Axiomatic Basis for Computer

Programming. CACM 12,10 (1969) 576..580, 583

Hoa 72 Hoare, C.A.R.: A Note on the FOR Statement. BIT

12,3 (1972) 334..341

Knu 69 Knuth, Donald E.: The Art of Computer Programming.

Vol.1. 2nd pr. Addison-Wesley 1969

Knu 76 Knuth, Donald E.: Mathematics and Computer Sci-

ence: Coping with Finiteness. Science 194, 4271

(1976) 1235..1242

Luc 90 Luckham, David: Programming with Specifications.

Springer 1990. 0-387-97254-4

Mag 93 Maguire, Steve: Writing Solid Code. Microsoft Press,

Redmond, 1993. 1-55615-551-4

Mar 96 Marin, Mike A.: Effective use of Assertions in C++.

SIGPLAN Not. 31,11 (1996) 28..32

NW 89 Nievergelt, J.; Winkler, J.F.H.: How should the facto-

rial function be computed ?. Informatik Spektrum 12,4

(1989) 220..221 (in German)

Wol 94 Wolfram, Stephen: Mathematica. 2. Aufl. Addison-

Wesley 1994

1997.Feb.09

1997.May.24

