*S®JL3ON NYI1d9IS

v86L ALNP ‘L# 6LA

SOME IMPROVEMENTS OF ISO-PASCAL

J.F.H. WinklLer
Siemens AG ZTI SOF 213
Otto-Hahn-Ring 6
D-8000 MUnchen 83 West Germany

1 INTRODUCTION

The programming Language Pascal [Wi 71a; Jw 75] was a
significant contribution to the evolution of programming
Languages. It is a simple but powerful Language in the tradition
of AlgolL 60 [Nau 63]. Compared with AlLgolL 60 it contains more
mechanisms for the definition of data structures: enumeration
types, records, pointers, and I/0. AlLgoL 60 contains onLy the
array schema which is also included in Pascal. These data
structuring facilities are the main reason for the usefulness of
Pascal as a Language for formulLating general algorithms. Some
more complicated mechanisms of Algol 60 were Left out of Pascal
: call by name, switch, dynamic arrays, and the general
for-Loop.

The proliferation of Pascal was also facilitated by the highLy
portable Pascal compiler developed at the ETH ZuUrich. This
compiler system consisted of two parts : a compiler from Pascal
to P-code (an instruction code for a simple stack computer)
written in Pascal and the same compiler written in P=code. To
impLement Pascal on a new computer it was only necessary to make
a P-code interpreter or code generator for the new machine.

Originally Pascal was a Language intended for teaching and
Learning programming. But since it was a very useful Language
and easy to implement it was and is also used in the commercial
field for writing system and application software. For this use
the scarce set of mechanisms (which was quite right for teaching
and Learning) was not sufficient. This Led to the situation that
different implLementors implemented different extensions (e.g.
dynamic arrays, rancom access files, data bases, independent
compilation, etc.). Furthermore this compromised portability
which was traditionally good for pure Pascal since most
compilers were derived from the ZuUrich compiler. To overcome
this situation a group of BCS started work on standardization of
Pascal in 1976 [Add 80]. Through numerous drafts and discussions
this Led to the Draft 1SO Standard 7185 [ISO 82].

This draft standard describes essentially the Language as it was
defined by Wirth [JW 75; Wi 71a]. From the beginning of the
standardization effort it was a goal not to revise the Language
[Add 80] but onLy to establish a more precise definition of it
since the report in [JW 75] was felt inadequate and vague [Add

80; BF 80; Rav 79]. This guideline was followed in the work
which Led finally to [ISO 82].This document contains one
extension and some restrictions of the Language but is much more
precise and explicit than the report in [JW 75]. The extension
consists of a sort of dynamic array called conformant array
schema. It can be used as parameters of subprograms.

The decision to standardize Pascal "as it is» retains
deficiencies of the Language which were seen already by Wirth
[Wir 7Sa]. Furthermore new problLems are introduced by the
extension and restrictions mentioned above and by the attempt to
define some concepts more precisely.

The following paper discusses onLy features contained in [ISO
82]. We do not Look at Pascal with the eyes of someone requiring
a Language with much more concepts [Pos 79].

Since the future goalL of the standardization committee is the
standardization of an enriched Pascal the paper may be useful
for this undertaking.

The body of the paper contains a number of programs resp.
program fragments. They should not be misunderstood in a way
that they express a recommended stylLe of programming. Their main
purpose is to show the difficulties a processor (processor in
the general sense used in [ISO 82]) has while checking a program
for conformity with the rules Laid down in [ISO 82].

2 SCOPE RULE

The scope rule in [ISO 82] is the same as in [JW 75] (see e.g.
[saL 79]). This rule can be characterized by the following three
properties :

s1) declaration precedes application
s2) scope = block

s3) inner blocks with redeclLarations are totally excluded
from the scope of an outer declaration.

At first glLance these three properties seem to characterize a
sound scope rule. But unfortunately property s2 has consequences
which indicate that it should be modified. The problLem comes
from the fact that the scope of a declared entity extends from
the beginning of the blLock the declLaration is immediately
contained in until the end of this block, and may thus encompass
a piece of program text preceding the declaration itself.

A very popular examplLe for a program which violates this scope
ruLle is depicted in (2-1).

_59-

1) const A = 10;

(2) procedure P;
(3) const B = A; (2-1)

(4) A= 15;

(s5) end L) g

According to s3 the A in Line 3 cannot refer to the outer A
declared in 1 because the whole blLock of P is excluded from the
scope of this outer A. This is a consequence of the
redeclaration in Line 4. Since the applied occurence in Line 3
precedes the defining occurence in Line 4 the program is illegal
(s1).

In order to indicate this violation of the Pascal scope rule all
declarations from outer blocks used in the declaration part of
an inner block must be marked or imported in the inner blLock [BF
80a]. This resulLts in a complication of the compiler.

A more complicated examplLe of the scope rule is depicted in
(2=2) .

function F;

function F;
v (2-2)
end { F) ;
begin { body of the outer F }
F :=10; { dtlegaL !! }

It is impossible to define the value of the outer function
because its blLock is excluded from the scope of its declaration.
Apart from the scope problems this may be an indication that the
assignment form.is not well suited for the definition of the
result of a function. The return-clLause as used in PL/I [ECM
76], Ada [Ref 83] and ModulLa-2 [Wir 78, 80] or the resuLt-clause
and return-clause of CHILL [ITU 81] are preferable solutions.

A further complication is shown in (2-3) [BF 80].

procedure PO;
end { PO };
procedure P1;

procedure P2;

begin

e s (2=3)
PO;

end { P2 };

procedure PO; { illegal !'!)

end { PO };
end { P1 };
The example (2-3) shows that an outer declaration which is used

in an inner block must also be imported in all bLocks
hierarchically between these two blocks.

The general probLem with the scope rute of [ISO 82] can best be
seen in the following examplLe, where a procedure-decLaration P,
which contains a global reference G, is inserted at the point S
into a procedure Q@ (2-4). Since Pascal has a monolithic program
concept such an insertion of "building blocks" will often be
necessary during the development of Large programs.

Q
~— R
P
P;
S <
(2=4)
solls s
R;
e P;

A sound condition that P may be inserted at point S would be :

a) there is no immediate name clLash within @, i.e. no
declLaration for P is already immediately contained
in Q.

b) the glLobal references of P can be associated with
corresponding declLarations in Q (before the point
S) or in the program part before Q. .

