A PROPOSAL FOR AN INTEGRATED PROGRAMMING ENVIRONMENT FOR CHILL

T. Mehner, R. Tobiasch, J.F.H. Winkler

Siemens AG Munich
Federal Republic of Germany

RBSTRACT

For the efficient construction of Large
programs for telLecom applLications the software
engineer must be supported by an integrated
set of tools. Such a set of tools is caLled an
integrated programming enviromment. In this
paper a proposal for such an environmment for
the construction of Large CHILL programs 1is
presented. We concentrate on those phases of
tne software Lifecycle in which programs are
manipulated and deal especially with the
requirements for Large program families with
revisions and variants that are typical for
the telLecom fielLd.

1 INTRODUCTION

Wwhen developing,
stored program
systems the

producing, and maintaining

controlLled digital exchange
application of software
engineering methods becomes more and more
important, since these systems are
characterized by some strong requirements
concerning the system's availability,
reliabiLity, Lifetime etc. When establishing
the process of deveLoping, producing, and
maintaining such systems these requirements
must be taken into consideration.

integrated programming
environment (CHEKS) provides a tool set
supporting this process. CHEKS stands for
"CHILL Entwicklungs= und Korrektursystem", the
(German) name of the proposed environment.

The proposed

The main objectives of CHEKS are oriented

towards

e the high quality of telecommunication
soTtware

e the consistent evolution of this software
during its entire Life time

¢ the enhancement of productivity.

The high degree of qualLity can be guaranteed

by the validation facilities provided by
CHEKS. The components' consistency, which is
essential to the evoLutionary approach, 1is
controLied by the configuration management
component based on the program family concept.
The enhancement of productivity is achieved by
providing automated process execution and by
checking access rights to reduce
inconsistencies and handling errors.
Furthermore some functional redundancy will be
reduced by re-using results once computed
within the develLopment process.

With respect to the objectives both the
integration and the synergism of the tool
set's components are essential.

The process, on which CHEKS is based, follows
3oehm's waterfall=process=-modeLl [Boe 76] .
Despite the fact that it does not have the

65

theoretical base, the conceptionalL unity, and
integrating framework that are essential to
the achievement of process coherence over the

entire Life cyclLe of a program, it is widely
accepted and welLlL established in the software
community. CHEKS mainlLy supports

e the design stage using the modulLar

programming facilities and the concepts of
separate and independent compilLation
provided by CHILL

e the implLementation stage
for programming in the
CHILL

using facilities
smaLl provided by

e the integration stage = which is in some
sense reverse to the design stage = by
using the structure information provided by
the specification parts of a program
accessible via the configuration
description introduced below (see fig. 1,
fig.).

2 FRAMILIES OF CHILL-PROGRAMS

Programs for telecommunication applLications
have the following important characteristics:

chl) they are very Large (10%-10% LOC)

ch2) they are in operation for a
of time (up to 30 years)

Long period

ch3) they are not simplLy singlLe programs but

rather groups of related programs,
because every telLephone exchange is
normally uniquelLy tailored to is4
environment.
A typical examplLe of such a program is the
controlL program of a computerized telLephone
exchange. We call such a control program in
this paper an "application program system"
(APS) [sie 81].
The programming Language and the programming

environment used for the construction of such
an APS must have such properties that allow
the construction of programs having the
characteristics mentioned above.

In this section we deal with the
characterization of program families and with
the Language constructs of CHILL which
facilLitate the construction of program
famiLies.

Since the APS are very Large (chil) they must
be modularized in order to be manageablLe. This
modularization must aLlow for the structuring
of the whole program into manageable program
units (PU) wiztnh well defined interfaces
between those program units [Win 84].

The program units of CHILL are the modulLe and
the region.

Different PU in
different varants

Different vanants
of gne PU

Since the APS are in operation for a Long time

they will evolve in time Leading to different
versions of the wholLe APS or >f some program
units.

In the following we distinguish two kinds of

versions the revisions and the variants.

Revisons evolve in time during further
development and maintenance of a PU [Tic 82].

The main reasons for such revisions are

K

Optional PU

indication of variants

structural connection .

connection between revisions

Fig 1. Revision oriented view of a PFRV

e new functional requirements;
e correction of errors;

e changes in the environment (espec.
increasing the capacity of an exchange).

The subsequent revisions evolve in time but
several of them may exist at one point in time
because different exchanges may be equipped

with different revisions of the APS.

Different variants
of gne PU

Optional PU

Fig 2. Variant oriented view of a PFRV

®

B, o'

e £2

Different PU in
different variants

structural connection
of later revisions

66

RIS e e R

Exchanges Located in different pLaces usually
differ in their functionality, capacity etc.
especially if they are Located in different
countries. These differences Lead to different
variants of the APS.

