
High Performance Fortran

Language Speci�cation

High Performance Fortran Forum

January ��� ����

Version ��	

The High Performance Fortran Forum �HPFF�� with participation from over �� organ�
izations� met from March �		
 to March �		� to de�ne a set of extensions to Fortran called
High Performance Fortran �HPF�
 Our goal was to address the problems of writing data
parallel programs for architectures where the distribution of data impacts performance

While we hope that the HPF extensions will become widely available� HPFF is not sanc�
tioned or supported by any o�cial standards organization
 The HPFF had a second series
of meetings from April �		� to October �		� to consider requests for corrections� clari��
cations� and interpretations to the Version �
� HPF document and also to develop user
requirements for possible future changes to HPF
 A third set of meetings took place From
January �		� through December �		� to incorporate features recommended to meet user
needs identi�ed in the �		� meetings

This document contains all the technical features proposed for the version of the lan�
guage known as HPF Version

�
 This copy of the draft was processed by LATEX on January
��� �		�

HPFF encourages requests for interpretation of this document� and comments on the
language de�ned here
 We will give our best e�ort to answering interpretation questions�
and general comments will be considered in future HPFF language speci�cations

Please send interpretation requests to hpff�interpret�cs�rice�edu
 Your request is
archived and forwarded to a group of HPFF committee members who attempt to respond
to it

The text of interpretation requests becomes the property of Rice University

c� �		�� �		�� �		�� �		� Rice University� Houston� Texas
 Permission to copy without

fee all or part of this material is granted� provided that the Rice University copyright notice
and the title of this document appear� and notice is given that copying is by permission of
Rice University

Contents

Acknowledgments vii

I Introduction �

� Overview �

�
� Goals and Scope of High Performance Fortran

 �
�

 HPF Language Model

 �

�

� Data Mapping Directives

 �
�
� Overview of HPF

� Language Features

 �

�
�
� HPF

� Language Features

 �
�
�

 HPF

� Approved Extensions

 	

�
� Changes from HPF �
�

 ��
�
�
� Repartitioning of the Language

 ��
�
�

 Features Now in Standard Fortran

 ��
�
�
� Features Removed or Restricted in HPF

�

 ��
�
�
� Features Moved to Approved Extensions

 ��
�
�
� New Features of HPF

�

 ��
�
�
� New Approved Extensions

 ��
�
�
� Recognized Externally�Supported HPF Extrinsics

 �

� Notation and Syntax ��

� Notation

 ��

 Syntax of Directives

 ��

II High Performance Fortran Language ��

� Data Mapping ��

�
� Model

 �	
�

 Syntax of Data Alignment and Distribution Directives

�
�
� The DISTRIBUTE Directive

�
�
� The ALIGN Directive

	
�
� Allocatable Arrays and Pointers

 ��
�
� The PROCESSORS Directive

 ��
�
� The TEMPLATE Directive

 �	
�
� Storage and Sequence Association

 ��

�
�
� Storage Association

 �

i

�
�

 The SEQUENCE Directive

 ��

� Data Mapping in Subprogram Interfaces ��

�
� Introduction

 ��

�

 What Remapping Is Required and Who Does It

 �	
�
� Distributions and Processor Arrangements

 ��

�
�
� Examples

 ��
�
�

 What Happens When a Clause Is Omitted

 ��

�
� Alignment

 ��

�
�
� The Template of the Dummy Argument

 ��
�
�

 The INHERIT Directive

 �

�
�
� Descriptive ALIGN Directives

 ��
�
� Equivalence and Partial Order on the Set of Mappings

 ��

�
� Conditions for Omitting Explicit Interfaces

 �	
�
� Characteristics of Procedures

 ��

�
� Argument Passing and Sequence Association

 ��
�
�
� Sequence Association Rules

 ��
�
�

 Discussion of Sequence Association

 �

�
�
� Examples of Sequence Association

 �

� INDEPENDENT and Related Directives 	�

�
� The INDEPENDENT Directive

 ��
�
�
� Visualization of INDEPENDENT Directives

 ��

�
�

 NEW Variables

 ��
�
�
� REDUCTION Variables and Statements

 ��

�
�
� Semantics and Implementation of Reduction

 ��
�

 Further Examples of INDEPENDENT Directives

 ��

	 Extrinsic Program Units ��

�
� Overview

 �	
�

 Declaration of Extrinsic Program Units

 ��

�

� Function and Subroutine Statements

 ��
�

 Program� Module� and Block Data Statements

 ��

�

� The EXTRINSIC Pre�x

 ��
�
� Calling HPF Extrinsic Subprograms

 ��

�
�
� Access to Types� Procedures� and Data

 ��
�
�

 The E�ect of a Call

 ��

�
� Examples of Extrinsic Procedures

 ��

� Intrinsic and Library Procedures
�

�
� Notation

 �	
�

 System Inquiry Intrinsic Functions

 �	
�
� Computational Intrinsic Functions

 	�

�
� Library Procedures

 	�
�
�
� Mapping Inquiry Subroutines

 	�

�
�

 Bit Manipulation Functions

 	�
�
�
� Array Reduction Functions

 	�

�
�
� Array Combining Scatter Functions

 	�

ii

�
�
� Array Pre�x and Su�x Functions

 	�
�
�
� Array Sorting Functions

 	�

�
� Generic Intrinsic and Library Procedures

 	�
�
�
� System Inquiry Intrinsic Functions

 	�
�
�

 Mapping Inquiry Subroutines

 	�
�
�
� Bit Manipulation Functions

 	�
�
�
� Array Reduction Functions

 		

�
�
� Array Combining Scatter Functions

 		
�
�
� Array Pre�x and Su�x Functions

 		
�
�
� Array Sort Functions

 ���

�
� Speci�cations of Intrinsic Procedures

 ���
�
� Speci�cations of Library Procedures

 ��

III HPF Approved Extensions ���

 Approved Extensions for Data Mapping ���

�
� Extended Model

 ���
�

 Syntax of Attributed Forms of Extended Data Mapping Directives

 ���
�
� The REDISTRIBUTE Directive

 ���
�
� The REALIGN Directive

 ���

�
� The DYNAMIC Directive

 ���
�
� Remapping and Subprogram Interfaces

 ���
�
� Mapping to Processor Subsets

 ���
�
� Pointers

 ���

�
�
� Mapped Pointers

 ���

�
�

 Pointers and Subprograms

 ���
�
�
� Restrictions on Pointers and Targets

 ���

�
	 Mapping of Derived Type Components

 ���
�
�� New Distribution Formats

 ���
�
�� The RANGE Directive

 ��

�
�
 The SHADOW Directive

 ���
�
�� Equivalence and Partial Order on the Set of Mappings

 ���
�
�� Conditions for Omitting Explicit Interfaces

 ���
�
�� Characteristics of Procedures

 ���

� Approved Extensions for Data and Task Parallelism �	�

	
� Active Processor Sets

 ��	
	
�
� The SUBSET Directive

 ���
	
�

 Mapping Local Objects and Dummy Arguments

 ��

	
�
� Other Restrictions on Active Processors

 ���

	

 The ON Directive

 ���

	

� Syntax of the ON Directive

 ���
	

 Semantics of the ON Directive

 ���
	

� Examples of ON Directives

 ���
	

� ON Directives Applied to Subprogram Invocations

 ���

	
� The RESIDENT Clause� Directive� and Construct

 �	�

	
�
� Examples of RESIDENT Clauses

 �	�

iii

	
�

 RESIDENT Directives Applied to Procedure Reference

 �	�

	
� The TASK REGION Construct

��

	
�
� Syntax of the TASK REGION Construct

��
	
�

 Semantics of the TASK REGION Construct

��

	
�
� Execution Model and Usage

��

	
�
� Implementation

�

	
�
� Example�
�D FFT

��

�� Approved Extension for Asynchronous I�O ���

��
� The WAIT Statement

�	

�� Approved Extensions for HPF Extrinsics ���

��
� Alternative Extrinsic Models� LOCAL and SERIAL

��

��
�
� The LOCAL Model

�

��
�

 The SERIAL Model

��

��

 Extrinsic Language Bindings

��

��

� Control of Arguments

��
��
� HPF Bindings

��

��
�
� Additional Special Considerations for HPF LOCAL

��

��
�

 Argument Association

�	

��
�
� Special Considerations for HPF SERIAL

�
��
� C Language Bindings

��
�
� Speci�cation of Interfaces to Procedures De�ned in C

��
�

 Speci�cation of Data Type Mappings for C

�
��
� Fortran Language Bindings

�

��
� Fortran �� Language Bindings

�

��
�
� Special Considerations for F�� LOCAL

�

��
�

 Argument Passing to F�� LOCAL Procedures

	
��
�
� F�� LOCAL Programming Examples

��

��
� The Extrinsic Library

��

��
�
� HPF Local Routine Library

��
��
�

 Library Access from Serial Extrinsics

��

�� Approved Extensions to the HPF Intrinsic and Library Procedures ���

�

� Speci�cations of Extended Intrinsic Procedures

��

�

 Speci�cations of Extended Library Procedures

��

IV Annexes ���

A Syntax Rules �	�

A

 Notation and Syntax

��

A

 Syntax of Directives

��

A
� Data Mapping

�

A
�

 Syntax of Data Alignment and Distribution Directives

�

A
�
� The DISTRIBUTE Directive

��

A
�
� The ALIGN Directive

��

A
�
� The PROCESSORS Directive

��

iv

A
�
� The TEMPLATE Directive

��

A
�
� Storage and Sequence Association

��

A
� Data Mapping in Subprogram Interfaces

��

A
�
� Alignment

��

A
� INDEPENDENT and Related Directives

��

A
�
� The INDEPENDENT Directive

��

A
� Extrinsic Program Units

��

A
�

 Declaration of Extrinsic Program Units

��

A
� Approved Extensions for Data Mapping

��

A
�

 Syntax of Attributed Forms of Extended Data Mapping Directives

��

A
�
� The REDISTRIBUTE Directive

��

A
�
� The REALIGN Directive

��

A
�
� The DYNAMIC Directive

��

A
�
� Mapping to Processor Subsets

��

A
�
	 Mapping of Derived Type Components

�

A
�
�� New Distribution Formats

��

A
�
�� The RANGE Directive

��

A
�
�
 The SHADOW Directive

��

A
	 Approved Extensions for Data and Task Parallelism

��

A
	
� Active Processor Sets

��

A
	

 The ON Directive

��

A
	
� The RESIDENT Clause� Directive� and Construct

��

A
	
� The TASK REGION Construct

��

A
�� Approved Extension for Asynchronous I�O

��

A
��
� The WAIT Statement

��

A
�� Approved Extensions for HPF Extrinsics

��

A
��

 Extrinsic Language Bindings

��

B Syntax Cross
reference ��

B
� Nonterminal Symbols That Are De�ned

��

B

 Nonterminal Symbols That Are Not De�ned

�

B
� Terminal Symbols

�

C HPF ��� Subset �
�

C
� Fortran 	� Features in the HPF �
� Subset

��

C

 HPF �
� Directives and Language Extensions in the HPF �
� Subset

��

D Previous HPFF Acknowledgments �
�

D
� HPFF Acknowledgments

�	

D

 HPFF	� Acknowledgments

	

E Policy and Mechanism for Recognized Extrinsic Interfaces ���

E
� Extrinsic Policy

	�

E

 Extrinsic Interface Mechanism

	�

v

F HPF CRAFT ���

F
� Introduction

		
F

 Examples of Use

 ���
F
� External Interface

 ��

F
� Execution Model

 ���
F
� HPF CRAFT Functional Summary

 ���

F
�
� Data Mapping Features

 ���
F
�

 Subprogram Interfaces

 ���
F
�
� The INDEPENDENT Directive

 ���
F
�
� The ON Clause

 ���
F
�
� Array Syntax

 ���
F
�
� Treatment of FORALL and WHERE Statements

 ���
F
�
� Synchronization Primitives

 ���
F
�
� Barrier Removal

 ���
F
�
	 Serial Regions

 ���
F
�
�� Libraries

 ��	
F
�
�� Parallel Inquiry Intrinsics

 ��	
F
�
�
 Task Identity

 ��	
F
�
�� Parallelism Speci�cation Directives

 ��	
F
�
�� The SYMMETRIC Directive

 ���
F
�
�� The RESIDENT Directive

 ���
F
�
�� The ATOMIC UPDATE Directive

 ���
F
�
�� The GEOMETRY Directive

 ���

G The FORTRAN �� Local Library ���

G
� Introduction

 ���
G

 Summary

 ���
G
� Global HPF Subgrid Inquiry Routine

 ���

G
�
� Subgrid Inquiries Involving Embedding Arrays

 ���
G
� Local FORTRAN �� Inquiry Routines

 ���
G
� Programming Example Using HPF SUBGRID INFO

 �

G
�
� HPF Caller

 �

G
�

 FORTRAN �� Callee

 �
�

G
� Programming Example Using F���Callable Inquiry Subroutines

 �
�
G
�
� HPF Caller

 �
�
G
�

 FORTRAN �� Callee

 �
�

vi

Acknowledgments

The High Performance Fortran Forum �HPFF� is a coalition of industrial and academic
groups working to suggest a set of standard extensions to Fortran that provide support for
high performance programming on a wide variety of machines� including massively parallel
SIMD and MIMD systems and vector processors
 From its beginning� HPFF has included
most vendors delivering parallel machines� a number of government laboratories� and uni�
versity research groups
 Public input has been encouraged
 This document de�ning HPF

� is the third in a series of documents resulting from the HPFF
 HPF

� is intended to
be a language portable from workstations to massively parallel supercomputers while being
able to express the algorithms needed to achieve high performance on speci�c architectures

HPF

� builds on the e�orts of the previous HPFF meetings� primarily in �		
 and �		�

Speci�c acknowledgments for the many people who contributed to the previous versions of
HPF are included in Annex D

HPFF � Acknowledgments

The HPF

� version of the document was prepared during series of meetings in �		���		�

A number of people shared technical responsibilities for the activities of these meetings�

� Ken Kennedy� Convener and Meeting Chair�

� Mary Zosel� Executive Director�

� Rob Schreiber� Organizer for Control Subgroup�

� Piyush Mehrotra and Guy Steele� Organizers for Distribution Subgroup�

� David Loveman� Organizer for External Subgroup�

� Chuck Koelbel� Editor� assisted by multiple committee members �names later�

Attendance at the HPFF
 meetings included the following people from organizations
that were represented two or more times

John Levesque� Marc Baber �Applied Parallel Research
Ian Foster � Argonne National Laboratory
Jaspal Subhlok �Carnegie Mellon University
Jim Cowie �Cooperating Systems
Andy Meltzer �Cray Research
Henk Sipps� Will Denissen �Delft University of Technology
David Loveman� Carl O�ner �Digital Equipment Corporation
Joel Williamson � Hewlett Packard�Convex

vii

Henry Zongaro �IBM
Piyush Mehrotra � � � Institute for Computer Applications in Science � Engineering
Mary Zosel �Lawrence Livermore National Laboratory
Bob Boland� Ralph Brickner� Joe Fasel � � � � � � � � � �Los Alamos National Laboratory
J
 Ramanujam� Arun Venkatachar �Louisiana State University
Steve Hammond �National Center for Atmospheric Research
Yoshiki Seo �NEC
Alok Choudhary �Northwestern University�Syracuse University
P
 Sadayappan� Ohio State University
Larry Meadows� Zeki Bozkus �The Portland Group� Inc

Robert Schreiber �RIACS and Hewlett Packard
Ken Kennedy� Charles Koelbel � Rice University
Hon Yau� Tom Haupt �Syracuse University
Guy Steele � Sun Microsystems
Paula Vaughn �Mississippi State University
Carol Munroe� Harvey Richardson � � � � � � � � � � � � � � � Thinking Machines Corporation
Scott Baden� Steve Fink� Jay Boisseau � � � � � � � � University of California� San Diego
Robert Babb �University of Denver
Joel Saltz� Paul Havlak� Manuel Ujaldon � � � � � � � � � � � � � � � � � �University of Maryland
Jerrold Wagener �X�J� and University of Oklahoma
Barbara Chapman� Siegfried Benkner� Guy Robinson � � � � � � � University of Vienna

An important activity of HPFF
 meetings was the processing of the many items sub�
mitted for comment� correction� and interpretation
 General thanks go to all who submit�
ted comments and interpretation requests
 The following people submitted items that re�
sulted in changes to the document text� Yasuharu Hayashi� Michael Hennecke� Larry Mead�
ows� Carol Munroe� Eiji Nunohiro� Carl O�ner� Rob Schreiber� David Singleton� Shigeru
Uzuhara� Clint Whaley� and�last� but most proli�c�Henry Zongaro

Special thanks go to Chuck Koelbel at Rice University for continued maintenance of
the HPFF mailing lists

Theresa Chatman and sta� at Rice University were responsible for meeting planning
and organization and Danny Powell continued to handle �nancial details of the project

HPFF
 received direct support for research and administrative activities from grants
from ARPA� DOE� and NSF

viii

Part I

Introduction

This major section describes the organization of the document as a whole� It

also de�nes terms and concepts that are common to High Performance Fortran
version ��� �described in Part II� and the HPF Approved Extensions �described
in Part III�� Therefore� it provides necessary background for the succeeding

sections�

�

Section �

Overview

This document speci�es the form and establishes the interpretation of programs expressed
in the High Performance Fortran �HPF� language
 It is designed as a set of extensions
and modi�cations to the established International Standard for Fortran
 At the time of
publication of this document� the version of the standard used as a base is informally
referred to as �Fortran 	�� �ISO�IEC ���	��		��
 References to that document are made
as follows� Section ��
��
� in that document is referred to here as F	����
��
�

In this overview Section of the document� we outline the goals and scope of the language�
introduce the HPF language model� highlight the main features of the language� describe
the changes between HPF �
� and HPF

�� and provide a guide to the rest of this document

��� Goals and Scope of High Performance Fortran

The primary goals behind the development of the HPF language include�

� Support for data parallel programming �single threaded� global name space� and
loosely synchronous parallel computation��

� Portability across di�erent architectures�

� High performance on parallel computers with non�uniform memory access costs �while
not impeding performance on other machines��

� Use of Standard Fortran �currently Fortran 	�� as a base�

� Open interfaces and interoperability with other languages �e
g
� C� and other pro�
gramming paradigms �e
g
� message passing using MPI�

Secondary goals include�

� Implementation feasibility within a limited time span�

� Provision of input to future standards activities for Fortran and C�

� Provision of an evolutionary path for adding advanced features to the language in a
consistent manner

The �rst version of the language de�nition� HPF �
� was released in May �		�
 A
number of language features that were de�ned in HPF �
� have now been absorbed into

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

� SECTION �� OVERVIEW

the Fortran 	� language standard �e
g
� the FORALL statement and construct� and PURE

procedures�
 These features are therefore no longer detailed in the de�nition of HPF

�

Information about the evolution of the HPF language �through versions �
�� �
�� and