If we assume that these two conditions hold in (2-4) and that R
does not contain a Local declaration for P the rule "scope =
blLock™ has the consequence to invalidate Q by the insertion of
P. This follLows from the fact that the applied occurrence of P
inside of R precedes the new defining occurence of P inside of
@, after the insertion of P has been carried out. This situation
is not easy to understand, and should not be part of a Language
intended text modelL" of Ada [Ref 83] is preferable. In this
model property s2 is replaced by “the scope begins with the

declaration and ends with the end of the immediately embracing
bLock"™ and s3 by "parts of inner blLocks with a redeclLaration are
excluded corresponding to property s2)".

The best solution for these scope problLems seems to be to forbid
the glLobal view [SW 73] and to use explicit import clauses for
global entities.

A further complLication arises if the declarations of two (or
more) entities are mutually dependent as in the case of mutual
recursive subprograms or self-referencing data types. The
probLem of mutually dependent subprograms is resolved in [ISO
82] by the compiler directive FORWARD. The solution of the
probLem of self-referencing data types 1is achieved by an
exception of rule s1 : "namely that an identifier may have an
applied occurrence in the type-identifier of the domain-type of
any new-pointer-types contained by the type-definition-part that
contains the defining-point of the type-identifier" [ISO 82:
6.2.2.95;

Therefore the following program fragment (2-5) conforms to the
requirements of the Draft Standard.

(& D] type A =1 .. 10;

(2) rocedure P;
3 type B = AA;
Sy (2-5)
(4) A = record
(s) K1 : CHAR;
(6) Re8s
¢7) end;

In this situation the applied occurrence of A in Line 3 must be
associated with the declaration starting in Line 4.

In order to avoid the above mentioned exception of rulLe s1 the
same mechanism as for subprograms could be used. This would
simplify the Language and is shown in (2-6).

type A =1 .. 10;

procedure P;

type A forward; (2-6)
B Aa;
A = record
K1 : CHAR;
K2 2R
end;

(2-6) shows quite instructively that the forward-declaration
separates the problem of mutually dependent entities from the
scope problem since in (2-6) there is no potential reference to
the outer A as in (2-S).

With this solution rule s1 holds without any exception for all

conformant programs. The compiler could give a warning or a hint
if & type ds unnecessarily declared as forward. The
forward-declLaration is onLy necessary for a situation as
depicted in (2-6); the situation in (2-1) can easily resolved by
a simple renaming. But this is not sufficient for (2-=5). For the
solution (2-6) to work in every case it is necessary that
forward is a word-symbol. This is preferable to the solLution in
[ISO 82] were FORWARD is a so called compiler directive. If
forward is a word-symbol the concept of a directive is no Longer
necessary for the definition of the Language since the onLy
required directive in [ISO 82] is FORWARD. Thus the Language
becomes simpler and easier to Learn.

In general rule sl1 can onlLy be fulfilled by using some sort of
forward construct or by forbidding the declLaration of entities
refering to each other.

3 LOOP VARIRBLE

The Draft Standard [ISO 82] states that

L1) the Loop variablLe of a for-Loop must be declared
in the immediately surrounding block;

L2) no assignment to the Loop variabLe is allowed
during the execution of the body of the Loop.

L3) neither a Loop-body nor the declaration-part,
which contains the declaration of a Loop variable
I immediately, shall contain a statement which may
assign a value to I. There are four kinds of
statements S which may assign a value to I:

e S is an assignment statement with I as Left
hand side;

e S contains I as an actual var-parameter;

e S contains I as a parameter to one of the
required procedures READ or READLN;

e S is a for-statement and the control-variablLe
of S denotes I.

Rute L3, which is quite restrictive and complicated, is
necessary to make the enforcing of rule L2 by the compilLer
feasible. The Language could be made simpler if a Loop construct
were chosen such that the first occurrence of the Loop variable
in the for-List acts as the declaration of a constant Local to
the Loop as in AlLgol 68 [FKL 76; HM 80] and Ada [Ref 83] . The
Loop would then form a scope by itself. Such a solLution is also

Lg

suggested by the results reported in [Ps 79a].

4 ARRAY TYPES AND PRRAMETERS

4.1 THE ACTUAL SITURTION

The introduction of a new sort of formal parameter, the
conformant array parameter (CAP), is the main extension of [ISO
82] in comparison to [JW 75]. It was alLso the main problem which
delLayed acceptance of a final standard by the ISO [Min 80]. This
extension was onlLy included in the Proposed Standard after "two
critical pressures were applied to the Committee by N.Wirth and
C.A.R. Hoare (independently)" [SalL 80a: 54].

An examplLe for a CAP is
P: array [u .. v : IT] of ET

The part after the colon is called a conformant array schema
(CAS) .

IT is an identifier of an ordinal type. It indicates the index
type of actual parameters admissiblLe for the formal parameter P.
The identifiers u and v denote the smallest resp. Largest value
of the actual parameter's index type. These values must always
be values of IT.

ET is a type identifier or another CAS and indicates the elLement
type of actual parameters admissible for the formal parameter P.

The CAP removes a significant technical deficiency of Pascal
which had already pointed out by Wirth [wir 7Sa: 26]. This
deficiency was also a subject of critical papers on Pascal [Hab
73 :48; Con 76 : 15]. The reason for this criticism is that it
was e.g. impossible to write Library procedures for matrix
handLing in Pascal B8y 81 21S; DL 75; EH 82]. As a consequence
of the extremely static view of data types and objects a Pascal
subprogram could onlLy accept arrays of a fixed size as actual
parameters.

The description of the new kind of parameter = the confgrmant
array parameter- in [ISO 82] is quite compLicated and it is
questionable if this is adequate in a Language "“suitable for
teaching programming®.

The essential program properties related to the CAP are :

c1) every conformant array schema (CAS) defines a new

. 4 ARRAY TYPES AND PARAMETERS

type different from alLlL other types in the
program.

c2) a CAP cannot be used as an actual parameter in a
subprogram call.

c3) a CAP is not assignment compatiblLe to a Llocal
array variable with the same bounds and the same
element type.

c4) assignment statements involving arrays need no
dynamic checks on index ranges since assignment
compatible array types have always the same number
of eLements. This does also holLd for CAP.

c5) the Length of an activation record for any
subprogram activation may be determined at compile
time.