We call a relLated set of programs with such
revisions and variants a program family with
revisions and variants (PFRV) [Win 77]. The
typical structure of such a PFRV ist depicted
in figures 1 and 2.

According to the two sorts of PUs the wholLe
family can be organized in two different ways:
revision oriented and variant oriented. The
first of these possibilities is depicted in
Fig.l whereas Fig.2 shows the same familLy
using the variant oriented view. This familLy
consists of two revisions A* and A2, where A+
has three variants (A*,, A*,, A*;) and A? has
onLy two variants (A2,, AZ2.).

In both figures the upper index indicates the
revision and the Lower index the variant of a
PU.

Fig.1 and 2 show three typical situations
which give rise to program variants :

¢ different alLternatives for one PU : B*, and

3 ENVIRONMENT AND STRUCTURE OF CHEKS

3.1 THE ENVIRONMENT OF CHEKS

CHEKS is designed to be an open system, since
all internal interfaces are common to alLl
components. CHEKS in the current stage
represents a "MAPSE-class" functionality [DoD
80].

CHEKS does not cover alLlL phases of the
software Life cycle. Especially both
requirement phase and sections of the design
phase are not yet supported. NeverthelLess the
gap between a SDL=-toolL, which matches these
phases, and CHEKS will be bridged over

depending on SDL's status and progress.

Beyond the develLopment process of software
itself the aspects of validation and
documentation are essential to the software
engineering discipline. The validation part of
CHEKS currently contains

e the checking of consistency and
complLeteness of the program familLy's design

B*,
S 3 e the analysis of syntactic and semantic
s ;:pLacoment oF o TR B Grinee 18 suo correctness of both the design and the
implLementation of the program famiLy's
L nts.
e addition of a further PU : E? Ak g
user text controller
imerface: editor (status, directives, (automatic) execution, ...)
1T 1T 1T 1T
scanner | parser > validation tools
Y & J L] |] L] L
component =
semantic intrep l4 targetcode s linker
f foridt analyzer constructor generator P
components A A
intrepr program
> merge »| targetcode
optimize generator
v v 1
context manager |- selector
3 ¥ v 2 .
difference et version control
data analyzer
base T
manager
access control / synchronization
h'.“n' libraries and elements

Fig 3. Coarse Structure of CHEKS

67

An integrated test bench is yet Lacking the
valication part. Documentation system
faciLities based on the description of program
units will be applLicabLe in connection with
the configuration management component of
CHEKS.

3.2 THE STRUCTURE OF CHEKS

The Logical structure of CHEKS is oriented
both towards the user's view and the
functional view. With respect to the user
there are four different Layers characterizing
the coarse structure of CHEKS:

(&9)] CHEKS' user interface

It provides facilLities to identify users
and attaching access rights and
authorizations to them. Beyond this the
user interface establisnes common
procedures to initiate automatic
execution of complLex activities, e.g.
compiling sequences of program units,
program production etc., and to get
CHEXS' status information.

2) CHEKS' functional components

This Layer consists of the functional
set of operations and tools manipulLating
the data base structure and its obJjects.
This set of functions is discussed in
more detail in the following sections.

3 the data base manager

Depending on the user's access rights
and authorization the data base manager
establishes a wuser's personal domain
realized by Libraries as introduced in
the next chapter. It consists of all
private and shared objects, of which the
user is owner. In addition references to
shared objects, which belong to other

users, are elLements of the user's
personal domain.

The data base manager provides
mechanisms for controlLling and

synchronizing access to shared objects.
(&) the data base

ALL information and components created
during the develLopment and Life time of
a program family are stored in a common
data base. Storage and retrievaL of
elLements is performed by the data base
manager. The structure of the data base
and its elLements is introduced in more
detail in the next chapter.

Considering the functionalL view one must keep
the underiLying process modelL in mind: As
pointed out above the development, production,
and maintenance process 1is divided into
different stages and activities. CHEKS
supports the following activities:

(1) programming in the Large

when designing an APS characterized by
the properties shown above partitioning
and refinement are essential. Specifying
the skelLeton of the APS by different
Layers and a hierarchy of Library (sub=)
units' interfaces is welLl supported by
CHILL. Identifying different revisions

68

and variants, which is essential to any
kind of system's evolution, is realized
by means of the program family concept.

(2) checking external references

The validation complLeteness and
correctness of external references 1is
performed by the context manager. It is
most important for guaranteeing the

system's consistency property. It . %8
performed by checking whether granted
and seized entities match or not. In

case of program updates, i.e. revisions,
the context manager delivers the program
units which depend on this update. In
addition it can decide whether these

program units have to be recompiled in

an appropriate order, updated, or
changed, too.