��
and an enumeration of the di�erences between HPF

� from HPF �
� may be found in
subsection �
�

��� HPF Language Model

An important goal of HPF is to achieve code portability across a variety of parallel ma�
chines
 This requires not only that HPF programs compile on all target machines� but also
that a highly�e�cient HPF program on one parallel machine be able to achieve reasonably
high e�ciency on another parallel machine with a comparable number of processors
 Other�
wise� the e�ort spent by a programmer to achieve high performance on one machine would
be wasted when the HPF code is ported to another machine
 Although shared�memory
machines and distributed�memory machines may use di�erent low�level primitives� there is
broad similarity with respect to the fundamental factors that a�ect the performance of par�
allel programs on these machines
 Thus� achieving high e�ciency across di�erent parallel
machines with the same high level HPF program is a feasible goal
 Some of the funda�
mental factors a�ecting the performance of a parallel program are the degree of available
parallelism� exploitation of data locality� and choice of appropriate task granularity
 HPF
provides mechanisms for the programmer to guide the compiler with respect to these factors

The �rst versions of HPF were de�ned to extend Fortran 	�
 HPF

� is de�ned as
an extension to the current Fortran Standard �Fortran 	��
 Future revisions of HPF will
include and be consistent with advances in the Fortran standards� as they are approved by
ISO

Building on Fortran� HPF language features fall into four categories�

� HPF directives�

� New language syntax�

� New library routines� and

� Language changes and restrictions

HPF directives appear as structured comments that suggest implementation strategies
or assert facts about a program to the compiler
 When properly used� they a�ect only
the e�ciency of the computation performed� but do not change the value computed by the
program
 The form of the HPF directives has been chosen so that a future Fortran standard
may choose to include these features as full statements in the language by deleting the initial
comment header

A few new language features have been de�ned as direct extensions to Fortran syntax
and interpretation
 The new HPF language features di�er from HPF directives in that they
are �rst�class language constructs and can directly a�ect the result computed by a program

The HPF library of computational functions de�nes a standard interface to routines
that have proven valuable for high performance computing
 These additional functions in�
clude those for mapping inquiry� bit manipulation� array reduction� array combining scatter�
pre�x and su�x� and sorting

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� HPF LANGUAGE MODEL �

A small number of changes and restrictions to Fortran 	� have also been de�ned

The most signi�cant restrictions are those imposed on the use of sequence and storage
association� since they are not compatible with the data distribution features of HPF
 It is
however possible to retain sequence and storage association semantics in a program by use
of certain explicit HPF directives

����� Data Mapping Directives

The fundamental model of parallelism in HPF is that of single�threaded data�parallel ex�
ecution with a globally shared address space
 Fortran array statements and the FORALL

statement are natural ways of specifying data parallel computation
 In addition� HPF pro�
vides the INDEPENDENT directive
 It can be used to assert that certain loops do not carry
any dependences and therefore may be executed in parallel

Exploitation of data locality is critical to achieving good performance on a high�
performance computer� whether a uniprocessor workstation� a network of workstations�
or a parallel computer
 On a Non�Uniform�Memory�Access �NUMA� parallel computer�
the e�ective distribution of data among processor memories is very important in reducing
data movement overheads
 One of the key features of HPF is the facility for user speci�ca�
tion of data mapping
 HPF provides a logical view of the parallel machine as a rectilinear
arrangement of abstract processors in one or more dimensions
 The programmer can specify
the relative alignment of elements of di�erent program arrays� and the distribution of arrays
over the logical processor grid
 Data mapping is speci�ed using HPF directives that can
aid the compiler in optimizing parallel performance� but have no e�ect on the semantics of
the program
 This is illustrated by the following simple example

REAL A����������	

HPF� PROCESSORS procs����	

HPF� DISTRIBUTE �BLOCK�BLOCK	 ONTO procs

 A

DO k � �� num�iter

FORALL �i��
���� j��
���	

A�i�j	 � �A�i�j��	 � A�i���j	 � A�i�j��	 � A�i���j		��

END FORALL

END DO

The code fragment describes a simple Jacobi relaxation computation using a two�
dimensional �oating�point array A
 The HPF directives appear as structured comments

The PROCESSORS directive speci�es a logical �� � grid of processors proc
 The DISTRIBUTE
directive recommends that the compiler partition the array A into equal�sized blocks along
each of its dimensions
 This will result in a � � � con�guration of blocks each containing

�� �
�� elements� one block per processor
 The PROCESSORS and DISTRIBUTE directive
are described in detail later in Section �

The outer DO k loop iterates over num iter Jacobi relaxation steps
 The inner loop
uses the Fortran 	� FORALL construct
 It speci�es the execution of the loop body for all
values of i and j in the range
 through 			
 The semantics of the FORALL require that
the right�hand�side expressions for all iterations �i
e
� for all values of i and j between

and 			� be evaluated before any of the assignments to the left�hand�side variables are
performed

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� OVERVIEW

When targeted for execution on a distributed�memory machine with �� processors�
an HPF compiler generates SPMD code� with each processor locally containing a part
of the global array A
 The outer k loop is executed sequentially while the inner FORALL

is executed in parallel
 Each processor will require some �boundary� elements of A that
reside in partitions mapped to the local memories of other processors
 Primitives to achieve
the necessary inter�processor communication are inserted by the HPF compiler into the
generated SPMD code
 The single�threaded data�parallel model with a global name�space
makes it convenient for the programmer to specify the strategy for parallelization and data
partitioning at a higher level of abstraction
 The tedious low�level details of translating
from an abstract global name space to the local memories of individual processors and the
management of explicit inter�processor communication are left to the compiler

The following example illustrates some of the communication implications of scalar
assignment statements
 The purpose is to illustrate the implications of data distribution
speci�cations on communication requirements for parallel execution
 The explanations given
do not necessarily re�ect the actual compilation process

Consider the following code fragment�

REAL a�����	� b�����	� c�����	� x����	� y��
���	

INTEGER inx�����	

HPF� PROCESSORS procs���	

HPF� DISTRIBUTE �BLOCK	 ONTO procs

 a� b� inx

HPF� DISTRIBUTE �CYCLIC	 ONTO procs

 c

HPF� ALIGN x�i	 WITH y�i��	

���

a�i	 � b�i	
 Assignment �

x�i	 � y�i��	
 Assignment �

a�i	 � c�i	
 Assignment �

a�i	 � a�i��	 � a�i	 � a�i��	
 Assignment �

c�i	 � c�i��	 � c�i	 � c�i��	
 Assignment �

x�i	 � y�i	
 Assignment �

a�i	 � a�inx�i		 � b�inx�i		
 Assignment �

In this example� the PROCESSORS directive speci�es a linear arrangement of �� pro�
cessors
 The DISTRIBUTE directives recommend to the compiler that the arrays a� b� and
inx should be distributed among the �� processors with blocks of ��� contiguous elements
per processor
 The array c is to be cyclically distributed among the processors with c��	�
c���	�

 � c����	 mapped onto processor procs��	� c��	� c���	�

 � c����	 mapped
onto processor procs��	� and so on
 The complete mapping of arrays x and y onto the
processors is not speci�ed� but their relative alignment is indicated by the ALIGN directive

The ALIGN statement recommends that x�i	 and y�i��	 be stored on the same processor
for all values of i� regardless of the actual distribution chosen by the compiler for y �y��	
and y��	 are not aligned with any element of x�
 The PROCESSORS� DISTRIBUTE� and ALIGN

directives are discussed in detail in Section �

In Assignment � �a�i	 � b�i	�� the identical distribution of a and b speci�es that for
all i� corresponding elements of a�i	 and b�i	 should be mapped to the same processor

Therefore� execution of this statement requires no communication of data values between
processors

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� OVERVIEW OF HPF ��� LANGUAGE FEATURES �

In Assignment
 �x�i	 � y�i��	�� there is no inherent communication
 In this case�
the relative alignment of the two arrays matches the assignment statement for any actual
distribution of the arrays

Although Assignment � �a�i	 � c�i	� looks very similar to the �rst assignment� the
communication requirements are very di�erent due to the di�erent distributions of a and c

Array elements a�i	 and c�i	 are mapped to the same processor for only ��� of the possible
values of i
 �This can be seen from the de�nitions of BLOCK and CYCLIC in Section �
� The
elements are located on the same processor if and only if b�i� ������c � �i� �� mod ��

For example� the assignment involves no inherent communication �i
e
� both a�i	 and c�i	

are on the same processor� if i � � or i � ��
� but does require communication if i �

In Assignment � �a�i	 � a�i��	 � a�i	 � a�i��	�� the references to array a are all
on the same processor for about 	�� of the possible values of i
 The exceptions to this are
i � ��� � k for any k � ��
� � � � � 	� �when a�i	 and a�i��	 are on procs�k	 and a�i��	

is on procs�k��	� and i � ��� � k � � for any k � ��
� � � � � 	 �when a�i	 and a�i��	 are
on procs�k��	 and a�i��	 is on procs�k	�
 This statement requires communication
 only
for �boundary� elements on each processor�

Assignment �� c�i	 � c�i��	 � c�i	 � c�i��	� while super�cially similar to Assign�
ment �� has very di�erent communication behavior
 Because the distribution of c is CYCLIC
rather than BLOCK� the three references c�i	� c�i��	� and c�i��	 are mapped to three
distinct processors for any value of i
 Therefore� this statement requires communication
for at least two of the right�hand side references� regardless of the implementation strategy

The �nal two assignments have very limited information regarding the communica�
tion requirements
 In Assignment � �x�i	 � y�i	� the only information available is that
x�i	 and y�i��	 are on the same processor� this has no logical consequences for the re�
lationship between x�i	 and y�i	
 Thus� nothing can be said regarding communication
required at runtime for the statement without further information
 In Assignment � �a�i	
� a�inx�i		 � b�inx�i		�� it can be proved that a�inx�i		 and b�inx�i		 are always
mapped to the same processor
 Similarly� it is easy to deduce that a�i	 and inx�i	 are
mapped together
 Without knowledge of the values stored in inx� however� the relation be�
tween a�i	 and a�inx�i		 is unknown� as is the relationship between a�i	 and b�inx�i		

��	 Overview of HPF ��
 Language Features

The language de�ned in this document consists of two main parts�

� The HPF

� Language �Part II�

� HPF

� Approved Extensions �Part III�

The HPF

� language includes features that are expected to be implementable within a
year of release of the language speci�cation
 These include basic data distribution features�
data parallel features� intrinsic and library routines� and the extrinsic mechanism
 The
Approved Extensions include advanced features that meet speci�c needs� but are not likely
to be supported in initial compiler implementations

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� OVERVIEW

��	�� HPF ��
 Language Features

��	���� Data Distribution Features �Sections 	 and ��

Most parallel and sequential architectures attain their highest speed when the data accessed
exhibits locality of reference
 The sequential storage order implied by Fortran standards
often con�icts with the locality demanded by the architecture
 To avoid this� HPF includes
features that describe the co�location of data �ALIGN� and the partitioning of data among
memory regions or abstract processors �DISTRIBUTE�
 Compilers may interpret these anno�
tations to improve storage allocation for data� subject to the constraint that semantically
every data object has a single value at any point in the program
 Section � de�nes how the
mapping features interact across subprogram boundaries

While a goal of HPF is to maintain compatibility with Fortran� full support of Fortran
sequence and storage association� however� is not compatible with the goal of high per�
formance through distribution of data in HPF
 Sections � and � describe restrictions and
directives related to storage and sequence association

��	���� Data Parallel Execution Features �Section ��

To express parallel computation explicitly� HPF de�nes the INDEPENDENT directive
 It
asserts that the statements in a particular section of code do not exhibit any sequentializing
dependences� when properly used� it does not change the semantics of the construct� but may
provide more information to the language processor to allow optimizations
 A REDUCTION

clause can be used with the INDEPENDENT directive to identify variables that are updated by
commutative and associative operations
 This facilitates the utilization of parallelism with
reduction operations� in the context of loops where the order of accumulation of updates to
a variable is insigni�cant

��	���	 Extrinsic Program Units �Section
�

Because HPF is designed as a high�level machine�independent language� there are certain
operations that are di�cult or impossible to express directly
 For example� an application
may bene�t from �nely�tuned systolic communications on certain machines� HPF s global
address space does not express this well
 HPF de�nes the Extrinsic mechanism to facilitate
interfacing with procedures written in other paradigms� such as explicit message�passing
subroutine libraries or in other languages� such as C

��	���� Intrinsic Functions and Standard Library �Section ��

Experience with massively parallel machines has identi�ed many basic operations that are
useful in parallel algorithm design
 The Fortran array intrinsics address some of these
 HPF
adds several classes of parallel operations to the language de�nition as intrinsic functions
and as standard library functions
 In addition� several system inquiry functions useful for
controlling parallel execution are provided in HPF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� OVERVIEW OF HPF ��� LANGUAGE FEATURES 	

��	�� HPF ��
 Approved Extensions

��	���� Extensions for Data Mapping �Section ��

The extended mapping features permit greater control over the mapping of data� includ�
ing facilities for dynamic realignment and redistribution of arrays at run�time �REALIGN�
REDISTRIBUTE� DYNAMIC directives�� mapping of data among subsets of processors� map�
ping of pointers and components of derived types� and support for irregular distribution of
data �GEN BLOCK and INDIRECT distributions�
 In addition� mechanisms are de�ned that
permit the programmer to provide information to the compiler about the range of possible
distributions an array might take �RANGE directive� and the amount of bu�ering to be used
with arrays involved in stencil�based nearest�neighbor computations �SHADOW�

��	���� Extensions for Data and Task Parallelism �Section ��

The ON directive facilitates explicit computation partitioning
 The site of recommended
execution of a computation can be speci�ed either as an explicitly identi�ed subset of a
processor arrangement� or indirectly as the set of processors onto which a data object or
template is mapped

In order to assist the compiler in generating e�cient code� the RESIDENT directive is
de�ned� to be used in conjunction with an ON directive by the programmer
 It can be used
to assert that all accesses to the speci�ed object within the scope of the ON directive are to
be found locally on the executing processor
 The TASK REGION directive allows the user to
specify the concurrent execution of di�erent blocks of code on disjoint processor subsets

��	���	 Extensions for Asynchronous I�O �Section �
�

In order to permit overlap of I�O with computation� an extension has been de�ned for
asynchronous READ�WRITE of direct� unformatted data
 This is done through an additional
I�O control parameter in the Fortran READ�WRITE statement that speci�es non�blocking
execution and a new statement �WAIT�

��	���� Extensions to Intrinsic and Library Procedures �Section ���

The approved extensions to the HPF intrinsics and library routines relate mostly to mapping
inquiry procedures
 Some new inquiry routines are de�ned and other routines de�ned by
the HPF

� language are extended to facilitate inquiry about extended mapping features�
such as mapping to processor subsets� GEN BLOCK� INDIRECT and DYNAMIC distributions
 A
generalization of the Fortran TRANSPOSE intrinsic is also de�ned

��	���� Approved Extensions for HPF Extrinsics �Section ���

A number of speci�c extrinsic interfaces are de�ned in Section �� as approved HPF

�
extensions
 These include interfaces to facilitate interoperability with other languages �e
g
�
C and FORTRAN ��� as well as interfaces for di�erent models of parallelism �LOCAL for
SPMD parallel� and SERIAL for single�process sequential�
 Library routines useful in the
extrinsic models are de�ned in Section ��
�
 Additional extrinsic interfaces that are formally
recognized by the HPF Forum� but not de�ned and maintained by the Forum� are included
in Annexes F and G
 The policy and mechanism for formal recognition of such extrinsic
interfaces is described in Annex E

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� OVERVIEW

��� Changes from HPF ���

HPF

� di�ers from HPF �
� in a number of ways�

Repartitioning of the Language� The new document describes two components� the
HPF

� language �which is expected to be widely and relatively rapidly implemented�
and the set of Approved Extensions �which are not part of HPF

� but may be
included in future implementations in response to user demand� as the compilation
technology matures
�

Features Now in Standard Fortran� Fortran� instead of Fortran 	� is now de�ned as
the base language for extensions� this implies that HPF includes all features added to
Fortran at the �		� revision
 With this revision� a few HPF �
� features are now part
of the Fortran standard� and hence no longer appear as HPF extensions to Fortran

Features Removed or Restricted in HPF ���� Some features of HPF �
�� that have
not been implemented to date� have been removed from the language because expe�
rience has shown that the simplicity gained by doing so outweighs the advantage of
the features

Elimination of the HPF Subset� Unlike HPF �
�� HPF

� no longer has a recom�
mended minimal subset for faster implementation �i
e
 Subset HPF�� although the
original HPF �
� Subset is documented in an annex

Features Moved to Approved Extensions� A few language features have been moved
from HPF �
� to the category of Approved Extensions

New Features of HPF ���� A few new features have been added to the base language

New Approved Extensions� A number of further new features are de�ned as approved
extensions to the language

Recognized Externally
Supported HPF Extrinsics� Finally� the document acknowl�
edges a new category� HPF�related EXTRINSIC interfaces� that are recognized as meet�
ing appropriate standards for such interfaces� but are not included as Approved Ex�
tensions
 Responsibility for the content of each such interface is assumed by the
organization proposing it rather than by the HPF Forum

Each of these categories is summarized in the following subsections

����� Repartitioning of the Language

The HPF Forum had two important goals that were sometimes in con�ict�

� Providing advanced language capabilities that users had requested

� Allowing fast compiler development by vendors

One compromise made to satisfy both goals was to divide the language de�nition into two
parts
 HPF

� is very similar to HPF �
�� and is expected to be e�ciently implemented by
a number of vendors within approximately one year from the appearance of this document

Advanced features that require more implementation e�ort are collected as Approved Ex�
tensions
 Implementors are encouraged to support these features as rapidly as possible� and
users are encouraged to speed this process by making their wishes known to the vendors

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� CHANGES FROM HPF ��� ��

����� Features Now in Standard Fortran

The following features� which formed part of HPF �
�� have been removed from the docu�
ment because they are now part of ISO Fortran�

� The FORALL statement and construct�

� The PURE attribute for procedures�

� Extensions to the MINLOC and MAXLOC intrinsics to include an optional DIM argument

����	 Features Removed or Restricted in HPF ��

The following features have been removed from the language�

� Sequential arrays may no longer be explicitly mapped�

� In any procedure call in which distributed data may require redistribution� the pro�
cedure must now have an explicit interface�

� The treatment of the INHERIT directive has been simpli�ed in that it is no longer
possible to specify both INHERIT and DISTRIBUTE together

� The treatment of pointers has been simpli�ed

����� Features Moved to Approved Extensions

The DYNAMIC attribute and the REDISTRIBUTE and REALIGN statements have been moved
to the Approved Extensions

����� New Features of HPF ��

The following new constructs have been introduced in HPF

��

� The REDUCTION clause for INDEPENDENT loops�

� The new HPF LIBRARY procedures SORT DOWN� SORT UP

����
 New Approved Extensions

The Approved Extensions include the following features not part of HPF �
��

� Mapping of objects to processor subsets �

� Explicit mapping of pointers and components of derived types�

� New distribution formats� GEN BLOCK and INDIRECT�

� New directives� RANGE� SHADOW� ON� RESIDENT� TASK REGION�

� Additional intrinsic procedures� ACTIVE NUM PROCS� ACTIVE PROCS SHAPE� and a gen�
eralized TRANSPOSE intrinsic�

� New HPF LIBRARY procedures� HPF MAP ARRAY and HPF NUMBER MAPPED� revision of
procedures HPF ALIGNMENT� HPF DISTRIBUTION and HPF TEMPLATE�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� OVERVIEW

� Support for asynchronous I�O with a new statement WAIT� and an additional I�O
control parameter in the Fortran READ�WRITE statement�

� Extensions to the EXTRINSIC facilities to support interoperability with C and FOR�
TRAN ��

����� Recognized Externally�Supported HPF Extrinsics

Two externally supported extrinsic interfaces are recognized in this document�

� HPF CRAFT� providing an SPMD paradigm with HPF features�

� The Fortran �� Local Library� de�ning library support for calling Fortran �� proce�
dures in local mode

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Notation and Syntax

This chapter describes the notational conventions employed in this document and the syntax
of HPF directives

��� Notation

This document uses the same notation as the Fortran 	� standard
 In particular� the same
conventions are used for syntax rules
 BNF descriptions of language features are given in
the style used in the Fortran standard
 To distinguish HPF syntax rules from Fortran rules�
each HPF rule has an identifying number of the form Hsnn� where s corresponds to the
section number and nn is a two�digit sequence number
 Nonterminals not de�ned in this
document are de�ned in the Fortran standard
 Also note that certain technical terms such
as �storage unit� are de�ned by the Fortran standard

As previously noted in Section �� a reference of the form F	��

�
� in the text refers to
Section

�
� of the Fortran 	� standard

Part III describes the approved extensions
 In some cases this requires extending the
syntax rules already introduced in an earlier section
 In particular� the syntax rules here
are often supersets of similar syntax rules in Part II� in these cases� the names of the
nonterminals include the su�x �extended
 Thus� when a non�terminal such as name is
rede�ned it is referred to as name�extended under the proviso that any reference to name
is to be replaced by name�extended in the rest of the syntax rules

When a constraint or restriction in Part II is modi�ed by an approved extension� this
fact is noted� in the text� and a forward reference is provided
 A downward�pointing double �

arrow is used in the margin �as here� to highlight such a forward reference

Each such modi�cation �in Part III� contains a backward reference to the original

language in Part II that is modi�ed
 An upward�pointing double arrow is used in the �
margin �as here� to highlight such a backward reference

Rationale� Throughout this document� material explaining the rationale for including
features� for choosing particular feature de�nitions� and for making other decisions�
is set o� in this format
 Readers interested only in the language de�nition may wish
to skip these sections� while readers interested in language design may want to read
them more carefully
 �End of rationale��

Advice to users� Throughout this document� material that is primarily of interest to
users �including most examples of syntax and interpretation� is set o� in this format

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� SECTION �� NOTATION AND SYNTAX

Readers interested only in technical material may wish to skip these sections� while
readers wanting a more tutorial approach may want to read them more carefully
 �End
of advice to users��

Advice to implementors� Throughout this document� material that is primarily of
interest to implementors is set o� in this format
 Readers interested only in the lan�
guage de�nition may wish to skip these sections� while readers interested in compiler
implementation may want to read them more carefully
 �End of advice to implemen�
tors��

��� Syntax of Directives

HPF directives are consistent with Fortran syntax in the following sense� if any HPF direc�
tive were to be adopted as part of a future Fortran standard� the only change necessary to
convert an HPF program would be to replace the directive�origin with blanks

H
�� hpf�directive�line is directive�origin hpf�directive

H
�
 directive�origin is
HPF�

or CHPF�

or �HPF�

H
�� hpf�directive is specification�directive
or executable�directive

H
�� specification�directive is processors�directive
or align�directive
or distribute�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive

H
�� executable�directive is independent�directive

Constraint� An hpf�directive�line cannot be commentary following another statement on
the same line

Constraint� A speci�cation�directive may appear only where a declaration�construct may
appear

Constraint� An executable�directive may appear only where an executable�construct may
appear

Constraint� An hpf�directive�line follows the rules of either Fortran free form �F	���
�
�
��
or �xed form �F	���
�

�� comment lines� depending on the source form of the
surrounding Fortran source form in that program unit
 �F	���
��

An hpf�directive is case insensitive and conforms to the rules for blanks in free source
form ��
�
��� even in an HPF program otherwise in �xed source form
 However an HPF�
conforming language processor is not required to diagnose extra or missing blanks in an HPF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� SYNTAX OF DIRECTIVES ��

directive
 Note that� due to Fortran rules� the directive�origin in free source form must be
the characters
HPF�
 HPF directives may be continued� in which case each continued line
also begins with a directive�origin
 No statements may be interspersed within a continued
HPF�directive
 HPF directive lines must not appear within a continued statement
 HPF
directive lines may include trailing commentary

The blanks in the adjacent keywords END FORALL and NO SEQUENCE are optional� in
either source form

An example of an HPF directive continuation in free source form is�

HPF� ALIGN ANTIDISESTABLISHMENTARIANISM�I�J�K	 �

HPF� WITH ORNITHORHYNCHUS�ANATINUS�J�K�I	

An example of an HPF directive continuation in �xed source form follows
 Observe
that column � must be blank� except when signifying continuation

HPF� ALIGN ANTIDISESTABLISHMENTARIANISM�I�J�K	

HPF��WITH ORNITHORHYNCHUS�ANATINUS�J�K�I	

This example shows an HPF directive continuation that is �universal� in that it can
be treated as either �xed source form or free source form
 Note that the ��� in the �rst
line is in column ��

HPF� ALIGN ANTIDISESTABLISHMENTARIANISM�I�J�K	 �

HPF��WITH ORNITHORHYNCHUS�ANATINUS�J�K�I	

Part III introduces new directives� both speci�cations and executable ones� for the
approved extensions to HPF

�
 These are included below�

H
�� specification�directive�extended is processors�directive
or subset�directive
or align�directive
or distribute�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive
or dynamic�directive
or range�directive
or shadow�directive

H
�� executable�directive�extended is independent�directive
or realign�directive
or redistribute�directive
or on�directive
or resident�directive

The following rule extends rule R
�� of Fortran 	��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� NOTATION AND SYNTAX

H
�� executable�construct�extended is action�stmt
or case�construct
or do�construct
or if�construct
or where�construct
or on�construct
or resident�construct
or task�region�construct

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Part II

High Performance Fortran
Language

This major section describes the syntax and semantics of features of the High

Performance Fortran language� version ���� Some technical terms used herein
are de�ned in Part I� otherwise this description is self
contained� Part III builds

upon this material�

��

Section �

Data Mapping

HPF data alignment and distribution directives allow the programmer to advise the compiler
how to assign array elements to processor memories
 This section discusses the basic data
mapping features applicable� particularly those that are meaningful within a single scoping
unit
 Section � discusses features that apply when mapped variables appear as procedure
arguments

	�� Model

HPF adds directives to Fortran to allow the user to advise the compiler on the allocation
of data objects to processor memories
 The model is that there is a two�level mapping
of data objects to memory regions� referred to as �abstract processors
� Data objects
�typically array elements� are �rst aligned relative to one another� this group of arrays is then
distributed onto a rectilinear arrangement of abstract processors
 �The implementation then
uses the same number� or perhaps some smaller number� of physical processors to implement
these abstract processors
 This mapping of abstract processors to physical processors is
implementation�dependent
�

The following diagram illustrates the model�

��
��

��
��

��
��

��
��

� � �

Arrays or

other objects

Group of

aligned objects

Abstract

processors as a

user�declared

Cartesian mesh

Physical

processors

ALIGN DISTRIBUTE

Optional

implementation�

dependent

directive

The underlying assumptions are that an operation on two or more data objects is
likely to be carried out much faster if they all reside in the same processor� and that it may

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

� SECTION �� DATA MAPPING

be possible to carry out many such operations concurrently if they can be performed on
di�erent processors

Fortran provides a number of features� notably array syntax� that make it easy for a
compiler to determine that many operations may be carried out concurrently
 The HPF
directives provide a way to inform the compiler of the recommendation that certain data
objects should reside in the same processor� if two data objects are mapped �via the two�
level mapping of alignment and distribution� to the same abstract processor� it is a strong
recommendation to the implementation that they ought to reside in the same physical
processor
 There is also a provision for recommending that a data object be stored in
multiple locations� which may complicate any updating of the object but makes it faster
for multiple processors to read the object

There is a clear separation between directives that serve as speci�cation statements and
directives that serve as executable statements �in the sense of the Fortran standards�
 Spec�
i�cation statements are carried out on entry to a program unit� as if all at once� only then
are executable statements carried out
 �While it is often convenient to think of speci�cation
statements as being handled at compile time� some of them contain speci�cation expres�
sions� which are permitted to depend on run�time quantities such as dummy arguments�
and so the values of these expressions may not be available until run time� speci�cally the
very moment that program control enters the scoping unit
�

The basic concept is that every array �indeed� every object� is created with some
alignment to an entity� which in turn has some distribution onto some arrangement of
abstract processors
 If the speci�cation statements contain explicit speci�cation directives
specifying the alignment of an array A with respect to another array B� then the distribution
of A will be dictated by the distribution of B� otherwise� the distribution of A itself may be
speci�ed explicitly
 In either case� any such explicit declarative information is used when
the array is created

Advice to implementors� This model gives a better picture of the actual amount
of work that needs to be done than a model that says �the array is created in some
default location� and then realigned and�or redistributed if there is an explicit direc�
tive
� Using ALIGN and DISTRIBUTE speci�cation directives doesn t have to cause any
more work at run time than using the implementation defaults
 �End of advice to
implementors��

In the case of an allocatable object� we say that the object is created whenever it is
allocated
 Speci�cation directives for an allocatable object may appear in the speci�cation�
part of a program unit� but take e�ect each time the object is created� rather than on entry
to the scoping unit

Alignment is considered an attribute �in the Fortran sense� of a data object
 If an object
A is aligned with an object B� which in turn is already aligned to an object C� this is regarded
as an alignment of A with C directly� with B serving only as an intermediary at the time of
speci�cation
 We say that A is immediately aligned with B but ultimately aligned with C
 If
an object is not explicitly aligned with another object� we say that it is ultimately aligned
with itself
 The alignment relationships form a tree with everything ultimately aligned to
the object at the root of the tree� however� the tree is always immediately �collapsed� so
that every object is related directly to the root

Every object that is the root of an alignment tree has an associated template or index
space
 Typically� this template has the same rank and size in each dimension as the object

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� SYNTAX OF DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES
�

associated with it
 �The most important exception to this rule is dummy arguments with
the INHERIT attribute� described in Section �
�

� We often refer to �the template for an
array�� which means the template of the object to which the array is ultimately aligned

�When an explicit TEMPLATE �see section �
�� is used� this may be simply the template to
which the array is explicitly aligned
�

The distribution step of the HPF model technically applies to the template of an
array� although because of the close relationship noted above we often speak loosely of
the distribution of an array
 Distribution partitions the template among a set of abstract
processors according to a given pattern
 The combination of alignment �from arrays to
templates� and distribution �from templates to processors� thus determines the relationship
of an array to the processors� we refer to this relationship as the mapping of the array

�These remarks also apply to a scalar� which may be regarded as having an index space
whose sole position is indicated by an empty list of subscripts
�

Every object is created as if according to some complete set of speci�cation directives�
if the program does not include complete speci�cations for the mapping of some object�
the compiler provides defaults
 By default an object is not aligned with any other object�
it is ultimately aligned with itself
 The default distribution is implementation�dependent�
but must be expressible as explicit directives for that implementation
 Identically declared
objects need not be provided with identical default distribution speci�cations� the compiler
may� for example� take into account the contexts in which objects are used in executable
code
 The programmer may force identically declared objects to have identical distributions
by specifying such distributions explicitly
 �On the other hand� identically declared pro�
cessor arrangements are guaranteed to represent �the same processors arranged the same
way
� This is discussed in more detail in section �
�
�

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned� but not to declare any array that spans the entire index space

HPF allows one to declare a TEMPLATE� which is like an array whose elements have no
content and therefore occupy no storage� it is merely an abstract index space that can be
distributed and with which arrays may be aligned

An object is considered to be explicitly mapped if it appears in an HPF mapping
directive within the scoping unit in which it is declared� otherwise it is implicitly mapped
 A
mapping directive is an ALIGN� or DISTRIBUTE� or INHERIT directive� or any directive that
confers an alignment� a distribution� or the INHERIT attribute

Note that we extend this model in Section � to allow dynamic redistribution and
remapping of objects

	�� Syntax of Data Alignment and Distribution Directives

Speci�cation directives in HPF have two forms� speci�cation statements� analogous to the
DIMENSION and ALLOCATABLE statements of Fortran� and an attribute form analogous to
type declaration statements in Fortran using the �

� punctuation

The attribute form allows more than one attribute to be described in a single directive

HPF goes beyond Fortran in not requiring that the �rst attribute� or indeed any of them�
be a type speci�er

H��� combined�directive is combined�attribute�list

 combined�decl�list

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

 SECTION �� DATA MAPPING

H��
 combined�attribute is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list 	

H��� combined�decl is hpf�entity ! � explicit�shape�spec�list 	 "
or object�name

H��� hpf�entity is processors�name
or template�name

The INHERIT attribute is related to subroutine call conventions and will be discussed
in Section �

Constraint� The same kind of combined�attribute must not appear more than once in a
given combined�directive

Constraint� If the DIMENSION attribute appears in a combined�directive� any entity to which
it applies must be declared with the HPF TEMPLATE or PROCESSORS type spec�
i�er

The following rules constrain the declaration of various attributes� whether in separate
directives or in a combined�directive

If the DISTRIBUTE attribute is present� then every name declared in the combined�decl�
list is considered to be a distributee and is subject to the constraints listed in section �
�

If the ALIGN attribute is present� then every name declared in the entity�decl�list is
considered to be an alignee and is subject to the constraints listed in section �
�

The HPF keywords PROCESSORS and TEMPLATE play the role of type speci�ers in declar�
ing processor arrangements and templates
 The HPF keywords ALIGN� DISTRIBUTE� and
INHERIT play the role of attributes
 Attributes referring to processor arrangements� to tem�
plates� or to entities with other types �such as REAL� may be combined in an HPF directive
without having the type speci�er appear

No entity may be given a particular attribute more than once

Dimension information may be speci�ed after an hpf�entity or in a DIMENSION attribute

If both are present� the one after the object�name overrides the DIMENSION attribute �this
is consistent with the Fortran standard�
 For example� in�

HPF� TEMPLATE�DIMENSION������	

 A�B�C������	�D

A� B� and D are ��� �� templates� C is �
� �

Directives mapping a variable must be in the same scoping unit where the variable is

declared

If a speci�cation expression includes a reference to the value of an element of an array

speci�ed in the same speci�cation�part� any explicit mapping or INHERIT attribute for the
array must be completely speci�ed in prior speci�cation�directives
 �This restriction is
inspired by and extends F	���
�
�

 in the Fortran standard� which states in part� If a
speci�cation expression includes a reference to the value of an element of an array speci�ed
in the same speci�cation�part� the array bounds must be speci�ed in a prior declaration
�

A comment on asterisks� The asterisk character ��� appears in the syntax rules for
HPF alignment and distribution directives in three distinct roles�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE DISTRIBUTE DIRECTIVE
�

� When a lone asterisk appears as a member of a parenthesized list� it indicates either
a collapsed mapping� wherein many elements of an array may be mapped to the same
abstract processor� or a replicated mapping� wherein each element of an array may
be mapped to many abstract processors
 See the syntax rules for align�source and
align�subscript �see section �
�� and for dist�format �see section �
��

� An asterisk appearing in an align�subscript�use expression represents the usual integer
multiplication operator

� When an asterisk appears before a left parenthesis ��� or after the keyword WITH or
ONTO� it indicates a descriptive or transcriptive mapping for dummy arguments of sub�
programs �see Section �� and for mapping of pointers under the approved extensions �
�see section �
��

An asterisk can also be used in the PASS BY attribute in an interface block to describe
dummy arguments passed by reference to an extrinsic routine written in C �see Section ��

�

	�	 The DISTRIBUTE Directive

The DISTRIBUTE directive speci�es a mapping of data objects to abstract processors in a
processor arrangement
 For example�

REAL SALAMI������	

HPF� DISTRIBUTE SALAMI�BLOCK	

speci�es that the array SALAMI should be distributed across some set of abstract processors
by slicing it uniformly into blocks of contiguous elements
 If there are �� processors� the
directive implies that the array should be divided into groups of d��������e �
�� elements�
with SALAMI��
���	mapped to the �rst processor� SALAMI����
���	mapped to the second
processor� and so on
 If there is only one processor� the entire array is mapped to that
processor as a single block of ����� elements

The block size may be speci�ed explicitly�

REAL WEISSWURST������	

HPF� DISTRIBUTE WEISSWURST�BLOCK����		

This speci�es that groups of exactly
�� elements should be mapped to successive abstract
processors
 �There must be at least d������
��e � �� abstract processors if the directive
is to be satis�ed
 The fortieth processor will contain a partial block of only �� elements�
namely WEISSWURST�����
�����	
�

HPF also provides a cyclic distribution format�

REAL DECK�OF�CARDS���	

HPF� DISTRIBUTE DECK�OF�CARDS�CYCLIC	

If there are � abstract processors� the �rst processor will contain DECK OF CARDS��
��
�	�
the second processor will contain DECK OF CARDS��
��
�	� the third processor will contain
DECK OF CARDS��
��
�	� and the fourth processor will contain DECK OF CARDS��
��
�	

Successive array elements are dealt out to successive abstract processors in round�robin
fashion

Distributions are speci�ed independently for each dimension of a multidimensional
array�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA MAPPING

INTEGER CHESS�BOARD����	� GO�BOARD������	

HPF� DISTRIBUTE CHESS�BOARD�BLOCK� BLOCK	

HPF� DISTRIBUTE GO�BOARD�CYCLIC��	

The CHESS BOARD array will be carved up into contiguous rectangular patches� which will
be distributed onto a two�dimensional arrangement of abstract processors
 The GO BOARD

array will have its rows distributed cyclically over a one�dimensional arrangement of abstract
processors
 �The ��� speci�es that GO BOARD is not to be distributed along its second axis�
thus an entire row is to be distributed as one object
 This is sometimes called �on�processor�
distribution
�

The DISTRIBUTE directive may appear only in the speci�cation�part of a scoping unit
and can contain only a speci�cation�expr as the argument to a BLOCK or CYCLIC option

The syntax of the DISTRIBUTE directive is�

H��� distribute�directive is DISTRIBUTE distributee dist�directive�stuff

H��� dist�directive�stuff is dist�format�clause ! dist�onto�clause "