Property c2 is the most troublLesome of these properties since it
hinders the writing of modular programs using CAP. It is e.g.
not possiblLe to write a subprogram P which has a CAP and gives
this CAP in a callL to another subprogram (e.g. a Library
eLement) as is shown in (4-1).

function F (P:array[u .. v:IT] of ET): FT;
.i% LibF&nc(P) i {illegal) (4-1)

end (F);

There is onlLy one reason in favor of property c2 given in [1s0
82] : the Length of the activation record for any subprogram
call can be determined at compile time (property cS). Property
c5 does not seem to be very important since the heap storage of
a Pascal program can generally not be determined at compilLe
time. There are arbitrary sequences of allocations and
deallocations possible. Compared with this highLy dynamic
structure of the heap it seems not important that the Length of
the stack frames can be computed in advance. It must also be
noted that the number of stack frames cannot be computed at
compile time. It seems more natural to Look at the whole data
storage of a Pascal program as a segmented memory Like the heap
[Mar 79].

It is also possiblLe to retain the property of fixed Length of
stack frames if the stack contains onlLy anonymous pointers to
the dynamic arrays which are Located on the heap [EH 82].

89

.2

A p
pro

Ad

Ad

Ad

TOWARDS R NEW SOLUTION

ractically useful array feature sould have the following
perties :

al) dynamic array parameters can be used as actual
parameters;

a2) there are dynamic array objects;

a3) the declLaration of objects assignment compatiblLe
to a dynamic array parameter is possible.

al:
the reason for this property is given in (4-1). This property
has the consequence that property cS5 does no Longer hold.

a2:

the CAS does not allow to write a program, which reads a
number N and then declares an array with the index range 1 ..
N. This is typical for programs solving problems with varying
problem sizes e.g. the solution of systems of Linear
equations where the number of equations and/or unknowns may
vary. Using the CAS concept has the consequence that there
must always be a static array which may then be used as an
argument for a dynamic array parameter. This is essentially
the same situation as in Fortran [FOR 78]. Thus it is not
possible to write programs which may adapt themselves to
varying problLems sizes. Introducing dynamic arrays in this
more general sense is not very expensive if a feature Like
CAS is already in the Language since the CAS concept requires
descriptors for arrays and the mechanisms for the addressing
of such arrays. Thus there are no additional mechanisms
necessary to realize this more general array feature. OnLy
property c5 does no Longer hold.

a3:

this property is essential for algorithms involving sequences
of arrays e.g. iterative solution of systems of Linear
equations or iterative computation of eigenvalues Ess 76l.
After one iteration usually an assignment statement of the
form "OLd_Array := New_Array;" will be executed. The size of
these arrays could be given by a dynamic array parameter. If
the CAS concept is used such an assignment is only possiblLe
if OLd_Array and New_Array are both declared in the same CAS.
This means that an internal auxiliary variable must be
supplied from outside as an actual parameter. This would Lead
to an unacceptablLe programming style. If an internal
auxiliary variable is used the above assignment can onLy be
realized by a Loop statement. This would Lead to inefficient
code on most machine architectures.

The main problLem now is how the properties a3 and c4 can both
be fulfilled. If we use a similar scheme for dynamic array

parameters as in [ISO 82] the type of these parameters will
be an anonymous type. There will be no type identifier to
indicate the type of the LocalL object which should be
assignment compatible (in the sense of c4) to the dynamic
array parameter. The following proposal uses the Like clause
to indicate that the properties of a new object are to be the
same as those of an alLready declared gbject.

The proposal consists of three parts : the introduction of
dynamic array types, dynamic array parameters, and the Like
clause*.

4.3 DYNAMIC ARRRY TYPES

array-type = “array®" "["index-range (%, " index-range)®]"®
"of®" component-type.

index-range = ordinal-type-identifier |
ordinal-expression ".." ordinal-expression.

ordinal-expression = expression.

The new feature in this proposal is the production
index-range = ordinal-expression ".." ordinal-expression. (4=2)

which allows arbitrary ordinal-expressions for the bounds of
index-ranges. Both expressions in one index-range must be of the
same type. The expressions of an index-range are evaluated in an
arbitrary order. Their values are the Lower resp. the upper
bound of the index-range. If the uppper bound is a predecessor
of the Lower bound the indexrrange is empty. The index-ranges of
an array-type are elaborated in an arbitrary order.

If at Least one of the two ordinal-expressions in (4=2) cannot
be determined at compilLe time the corresponding index-range
constitutes a dynamic index-range. An array-type which contains
at Least one dynamic index-range is a dynamic array-type.

The rules for assignment compatibility are the same as in [ISO
82). As a consequence of this property c4 does also hold in our
proposal.

The production (4-2) is onLy necessary because we do not assume
the existence of dynamic ordinal-types. If there were dynamic
ordinal-types in the Language the production

A Like clause is contained in the eariLier version of PL/1 [1BM

72: 345]. But this clause was not incorporated into the PL/I
standard [ECM 786].

Independent of our paper here, a Like clause was Jjust recently

proposed in [Wha 83].

-69_

index-range = ordinal-type-identifier
alone would be sufficient.

There are a Lot of proposals for dynamic arrays in the
Literature [EH 82; Kit 77; Mac 75; Mof 81; Pok 76; Ste 76; Ten
83; Wir 76a]. The solution in this proposal is similar to the
scheme already used in AlLgolL 60 [Nau 63] and was also proposed
by Wirth [Wir 76a].

4.4 DYNRMIC ARRAY PARAMETERS

formal-parameter-section >
dynamic-array-parameter-specification.

dynamic-array-parameter-specification =
[*var"] identifier-List ":" "dyn" ["packed"]
static-array-type-identifier.
static-array-type-identifier = type-identifier.

A formal dynamic-array-parameter-specification has essentially
the same structure as other data parameter specifications [Ten
80: 11] :

["var®] id-List ":" type-indication .

This means that the Language becomes simpler and easier to Learn
by this proposal. Instead of

var PAR : array [L .. U] of ET

we simply write
var PAR : dyn AT

AT would be a one dimensional array type with eLement type ET.
In general AT can denote any (static) array-type which has been
declared previousLy and is visible at this point.

In a dynamic-array-parameter-specification a new (anonymous)
array-type is introduced whose properties are derived from an
already declLared (static) array-type.

Conformability is defined as in [ISO 82: 6.6.3.8].

The definition of parameter compatibility is much more simpLer
than in [ISO 82] :

pc) an array A may be an argument for a formal
dynamic array parameter D iff the type of A
conforms to the type of D.

Intuitively this means that an actual array is "not greater"”
than the formal, and the element types of both are the same.

The rulLe above allows also the use of a dynamic array parameter
as an argument for another dynamic array parameter (even for
itself in the case of a recursive subprogram).

In contrast to [EH 82; Pok 76] we have introduced a new sort of
parameter which is simply indicated by "dyn®". This telLls the
reader of the program directly what the properties of the
corresponding parameter are and seems to be much more simpler
than the concept of parametric types [EH 82].