3 programming in the small

ObviouslLy CHEKS contains components both
for designing the internal structure of
LocalL data and functions of the program
units, and its implLementation and
coding. Creation and update is performed
by a common text editor. Syntax driven
incremental program creation 1s not yet
pLanned. After checking the syntactic
and semantic correctness, which 1s part
of the compilLation process, the program
unit is translLated into the intermediate
representation based on the abstract
syntax tree. This intermediate
representation is the common 1interface
to alLlL toolLs and functions available
within CHEKS. The first step toward a
complLete unit's test bench is the
existing symbolic debugger.

(4) program synthesis

The production of an APS can
conceptionalLly be performed in two
different ways: Following the more
conventionalL way one has to generate
target code for each program unit, to
select the relLevant components, and to
Link them together. The alternative
approach = which is fundamental to
optimization and testing ©oeyond unit
boundaries - is characterized by
selecting appropriate components
represented by their intermediate
representation in accordance with the
configuration description, Linking them
together by performing tree operations,
and jenerating highLy optimized target
code for the wholLe program.

(s) validation / documentation

There are no facilities yet available
within CHEKS.

4 LIBRARY AND LIBRARY ELEMENTS

ALL program components belonging to one
program family are contained in the data base.
This data base may be partitioned physically
into one or several Libraries. The Libraries
can be organized according to the peoplLe
working on this program familLy.

The database of program components is
furthermore structured in a Logical way
according to the structure of the PFRV (ref.

Fig 4. Logical description and physical database

Fig.1 and Fig.2). The structure depicted in
these figures can be conceived as a pure
configuration description [DK 76, LS 83] which
is superimposed over the poolL of physicatl
program components. This is depicted in Fig.4.
In this figure several typical situations are
demonstrated

e corresponding components in different
revisions may be identical, ie a revision
may onLy revise some of the components of
the whole program. In Fig.4 the PUs 3%, and
B2, are implLemented by the same program
component Bi.

¢ different variants of El PU may be
implLemented by the same program component.
This is possible if the subcomponents onLy
give rise to the variants. In Fig.4 the PUs
A*y, A*;, and A%, are all implLemented by
the same program component A1l.

Each Library has one owner, who determines the
access rights other users have with respect to
this Library.

4.1 LIBRARY ELEMENTS

In the following List we give typical kinds of
Library elements.

e program components in source form

¢ program components in intermediate form

e program components in object form

e symbol tablLe information possiblLy
structured according to the name spaces

69

. configuration descriptions (description of
revisions and variants)

e results of analyses of program components
* teost data and test results

e Libraries

¢ references to elLements of other Libraries
¢ documentation

e data of develLopment and production

e eotc.

The Library does not onLy contain program
components but alLso a Lot of reLated
information. Most of this information can be
reLated directly to the program components
represented in the Lower part of Fig. 4. - This
Leads to a structure where the boxes
representing program components are themseLves
structured into several components as eg
source program, obJject program etc.

Note that Libraries can also be elLments of
Libraries, ie we may have an arbitrary
hierarchy of Libraries. This makes the
introduction of different kinds of Libraries
unnecessary as eg main Library, sub Library
etc. The Libraries of such a hierarchy must
not alLlL reside in one computer. They can be
arbitarily distributed. This means that CHEKS
can also support mulLti-site development.

4.2 RELATIONS BETWEEN LIBRRRY ELEMENTS

A number of different relLations exists between
the Library eLements mentioned in the
preceding section. The most important of these
reLations are given in the following List.

¢ program component <=> symbolL tables

¢ program component <=> contained program
component

e source form <=> intermediate form

e intermediate form <=> object form

e program revision <=> program variant

e PU variant <=> PU variant

e Library <=> gsLements

e modulLe <-> spec modulLe

e module <=> context specification

¢ (program comp.,test data) <=> test result

e program component <=> documentation

e etc.

With respect to the complLeteness of these
relations a Library can be ;n different
states. We callL such states consistency states

of the Library. ExamplLes for such consistency
states are:

¢ source complLeteness g no unsatisfied

references on source Level;

e Object compLeteness to each program
component 1n source form exists one
component in object form;

e object consistency object complLeteness
and aLl object components are valid.

The Libraries are managed by a Library
manager. This manager realizes the access to
and the relLations between the Library
eLements. The elements themselves may be
stored in a database or in filLes of a
conventionalL filLe system. In the Latter case
access to such file should onLy possible via
the Library manager.

S OPERARTIONS ON LIBRARIES AND ELEMENTS

According to the structure of Libraries there
are two kinds of operations : (a) operations
on Libraries, and (b) operations on Library
elLements that are not themselLves Libraries.

The operations on Libraries are mostlLy of an
organizational nature whereas the operations
on Library elLements are the typical tools of
programming environments.