H��� dist�attribute�stuff is dist�directive�stuff
or dist�onto�clause

H��� distributee is object�name
or template�name

H��	 dist�format�clause is � dist�format�list 	

or � � dist�format�list 	

or �

H��� dist�format is BLOCK ! � scalar�int�expr 	 "
or CYCLIC ! � scalar�int�expr 	 "
or �

H��� dist�onto�clause is ONTO dist�target

H��
 dist�target is processors�name
or � processors�name
or �

The full syntax is given here for completeness
 However� some of the forms are discussed
only in Section �
 These �interprocedural� forms are�

� The last two options of rule H��	 �containing the � form�

� The last two options of rule H��
 �containing the � form�

Constraint� An object�name mentioned as a distributee must be a simple name and not a
subobject designator or a component�name

Constraint� An object�name mentioned as a distributee may not appear as an alignee

Constraint� An object�name mentioned as a distributee may not have the POINTER at�
tribute

Constraint� An object�name mentioned as a distributee may not have the TARGET attribute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE DISTRIBUTE DIRECTIVE
�

Constraint� If the distributee is scalar� the dist�format�list �and its surrounding parenthe�
ses� must not appear
 In this case� the statement form of the directive is
allowed only if a dist�format�clause of ��� is present

Constraint� If a dist�format�list is speci�ed� its length must equal the rank of each distribu�
tee to which it applies

Constraint� If both a dist�format�list and a dist�target appear� the number of elements
of the dist�format�list that are not ��� must equal the rank of the speci�ed
processor arrangement

Constraint� If a dist�target appears but not a dist�format�list� the rank of each distributee
must equal the rank of the speci�ed processor arrangement

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument

Constraint� Any scalar�int�expr appearing in a dist�format of a DISTRIBUTE directive must
be a speci�cation�expr

Advice to users� Some of the above constraints are relaxed under the approved
extensions �see Section ��� mapping of derived type components �relaxes constraint �
��� and mapping of pointers and targets �relaxes constraints �� �� and 	�
 �End of
advice to users��

Note that the possibility of a DISTRIBUTE directive of the form

HPF� DISTRIBUTE dist�attribute�stuff

 distributee�list

is covered by syntax rule H��� for a combined�directive

Examples�

HPF� DISTRIBUTE D��BLOCK	

HPF� DISTRIBUTE �BLOCK���BLOCK	 ONTO SQUARE

 D��D��D�

The meanings of the alternatives for dist�format are given below

De�ne the ceiling division function CD�J�K	 � �J�K��	�K �using Fortran integer arith�

metic with truncation toward zero
�
De�ne the ceiling remainder function CR�J�K	 � J�K�CD�J�K	

The dimensions of a processor arrangement appearing as a dist�target are said to cor�

respond in left�to�right order with those dimensions of a distributee for which the corre�
sponding dist�format is not �
 In the example above� processor arrangement SQUARE must
be two�dimensional� its �rst dimension corresponds to the �rst dimensions of D�� D�� and
D� and its second dimension corresponds to the third dimensions of D�� D�� and D�

Let d be the size of a distributee in a certain dimension and let p be the size of the pro�
cessor arrangement in the corresponding dimension
 For simplicity� assume all dimensions
have a lower bound of �
 Then BLOCK�m	 means that a distributee position whose index
along that dimension is j is mapped to an abstract processor whose index along the corre�
sponding dimension of the processor arrangement is CD�j�m	 �note that m � p � d must
be true�� and is position number m�CR�j�m	 among positions mapped to that abstract
processor
 The �rst distributee position in abstract processor k along that axis is position
number ��m��k��	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA MAPPING

The block size m must be a positive integer

BLOCK by de�nition means the same as BLOCK�CD�d�p		

CYCLIC�m	 means that a distributee position whose index along that dimension is

j is mapped to an abstract processor whose index along the corresponding dimension of
the processor arrangement is ��MODULO�CD�j�m	���p	
 The �rst distributee position in
abstract processor k along that axis is position number ��m��k��	

The block size m must be a positive integer

CYCLIC by de�nition means the same as CYCLIC��	

CYCLIC�m	 and BLOCK�m	 imply the same distribution when m�p � d� but BLOCK�m	

additionally asserts that the distribution will not wrap around in a cyclic manner� which
a compiler cannot determine at compile time if m is not constant
 Note that CYCLIC and
BLOCK �without argument expressions� do not imply the same distribution unless p � d� a
degenerate case in which the block size is � and the distribution does not wrap around

Suppose that we have �� abstract processors and an array of length ����

HPF� PROCESSORS SEDECIM���	

REAL CENTURY����	

Distributing the array BLOCK �which in this case would mean the same as BLOCK��	��

HPF� DISTRIBUTE CENTURY�BLOCK	 ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

Distributing the array BLOCK��	�

HPF� DISTRIBUTE CENTURY�BLOCK��		 ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE DISTRIBUTE DIRECTIVE
�

Distributing the array BLOCK��	 is not HPF�conforming because �� �� � ���

Distributing the array CYCLIC �which means exactly the same as CYCLIC��	��

HPF� DISTRIBUTE CENTURY�CYCLIC	 ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

� � � � � � � � � �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� ���

Distributing the array CYCLIC��	�

HPF� DISTRIBUTE CENTURY�CYCLIC��		 ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

Note that it is perfectly permissible for an array to be distributed so that some pro�
cessors have no elements
 Indeed� an array may be �distributed� so that all elements reside
on one processor
 For example�

HPF� DISTRIBUTE CENTURY�BLOCK����		 ONTO SEDECIM

results in having only one non�empty block�a partially��lled one at that� having only ���
elements�on processor �� with processors
 through �� having no elements of the array

The statement form of a DISTRIBUTE directive may be considered an abbreviation for
an attributed form that happens to mention only one distributee� for example�

HPF� DISTRIBUTE distributee � dist�format�list 	 ONTO dist�target

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA MAPPING

is equivalent to

HPF� DISTRIBUTE � dist�format�list 	 ONTO dist�target

 distributee

Note that� to prevent syntactic ambiguity� the dist�format�clause must be present in the
statement form� so in general the statement form of the directive may not be used to specify
the mapping of scalars

If the dist�format�clause is omitted from the attributed form� then the language pro�
cessor may make an arbitrary choice of distribution formats for each template or array
 So
the directive

HPF� DISTRIBUTE ONTO P

 D��D��D�

means the same as

HPF� DISTRIBUTE ONTO P

 D�

HPF� DISTRIBUTE ONTO P

 D�

HPF� DISTRIBUTE ONTO P

 D�

to which a compiler� perhaps taking into account patterns of use of D�� D�� and D� within
the code� might choose to supply three distinct distributions such as� for example�

HPF� DISTRIBUTE D��BLOCK� BLOCK	 ONTO P

HPF� DISTRIBUTE D��CYCLIC� BLOCK	 ONTO P

HPF� DISTRIBUTE D��BLOCK���	�CYCLIC	 ONTO P

Then again� the compiler might happen to choose the same distribution for all three arrays

In either the statement form or the attributed form� if the ONTO clause is present� it
speci�es the processor arrangement that is the target of the distribution
 If the ONTO clause
is omitted� then a implementation�dependent processor arrangement is chosen arbitrarily
for each distributee
 So� for example�

REAL� DIMENSION�����	

 ARTHUR� ARNOLD� LINUS� LUCY

HPF� PROCESSORS EXCALIBUR���	

HPF� DISTRIBUTE �BLOCK	 ONTO EXCALIBUR

 ARTHUR� ARNOLD

HPF� DISTRIBUTE �BLOCK	

 LINUS� LUCY

causes the arrays ARTHUR and ARNOLD to have the same mapping� so that corresponding ele�
ments reside in the same abstract processor� because they are the same size and distributed
in the same way �BLOCK� onto the same processor arrangement �EXCALIBUR�
 However� LUCY
and LINUS do not necessarily have the same mapping because they might� depending on
the implementation� be distributed onto di�erently chosen processor arrangements� so cor�
responding elements of LUCY and LINUS might not reside on the same abstract processor

�The ALIGN directive provides a way to ensure that two arrays have the same mapping
without having to specify an explicit processor arrangement
�

In a given environment� for some distributions� there may be no appropriate processor
arrangement

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ALIGN DIRECTIVE
	

	�� The ALIGN Directive

The ALIGN directive is used to specify that certain data objects are to be mapped in the
same way as certain other data objects
 Operations between aligned data objects are likely
to be more e�cient than operations between data objects that are not known to be aligned
�because two objects that are aligned are intended to be mapped to the same abstract
processor�
 The ALIGN directive is designed to make it particularly easy to specify explicit
mappings for all the elements of an array at once
 While objects can be aligned in some
cases through careful use of matching DISTRIBUTE directives� ALIGN is more general and
frequently more convenient

The ALIGN directive may appear only in the speci�cation�part of a scoping unit and
can contain only a speci�cation�expr as a subscript or in a subscript�triplet

The syntax of ALIGN is as follows�

H��� align�directive is ALIGN alignee align�directive�stuff

H��� align�directive�stuff is � align�source�list 	 align�with�clause

H��� align�attribute�stuff is ! � align�source�list 	 " align�with�clause

H��� alignee is object�name

H��� align�source is

or �

or align�dummy

H��� align�dummy is scalar�int�variable

Constraint� An object�name mentioned as an alignee must be a simple name and not a
subobject designator or a component�name

Constraint� An object�name mentioned as an alignee may not appear as a distributee

Constraint� An object�name mentioned as an alignee may not have the POINTER attribute

Constraint� An object�name mentioned as an alignee may not have the TARGET attribute

Constraint� If the alignee is scalar� the align�source�list �and its surrounding parentheses�
must not appear
 In this case the statement form of the directive is not allowed

Constraint� If the align�source�list is present� its length must equal the rank of each alignee
to which it applies

Constraint� An align�dummy must be a named variable

Constraint� An object may not have both the INHERIT attribute and the ALIGN attribute

Advice to users� Some of the above constraints are relaxed under the approved
extensions �see Section ��� mapping of derived type components �relaxes constraint �
�� and mapping of pointers and targets �relaxes constraints � and ��
 �End of advice
to users��

Note that the possibility of an ALIGN directive of the form

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

HPF� ALIGN align�attribute�stuff

 alignee�list

is covered by syntax rule H��� for a combined�directive

The statement form of an ALIGN directive may be considered an abbreviation of an
attributed form that happens to mention only one alignee�

HPF� ALIGN alignee � align�source�list 	 WITH align�spec

is equivalent to

HPF� ALIGN � align�source�list 	 WITH align�spec

 alignee

If the align�source�list is omitted from the attributed form and the alignees are not
scalar� the align�source�list is assumed to consist of a parenthesized list of �
� entries�
equal in number to the rank of the alignees
 Similarly� if the align�subscript�list is omitted
from the align�spec in either form� it is assumed to consist of a parenthesized list of �
�
entries� equal in number to the rank of the align�target
 So the directive

HPF� ALIGN WITH B

 A�� A�� A�

means

HPF� ALIGN �
�
	 WITH B�
�
	

 A�� A�� A�

which in turn means the same as

HPF� ALIGN A��
�
	 WITH B�
�
	

HPF� ALIGN A��
�
	 WITH B�
�
	

HPF� ALIGN A��
�
	 WITH B�
�
	

because an attributed�form directive that mentions more than one alignee is equivalent to
a series of identical directives� one for each alignee� all alignees must have the same rank

With this understanding� we will assume below� for the sake of simplifying the description�
that an ALIGN directive has a single alignee

Each align�source corresponds to one axis of the alignee� and is speci�ed as either �
�
or ��� or a dummy variable�

� If it is �
�� then positions along that axis will be spread out across the matching axis
of the align�spec �see below�

� If it is ���� then that axis is collapsed � positions along that axis make no di�erence
in determining the corresponding position within the align�target
 �Replacing the ���
with a dummy variable name not used anywhere else in the directive would have the
same e�ect� ��� is merely a convenience that saves the trouble of inventing a variable
name and makes it clear that no dependence on that dimension is intended
�

� A dummy variable is considered to range over all valid index values for that dimension
of the alignee

The WITH clause of an ALIGN has the following syntax�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ALIGN DIRECTIVE ��

H��	 align�with�clause is WITH align�spec

H�
� align�spec is align�target ! � align�subscript�list 	 "
or � align�target ! � align�subscript�list 	 "

H�
� align�target is object�name
or template�name

H�

 align�subscript is int�expr
or align�subscript�use
or subscript�triplet
or �

H�
� align�subscript�use is ! ! int�level�two�expr " add�op "
align�add�operand

or align�subscript�use add�op int�add�operand

H�
� align�add�operand is ! int�add�operand � " align�primary
or align�add�operand � int�mult�operand

H�
� align�primary is align�dummy
or � align�subscript�use 	

H�
� int�add�operand is add�operand

H�
� int�mult�operand is mult�operand

H�
� int�level�two�expr is level���expr

The full syntax is given here for completeness
 However� some of the forms are discussed
only in Section �
 These �interprocedural� forms are those using the second option of
rule H�
� �containing the � form�

Constraint� An object�name mentioned as an align�target must be a simple name and not
a subobject designator or a component�name

Constraint� An align�target may not have the OPTIONAL attribute

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument

Constraint� In an align�directive any int�expr� int�level�two�expr� int�add�operand or int�
mult�operand must be a speci�cation expression

Constraint� Any subscript or stride in a subscript�triplet that is an align�subscript in an
align�directive must be a speci�cation expression

Constraint� Each align�dummy may appear at most once in an align�subscript�list

Constraint� An align�subscript�use expression may contain at most one occurrence of an
align�dummy

Constraint� A scalar�int�variable that is used as an align�dummy may not appear any�
where in the align�spec except where explicitly permitted to appear by virtue
of the grammar shown above
 Paraphrased� one may construct an align�
subscript�use only by starting with an align�dummy and then doing additive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA MAPPING

and multiplicative things to it with integer speci�cation expressions that con�
tain no align�dummy

Constraint� A subscript within an align�subscript may not contain occurrences of any align�
dummy

Constraint� An int�add�operand� int�mult�operand� or int�level�two�expr must be of type
integer

Advice to users� Some of the above constraints are relaxed under the approved
extensions �see Section ��� mapping of derived type components �relaxes constraint�
��� mapping of pointers �relaxes constraint �� and remapping of data objects �relaxes
constraints � and ��
 �End of advice to users��

The syntax rules for an align�subscript�use take account of operator precedence issues�
but the basic idea is simple� an align�subscript�use is intended to be a linear �more precisely�
a�ne� function of a single occurrence of an align�dummy

For example� the following align�subscript�use expressions are valid� assuming that each
of J� K� and M is an align�dummy and N is not an align�dummy �

J J�� ��K ��M N�M ������M

�J �J �K�� M����� M�N ������IOR����		�K��������	

M�� N��M�N	 ���J��	 ��K�� ������M�� ������K��	���	����

The following expressions are not valid align�subscript�use expressions�

J�J J�J ��K���K M��N�M	 ��J���J�J ������K��	���	�K

J�J J�K ��K ���M M�K K���M

K�J IOR�J��	 �K�� M����M	 M��M�N	 ������J���J�J	

The align�spec must contain exactly as many subscript�triplets as the number of colons
��
�� appearing in the align�source�list
 These are matched up in corresponding left�to�right
order� ignoring� for this purpose� any align�source that is not a colon and any align�subscript
that is not a subscript�triplet
 Consider a dimension of the alignee for which a colon appears
as an align�source and let the lower and upper bounds of that dimension be LA and UA

Let the corresponding subscript triplet be LT �UT �ST or its equivalent
 Then the colon
could be replaced by a new� as�yet�unused dummy variable� say J� and the subscript triplet
by the expression �J�LA	�ST�LT without a�ecting the mapping speci�ed by the directive

However� the colon form additionaly requires that the axes must conform� which means
that

max��� UA� LA � �� � max��� d�UT � LT � ���STe�

must be true
 �This is entirely analogous to the treatment of array assignment
�
To simplify the remainder of the discussion� we assume that every colon in the align�

source�list has been replaced by new dummy variables in exactly the fashion just described�
and that every ��� in the align�source�list has likewise been replaced by an otherwise unused
dummy variable
 For example�

HPF� ALIGN A�
���K�
�
��	 WITH B���
�
�K�����
���
�	

may be transformed into its equivalent

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ALIGN DIRECTIVE ��

HPF� ALIGN A�I�J�K�L�M�N	 WITH B�I�LBOUND�A��	���� �

HPF� L�LBOUND�A��	�LBOUND�B��	�K����M�LBOUND�A��		�����	

with the attached requirements

SIZE�A��	 �EQ� UBOUND�B��	���

SIZE�A��	 �EQ� SIZE�B��	

SIZE�A��	 �EQ� ���������	��

Thus we need consider further only the case where every align�source is a dummy variable
and no align�subscript is a subscript�triplet

Each dummy variable is considered to range over all valid index values for the cor�
responding dimension of the alignee
 Every combination of possible values for the index
variables selects an element of the alignee
 The align�spec indicates a corresponding element
�or section� of the align�target with which that element of the alignee should be aligned�
this indication may be a function of the index values� but the nature of this function is
syntactically restricted �as discussed above� to linear �precisely� a�ne� functions in order
to limit the complexity of the implementation
 Each align�dummy variable may appear at
most once in the align�spec and only in certain rigidly prescribed contexts
 The result is
that each align�subscript expression may contain at most one align�dummy variable and the
expression is constrained to be a linear function of that variable
 �Therefore skew alignments
are not possible
�

An asterisk ��� as an align�subscript indicates a replicated representation
 Each ele�
ment of the alignee is aligned with every position along that axis of the align�target

Rationale� It may seem strange to use ��� to mean both collapsing and replication�
the rationale is that ��� always stands conceptually for a dummy variable that appears
nowhere else in the statement and ranges over the set of indices for the indicated
dimension
 Thus� for example�

HPF� ALIGN A�
	 WITH D�
��	

means that a copy of A is aligned with every column of D� because it is conceptually
equivalent to

for every legitimate index j� align A�
	 with D�
�j	

just as

HPF� ALIGN A�
��	 WITH D�
	

is conceptually equivalent to

for every legitimate index j� align A�
�j	 with D�
	

Note� however� that while HPF syntax allows

HPF� ALIGN A�
��	 WITH D�
	

to be written in the alternate form

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

HPF� ALIGN A�
�J	 WITH D�
	

it does not allow

HPF� ALIGN A�
	 WITH D�
��	

to be written in the alternate form

HPF� ALIGN A�
	 WITH D�
�J	

because that has another meaning �only a variable appearing in the align�source�list
following the alignee is understood to be an align�dummy� so the current value of the
variable J is used� thus aligning A with a single column of D�

Replication allows an optimizing compiler to arrange to read whichever copy is closest

�Of course� when a replicated data object is written� all copies must be updated� not
just one copy
 Replicated representations are very useful for small lookup tables�
where it is much faster to have a copy in each physical processor but without giving it
an extra dimension that is logically unnecessary to the algorithm
 �End of rationale��

By applying the transformations given above� all cases of an align�subscript may be
conceptually reduced to either an int�expr �not involving an align�dummy� or an align�
subscript�use� and the align�source�list may be reduced to a list of index variables with
no ��� or �
�
 An align�subscript�list may then be evaluated for any speci�c combination
of values for the align�dummy variables simply by evaluating each align�subscript as an
expression
 The resulting subscript values must be legitimate subscripts for the align�target

�This implies that the alignee is not allowed to �wrap around� or �extend past the edges�
of an align�target
� The selected element of the alignee is then considered to be aligned
with the indicated element of the align�target � more precisely� the selected element of the
alignee is considered to be ultimately aligned with the same object with which the indicated
element of the align�target is currently ultimately aligned �possibly itself�

More examples of ALIGN directives�

INTEGER D��N	

LOGICAL D��N�N	

REAL� DIMENSION�N�N	

 X�A�B�C�AR��AR�A�P�Q�R�S

HPF� ALIGN X�
��	 WITH D��
	

HPF� ALIGN �
��	 WITH D�

 A�B�C�AR��AR�A

HPF� ALIGN WITH D�

 P�Q�R�S

Note that� in a alignee�list� the alignees must all have the same rank but need not all have
the same shape� the extents need match only for dimensions that correspond to colons in the
align�source�list
 This turns out to be an extremely important convenience� one of the most
common cases in current practice is aligning arrays that match in distributed ��parallel��
dimensions but may di�er in collapsed ��on�processor�� dimensions�

REAL A���N	� B���N	� C����N	� Q�N	

HPF� DISTRIBUTE Q�BLOCK	

HPF� ALIGN ���
	 WITH Q

 A�B�C

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ALLOCATABLE ARRAYS AND POINTERS ��

Here there are processors �perhaps N of them� and arrays of di�erent sizes ��� �� ��� within
each processor are required
 As far as HPF is concerned� the numbers �� �� and �� may be
di�erent� because those axes will be collapsed
 Thus array elements with indices di�ering
only along that axis will all be aligned with the same element of Q �and thus be speci�ed
as residing in the same processor�

In the following examples� each directive in a group means the same thing� assuming
that corresponding axis upper and lower bounds match�

Second axis of X is collapsed

HPF� ALIGN X�
��	 WITH D��
	

HPF� ALIGN X�J��	 WITH D��J	

HPF� ALIGN X�J�K	 WITH D��J	

Replicated representation along second axis of D�

HPF� ALIGN X�
�
	 WITH D��
���
	

HPF� ALIGN X�J�K	 WITH D��J���K	

Transposing two axes

HPF� ALIGN X�J�K	 WITH D��K�J	

HPF� ALIGN X�J�
	 WITH D��
�J	

HPF� ALIGN X�
�K	 WITH D��K�
	

But there isn�t any way to get rid of �both� index variables�

 the subscript�triplet syntax alone cannot express transposition�

Reversing both axes

HPF� ALIGN X�J�K	 WITH D��M�J���N�K��	

HPF� ALIGN X�
�
	 WITH D��M
�
���N
�
��	

Simple case

HPF� ALIGN X�J�K	 WITH D��J�K	

HPF� ALIGN X�
�
	 WITH D��
�
	

HPF� ALIGN �J�K	 WITH D��J�K	

 X

HPF� ALIGN �
�
	 WITH D��
�
	

 X

HPF� ALIGN WITH D�

 X

	�� Allocatable Arrays and Pointers

A variable with the ALLOCATABLE attribute may appear as an alignee in an ALIGN directive
or as a distributee in a DISTRIBUTE directive
 Such directives do not take e�ect immediately�
however� they take e�ect each time the array is allocated by an ALLOCATE statement� rather
than on entry to the scoping unit
 The values of all speci�cation expressions in such a
directive are determined once on entry to the scoping unit and may be used multiple times
�or not at all�
 For example�

SUBROUTINE MILLARD�FILLMORE�N�M	

REAL� ALLOCATABLE� DIMENSION�
	

 A� B

HPF� ALIGN B�I	 WITH A�I�N	

HPF� DISTRIBUTE A�BLOCK�M��		

N � ��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

M � ��

ALLOCATE�A���		

ALLOCATE�B���		

���

The values of the expressions N and M�� on entry to the subprogram are conceptually
retained by the ALIGN and DISTRIBUTE directives for later use at allocation time
 When
the array A is allocated� it is distributed with a block size equal to the retained value of
M��� not the value ��

 When the array B is allocated� it is aligned relative to A according
to the retained value of N� not its new value ��

Note that it would have been incorrect in the MILLARD FILLMORE example to perform
the two ALLOCATE statements in the opposite order
 In general� when an object X is created
it may be aligned to another object Y only if Y has already been created or allocated
 The
following example illustrates several related cases

SUBROUTINE WARREN�HARDING�P�Q	

REAL P�
	

REAL Q�
	

REAL R�SIZE�Q		

REAL� ALLOCATABLE

 S�
	�T�
	

HPF� ALIGN P�I	 WITH T�I	
Nonconforming

HPF� ALIGN Q�I	 WITH �T�I	
Nonconforming

HPF� ALIGN R�I	 WITH T�I	
Nonconforming

HPF� ALIGN S�I	 WITH T�I	

ALLOCATE�S�SIZE�Q			
Nonconforming

ALLOCATE�T�SIZE�Q			

Three ALIGN directives are not HPF�conforming because the array T has not yet been
allocated at the time that the various alignments must take place
 The four cases di�er
slightly in their details
 The arrays P and Q already exist on entry to the subroutine� but
because T is not yet allocated� one cannot correctly prescribe the alignment of P or describe
the alignment of Q relative to T
 �See Section � for a discussion of prescriptive and descriptive
directives
� The array R is created on subroutine entry and its size can correctly depend
on the SIZE of Q� but the alignment of R cannot be speci�ed in terms of the alignment
of T any more than its size can be speci�ed in terms of the size of T
 It is permitted to
have an alignment directive for S in terms of T� because the alignment action does not take
place until S is allocated� however� the �rst ALLOCATE statement is nonconforming because
S needs to be aligned but at that point in time T is still unallocated

When an array is allocated� it will be aligned to an existing object or template if there
is an explicit ALIGN directive for the allocatable variable
 If there is no explicit ALIGN

directive� then the array will be ultimately aligned with itself
 It is forbidden for any other
object to be ultimately aligned to an array at the time the array becomes unde�ned by
reason of deallocation
 All this applies regardless of whether the name originally used in
the ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute

Pointers cannot be explicitly mapped in HPF and thus can only be associated with
objects which are not explicitly mapped
 When used for allocation� the compiler may
choose any arbitrary mapping for data allocated through the pointer
 Explicit mapping of
pointers is allowed under the approved extensions �see section �
��
 Also� the relationship
of pointers and sequence attributes is described in section �
�
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� THE PROCESSORS DIRECTIVE ��

	�
 The PROCESSORS Directive

The PROCESSORS directive declares one or more rectilinear processor arrangements� specify�
ing for each one its name� its rank �number of dimensions�� and the extent in each dimension

It may appear only in the speci�cation�part of a scoping unit
 Every dimension of a pro�
cessor arrangement must have nonzero extent� therefore a processor arrangement cannot be
empty

In the language of F	����
�

 in the Fortran standard� processor arrangements are local
entities of class ���� therefore a processor arrangement may not have the same name as a
variable� named constant� internal procedure� etc
� in the same scoping unit
 Names of
processor arrangements obey the same rules for host and use association as other names in
the long list in F	���

�

� in the Fortran standard

A processor arrangement declared in a module has the default accessibility of the
module

Rationale� Because the name of a processor arrangement is not a �rst�class en�
tity in HPF� but must appear only in directives� it cannot appear in an access�stmt
�PRIVATE or PUBLIC�
 If directives ever become full��edged Fortran statements rather
than structured comments� then it would be appropriate to allow the accessibility of
a processor arrangement to be controlled by listing its name in an access�stmt
 �End
of rationale��

If two processor arrangements have the same shape� then corresponding elements of the
two arrangements are understood to refer to the same abstract processor
 �It is anticipated
that implementation�dependent directives provided by some HPF implementations could
overrule the default correspondence of processor arrangements that have the same shape
�

If directives collectively specify that two objects be mapped to the same abstract pro�
cessor at a given instant during the program execution� the intent is that the two objects
be mapped to the same physical processor at that instant

The intrinsic functions NUMBER OF PROCESSORS and PROCESSORS SHAPE may be used to
inquire about the total number of actual physical processors used to execute the program

This information may then be used to calculate appropriate sizes for the declared abstract
processor arrangements

H�
	 processors�directive is PROCESSORS processors�decl�list

H��� processors�decl is processors�name
! � explicit�shape�spec�list 	 "

Examples�

HPF� PROCESSORS P�N	

HPF� PROCESSORS Q�NUMBER�OF�PROCESSORS�		� �

HPF� R���NUMBER�OF�PROCESSORS�	��	

HPF� PROCESSORS BIZARRO�����
��������
��	

HPF� PROCESSORS SCALARPROC

If no shape is speci�ed� then the declared processor arrangement is conceptually scalar

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

Rationale� A scalar processor arrangement may be useful as a way of indicating
that certain scalar data should be kept together but need not interact strongly with
distributed data
 Depending on the implementation architecture� data distributed
onto such a processor arrangement may reside in a single �control� or �host� processor
�if the machine has one�� or may reside in an arbitrarily chosen processor� or may be
replicated over all processors
 For target architectures that have a set of computational
processors and a separate scalar host computer� a natural implementation is to map
every scalar processor arrangement onto the host processor
 For target architectures
that have a set of computational processors but no separate scalar �host� computer�
data mapped to a scalar processor arrangement might be mapped to some arbitrarily
chosen computational processor or replicated onto all computational processors
 �End
of rationale��

An HPF compiler is required to accept any PROCESSORS declaration in which the prod�
uct of the extents of each declared processor arrangement is equal to the number of physical
processors that would be returned by the call NUMBER OF PROCESSORS�	
 It must also accept
all declarations of scalar PROCESSOR arrangements
 Other cases may be handled as well�
depending on the implementation

For compatibility with the Fortran attribute syntax� an optional �

� may be inserted

The shape may also be speci�ed with the DIMENSION attribute�

HPF� PROCESSORS

 RUBIK������	

HPF� PROCESSORS� DIMENSION������	

 RUBIK

As in Fortran� an explicit�shape�spec�list in a processors�decl will override an explicit
DIMENSION attribute�

HPF� PROCESSORS� DIMENSION������	

 �

HPF� RUBIK� RUBIKS�REVENGE������	� SOMA

Here RUBIKS REVENGE is �� �� � while RUBIK and SOMA are each �� �� �
 �By the rules
enunciated above� however� such a statement may not be completely portable because no
HPF language processor is required to handle shapes of total sizes
� and �� simultaneously
�

Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become unde�ned
 It is not HPF�conforming for any array or template to be
distributed onto a processor arrangement at the time the processor arrangement becomes
unde�ned unless at least one of two conditions holds�

� The array or template itself becomes unde�ned at the same time by virtue of returning
from the subprogram

� Whenever the subprogram is called� the processor arrangement is always locally de�
�ned in the same way� with identical lower bounds and identical upper bounds

Rationale� Note that this second condition is slightly less stringent than requir�
ing all expressions to be constant
 This allows calls to NUMBER OF PROCESSORS or
PROCESSORS SHAPE to appear without violating the condition
 �End of rationale��

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
processor arrangement� but because the �rst condition cannot hold for such variables �they

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
� THE TEMPLATE DIRECTIVE �	

don t become unde�ned�� the second condition must be observed
 This allows COMMON

variables to work properly through the customary strategy of putting identical declarations
in each scoping unit that needs to use them� while allowing the processor arrangements to
which they may be mapped to depend on the value returned by NUMBER OF PROCESSORS

�See section �
� for further information on mapping common variables
�

Advice to implementors� It may be desirable to have a way for the user to spec�
ify at compile time the number of physical processors on which the program is to
be executed
 This might be speci�ed either by an implementation�dependent direc�
tive� for example� or through the programming environment �for example� as a UNIX
command�line argument�
 Such facilities are beyond the scope of the HPF speci�ca�
tion� but as food for thought we o�er the following illustrative hypothetical examples�

Declaration for multiprocessor by ABC Corporation

ABC� PHYSICAL PROCESSORS��	

Declaration for mpp by XYZ Incorporated

XYZ� PHYSICAL PROCESSORS������	

Declaration for hypercube machine by PDQ Limited

PDQ� PHYSICAL PROCESSORS��������������������	

Declaration for two�dimensional grid machine by TLA GmbH

TLA� PHYSICAL PROCESSORS�������	

One of the preceding might affect the following

HPF� PROCESSORS P�NUMBER�OF�PROCESSORS�		

It may furthermore be desirable to have a way for the user to specify the precise
mapping of the processor arrangement declared in a PROCESSORS statement to the
physical processors of the executing hardware
 Again� this might be speci�ed either
by a implementation�dependent directive or through the programming environment
�for example� as a UNIX command�line argument�� such facilities are beyond the scope
of the HPF speci�cation� but as food for thought we o�er the following illustrative
hypothetical example�

PDQ� PHYSICAL PROCESSORS��������������������������	

HPF� PROCESSORS G��������	

PDQ� MACHINE LAYOUT G�
GRAY��
�	�
GRAY��
��	�
BINARY��
����		

This might specify that the �rst dimension of G should use hypercube axes �� ��
 with
a Gray�code ordering� the second dimension should use hypercube axes � through ��
with a Gray�code ordering� and the third dimension should use hypercube axes �� ��
�� and �
 with a binary ordering
 �End of advice to implementors��

	�� The TEMPLATE Directive

The TEMPLATE directive declares one or more templates� specifying for each the name� the
rank �number of dimensions�� and the extent in each dimension
 It must appear in the
speci�cation�part of a scoping unit

In the language of F	����
�

 in the Fortran standard� templates are local entities of
class ���� therefore a template may not have the same name as a variable� named constant�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

internal procedure� etc
� in the same scoping unit
 Template names obey the rules for host
and use association as other names in the list in F	���

�

� in the Fortran standard

A template declared in a module has the default accessibility of the module

Rationale� Because the name of a template is not a �rst�class entity in HPF� but must
appear only in directives� it cannot appear in an access�stmt �PRIVATE or PUBLIC�

If directives ever become full��edged Fortran statements rather than structured com�
ments� then it would be appropriate to allow the accessibility of a template to be
controlled by listing its name in an access�stmt
 �End of rationale��

A template is simply an abstract space of indexed positions� it can be considered as an
�array of nothings� �as compared to an �array of integers�� say�
 A template may be used
as an abstract align�target that may then be distributed

H��� template�directive is TEMPLATE template�decl�list

H��
 template�decl is template�name ! � explicit�shape�spec�list 	 "

Examples�

HPF� TEMPLATE A�N	

HPF� TEMPLATE B�N�N	� C�N���N	

HPF� TEMPLATE DOPEY��������	�SNEEZY���	�GRUMPY�������	

If the �

� syntax is used� then the declared templates may optionally be distributed in the
same combined�directive
 In this case all templates declared by the directive must have the
same rank so that the DISTRIBUTE attribute will be meaningful
 The DIMENSION attribute
may also be used

HPF� TEMPLATE� DISTRIBUTE�BLOCK��	

 �

HPF� WHINEY������	�MOPEY��������	

HPF� TEMPLATE� DIMENSION������	

 BORED�WHEEZY�PERKY

Templates are useful in the particular situation where one must align several arrays
relative to one another but there is no need to declare a single array that spans the entire
index space of interest
 For example� one might want four N �N arrays aligned to the four
corners of a template of size �N � ��� �N � ���

HPF� TEMPLATE� DISTRIBUTE�BLOCK� BLOCK	

 EARTH�N���N��	

REAL� DIMENSION�N�N	

 NW� NE� SW� SE

HPF� ALIGN NW�I�J	 WITH EARTH� I � J 	

HPF� ALIGN NE�I�J	 WITH EARTH� I �J��	

HPF� ALIGN SW�I�J	 WITH EARTH�I��� J 	

HPF� ALIGN SE�I�J	 WITH EARTH�I���J��	

Templates may also be useful in making assertions about the mapping of dummy arguments
�see Section ��

Unlike arrays� templates cannot be in COMMON
 So two templates declared in di�erent
scoping units will always be distinct� even if they are given the same name
 The only way
for two program units to refer to the same template is to declare the template in a module
that is then used by the two program units

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� STORAGE AND SEQUENCE ASSOCIATION ��

Templates are not passed through the subprogram argument interface
 The template
to which a dummy argument is aligned is always distinct from the template to which the
actual argument is aligned� though it may be a copy �see section �
�

�
 On exit from a
subprogram� an HPF implementation arranges that the actual argument is aligned with the
same template with which it was aligned before the call

Returning from a subprogram causes all templates declared local to that subprogram
to become unde�ned
 It is not HPF�conforming for any variable to be aligned to a template
at the time the template becomes unde�ned unless at least one of two conditions holds�

� The variable itself becomes unde�ned at the same time by virtue of returning from
the subprogram

� Whenever the subprogram is called� the template is always locally de�ned in the same
way� with identical lower bounds� identical upper bounds� and identical distribution
information �if any� onto identically de�ned processor arrangements �see section �
��

Rationale� Note that this second condition is slightly less stringent than requir�
ing all expressions to be constant
 This allows calls to NUMBER OF PROCESSORS or
PROCESSORS SHAPE to appear without violating the condition
 �End of rationale��

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template� but because the �rst condition cannot hold for such variable �they don t become
unde�ned�� the second condition must be observed

	�� Storage and Sequence Association

HPF allows the mapping of data objects across multiple processors in order to improve
parallel performance
 Fortran speci�es relationships between the storage for data objects
associated through COMMON and EQUIVALENCE statements� and the order of array elements
during association at procedure boundaries between actual arguments and dummy argu�
ments
 Otherwise� the location of data is not constrained by the language

COMMON and EQUIVALENCE statements constrain the alignment of di�erent data items
based on the underlying model of storage units and storage sequences�

Storage association is the association of two or more data objects that occurs
when two or more storage sequences share or are aligned with one or more storage
units�

� Fortran Standard �F	����
�
�
��

The model of storage association is a single linearly addressed memory� based on the tradi�
tional single address space� single memory unit architecture
 This model can cause severe
ine�ciencies on architectures where storage for data objects is mapped

Sequence association refers to the order of array elements that Fortran requires when
an array expression or array element is associated with a dummy array argument�

The rank and shape of the actual argument need not agree with the rank and
shape of the dummy argument� � � �

� Fortran Standard �F	���

�
�
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA MAPPING

As with storage association� sequence association is a natural concept only in systems with
a linearly addressed memory

As an aid to porting FORTRAN �� codes� HPF allows codes that rely on sequence and
storage association to be valid in HPF
 Some modi�cation to existing FORTRAN �� codes
may nevertheless be necessary
 This section explains the relationship between HPF data
mapping and sequence and storage association

	���� Storage Association

	������ De�nitions

�
 COMMON blocks are either sequential or nonsequential� as determined by either explicit
directive or compiler default
 A sequential COMMON block has a single common block
storage sequence �F	���
�

��

 An aggregate variable group is a collection of variables whose individual storage se�
quences are parts of a single storage sequence

Variables associated by EQUIVALENCE statements or by a combination of EQUIVALENCE
and COMMON statements form an aggregate variable group
 The variables of a sequential
COMMON block form a single aggregate variable group

�
 The size of an aggregate variable group is the number of storage units in the group s
storage sequence �F	����
�
�
��

�
 Data objects are either sequential or nonsequential
 A data object is sequential if and
only if any of the following holds�

�a� it appears in a sequential COMMON block�

�b� it is a member of an aggregate variable group�

�c� it is an assumed�size array�

�d� its type is a sequence type�

�e� it is a subobject of a sequential data object� or

�f� it is declared to be sequential in an HPF SEQUENCE directive

A sequential object can be storage associated or sequence associated� nonsequential
objects cannot

�
 A COMMON block contains a sequence of components
 Each component is either an
aggregate variable group� or a variable that is not a member of any aggregate variable
group
 A sequential COMMON block contains a single component
 A nonsequential
COMMON block may contain several components each of which may be a sequential
variable� an aggregate variable group� or a nonsequential variable

	������ Examples of De�nitions

Example �

COMMON �FOO� A����	� B����	� C����	� D����	� E����	

DIMENSION X����	� Y����	� Z����	

EQUIVALENCE � A��	� Z��	 	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� STORAGE AND SEQUENCE ASSOCIATION ��

Four components
 �A� B	� C� D� E

Sizes are
 ���� ���� ���� ���

Example �

COMMON �FOO� A����	� B����	� C����	� D����	� E����	

DIMENSION X����	� Y����	� Z����	

EQUIVALENCE � A���	� X��	 	 � B����	� Y��	 	

Two components �A� B� C� D	� E

Sizes are
 ���� ���

Example �

COMMON �FOO� A����	� B����	� C����	� D����	� E����	

DIMENSION X����	� Y����	� Z����	

HPF� SEQUENCE �FOO�

The COMMON has one component� �A� B� C� D� E	

Size is ���

The COMMON block �FOO� is nonsequential in Examples � and

 Aggregate variable groups
are shown as components in parentheses

	���� The SEQUENCE Directive

A SEQUENCE directive is de�ned to allow a user to declare explicitly that data objects or
COMMON blocks are to be treated by the compiler as sequential
 �COMMON blocks are by
default nonsequential
 Data objects are nonsequential unless De�nition � of Section �
�
applies
� Some implementations may supply an optional compilation environment where
the SEQUENCE directive is applied by default
 For completeness in such an environment� HPF
de�nes a NO SEQUENCE directive to allow a user to establish that the usual nonsequential
default should apply to a scoping unit or to selected data objects and COMMON blocks within
the scoping unit

H��� sequence�directive is SEQUENCE ! !