Inside a subprogram containing a dynamic array parameter in its
heading it is necessary to know the index bounds of the
corresponding actual-parameter. In this proposal two families of
required functions are introduced for this : LBound and HBound.
They are defined for any array type and arrav obgject. Let t
der ‘@ an array type or an array object. LBound(t) (HBound(t))
yields the Lower (upper) bound of the first index-range of t.
Let n be a static integer expression yielding a number greater
than zero. LBound(t,n) (HBound(t,n)) yields the Lower (upper)
bound of the n-th index-range of t. It is an error if the value
of n exceeds the number of index-ranges of t.

An examplLe for this proposal is given in figure 4-1.

type AT1 = array [1..10] of INTEGER;
AT2 = array [1..100] of AT1;
var AVl : array [1..100] of AT1;
AV2 : array [50..60] of array [1..5] of INTEGER;

procedure P (var A : dyn AT2);
var I : LBound(AT2,1) .. HBound(AT2,1);
{since AT2 must be a static array type
the type of I is also static)}
J : LBound(ATZ2,2) .. HBound(AT2,2);
beain
for I := LBound(A,1) to HBound(A,1)
{ the iteration clLause comprises exactly the
index values of the actual parameter)}

do beain
for J := LBound (A,2) to HBound(A,2)
do A[I,J] := A[I,J] + 7;
end;
end;
P(AV1);
P(AV2);

Figure 4-1. The use of dynamic array parameters

This approach to the problem of adjustable array parameters also
avoids the main probLems pointed out in [Min 80: 79..83]. The
main reason for this are the two newly introduced (families of)
required functions “LBound® and "HBound" which are used instead
of the "bound-identifiers®™ in [ISO 82]. These functions Lead to
a better semantic coherence of the program, in that a semantic
dependency between several items (the object A and its index

-OL-

bounds) is used to compute the dependent valLue from the
independent one.

The example (4-1) contains one remaining insecurity:
LBound(A,1) . .HBound(A,1) may be a proper subset of
LBound(AT2,1) ..HBound(AT2,1). This insecurity can be removed by
using the proposal for the implLicit declaration of the Loop
variable (conf. sect. 3). This Leads to the program fragment
(4=2) where the set of admissiblLe values for I and J are
(automatically) constrained as far as possible.

type ATl
{as in figure 4-1)
procedure P (var A: dyn AT2);
{ no declLaration for I and J } e

I := LBound(A,1) to HBound(A,1)
do begin

for J := LBound(A,2) to HBound(A,2)
do A[I,J] := A[I,J] + 7;

end;

end (P) ;

The restriction of the type of a dyn-parameter to a3
static-array-type is onlLy necessary because we do not assume tho
existence of dynamic ordinal-types. If there were dynamic
ordinal-types in the Language the procedure P in figure 4-1
could simplLy be written as in (4-4). In (4-4) the type AT2 could
then also be a dynamic array-type.

procedure P (var A : dyn AT2);
var I : LBound(A,1) .. HBound(A,1);
{ now I has the proper value range }
J : LBound(A,2) .. HBound(A,2); (4-4)
begin
{ as in figure 4.1 }

4.5 THE LIKE-CLRUSE

The declaration of Local array variables which are assignment
compatiblLe with a formal dynamic array parameter is not possiblLe
using the elements defined so far. If the dynamic parameter is
defined by "var P: dyn AT;" then "dyn AT" defines a new type
different to alLlL other types in the program. A variable V
declared Locally by the declLaration "var V: AT;" is therefore
not assignment compatible with P.

Assignment compatibility can be achieved by deriving the
properties of the Local variable V directLy from the parameter
itself by the Like-clause :

yar Vetike P}

This means that V has the same type as the actual parameter
corresponding to the formal parameter P. As a consequence the
assignment

V= P;

is perfectlLy Legal and does not need dynamic checks on the index
bounds since V and P have by definition the same number of
components.

An example for the use of the Like-clause is given in figure
4-S.

type VECTOR = array [INTEGER] of REAL;

procedure P(var OLdVector : dyn VECTOR);
var NewVector : Like OLdVector;
begin

repeat (4-5)
OLdVector := NewVector;
{computation of
NewVector := F(OLdVector) }

untit Cond(NewVector, OlLdVector);

end (P);

It is not necessary to restrict the use of the Like-clause to
dynamic array parameters. Any variable already declLared could be
used in the Like-clause. This could avoid the introduction of
type names, when it is not really necessary [Ker 81: 6], and may
thus reduce the conceptual Load for the writer and the reader of
the program [Bak 80)]. It does furthermore enhance the semantic
coherence of the program because the relLationship between two
(or more) variables is expressed more directly than by using a
type. The Like-clause is not intended to replLace the type
definition facility. It is an alternative which may be better
suited for certain situations. In which cases the wuse of the
Like-clLause is to be preferred to the use of a type can onlLy be
decided by practical experience. One situation in favour of the
Like-clause has been discussed above.

5 INPUT-OUTPUT

In the input-output area the problem is the input for
interactive programs [FG 82: 88; Kay 80]. Before we describe the
problLems we will briefly mention the main charcteristics of
input-output in Pascal.

Input-output is realized via variables of type "file of
ElementType™ where ElLementType can be any type which does not
contain (directly or indirectlLy) a file type. A file (valLue) is
a Linear sequence of values of the ElementType. With each file
variable f a so called buffer variabLe f4 of ElLementType is

IL

associated. The buffer variablLe contains one element of the
associated file variable. OnlLy this component can be accessed
and manipulated directly. Other elements can onLy be accessed by
scanning the file variablLe sequentially. In this framework
input-output consits of the manipulation of file variables
and/or buffer variables. The folLlowing predefined procedures and
functions may be used for this : RESET, REWRITE, GET, PUT, READ,
WRITE, READLN, WRITELN, EOF, EOLN, and PAGE.

For human readable I/0 Pascal has a predefined file type called
TEXT. A value of type TEXT is a sequence of Lines where each
Line is a sequence of characters containing exactlLy one end of
Line marker as the Last component. Together with the file type
TEXT two procedures READ and READLN for formatted input are
defined. Furthermore a required TEXT variable INPUT is defined
which may occur in the parameterlList of the program and is
intended to be associated with the standard input device. 1In
case of an interactive program the standard input device will
usually be the input part of a CRT-terminal.