Examples of operations on whole Libraries are:
e Create a new Library

This operation creates a new Library and
defines the owner and the name of the
Library. A newlLy created Library is
initially empty.

e Delete a Library

This operation can be applied onLy by the
owner of the Library to be deleted.

e Mark a Library as the current Library

Further operations use the current Library
if no Library is explicitely given in their
invocation.

e Open a Library

There are different open modes s
exclusively for modifying the contents, and
nonexclusively, if the user onLy wants to
read the contents.

e CLose a Library

e List the tablLe of contents of a Library

e Join two or more Libraries
The program parts developed by several
programmers can thus be put together into
one Library containing afterwards the whole
program.

e SpLit a Library in two or more Libraries

e Check the consistency state of a Library

Operations on elements are the typical

manipulations of programs and program

components in a programming support

environment.
The main operations on elLements are :

e Create elLement
e Delete elLement
e Edit element

If the element is a source program
component the editor will also have 2
syntax oriented mode.

e TransLate : source => intermediate form

e TranslLate : intermediate form => obJject
form

e TranslLate intermediate form => source

form

e Execute elLement in intermediate form

This will be performed by an interpreter
for the intermediate Language of the
system.

¢ Pretty print a source elLement

6 IMPLEMENTATION RSPECTS

CHEKS generally follows the
host=-target=approach, where currentlLy
availablLe Siemens mainframes will act as host
system, controlLled by the time sharing
operating systems B8S2000 and B8S3000, resp.
Target systems will be Siemens switching
processors used for EWSD [Sie 81].

Host and target systems are not yet
interconnected physically. With respect to
diagnosis, teost, and maintenance an
interconnection - @.g. at data Link Level -
would be essential. An advanced architecture
(see below) would offer such facilLities by
selecting a component dedicated for diagnosis
and maintenance.

CHEKS itself will be implLemented using CHILL
and the currently available toolL set [Fei 83;
Rei 83]. AlLthough its current run time
environment is determined, the implLementation
of CHEKS will be conceptually based on a
virtual support environment to provide
portability and evolLution with respect to
advanced architectures. The virtual support
environment consists of

&%, a virtual terminal to establish the user
interface according to the periperal
equipment (high resolLution ys character
oriented screen, etc.)

(2) a2 set of services which allow an
impLementation independent of specific
operating system functions, especially
using the new CHILL-IO as defined in [MW

347 .
The specificationen of implLementation
dependent interfaces will be influenced by new
architectures proposed for development

environments. This advanced architectures are
characterized by a set of personaL computers
connected either by a mainframe, which offers
central services, or by LocaL area networks,
where data are distributed mulLti site and
services may be decentralized.

7 REFERENCES

Boe 786

DK 76

DoD 80

Fei 83

LS 83

MW 84

NS 78

Boehm, B.

Software Engineering
iEE Trans. on
25,12019785)1226..1240.

Computers

DeRemer, F.L.; Kron, H.H.
Programming-in-the=-Large
Programming=in=the-smalLl
= [NS 76: 80..89]

versus

United States Department of Defense
Requirements for Ada Programming
Support Environments "Stoneman®
Wasnington D.C., February 1980.

Feicht, E£.J.

CHILL=factory: production and
maintenance of a Large CHILL software
system

Proc. Sth Intern. Conf. on Software
Engineering for Telecommunication
Switching Systems, Lund 1983,
PR9B. 103

Lampson, ButlLer W.; Schmidt, Eric. E.

Practical Use of a
ApplLicative Language
= [POP 83: 237..255].

PolLymorphic

Mehner, T.; Winkler, J.F.H.
An ImplLementation of the New CHILL I/O
This volume.

Schneider, H.-J.; NagL,M. (eds.)
Programmiersprachen = 4. Fachtagung
der GI

Springer, Berliin etc. 1978.

71

POP

Rei

Sie

Tic

win

win

a3

83

81

82

84

POPL 83 = Tenth Annual ACM Symposium
on PrinciplLes of Programming Languages
ACM, New York 1983.

Reithmaier, E.

CompiLation Control in a Large CHILL
Appiication

Second CHILL Conference, LisLe
ILlinois, March 1983, p.111..120.
Siemens AG

EWSD Digital Switching System

telLcom report, VolL.4 (1381) Special

Issue.

Tichy, WalLter F.
Adabase: A Data Base for Ada Programs

AdaTEC Conference 1982 p.S57..65; ACM,
New York 1882.

winklLer, J.F.H. S
Beschreibung und Realisierung von
Programmfamilien

Jahresbericht der Fakultat fur
Informatik an der Universitat
Karilsrune 1977, p.188..197.

Winkler, J.F.H. ;
The RealLization of Data Abstractions
in CHILL

This volume.

CC|TT<<D CHILL

CAMBRI T onauce
_ONIVERSITY fnmer

CONFERENCE
®* PROCEEDINGS

f‘l[)(MSOTEX | i

I
ITT Europe Engineering Support Centre/ L. L,