 " association�name�list "
or NO SEQUENCE ! !

 " association�name�list "

H��� association�name is object�name
or � ! common�block�name " �

Constraint� An object name or COMMON block name may appear at most once in a sequence�
directive within any scoping unit

Constraint� Only one sequence directive with no association�name�list is permitted in the
same scoping unit

A sequential pointer can be associated only with sequential objects
 A nonsequential
pointer can be associated only with nonsequential objects

	������ Storage Association Rules

�
 A sequence�directive with an empty association�name�list is treated as if it contained
the names of all implicitly mapped objects and COMMON blocks in the scoping unit that

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

cannot otherwise be determined to be sequential or nonsequential by their language
context

 A sequential object may not be explicitly mapped

�
 No explicit mapping may be given for a component of a derived type having the
Fortran SEQUENCE attribute
 Note that this rule is applicable only under the approved
extensions since components of derived types cannot be explicitly mapped in HPF
�

�
 If a COMMON block is nonsequential� then all of the following must hold�

�a� Every occurrence of the COMMON block has exactly the same number of compo�
nents with each corresponding component having a storage sequence of exactly
the same size�

�b� If a component is a nonsequential variable in any occurrence of the COMMON block�
then it must be nonsequential with identical type� shape� and mapping attributes
in every occurrence of the COMMON block� and

�c� Every occurrence of the COMMON block must be nonsequential

	������ Storage Association Discussion

Advice to users� Under these rules� variables in a COMMON block can be mapped as
long as the components of the COMMON block are the same in every scoping unit that
declares the COMMON block

Correct Fortran programs will not necessarily be correct without modi�cation in HPF

The use of EQUIVALENCE with COMMON blocks can impact the mappability of data
objects in subtle ways
 To allow maximum optimization for performance� the HPF
default for data objects is to consider them mappable
 In order to get correct separate
compilation for subprograms that use COMMON blocks with di�erent aggregate variable
groups in di�erent scoping units� it will be necessary to insert the HPF SEQUENCE

directive

As a check�list for a user to determine the status of a data object or COMMON block�
the following questions can be applied� in order�

� Does the object appear in some explicit language context which dictates that the
object be sequential �e
g
 EQUIVALENCE� or nonsequential#

� If not� does the object appear in an explicit mapping directive#

� If not� does the object or COMMON block name appear in the list of names on a
SEQUENCE or NO SEQUENCE directive#

� If not� does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE#

� If not� is the compilation a�ected by some special implementation�dependent
environment which dictates that names default to SEQUENCE#

� If not� then the compiler will consider the object or COMMON block name non�
sequential and is free to apply data mapping optimizations that disregard Fortran
sequence and storage association

�End of advice to users��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� STORAGE AND SEQUENCE ASSOCIATION ��

Advice to implementors� In order to protect the user and to facilitate portability
of older codes� two implementation options are strongly recommended
 First� every
implementation should supply some mechanism to verify that the type and shape of
every mappable array and the sizes of aggregate variable groups in COMMON blocks are
the same in every scoping unit unless the COMMON blocks are declared to be sequential

This same check should also verify that identical mappings have been selected for
the variables in COMMON blocks
 Implementations without interprocedural information
can use a link�time check
 The second implementation option recommended is a
mechanism to declare that data objects and COMMON blocks for a given compilation
should be considered sequential unless declared otherwise
 The purpose of this feature
is to permit compilation of large old libraries or subprograms where storage association
is known to exist without requiring that the code be modi�ed to apply the HPF
SEQUENCE directive to every COMMON block
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Data Mapping in
Subprogram Interfaces

In this Section� phrases such as �the caller must pass� � � � are constraints on the imple�
mentation �i�e�� on the generated code produced by the compiler	� not on the source code
produced by the programmer�

��� Introduction

This introduction gives an overview of the ways in which mapping directives interact with
argument passing to subprograms� The language used here� however� is not de�nitive
 the
subsequent subsections of this Section contain the authoritative rules�

In addition to the data mapping features described in Section �� HPF allows a number
of options for describing the mapping of dummy arguments

The mapping of each such dummy argument may be related to the mapping of its
associated actual argument in the calling main program or procedure �the �caller�� in
several di�erent ways
 To allow for this� mapping directives applied to dummy arguments
can have three di�erent syntactic forms� prescriptive� descriptive� and transcriptive

HPF provides these three forms to allow the programmer either to specify that the data
is to be left in place� or to specify that during the execution of the call the data must be
automatically remapped into a new and presumably more e�cient mapping for the duration
of the execution of the called subprogram

The meaning of these forms is as follows�

prescriptive The directive describes the mapping of the dummy argument
 However� the
actual argument need not have this mapping
 If it does not� it is the responsibility of
the compiler to generate code to remap the argument as speci�ed� and to restore the
original mapping on exit
 This code may be generated either in the caller or in the
called subprogram� the requirements for explicit interfaces in Section �
� insure that
the necessary information will be available at compile time to perform the mapping
in either place

Prescriptive directives are syntactically identical to directives occurring elsewhere in
the program
 For instance� if A is a dummy argument�

HPF� DISTRIBUTE A �BLOCK� CYCLIC	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

is a prescriptive directive

descriptive Descriptive syntax has exactly the same meaning as prescriptive syntax� ex�
cept that in addition it amounts to a weak assertion by the programmer that the
actual argument requires no remapping

The assertion is characterized as �weak� because if it is false� the program is still
standard�conforming
 In such a case� the compiler must generate the appropriate
remapping

If the compiler can prove that the assertion is false� or if the compiler cannot verify
that it is true� it may issue a warning or informational diagnostic message

Advice to users� The purpose of descriptive� as opposed to prescriptive� direc�
tives is simply to provide a possible way for the compiler to report information
to the programmer that may be useful in program development and debugging

Note that any diagnostic message that may be produced as a result of the use
of descriptive directives is not a portable feature of this language
 In particular�
there are instances in which no remapping is needed but where this fact would be
impossible or highly non�trivial for a compiler to ascertain
 Di�erent compilers
may well emit messages in di�erent circumstances� and there is no requirement
that any such messages be emitted at all
 �End of advice to users��

Descriptive directives look like prescriptive directives� except that an asterisk precedes
the description
 For instance�

HPF� DISTRIBUTE A ��BLOCK� CYCLIC	

is a descriptive directive

transcriptive The mapping is unspeci�ed
 The called subprogram must accept the map�
ping of the argument as it is passed
 Of course this means that �the implementation
of� the caller must pass this mapping information at run�time

Transcriptive directives are written with a single asterisk for distributions and pro�
cessor arrangements� for instance

HPF� DISTRIBUTE A �

HPF� DISTRIBUTE B � ONTO �

are transcriptive directives
 The INHERIT directive �see Section �
�

� is used to specify
a transcriptive alignment

Both distribution formats and processor arrangements can be speci�ed prescriptively�
descriptively� or transcriptively
 Alignment is more complicated� because of the need to
specify the template with which the dummy is aligned
 This template may be unspeci�ed
�in this case of course there is no ALIGN directive�� in which case it is the natural template
of the dummy
 ��Natural template� is de�ned in Section �
�
� below
� Otherwise� one of
the following disjoint possibilities must be true�

� The template is explicitly speci�ed by a prescriptive ALIGN directive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� WHAT REMAPPING IS REQUIRED AND WHO DOES IT �	

� The template is explicitly speci�ed by a descriptive ALIGN directive

� The template is inherited
 This is speci�ed by giving the dummy the INHERIT attribute
�described in Section �
�

 below�
 This implicitly speci�es the template to be a copy
of the template with which the corresponding actual argument is ultimately aligned�
further� the alignment of the dummy with that template is the same as that of the
corresponding actual
 This is� in e�ect� a transcriptive form of alignment

This is restated more precisely in Section �
�
� below

Advice to users� Although it is possible to write some combinations of mapping
directives that are partially prescriptive and partially transcriptive� for instance� there
is probably no virtue in doing so
 The point of these directives is to enable the
compiler to handle any necessary remapping correctly and e�ciently
 Now remapping
can happen for one or more of the following reasons�

� to make the alignment of the actual and the dummy agree�

� to make the distribution of the actual and the dummy agree�

� to make the processor arrangement of the actual and the dummy agree

For most machines� there is no real di�erence in the cost of remapping for any of these
reasons
 It is therefore a better practice �for readability� at least� to make a mapping
either purely transcriptive� purely prescriptive� or purely descriptive

While transcriptive mappings can be useful in writing libraries� they impose a run�
time cost on the subprogram
 They should therefore be avoided in normal user code

�End of advice to users��

��� What Remapping Is Required and Who Does It

If there is an explicit interface for the called subprogram and that interface contains pre�
scriptive or descriptive mapping directives for a dummy argument� and if a remapping of
the corresponding actual argument is necessary� the call should proceed as if the data were
copied to a temporary variable to match the mapping of the dummy argument as expressed
by the directives in the explicit interface
 The template of the dummy will then be as
declared in the interface

If there is no explicit interface� then no remapping will be necessary� this is a conse�
quence of the requirements in Section �
�

The reader should note that for reasons of brevity� not all such required explicit inter�
faces are included in the code fragments in this Section

An overriding principle is that any remapping of arguments is not visible to the caller

That is� when the subprogram returns and the caller resumes execution� all objects accessible
to the caller after the call are mapped exactly as they were before the call
 It is not possible
for a procedure to change the mapping of any object in a manner visible to its caller

Advice to users� Some Approved Extensions relax this restriction� see for instance
Sections �
� and �
�
 �End of advice to users�� �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

��	 Distributions and Processor Arrangements

In a DISTRIBUTE directive where every distributee is a dummy argument� either the dist�
format�clause or the dist�target� or both� may begin with� or consist of� an asterisk

� Without an asterisk� a dist�format�clause or dist�target is prescriptive� the clause
describes a distribution and constitutes a request of the language processor to make
it so
 This might require �the implementation of� either the caller or the called
subprogram to remap or copy the actual argument on entry at run time in order to
satisfy the requested distribution for the dummy

� Starting with an asterisk� a dist�format�clause or dist�target is descriptive
 Such a
directive is equivalent in every respect to a prescriptive directive� except that if the
compiler cannot verify that no remapping of the actual is required� it may issue a
diagnostic message to that e�ect
 See Section �
� for further information on this
point

� Consisting of only an asterisk� a dist�format�clause or dist�target is transcriptive� the
clause says nothing about the distribution but constitutes a request to the language
processor to copy that aspect of the distribution from that of the actual argument

�The intent is that if the argument is passed by reference� no movement of the data
will be necessary at run time
�

It is possible that� in a single DISTRIBUTE directive� the dist�format�clause might have
an asterisk but not the dist�target� or vice versa

��	�� Examples

These examples of DISTRIBUTE directives for dummy arguments illustrate the various com�
binations�

HPF� DISTRIBUTE URANIA �CYCLIC	 ONTO GALILEO

The language processor should do whatever it takes to cause URANIA to have a CYCLIC

distribution on the processor arrangement GALILEO

HPF� DISTRIBUTE POLYHYMNIA � ONTO ELVIS

The language processor should do whatever it takes to cause POLYHYMNIA to be distributed
onto the processor arrangement ELVIS� using whatever distribution format it currently has
�which might be on some other processor arrangement�

HPF� DISTRIBUTE THALIA ��CYCLIC	 ONTO �FLIP

The language processor should do whatever it takes to cause THALIA to have a CYCLIC

distribution on the processor arrangement FLIP� the programmer believes that the actual
is already distributed in this fashion and that no remapping is required

HPF� DISTRIBUTE EUTERPE �CYCLIC	 ONTO �

The language processor should do whatever it takes to cause EUTERPE to have a CYCLIC

distribution onto whatever processor arrangement the actual was distributed onto

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ALIGNMENT ��

HPF� DISTRIBUTE ERATO � ONTO �

The mapping of ERATO should not be changed from that of the actual argument

Note that DISTRIBUTE ERATO � ONTO � does not mean the same thing as

HPF� DISTRIBUTE ERATO ��	 ONTO �

This latter means� distribute ERATO � �that is� on�processor� onto whatever processor ar�
rangement the actual was distributed onto
 The processor arrangement is necessarily scalar
in this case

��	�� What Happens When a Clause Is Omitted

One may omit either the dist�format�clause or the dist�onto�clause for a dummy argument

This is understood as follows�

If the dummy argument has the INHERIT attribute �see Section �
�

�� then no distri�
bution directive is allowed in any case� the distribution as well as the alignment is inherited
from the actual argument

In any other case in which distribution information is omitted� the compiler may choose
the distribution format or a target processor arrangement arbitrarily

Here are two examples�

HPF� DISTRIBUTE WHEEL�OF�FORTUNE ��CYCLIC	

The programmer believes that the actual argument corresponding to the dummy argument
WHEEL OF FORTUNE is already distributed CYCLIC
 The compiler should insure that the map�
ping of the passed data is in fact CYCLIC� and remap it if necessary if it is not
 It may in
addition be remapped onto some other processor arrangement� but there is no reason to�
most likely the programmer would be surprised if such a remapping occurred

HPF� DISTRIBUTE ONTO �TV

 DAVID�LETTERMAN

The programmer believes that the actual argument corresponding to the dummy argument
DAVID LETTERMAN is already distributed onto TV in some fashion
 The compiler should
insure that this is so� and make it so if it is not
 The distribution format may be changed
as long as DAVID LETTERMAN is kept on TV
 �Note that this declaration must be made in
attributed form� the statement form

HPF� DISTRIBUTE DAVID�LETTERMAN ONTO �TV
Nonconforming

does not conform to the syntax for a DISTRIBUTE directive
�

��� Alignment

����� The Template of the Dummy Argument

Here we describe precisely how to determine the template with which the dummy argument
is ultimately aligned�

Templates are not passed through the subprogram argument interface
 A dummy
argument and its corresponding actual argument may be aligned to the same template only
if that template is accessible in both the caller and the called subprogram either through
host association or use association
 In any other case� the template with which a dummy

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

argument is aligned is always distinct from the template with which the actual argument
is aligned� though it may be a copy �see Section �
�

�
 On exit from a procedure� an HPF
implementation arranges that the actual argument is aligned with the same template with
which it was aligned before the call

The template of the dummy argument is arrived at in one of three ways�

� If the dummy argument appears explicitly as an alignee in an ALIGN directive� its
template is the align�target if the align�target is a template� otherwise its template is
the template with which the align�target is ultimately aligned

� If the dummy argument is not explicitly aligned and does not have the INHERIT

attribute �described in Section �
�

 below�� then the template has the same shape
and bounds as the dummy argument� this is called the natural template for the dummy

�Thus� all the examples in Section �
� use the natural template
�

� If the dummy argument is not explicitly aligned and does have the INHERIT attribute�
then the template is �inherited� from the actual argument according to the following
rules�

� If the actual argument is a whole array� the template of the dummy is a copy of
the template with which the actual argument is ultimately aligned

� If the actual argument is an array section of array A where no subscript is a
vector subscript� then the template of the dummy is a copy of the template with
which A is ultimately aligned

� If the actual argument is any other expression� the shape and distribution of the
template may be chosen arbitrarily by the language processor �and therefore the
programmer cannot know anything a priori about its distribution�

In all of these cases� we say that the dummy has an inherited template

����� The INHERIT Directive

The INHERIT directive speci�es that a dummy argument should be aligned to a copy of the
template of the corresponding actual argument in the same way that the actual argument
is aligned

H��� inherit�directive is INHERIT inheritee�list

H��
 inheritee is object�name

Constraint� An inheritee must be a dummy argument

Constraint� An inheritee must not be an alignee

Constraint� An inheritee must not be a distributee

Advice to users� The �rst of these three constraints is relaxed for pointers under the
approved extensions �see Section �
��
 �End of advice to users���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ALIGNMENT ��

The INHERIT directive causes the named subprogram dummy arguments to have the
INHERIT attribute
 Only dummy arguments may have the INHERIT attribute
 An object
must not have both the INHERIT attribute and the ALIGN attribute
 An object must not
have both the INHERIT attribute and the DISTRIBUTE attribute
 The INHERIT directive
may appear only in a speci�cation�part of a scoping unit