Most of the above mentioned subprograms for doing I/0 embody a
prefetch disciptine which causes one more component to be
transferred as is actually needed. “RESET(FilLevar)®" puts the
FileVar in input mode and places the first element (if it
exists) into the associated buffer variable FileVarj.

READ(FilLevar,ElLemVar);
is defined as
begin ELemVar:=FilLeVard; GET(Filevar); end .

The actual element in the file buffer is assigned to the second
parameter of READ and the next element of FileVar is assigned to
the buffer variable FileVar4 by executing the procedure GET.

READLN also embodies this prefetch discipline. It places "the
current file position just past the end of the current Line in
the textfilLe™ [ISO 82: 62]. The naive user would rather expect
that READLN (= read Line ??) reads just a Line from INPUT. Pugh
and Simpson also report difficulties of novices caused by READLN
[Ps 79a].

For the required textfiles INPUT and OUTPUT [JW 75] defined that
an implicit RESET(INPUT) resp. REWRITE(OUTPUT) is automatically
performed by the system. Neither the user manual nor the report
define exactly when this RESET(INPUT) is to be executed.
Therefore Lazy input [HS 78b] has always been alLlowed in Pascal.
Unfortunately the report Left many questions open. The real
definition was the compiler distributed from Zurich. This
compiler implLemented the rule about the implicit RESET(INPUT) in
such a way that it occurred before the execution of the first
statement of the program.

With this implLementation the realLization of sound interactive
programs is impossible because the program requires some input
from the terminal (as a consequence of the prefetch discipline

in RESET) before it can give any prompting message to the user
[HS 78b: 93]. A sound interactive program works the other way
round: it gives first some message to the user, e.g. that it is
running at all and is expecting some input, and then reads this
input from the user.

To avoid this unsatisfactory situation [ISO 61a: 67] suggests
Lazy I/0 for the program parameters INPUT and OUTPUT. The
post—-assertions of RESET resp. REWRITE shall hold "prior to the
first access to the textfile or its associated buffer-variable”.

The main drawback of this deferred input is the complLication of
the transLator and the object program [Per 81: 87]. Each
reference to INPUTA must check if RESET(INPUT) has already been
executed. The program fragment (5-1) shows an exampLe for this.

(1) program PROG(INPUT);

(2) { DeclLarations }

3

(4) if Condition (5-1)
(s) then CharVar := INPUT4;

(6) { arbitrary statements

(6) not referencing INPUT or INPUT4)}

(7) Charvar2 := INPUTA;

When the statement in Line 7 is executed it must be known wether
RESET(INPUT) has already been executed or not. This means that
generally each reference to INPUT4 must check the status of
INPUT.

The situation is even worse if the file buffer (INPUT4) is used
as an actual var-parameter. Even the paper [HS 78b], which deals
with the probLems of Lazy 1/0, does not offer a solution for
this problem. The compLete implLementation of Lazy I/0 seems to
involve a certain runtime overhead since, a var-parameter must
carry with it the information wether it is a filLe buffer or not,
and each reference to this parameter must interpret this
information.

Using a discipline without prefetch RESET(INPUT) could be
executed without any harm before the first executable statement
of the program body and no checks at the referencing points were
necessary.

Summarizing this discussion gives the resulLt that the real

cutprit is the prefetch discipline and not the implicit
RESET(INPUT).

6 SPECIFICRTION OF FORMAL SUBPROGRAMS

In [JUW 75] the exact nature of formal subprograms need and can
not be indicated in the corresponding parameter specification.

_ZL-

As a consequence the actual parameters belonging to calls of
formal subprograms have to be checked dynamically. This can be
seen in the program fragment (6-1).

program PROG61(INPUT,OUTPUT);
procedure Pl(Parl: BOOLEAN; procedure Par2);
begin
if Parl
then Par2(10)
else Par2(10,10);
ond.- ¢ P)=

procedure P2(Parl: INTEGER); (6-1)
begin

WRITELN("P2; Parl = ", Parl);
end ¢ P2 };

procedure P3(Parl, Par2 : INTEGER);

begin :
WRITELN("P3; Parl = ", Pari, "Par2 = ", Par2);
end (P3);

begin ({ of program)}
P1(TRUE, P2);
PIC(FALSE, P3);

end.

It is interesting to note that in AlLgoL 60, which has simiLar
facilities for the specification of parameters and does also not
allow to describe the types of parameters of formal subprograms,
a program analogous to (6-1) would be ilLlegal. The reason for
this is that the semantics of the procedure call is there
defined by the replLacement of the call statement by the
(modified) body of the called procedure (copy ruLe). The
modification of the body consists essentially of the replacement
of the formal parameters by the actual ones. This modification
must “"Lead to a correct ALGOL statement™ [Nau 63: 4.7.5]. This
additional condition is not fulfilled in (6-1).

In [ISO 82] a parameter which is a subprogram must be fully
specified with allL its own parameters and in the case of a
function additionally with its result type.

As a tonsequence programs as (6-1) are no Longer possiblLe and no
dynamic type checking in the calls of formal subprograms is
necessary. This is a real deviation from [JW 75]. Unfortunately
this has been done in a somewhat unsatisfactory manner in that
the specification of the formal subprogram contains parameter
identifiers which are superfluous and disturbing. This is
exemplified in (6-2) and (6-3).

program PROG62(INPUT,OUTPUT);
procedure P1(Paril : BOOLEAN;
procedure Parl2(Par : BOOLEAN));
begin
Pari2(Paril);

end- ¢ P1);

procedure P2(Par21 : BOOLEAN);
begin

WRITELN("P2; Par2l = ", Par2l); (6-2
B P2)
procedure P3(Par31, Par32 : BOOLEAN);
begin
WRITELN("P3; Par31 = *,Par3l1,” ; Par32 = ", Par32);
end (P3);

begin { of program)}
P1(TRUE, P2);
P1(FALSE,P3); { this is now illLegal)}

end.

Inside the procedure P1 the identifier "Par"™ cannot be used for
any purpose and the programmer may be disturbed by the fact that
in the heading of P2 the corresponding parameter is named by
"Par21®. In Pascal the form depicted in (6-3) would be
sufficient.

procedure P1 (Parll : BOOLEAN; (6-3)
procedure Parl2 (BOOLEAN));

If the keyword notation for actual parameters [Fra 77; Har 76;
Par 78] were allowed in Pascal, as it is e.g. in Ada [Ref 83],
the identifier "Par® of this second order formal parameter could
be useful. This is shown in (6-=4).

procedure P1 (Paril : BOOLEAN; !
procedure Pari2(Par : BOOLEAN)); Ej
beqin (6-4) 1
Par1i2 (Par => Parill);
end - PL-};

But for third and higher order formal parameters there is even
with key word notation no need for identifiers (6-5).

procedure P1 (Parll : BOOLEAN;

procedure Pari2(
procedure Par2l1(Par31 : BOOLEAN)));

begin (6-5)
Parl12 (Par2l1 => P2 {as defined in (6-1))});
g { PY.);

There are only a few new syntax rulLes necessary to specify
second and higher order formal parameters without identifiers
[win 76b: 11; DL 74: 25].

7 ORDER OF DECLARATIONS

The ruLe for the ordering of declarations in [ISO 82] is
essentially the same as in [JW 7S] and [wir 71]. This rute

states that the declarations of the different kinds of entities
must be arranged in each declaration-part in the following order
: Labels, constants, types, variables, subprograms. There seems
to be no sound technical reason for this rule. This rule is
especially not necessary for the existence of a one pass
compiler. A one pass compiler onlLy requires that any declared
entity is declared before its first use ("Linear text modelL",
property s2 in section 2).

On the other hand the declLaration rule of [ISO 82] has negative
effects on the software engineering properties of Pascal [HSW
77]. 1t hinders the programmer to put together what belongs
together.

Despite the fact that Pascal does not incorporate the concept of
program module one could "simulLate® it within the monolithic
Pascal program if there were not this rule for the declLaration
order. An examplLe for this is given in (7-1).

program P (INPUT,OUTPUT);
{ package PACK1 }
const
A R SRR

UARE oo
{ subprograms)}
{ end PACK1) (7-1)

{ package PACK2)}

{ end PACK2)

:

{ main program)
end.

By removing this artificial restriction on the order of
declarations a program structure similar to Ada or Modula=2 [Wir
80] could be achieved. The essential difference to Ada would be
that a Pascal program is one compilation unit whereas in Ada
each package can be a compilation unit.

A programming style Like that depicted in (7-1) was already

possiblLe in AlLgol 60. In this respect Pascal seems to be overlLy
restrictive in its current form.

8 STRUCTURED STATEMENTS

Pascal wuses the "open" form for most of its structured
statements, e.g. the if-statément :

if-statement = if condition
then statement (8-1)
[eLse statement]

This forces the user to use a compound statement if the
then-part or the elLse-part of the if-statement consists of more
than one statement :

+S5; (8-2)

The “closed" form of the structured statements, which is
incorporated in most Languages developed during the seventies,
has several advantages. A first advantage is that it Leads to a
Less clumsy formulLation. The statement (8-2) would be written as

if A < 10

then €C := A + S; (8-3)
D :=0;

end if torfl)

There has been and is a controversary discussion about the form
of closing key words for the closed form of structured
statements [Bro 76; Ham 80; Hun 81; Knu 74a: 266; Kov 78; Mar
81]. From a pureLy technical point of view any unequivocal
symbol would do it. In comparison to the usual usage of brackets
in mathematical formulLae the use of symmetric key words (e.g.
fi, od etc.) seems to be quite natural. To a certain degree this
can be a matter of taste and other solutions (end if, end Loop,
etc.) may also work welLlL. An additional requirement which
belongs to the area of human engineering would be that alLl
word-symbols sould be easily pronounceablLe. In the following
example we use symmetric and pronouncablLe key words.

A second advantage is the fact that the endings of several
structured statements, which are nested, can be clearlLy
discriminated, if different structured statements have different
closing symbols. (8-4) shows a nesting using Pascal as it is and
(8-5) shows the same nesting using symmetric clLosing symbols.

else

i
if I > DIGMAX then begin
ERROR(203);
VAL.IVAL := 0
end
else
with VAL do begin
IVAL := 0;
for K := 1 to I do begin (8-4)

J := ORD(DIGIT[K]) - ORD('0');

if IVAL <= (MAXINT - J) DIV 10 then
IVAL := IVAL * 10 + J

else

-VL-

ERROR(203) ;
IVAL := 0
end

end;
SY := INTCONST
eng
end

if I > DIGMAX
then ERROR(203);
VAL.IVAL := 0;

e
fix VAL
in IVAL := 0;
for K := to I (8-5)
do J := ORD(DIGIT[K]) = ORD('0');
if IVAL <= (MAXINT = J) DIV 10
then IVAL := IVAL * 10 + J;
else ERROR(203);
IVAL := 0;
fi
rof
SY := INTCONST;
xif
fi

Note the use of the word-symbolL fix instead of with in the
example (8-5) in order to get a pronounceable inverse (xif). fix
.. in seems to reflLect the semantics of this Language construct
quite well.

9 COMPATIBILITY WITH THE STANDARD

In this section we discuss to what degree the new features
proposed in this paper are compatible with the Draft Standard.
The crucial point is how many of the already existing conforming
programs had to be modified.

COP! ULE

The scope ruLe of [ISO 82] is more restricted than the Linear
text modeL. The exampLes in (2-1), (2-3) and (2-4) are not
conformant with [ISO 82] but are conformant with the Linear text
modeL. Thus no modifications of conformant programs were
necessary.

The introduction of the forward-declaration for mutually
dependent data types would make the modification of programs
containing such entities necessary. This can be seen in the

examples (2-5) and (2-6). AlLso programs which use "forward" as
an identifier would be affected. But this should not happen very
frequently because "forward" was already a compiler directive in
[uw 75].

LOOP VARIABLE

OnLy those programs had to be modified in which a for Loop is
terminated by a goto statement and the actual value of the Loop
variable is used after this termination. The reason for this is
that in [ISO 82] a Loop variablLe can onlLy get a defined value if
a Loop with this Loop variablLe is executed.

ARRAY TYPES AND PARAMETERS

No program which conforms to [JW 7S] or which conforms to [ISO
82] and does not use the conformant-array-schema would be
affected by the new concepts proposed in section 4. If a program
contains one of the identifiers HBound and LBound a renaming
could be necessary in order to use the proposed required
functions HBound and LBound. The Lexical unit "Like™ should not
be used as an identifier since it would be a new word-symbol.

INPUT/ZOUTPUT

If RESET were defined similLar to OPEN, which is contained in
most command Languages of operating systems, and if READ read
Just the next component into its actual parameter, then an
interactive program, which uses onlLy RESET and READ should not
be affected.

The postcondition of READ should imply that the component read
is the Last component of the Left part of the file. This
condition holds alLready in [ISO 82]. The definition of EOLN
could remain the same as in [ISO 82]. Note that READLN should
not be used in its current form for interactive input.

SPECIFICATION OF FORMAL SUBPROGRAMS

OnLy programs which use formalL, parameterized subprograms would
be affected by this proposal. Note that the formal subprogram is
a concept used quite rarely.

CT! S M

Almost every program would be affected, but an automatic
conversion tool could be realized easily.

ORDER OF DECLARATIONS

No program would be affected since the property "declaration
precedes applLication" holds already in [ISO 82].

SL

10 CONCLUSION

The outcome of the standardization effort for Pascal is a very
enhanced form of the original Language [JW 75]. But there are
still some troublLe spots in the Language, which should be
resolved in a future revision of the standard.

The main problLems are :

e the scope rules as defined in [ISO 81] are difficult to
understand, to Learn, and to use. Scope rules oriented
towards the "Linear text model"™ are better suited.

e the solution for adaptable arrays as parameters is a LittlLe
bit clumsy and quite difficult to understand and Learn. In
this paper a simpler solution with a better functionality is
proposed.

e the concept of 1/0 as defined in the original PascalL is not
adequate for expressing interactive programs. It is very
regrettable that this flLaw of Pascal was not removed during
the standardization process. I may be a LittLe
disadvantageous if a novice is introduced to 1/0 by means of
this I/0-discipline.

e the specification of formal subprograms has been enhanced but
it could have easily done better by using some additional
syntax rules.

The main problem with this standardization effort still is the
fact that the thing which is being standardized nearlLy doesn't
exist because most of the implementations intended for serious
programming (e.g. [Sie 82, 82a; Tex 79; UCS 80]) dimplement a
superset of Pascal. Some often added features are :

e a mechanism for independent compilLation

¢ dynamic arrays

e string handlLing
e random access files
It cannot be expected that such useful features will not be used

in the future. Since they are not in the LlLanguage portability is
still compromised.

ACKNOWLEDGMENTS

The author thanks M.Sommer and C.Stoffel for a critical review
of an earlier draft and valuable suggestions.

11 REFERENCES

Add 80

AH 80

Bak 80

BF 80

BJ 81

Bro 76

BWW 76

Cai 82

Con 76

DL 74

oL -75

ECM 76

Addyman, Anthony M.
Pascal
= [HM 80: B1..91].

AustermUhlL, Burkhard; HenhaplL, Wolfgang

A critical review of PASCAL based on a formal storage
model

= [Hof 80: 57..69].

Baker, Henry G. Jr.
A Source of redundant Identifiers in PASCAL Programs
SIGPLAN Notices 15,2(1980)14..16.

Baker, T.P.; Fleck, A.C.
Does Scope = Block in Pascal ?
Pascal News H#17 (March,1980)60..61.

Boute, R.T.; Jackson, M.I.

A Joint Evaluation of the Programming Languages Ada and
CHILL

= [1EE B81: 214..220].

Brown, Robert E.
Toward a Better Language for Structured Programming
SIGPLAN Notices 11,7(1976)41..54.

Wettstein, H.; Becker-Weimann, K.; WinkLer, J.F.H.;
Wosnitza, H.

Ein modernes, modulares Betriebssystem fUr ProzeBrechner
und seine Generierung

PDV-E71, Gesellschaft fUr Kernforschung, KarlLsruhe Juni
1976.

Cailliau, R.
How to Avoid Getting SchiLonked by Pascal
SIGPLAN Notices 17,12(1982)31..40.

Conradi, Reidar

Further critical comments on Pascal, particulary as a
systems programming Language

SIGPLAN Notices 11,11(1976)8..25.

Lecarme, OlLivier; Desjardins, Pierre

ReplLy to a paper by A.N. Habermann on the programming
Language Pascal

SIGPLAN Notices 9,10(1974)21..27.

Desjardins, P.; Lecarme, O.
More Comments on the Programming Language Pascal
Acta Informatica 4(1975)231..243.

ECMA - European Computer Manufacturers Association
Standard ECMA-50. Programming Language PL/I

_9L-

EH 82

FG 82

FKL 76

£l 82

FOR 78

Era 727

Hab 73

Ham 80

Har 76

HM 80

Hof 80

HS 78b

Hun 81

Hennessy, John; Elmquist, Hilding

Geneva, December 1976.

The Design and ImplLementation of Parametric Types in
Pascal

Software - Practice & Experience 12,2(1982)169..184.

Feuer, Alan R.; Gehani, Narain, H.
A Comparison of the Programming Languages C and PASCAL
Computing Surveys 14,1(1982)73..92.

J.E. a3
Meertens,

van Wijngaarden, A.; Mailloux, B.J.;
Koster, C.H.A.; Sintzoff, M.; Lindsay,
L.6:8. 7.3 Fisker, R. 6. (eds.)

Revised Report on the AlLgorithmic Language Algol 68
Springer, Berlin usw. 1976.

Peck,
.M.}

Leblanc, Richard J.; Fischer, CharlLes N.
A Case Study of Run-Time Errors in Pascal Programs
Software - Practice Experience 12,9(1982)825..834.

ANSI - American National Standards Institute
ANSI X3.9 - 1978. Programming Language FORTRAN

Francez, Nissim

Another Advantage of Keyword Notation for
Communication with Subprograms

CACM 20,8(1977)604..605.

Parameter

Habermann, A.N.
Critical Comments on the Programming Language Pascal
Acta Informatica 3(1973)47..57.

Hamlet, Richard
A Further Note on Symmetric Keyword Pairs
SIGPLAN Notices 15,5(1980)7.

Hardgrave, W.T.

Positional versus Keyword Parameter
Programming Languages

SIGPLAN Notices 11,5(1976)52..58.

Communication in

HiLlL, I.D.; Meek, B.L.

Programming Language Standardisation
ELLis Horwood Ltd. + Halstead Press,
York etc. 1980.

Chichester, New

Hoffmann, H.-J. (Hrsg)
Programmiersprachen und Programmentwicklung
Springer, BerlLin usw. 1980.

Hisgen, A.; Saxe, J.B.
Lazy evalLuation of the file buffer for interactive 1/0
Pascal News #H13 (1978)93..94.

Hunt, J.G.
Bracketing Programme Constructs

IBM 72

IEE

81

IS0 82

ITU 81

Jw 75

Kay

Ker

Kit

Knu

Kov

Mac

Mar

Mar

80

81

77

74a

78

75

79

81

SIGPLAN Notices 16,4(1981)64..67.

International Business Machines Corp.
IBM System/360 Operating System

PL/1 (F) Language Reference Manual
Order No. GC28-8201-4, S.ed. Dec. 1972.

IEE - Institute of ElLectrical Engineers
Fourth International Conference on Software
for TelLecommunication Switching Systems.

Engineering

IEE, - 198%.

IS0 - International Organization for Standardization
Programming Languages - PASCAL, IS0/DIS 718S;
1982-08-12.

ITU - International Telecommunication Union
CCITT High Level Language (CHILL) - Recommendation Z.200
Geneva, 1981.

Jensen, KathLeen; Wirth, Niklaus
PASCAL. User Manual and Report
Springer, BerlLin usw. 197S.

Kaye, Douglas R.
Interactive Pascal Input
SIGPLAN Notices 15,1(1980)66..68.

Kernighan, Brian W.

Why Pascal is Not My Favorite Programming Language
CS-TR No.100, Bell Laboratories, Murray Hill

July 18, 1981.

-LL_

Kittlitz, Edward N.
Another Proposal for Variable Size Arrays in PASCAL
SIGPLAN Notices 12,1(1977)82..86.

Knuth, Donald E.
Structured Programming with goto Statements
Computing Surveys 6,4(1974)261..301.

Kovats, T.A.

Program Readability, ClLosing Keywords
Intermediate Keywords

SIGPLAN Notices 13,11(1978)30..42.

and Prefix=-StylLe

MacLennan, B.J.
A Note on Dynamic Arrays in PASCAL
SIGPLAN Notices 10,9(1975)39..40.

Marlin, C.D.

A Heap-based Implementation of the Programming Language
Pascal

Software - Practice & Experience 9(1979)101..119.

Marca, David
Some Pascal Style Guidelines

Min

Mof

Nau

Par

Per

Pok

Pos

80

81

63

78

81

76

79

PS 79a

Rav
Ref

SalL

Sal 80a

79

83

79

Sie 82

SIGPLAN Notices 16,4(1981)70..80.

Miner, Jim
Pascal Standard : Progress Report
Pascal News #19 (Sept 1980)74..84.

Moffat, David V.
conformant Arrays and Strong Typing
ACM Annual Conference 1981, 161..163.

Naur, Peter (ed.)
Revised Report on the AlLgorithmic Language ALgolL 60
CACM 6,1(1963)1..17.

Parkin, Rodney
Oon the Use of Keywords for Passing Procedure Parameters
SIGPLAN Notices 13,7(1978)41..42.

Perkins, Hal
Lazy 1/0 is not the answer
SIGPLAN Notices 16,4(1981)81..88.

Pokrovsky, Sergei

Formal Types and Their Application to Dynamic Arrays in
Pascal

SIGPLAN Notices 11,10(1976)36..42.

Posa, John G.
Pascal people unhappy over standard
Electronics (Feb 15, 1979)96.

Pugh, J.; Simpson, D.
Pascal errors - empirical evidence
Computer Bulletin 2,19(1979)26..28.

Ravenel, Bruce W.
Toward a Pascal Standard
Computer 12,4(1979)68..82.

Reference Manual for the Ada Programming Language.
ANSI/MIL-STD 1815A.
United States Department of Defense, January 1983.

SalLe, Arthur
Scope and Pascal
SIGPLAN Notices 14,9(1979)61..63.

sale, A.H.J.
Conformant Arrays in Pascal
Pascal News #17 (March 1980)54..56.

Siemens AG
Programmiersystem
Sprachbeschreibung.
Best. Nr. U685-J-Z55-1, January 1982.

PASCAL. Benutzerhandbuch Teil 1,

Sie B2a Siemens AG

SS 76

Ste 76

SW 73

Ten 83

Tex 79

ucs 80

Wha 83

win 76b

Wir 71

Wir 75a

Wir 76a

wir 78

wir 80

Programmiersystem PASCAL.
BedienungsanLeitung
Best. Nr. U964-J-Z55-1, July 1982.

Benutzerhandbuch Teil 2,

SchmeiBer, Gerhard; Schirmeier, Horst
Praktische Mathematik
Walter de Gruyter, BerlLin usw. 1976.

Steensgaard-Madsen, J.
More on dynamic arrays in PASCAL
SIGPLAN Notices 11,5(1976)63..64.

wulf, W.; Shaw, Mary
GLobal Variable Considered Harmful
SIGPLAN Notices 8,2(1973)28..34.

Tennent, R.D.
An AlLternative to Conformant-Array Parameters in Pascal
SIGPLAN Notices 18,10(1983)38..43.

Texas Instruments Inc.
Model 990 Computer. TI Pascal User's Manual
Part. No. 946290-9701 *A, 1 JulLy 1979.

UCSD Pascal - Version €.0. USER'S MANUAL
SOFTECH, Microsystems, San Diego, California.
Third printing Feb. 1980.

wharton, Michael R.
A Note on Types and Prototypes.
SIGPLAN Notices 18,12 (1983) 122..126.

winkLer, J.F.H.
A Program Generation Language
= [BWW 76: 5..18] (in german).

Wwirth, NikLaus
The Programming Language PASCAL
Acta Informatica 1(1971)35..63.

wirth, NikLaus
An Assessment of the Programming Language Pascal
SIGPLAN Notices 10,6(1975)23..30.

wirth, N.
Comment on A Note on Dynamic Arrays in PASCAL
SIGPLAN Notices 11,1(1976)37..38.

wirth, NiklLaus
MODULA=-2

Eidgendssische Technische Hochschule ZUrich, Institut
fur Informatik. Bericht Nr. 27, Dezember 1978.

Wwirth, NikLaus

MODULA-2

Eidgendssische Technische Hochschule ZUrich, Institut

fur Informatik. Bericht Nr. 36, March 1980.

8L

SIGPLAN
NOTICES

A Monthly Publication of
the Special Interest Group
on Programming Languages

VOLUME 13 NUMBER 7 JULY 1984

Contents:
EDITORIAL
CORRESPONDENCE FROM MEMBERS: R. Pooley, I.F. Currie, K. Guntheroth
ANNOUNCEMENTS

TECHNICAL CONTRIBUTIONS:
E:-B.-Blliott : The EPN and ESN Notations

H. Kao, T. Y. Chen: Data Flow Analysis for COBOL
R. R. Loka : A Note on Parallel Parsing

K. J. Ottenstein : Intermediate Program Representations in Compiler
Construction: A Supplemental Bibliography

PASCAL : Foreward to the Candidate Extension Library
PASCAL : Foreward to Work in Progress
J. F. H. Winkler : Some Improvements of ISO-PASCAL