The INHERIT attribute speci�es that the template for a dummy argument should be
inherited� by making a copy of the template of the actual argument
 Moreover� no other
explicit mapping directive may appear for an argument with the INHERIT attribute� the
INHERIT attribute implies a distribution of DISTRIBUTE � ONTO � for the inherited tem�
plate
 Thus� the net e�ect is to tell the compiler to leave the data exactly where it is�
and not attempt to remap the actual argument
 The dummy argument will be mapped
in exactly the same manner as the actual argument� the subprogram must be compiled in
such a way as to work correctly no matter how the actual argument may be mapped onto
abstract processors

Note that if A is an array dummy argument� the directive

HPF� INHERIT A

is more general than

HPF� DISTRIBUTE A � ONTO �

for the following reason� The INHERIT directive states that the �inherited� template with
which A is aligned is distributed � ONTO �� but that A may be aligned in some non�trivial
manner with that template
 On the other hand� the DISTRIBUTE directive states that A is
aligned trivially with its natural template� which in turn is distributed � ONTO �

For example� the following code is not permitted�

HPF� PROCESSORS P��	

REAL� DIMENSION����	

 A

HPF� DISTRIBUTE �BLOCK	 ONTO P

 A

CALL FOO�A��
��		

���

SUBROUTINE FOO�D	

REAL� DIMENSION���	

 D

HPF� DISTRIBUTE D �
 Nonconforming

The transcriptive distribution for D is nonconforming because the natural template for D is
not distributed BLOCK
 On the other hand� it would be correct to replace the illegal directive
by

HPF� INHERIT D

������� Examples

Here is a straightforward example of the use of INHERIT�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

REAL DOUGH����	

HPF� DISTRIBUTE DOUGH�BLOCK���		

CALL PROBATE� DOUGH��
��
�	 	

���

SUBROUTINE PROBATE�BREAD	

REAL BREAD��	

HPF� INHERIT BREAD

The inherited template of BREAD has shape !���"� element BREAD�I	 is aligned with
element � � ��I of the inherited template� and that template has a BLOCK���	 distribution

More complicated examples can easily be constructed
 It is important to bear in mind
that the rank of the inherited template may be di�erent from the rank of the dummy� and it
might even be di�erent from the rank of the actual
 For instance� one might have a program
containing the following�

REAL A��������	

HPF� TEMPLATE T������������	

HPF� DISTRIBUTE T�BLOCK�CYCLIC��	

HPF� ALIGN A�I�J	 with T�J���I	

CALL SUBR�A�
��		

���

SUBROUTINE SUBR�D	

REAL D����	

HPF� INHERIT D

In this case� the dummy D has rank �
 It corresponds to a ��dimensional section of
a
�dimensional actual A� which in turn is aligned with a
�dimensional section of a ��
dimensional template T
 The template of D is a copy of this three�dimensional template

D is aligned with the section ��� ��
	 of this inherited template
 Thus� the �visible�
dimension of the dummy D is distributed �� although if the call statement had been

CALL SUBR�A���
		

for instance� the �visible� dimension of the dummy would be distributed BLOCK

����	 Descriptive ALIGN Directives

The presence or absence of an asterisk at the start of an align�spec has the same meaning as
in a dist�format�clause� it speci�es whether the ALIGN directive is descriptive or prescriptive�
respectively

If an align�spec that does not begin with � is applied to a dummy argument� the
meaning is that the dummy argument will be forced to have the speci�ed alignment on
entry to the subprogram
 This may require �the implementation of� either the caller or the
subprogram to temporarily remap the data of the actual argument or a copy thereof

Note that a dummy argument may also be used as an align�target

SUBROUTINE NICHOLAS�TSAR�CZAR	

REAL� DIMENSION�����	

 TSAR�CZAR

HPF� INHERIT

 TSAR

HPF� ALIGN WITH TSAR

 CZAR

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ALIGNMENT ��

In this example the �rst dummy argument� TSAR� remains aligned with the correspond�
ing actual argument� while the second dummy argument� CZAR� is forced to be aligned with
the �rst dummy argument
 If the two actual arguments are already aligned� no remapping
of the data will be required at run time
 If they are not� some remapping will take place

If the align�spec begins with ���� then the alignee must be a dummy argument
 The ���
indicates that the programmer believes that the actual argument already has the speci�ed
alignment� and that no action to remap it is required at run time
 �As before� there is
no requirement that the programmer s belief is correct� and the compiler must generate a
remapping if one appears to be necessary� just as in the case of a prescriptive alignment
�
For example� if in the above example the alignment directive were changed to

HPF� ALIGN WITH �TSAR

 CZAR

then the programmer is expressing a belief that no remapping of the actual argument
corresponding to TSAR will be necessary

It is not permitted to say simply �ALIGN WITH ��� an align�target must follow the
asterisk
 �The proper way to say �accept any alignment� is INHERIT
�

If a dummy argument has no explicit ALIGN or DISTRIBUTE attribute� then the compiler
provides an implicit alignment and distribution speci�cation� one that could have been
described explicitly without any �assertion asterisks�

����	�� Example

If the INHERIT directive is not used� explicit alignment of a dummy argument may be
necessary to insure that no remapping takes place at the subprogram boundary
 Here is an
example�

LOGICAL FRUG����	

HPF� PROCESSORS DANCE�FLOOR���	

HPF� DISTRIBUTE �BLOCK	 ONTO DANCE�FLOOR

FRUG

CALL TERPSICHORE�FRUG��
��
�		

The array section FRUG��
��
�	 is mapped onto abstract processors in the following
manner�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

��

��

��

��

Suppose �rst that the interface to the subroutine TERPSICHORE looks like this�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

SUBROUTINE TERPSICHORE�FOXTROT	

LOGICAL FOXTROT�
	

HPF� INHERIT FOXTROT

The template of FOXTROT is a copy of the �
� element template of the whole array FRUG

The template is mapped like this�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

FOXTROT�I	 is aligned with element ��I�� of the template

Suppose� on the other hand� that the interface to TERPSICHORE were to look like this
instead�

SUBROUTINE TERPSICHORE�FOXTROT	

LOGICAL FOXTROT�
	

HPF� DISTRIBUTE FOXTROT�BLOCK	

In this case� the template of FOXTROT is its natural template� it has the same size ��
as FOXTROT itself
 The actual argument� FRUG��
��
�	 is mapped to the �� processors in
this manner�

Abstract Elements
processor of FRUG

� ��
� �

 �� �� �
� �� �
� 	� ��� ��
� �
� ��� ��

���� none

That is� the original positions �in the template of the actual argument� of the elements
of the dummy are as follows�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� EQUIVALENCE AND PARTIAL ORDER ON THE SET OF MAPPINGS ��

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

This layout �� elements on the �rst processor� � on the second�
 on the third� � on the
fourth�

 � cannot properly be described as a BLOCK distribution
 Therefore� remapping
will take place at the call

Remapping can be avoided without using INHERIT by explicitly aligning the dummy
to a declared template of size �
� distributed BLOCK�

SUBROUTINE TERPSICHORE�FOXTROT	

LOGICAL FOXTROT�
	

HPF� PROCESSORS DANCE�FLOOR���	

HPF� TEMPLATE� DISTRIBUTE�BLOCK	 ONTO DANCE�FLOOR

GURF����	

HPF� ALIGN FOXTROT�I	 WITH GURF���I��	

Advice to users� The advantage of this latter technique is that� where it can be used�
it gives the compiler more information� this information can often be used to generate
more e�cient code
 �End of advice to users��

��� Equivalence and Partial Order on the Set of Mappings

The set of mappings of named objects is endowed with a partial order modulo a certain
equivalence
 Roughly speaking� if P and Q are two mappings� then to say that Q is a
specialization of P �i
e
� �Q is below P� in this ordering� is to say that P is partially
speci�ed and that Q is one of the mappings that is consistent with P
 This notion is used
below in Section �
�� and also in Section �
�

Advice to users� Since these conditions are complex to state� it is worth noting that
if you always provide explicit interfaces �which� as explained below� is quite easy and
generally happens automatically� and if you don t use mapped pointers �an Approved
Extension� explained below in Section �
��� then you need not read this Section
 �End �
of advice to users��

The precise de�nition is as follows

First� we de�ne a notion of equivalence for dist�format speci�cations�

�
 Using the notation � for the phrase �is equivalent to��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

BLOCK � BLOCK

CYCLIC � CYCLIC

� � �

BLOCK�n	 � BLOCK�m	 i� m and n have the same value
CYCLIC�n	 � CYCLIC�m	 i� m and n have the same value

CYCLIC � CYCLIC��	

 Other than this� no two lexically distinct dist�format speci�cations are equivalent

This is an equivalence relation in the usual mathematical sense

Now we de�ne the partial order on mappings� Let S ��special�� and G ��general�� be

two data objects

The mapping of S is a specialization of the mapping of G if and only if either�

�
 G has the INHERIT attribute� or

 S does not have the INHERIT attribute� and the following constraints all hold�

�a� S is a named object� and

�b� The shapes of the ultimate align targets of S and G are the same� and

�c� Corresponding dimensions of S and G are mapped to corresponding dimensions
of their respective ultimate align targets� and corresponding elements of S and G

are aligned with corresponding elements of their respective ultimate align targets�
and

�d� Either

i
 The ultimate align targets of both S and G are not explicitly distributed� or

ii
 The ultimate align targets of both S and G are explicitly distributed
 In this
case� the distribution directive speci�ed for the ultimate align target of G

must satisfy one of the following conditions�

A
 It has no dist�onto�clause� or

B
 It has a dist�onto�clause of �ONTO $�� or

C
 It has a dist�onto�clause specifying a processor arrangement having the
same shape as that explicitly speci�ed in a distribution directive for the
ultimate align target of S

and must also satisfy one of the following conditions�

A
 It has no dist�format�clause� or

B
 It has a dist�format�clause of �$�� or

C
 Each dist�format is equivalent �in the sense de�ned above� to the dist�
format in the corresponding position of the dist�format�clause in an ex�
plicit distribution directive for the ultimate align target of S

With this de�nition�

� Any mapping of a named object is a specialization of itself

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� CONDITIONS FOR OMITTING EXPLICIT INTERFACES �	

� If A� B� and C are named objects� and if the mapping of A is a specialization of the
mapping of B and the mapping of B is a specialization of the mapping of C� then the
mapping of A is a specialization of the mapping of C

That is� the specialization relation� as applied to mappings of named objects� is re�exive
and transitive� and it can therefore be applied to produce an equivalence relation on the
set of mappings of named objects� two such mappings can be said to be equivalent i�
each is a specialization of the other
 With this de�nition� the specialization relation yields a
partial ordering on the set of mappings of named objects� modulo equivalence
 The INHERIT
mapping is the unique maximal element in this partial order

��
 Conditions for Omitting Explicit Interfaces

Under certain conditions� an explicit interface for a subprogram is not required
 The condi�
tions in Fortran under which this is allowable are tightened considerably for HPF programs
that use mapping directives

Advice to users� These conditions are complex
 The important thing to realize is
that you don t have to read any of this if you have an explicit interface
 So if there is
any doubt in your mind� just make sure you have an explicit interface
 �End of advice
to users��

An explicit interface is required except when all of the following conditions hold�

�
 Fortran does not require one� and

 No dummy argument is distributed transcriptively or with the INHERIT attribute� and

�
 For each pair of corresponding actual and dummy arguments� either�

�a� They are both implicitly mapped� or

�b� They are both explicitly mapped and the mapping of the actual argument is a
specialization of the mapping of the dummy argument�

and

�
 For each pair of corresponding actual and dummy arguments� either�

�a� Both are sequential� or

�b� Both are nonsequential

Rationale� This has the following consequences�

� A plain Fortran program �i
e
� with no HPF directives� will be HPF�conforming
without the need to add additional interfaces� at least in a compilation environ�
ment in which all variables are sequential by default
 This is insured by items ��

� ��a�� and ��a�

� If remapping is necessary� this fact will be visible to the caller
 Thus the imple�
mentation may choose to have all remapping performed by the caller

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

�End of rationale��

Advice to users� This requirement pushes the user strongly in the direction of
always providing explicit interfaces
 This is a good thing�explicit interfaces allow
many errors to be caught at compile�time and greatly speed up the process of robust
software development

Note that an explicit interface can be provided in three ways�

�
 A module subprogram has an explicit interface

 An internal subprogram has an explicit interface

�
 An explicit interface may be provided by an interface block

In addition� an intrinsic procedure always has an explicit interface by de�nition

The idiomatic Fortran way of programming makes extensive use of modules� every
subprogram� for instance� can be in a module
 This provides explicit interfaces auto�
matically� with no extra e�ort on the part of the programmer
 It should very seldom
be necessary to write an interface block
 �End of advice to users��

��� Characteristics of Procedures

The characteristics of dummy data objects and function results as given in the Fortran
standard �F	���

� are extended to include also the HPF�characteristics of such objects�
which are de�ned recursively as follows�

� A processor arrangement has one HPF�characteristic� its shape

� A template has up to three HPF�characteristics�

�
 its shape�

 its distribution� if explicitly stated�

�
 the HPF�characteristic �i
e
� the shape� of the processor arrangement onto which
it is distributed� if explicitly stated

� A dummy data object has the following HPF�characteristics�

�
 its alignment� if explicitly stated� as well as all HPF�characteristics of its align
target�

 its distribution� if explicitly stated� as well as the HPF�characteristic �i
e
� the
shape� of the processor arrangement onto which it is distributed� if explicitly
stated

� A function result has the same HPF�characteristics as a dummy data object
 Specif�
ically� it has the following HPF�characteristics�

�
 its alignment� if explicitly stated� as well as all HPF�characteristics of its align
target�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ARGUMENT PASSING AND SEQUENCE ASSOCIATION ��

 its distribution� if explicitly stated� as well as the HPF�characteristic �i
e
� the
shape� of the processor arrangement onto which it is distributed� if explicitly
stated

Rationale� In case an explicit interface is given by an interface block� the Fortran
standard speci�es what information must be speci�ed in that interface block� it does
this using the concept of a Fortran characteristic
 Characteristics of dummy data
objects� for instance� include their types
 Characteristics must be speci�ed in interface
blocks� F	���

�

� in the Fortran standard states

An interface body speci�es all of the procedure s characteristics and these
shall be consistent with those speci�ed in the procedure de�nition

Normally� an interface block for a procedure is a textual copy of the appropriate
declarations of that procedure
 This Section simply says that such a textual copy
must include any explicit mapping directives relevant to dummy arguments of the
procedure
 �End of rationale��

��� Argument Passing and Sequence Association

For actual arguments in a procedure call� Fortran allows an array element �scalar� to be
associated with a dummy argument that is an array
 It furthermore allows the shape of a
dummy argument to di�er from the shape of the corresponding actual array argument� in
e�ect reshaping the actual argument via the procedure call
 Storage sequence properties of
Fortran are used to identify the values of the dummy argument
 This feature� carried over
from FORTRAN ��� has been widely used to pass starting addresses of subarrays� rows�
or columns of a larger array� to procedures
 For HPF arrays that are potentially mapped
across processors� this feature is not fully supported

����� Sequence Association Rules

�
 When an array element or the name of an assumed�size array is used as an actual
argument� the associated dummy argument must be a scalar or speci�ed to be a
sequential array

An array�element designator of a nonsequential array must not be associated with a
dummy array argument

 When an actual argument is an array or array section and the corresponding dummy
argument di�ers from the actual argument in shape� then the dummy argument must
be declared sequential and the actual array argument must be sequential

�
 An object of type character �scalar or array� is nonsequential if it conforms to the
requirements of De�nition � of Section �
�
�
�
 If the length of an explicit�length
character dummy argument di�ers from the length of the actual argument� then both
the actual and dummy arguments must be sequential

�
 Without an explicit interface� a sequential actual may not be associated with a nonse�
quential dummy and a nonsequential actual may not be associated with a sequential
dummy
 �This item merely repeats part of Section �
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA MAPPING IN SUBPROGRAM INTERFACES

����� Discussion of Sequence Association

When the shape of the dummy array argument and its associated actual array argument
di�er� the actual argument must not be an expression
 There is no HPF mechanism for
declaring that the value of an array�valued expression is sequential
 In order to associate
such an expression as an actual argument with a dummy argument of di�erent rank� the
actual argument must �rst be assigned to a named array variable that is forced to be
sequential according to De�nition � of Section �
�
�
�

����	 Examples of Sequence Association

Given the following subroutine fragment�

SUBROUTINE HOME �X	

DIMENSION X ������	

By rule �

CALL HOME �ET ����		

is legal only if X is declared sequential in HOME and ET is sequential in the calling procedure

Likewise� by rules
 and �

CALL HOME �ET	

requires either that ET and X are both sequential arrays or that ET and X have the same
shape and �in the absence of an explicit interface� have the same sequence attribute

Rule � addresses a special consideration for objects of type character
 Change of the
length of character objects across a call� as in

CHARACTER �LEN���	 one�long�word

one�long�word � �Chargoggagoggmanchaugagoggchaubunagungamaugg�

CALL webster�one�long�word	

SUBROUTINE webster�short�dictionary	

CHARACTER �LEN��	 short�dictionary ���	

Note that short�dictionary��	 is �agog�� for example

is conceptually legal in Fortran
 In HPF� both the actual argument and dummy argument
must be sequential
 �Chargoggagoggmanchaugagoggchaubunagungamaugg is the original
Nipmuc name for what is now called Lake Webster in Massachusetts
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

INDEPENDENT and
Related Directives

The HPF INDEPENDENT directive allows the programmer to give information to the compiler
concerning opportunities for parallel execution
 The user can assert that no data object
is de�ned by one iteration of a DO loop and used �read or written� by another� similar
information can be provided about the combinations of index values in a FORALL statement

Such information is sometimes valuable to enable compiler optimization� but may require
knowledge of the application that is available only to the programmer
 HPF therefore
allows a user to make these assertions� and the compiler may rely on them in its translation
process
 If the assertion is true� the semantics of the program are not changed� if it is false�
the program is not HPF�conforming and has no de�ned meaning

In contrast to HPF �
�� the INDEPENDENT assertion of HPF

� allows reductions to be
performed in INDEPENDENT loops� provided the reduction operator is a built�in� associative
and commutative Fortran operator �such as �AND�� or function �such as MAX�
 It is often the
case that a data parallel computation cannot be expressed in HPF �
� as an INDEPENDENT

loop because several loop iterations update one or more variables
 In such cases parallelism
may be possible and desirable because the order of updates is immaterial to the �nal result

This is most often the case with accumulations� such as the following loop�

DO I � �� ����������

X � X � COMPLICATED�FUNCTION�I	

END DO

This loop can run in parallel as long as its iterations make their modi�cations to the shared
variable X in an atomic manner
 Alternatively� the loop can be run in parallel by making
updates to temporary local accumulator variables� with a �short� �nal phase to merge the
values of these variables with the initial value of X
 In either case� the computation is
conceptually parallel� but it cannot be asserted to be INDEPENDENT by the strict de�nition
found in HPF �
�

It is worth mentioning that Fortran now includes several means to express data parallel
computation�

� Array assignments� including the WHERE statement

� Elemental invocation of intrinsic and user�de�ned functions

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

� The FORALL statement and construct� including element�wise invocation of PURE func�
tions

� Transformational intrinsics such as SUM and TRANSPOSE

FORALL and PURE were adopted by Fortran from HPF version �
�
 As these are all now part
of Fortran� they are not discussed separately in this document

��� The INDEPENDENT Directive

The INDEPENDENT directive can precede an indexed DO loop or FORALL statement
 It as�
serts to the compiler that the iterations in the following DO loop or the operations in the
following FORALL may be executed independently�that is� in any order� or interleaved� or
concurrently�without changing the semantics of the program

The INDEPENDENT directive precedes the DO loop or FORALL for which it asserts behavior�
and is said to apply to that loop or FORALL
 The syntax of the INDEPENDENT directive is

H��� independent�directive is INDEPENDENT ! � new�clause "
! � reduction�clause "

H��
 new�clause is NEW � variable�name�list 	

H��� reduction�clause is REDUCTION � reduction�variable�list 	

H��� reduction�variable is array�variable�name
or scalar�variable�name
or structure�component

Constraint� The �rst non�comment line following an independent�directive must be a do�
stmt� forall�stmt� or a forall�construct

Constraint� If the �rst non�comment line following an independent�directive is a do�stmt�
then that statement must contain a loop�control option containing a do�vari�
able

Constraint� If either the NEW clause or the REDUCTION clause is present� then the �rst non�
comment line following the directive must be a do�stmt

Constraint� A variable named in the NEW or the REDUCTION clause and any component or
element thereof must not�

� Be a dummy argument�

� Have the SAVE or TARGET attribute�

� Occur in a COMMON block�

� Be storage associated with another object as a result of appearing in an
EQUIVALENCE statement�

� Be use associated�

� Be host associated� or

� Be accessed in another scoping unit via host association

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE ��

Constraint� A variable that occurs as a reduction�variable may not appear in a new�clause
in the same independent�directive� nor may it appear in either a new�clause or
a reduction�clause in the range �i
e
� the lexical body� of the following do�stmt�
forall�stmt� or forall�construct to which the independent�directive applies

Constraint� A structure�component in a reduction�variable may not contain a subscript�
section�list

Constraint� A variable that occurs as a reduction�var must be of intrinsic type
 It may not
be of type CHARACTER

Rationale� The second constraint means that an INDEPENDENT directive cannot be
applied to a WHILE loop or a simple DO loop �i
e
� a �do forever��
 An INDEPENDENT

in such cases could only correctly describe a loop with zero or one trips� the potential
confusion was felt to outweigh the possible bene�ts
 �End of rationale��

When applied to a DO loop� an INDEPENDENT directive is an assertion by the programmer
that no iteration can interfere with any other iteration� either directly or indirectly
 The
following operations de�ne such interference�

� Any two operations that assign to the same atomic object interfere with each other

�A data object is called atomic if it contains no subobjects
�

� Exception� If a variable appears in a NEW clause� then operations assigning values
to it in separate iterations of the DO loop do not interfere
 The reason for this is
explained in Section �
�

� Exception� If a variable appears in a REDUCTION clause� then assignments to
it by reduction statements in the range of the DO loop do not interfere with
assignments to it by other reduction statements in the same loop
 The reason
for this is explained in Section �
�
�

Operations that assign to objects include�

� Assignment statements assign to their left�hand side and all its subobjects

� ASSIGN statements assign to their integer variables

� ALLOCATE and DEALLOCATE statements with the STAT� speci�er assign to the STAT
variable

� DO statements assign to their indices

� I�O statements with the IOSTAT� speci�er assign to the IOSTAT variable
 They
may also assign to other objects� as described below

� Asynchronous READ and WRITE statements �as described in Section ��� assign to
their ID� variable

� READ statements assign to all variables in their input item list and any variables
accessed at runtime through their NAMELIST
 READ statements with the SIZE�

speci�er assign to the SIZE variable

� INQUIRE statements assign to all variables in their speci�er list� except the UNIT

and FILE speci�ers

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

� Compound statements �e
g
� IF statements� cause assignments to objects if their
component statements do

� Subprogram invocations cause assignments to objects if operations in the sub�
program execution do

� An operation that assigns to an atomic object interferes with any operation that uses
the value of that object

� Exception� If a variable appears in a NEW clause� then operations assigning values
to it in one iteration of the DO loop do not interfere with uses of the variable in
other iterations
 The reason for this is explained in Section �
�

� Exception� If a variable appears in a REDUCTION clause� then assignments to it
by reduction statements in the range of the DO loop do not interfere with the
allowed uses of it by reduction statements in the same loop
 The reason for this
is explained in Section �
�
�

Any expression that computes the value of a variable uses that object
 This includes
uses on the right�hand side of assignment statements� uses in subscripts on the left�
hand side of assignment statements� conditional expressions� speci�cation lists for
I�O statements� output lists for WRITE statements� allocation shape speci�cations in
ALLOCATE statements� and similar situations

Rationale� These are the classic Bernstein conditions to enable parallel ex�
ecution
 Note that two assignments of the same value to a variable interfere
with each other and thus an INDEPENDENT loop with such assignments is not
HPF�conforming
 This is not allowed because such overlapping assignments are
di�cult to support on some hardware� and because the given de�nition was felt
to be conceptually clearer
 Similarly� it is not HPF�conforming to assert that
assignment of multiple values to the same location is INDEPENDENT� even if the
program logically can accept any of the possible values
 In this case� both the
�conceptually clearer� argument and the desire to avoid indeterminate behavior
favored the given solution
 �End of rationale��

� An ALLOCATE statement� DEALLOCATE statement� NULLIFY statement or pointer assign�
ment statement interferes with any other access� pointer assignment� allocation� deal�
location� or nulli�cation of the same pointer
 In addition� an ALLOCATE or DEALLOCATE
statement interferes with any other use of or assignment to the object that is allocated
by ALLOCATE or deallocated by DEALLOCATE

Rationale� These constraints extend Bernstein s conditions to pointers
 Because
a Fortran pointer is an alias to an object or subobject rather than a �rst�class
data type� a bit more care is needed than for other variables
 �End of rationale��

� Any transfer of control to a branch target statement outside the body of the loop
interferes with all other operations in the loop

� Any execution of an EXIT� STOP� or PAUSE statement interferes with all other opera�
tions in the loop

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE ��

Rationale� Branching �by GOTO or ERR� branches in I�O statements� implies that
some iterations of the loop are not executed� which is drastic interference with
those computations
 The same is true for EXIT and the other statements
 Note
that these conditions do not restrict procedure calls in INDEPENDENT loops� except
to disallow taking alternate returns to statements outside the loop� executing a
STOP� or executing a PAUSE
 �End of rationale��

� Any two �le I�O operations except INQUIRE associated with the same �le or unit
interfere with each other
 Two INQUIRE operations do not interfere with each other�
however� an INQUIRE operation interferes with any other I�O operation associated
with the same �le

Rationale� Because Fortran carefully de�nes the �le position after a data
transfer or �le positioning statement� these operations a�ect the global state of a
program
 �Note that �le position is de�ned even for direct access �les
� Multiple
non�advancing data transfer statements a�ect the �le position in ways similar to
multiple assignments of the same value to a variable� and is disallowed for the
same reason
 Multiple OPEN and CLOSE operations a�ect the status of �les and
units� which is another global side e�ect
 INQUIRE does not a�ect the �le status�
and therefore does not a�ect other inquiries
 However� other �le operations may
a�ect the properties reported by INQUIRE
 �End of rationale��

� Any data realignment or redistribution performed by subprogram invocation �see Sec�
tion �� interferes with any access to or any other remapping of the same data

Rationale� Remapping may change the processor storing a particular array
element� which interferes with any assignment or use of that element
 This
applies even though the remappings are �undone� when the call returns
 During
the execution of the call� the homes of the array elements have changed� thus
interfering with accesses in the caller� accesses in other invocations of the same
procedure� and remappings of the array due to another procedure call
 �End of
rationale��

Advice to users� Data remapping performed by the REALIGN and REDISTRIBUTE

aproved extensions also causes interference under this rule
 See Chapter �
� for
details
 �End of advice to users��

The interpretation of INDEPENDENT for FORALL is similar to that for DO� it asserts that
no combination of the FORALL indices assigns to an atomic storage unit that is read by
another combination
 A DO and a FORALL with the same body are equivalent if they both
have the INDEPENDENT directive
 This is illustrated in Section �
�
�

If a procedure is called from within an INDEPENDENT loop or FORALL� then any local
variables in that procedure are considered distinct on each call unless they have the SAVE

attribute
 This is consistent with the Fortran standard
 Therefore� uses of local variables
without the SAVE attribute in calls from di�erent iterations do not cause interference as
de�ned above

Advice to implementors� A conforming Fortran implementation can often avoid
creating distinct storage for locals on every call
 The same is true for an HPF imple�
mentation� however� such an implementation must still interpret INDEPENDENT in the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

same way
 If locals are not allocated unique storage locations on every call� then the
INDEPENDENT loop must be serialized to respect these semantics �or other techniques
must be used to avoid con�icting accesses�
 �End of advice to implementors��

Note that all these rules describe interfering behavior� they do not disallow speci�c
syntax
 Statements that appear to violate one or more of these restrictions are allowed
in an INDEPENDENT loop� if they are not executed due to control �ow
 These restrictions
allow an INDEPENDENT loop to be executed safely in parallel if computational resources are
available
 The directive is purely advisory and a compiler is free to ignore it if it cannot
make use of the information

Advice to implementors� Although the restrictions allow safe parallel implementation
of INDEPENDENT loops� they do not imply that this will be pro�table �or even possible�
on all architectures or all programs
 For example�

� An INDEPENDENT loop may call a routine with explicitly mapped local variables

The implementation must then either implement the mapping �which may re�
quire serializing the calls� under some implementation strategies� or override the
explicit directives �which may surprise the user�

� An INDEPENDENT loop may have very di�erent behavior on di�erent iterations

For example�

HPF� INDEPENDENT

DO i � �� �

IF �i�EQ��	 CALL F�A	

IF �i�EQ��	 CALL G�B	

IF �i�EQ��	 CALL H�C	

END DO

This poses obvious problems for implementations on SIMD machines

� An INDEPENDENT loop may call a subroutine that accesses global mapped data

On distributed�memory machines� generating the communication to reference the
data may be challenging� since there is in general no guarantee that the owners
of the data will also call the subroutine

In all cases� it is the implementation s responsibility to produce correct behavior�
which may in turn limit optimization
 It is recommended that implementations pro�
vide some feedback if an INDEPENDENT assertion may be ignored
 �End of advice to
implementors��

����� Visualization of INDEPENDENT Directives

Graphically� the INDEPENDENT directive can be visualized as eliminating edges from a prece�
dence graph representing the program
 Figure �
� shows some of the dependences that
may normally be present in a DO and a FORALL
 �Most of the transitive dependences are not
shown
� An arrow from a left�hand�side node �for example� �lhsa��	�� to a right�hand�side
node ��rhsb��	�� means that the right�hand side computation might use values assigned
in the left�hand�side node� thus the right�hand side must be computed after the left�hand
side completes its store
 Similarly� an arrow from a right�hand�side node to a left�hand�side
node means that the left�hand side may overwrite a value needed by the right�hand side

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE �	

DO i � �� �

lhsa�i	 � rhsa�i	

lhsb�i	 � rhsb�i	

END DO

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�� �

�

�� �

�

�

�

�� �

�

�� �

�

�

�

FORALL � i � �
� 	

lhsa�i	 � rhsa�i	

lhsb�i	 � rhsb�i	

END FORALL

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

Figure �
�� Dependences in DO and FORALL without INDEPENDENT assertions

HPF� INDEPENDENT

DO i � �� �

lhsa�i	 � rhsa�i	

lhsb�i	 � rhsb�i	

END DO

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�

�

�

�

�

�

HPF� INDEPENDENT

FORALL � i � �
� 	

lhsa�i	 � rhsa�i	

lhsb�i	 � rhsb�i	

END FORALL

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�

�

�

�

�

�

Figure �

� Dependences in DO and FORALL with INDEPENDENT assertions

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

computation� again forcing an ordering
 Edges from the BEGIN and to the END nodes rep�
resent control dependences
 The INDEPENDENT directive asserts that the only dependences
that a compiler need enforce are those in Figure �

 That is� the programmer who uses
INDEPENDENT is certifying that if the compiler enforces only these edges� then the resulting
program will be equivalent to the one in which all the edges are present
 Note that the set
of asserted dependences is identical for INDEPENDENT DO and FORALL statements

The compiler is justi�ed in producing a warning if it can prove that one of these
assertions is incorrect
 It is not required to do so� however
 A program containing any false
assertion of this type is not HPF�conforming� thus is not de�ned by HPF� and the compiler
may take any action it deems appropriate

������� Examples of INDEPENDENT

HPF� INDEPENDENT

DO i � �� ��

A�I	 � B�I��	 � B�I	 � B�I��	

END DO

This is one of the simplest examples of an INDEPENDENT loop
 �For simplicity� all examples
in this section assume there is no storage or sequence association between any variables used
in the code
� Every iteration assigns to a di�erent location in the A array� thus satisfying
the �rst condition above
 Since no elements of A are used on the right�hand side� no
location that is assigned in the loop is also read� thus satisfying the second condition
 Note�
however� that many elements of B are used repeatedly� this is allowed by the de�nition of
INDEPENDENT
 This loop is INDEPENDENT regardless of the values of the variables involved

HPF� INDEPENDENT

FORALL � I��
N 	 A�I	 � B�I��	 � B�I	 � B�I��	

This example is equivalent in all respects to the �rst example

HPF� INDEPENDENT

DO I��� ���

A�P�I		 � B�I	

END DO

This INDEPENDENT directive asserts that the array P does not have any repeated entries �else
they would cause interference when A was assigned�
 The DO loop is therefore equivalent to
the Fortran statement

A�P��
���		 � B��
���	

����� NEW Variables

The NEW clause asserts that the named variables act as private variables to each iteration
of the INDEPENDENT loop
 That is� there would be no interfering assignments and uses in
the loop� and thus no change in ghe behavior of the program� if new objects were created
for the NEW variables for each iteration of the DO loop and those objects were destroyed at
the end of each iteration
 Thus� no values �ow into NEW variables from execution before the
loop� no values �ow from NEW variables to execution after the loop� and �most importantly�
no values �ow from one iteration to another through NEW variables

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE ��

Advice to users� A pointer or allocatable variable may appear in a NEW clause
 The
interpretation of the paragraph above� in these cases� is that one should not rely on
the value� the association status� or the allocation status of such a variable on entry
to the loop� rather� such variables should be allocated or pointer assigned in the loop
body before they are used
 It would also be advisable to deallocate or nullify such a
variable in the loop body after its last use as well
 �End of advice to users��

Rationale� NEW variables provide the means to declare temporaries in INDEPENDENT

loops
 Without this feature� many conceptually independent loops would need sub�
stantial rewriting �including expansion of scalars into arrays� to meet the rather strict
requirements described above
 Note that a temporary must be declared NEW only at
the innermost lexical level at which it is assigned� since all enclosing INDEPENDENT

assertions must take that NEW into account
 Note also that index variables for nested
DO loops must be declared NEW� the alternative was to limit the scope of an index
variable to the loop itself� which changes Fortran semantics
 FORALL indices� however�
are restricted by the semantics of the FORALL� they require no NEW declarations
 �End
of rationale��

������� Examples of NEW

HPF� INDEPENDENT� NEW�I	

DO I � �� ��

A�I	 � B�I��	

END DO

This example would be correct either with or without the NEW clause� in either case� the
compiler could con�dently parallelize the assignments to array A
 Additionally however� the
NEW clause asserts that the loop index I is not used after the completion of the loop
 Some
compilers may be able to use this information to avoid updating replicated copies of I on
other processors� or to enable other optimizations

HPF� INDEPENDENT� NEW �I�	

DO I� � ��N�

HPF� INDEPENDENT� NEW �I�	

DO I� � ��N�

DO I� � ��N�
 The inner loop is NOT independent

A�I��I��I�	 � A�I��I��I�	 � A�I��I��I���	�B�I��I��I�	

END DO

END DO

END DO

The inner loop is not independent because each element of A is computed from the preceding
one
 However� the two outer loops are independent because they access di�erent elements
of A
 The NEW clauses are required� since the inner loop indices are assigned and used in
di�erent iterations of the outermost loops

����	 REDUCTION Variables and Statements

The REDUCTION clause asserts that the named variables are updated in the INDEPENDENT

loop by a series of operations that are associative and commutative
 Furthermore� the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� INDEPENDENT AND RELATED DIRECTIVES

intermediate values of the REDUCTION variables are not used within the loop �except� of
course� in the updates themselves�
 Thus� the value of a REDUCTION variable after the loop
may be computed as the result of a reduction tree

Rationale� REDUCTION variables provide the means to accumulate values generated
in an INDEPENDENT loop
 Without this feature� the programmer must store update
information in a temporary array whose size is equal to the number of loop iterations�
and then use an intrinsic reduction function or XXX SCATTER library function after the
loop
 The problem with this approach is that the temporary array may be excessively
large
 �End of rationale��

The semantics of reductions are discussed in detail in Section �
�
�
 This section de�nes
correct syntax

Any variable whose name occurs as a reduction�variable is said to be protected while
the immediately following DO loop is active �i
e
 being executed�
 It may not be referenced
while the loop in which it is protected is active� with one exception
 It may occur in special
locations in assignment statements of a special form� and these statements must be in the
range �i
e
 the lexical body� of the loop
 In particular� it may not occur in any HPF
directive� including the variable list in a NEW clause
 This includes any NEW clause in the
same INDEPENDENT directive

A reduction statement is an assignment statement of the following special form that
occurs in the range of an independent DO loop for which the name of its reduction variable
occurs in a reduction clause
 This description is not part of the grammar of HPF� rather�
it serves to de�ne the restricted assignment statements in which reduction variables are
allowed

H��� reduction�stmt is variable � variable mult�op mult�operand
or variable � add�operand � variable
or variable � variable add�op add�operand
or variable � level���expr � variable
or variable � variable and�op and�operand
or variable � and�operand and�op variable
or variable � variable or�op or�operand
or variable � or�operand or�op variable
or variable � variable equiv�op equiv�operand
or variable � equiv�operand equiv�op variable
or variable � reduction�function � variable � expr 	

or variable � reduction�function � expr � variable 	

H��� reduction�function is MAX

or MIN

or IAND

or IOR

or IEOR

Constraint� The two occurances of variable in a reduction�stmt must be textually identical

The �rst two assertions of Section �
� account for the fact that the occurrences of
reduction variables in their allowed positions in reduction statements do not cause interfer�
ence between iterations of an INDEPENDENT loop
 Any other assignment to or reference to

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE ��

a reduction variable does interfere with the reduction statement� this includes occurrences
in subprograms and in the expr part of a reduction statement

A variable that is updated by reduction statements in an independent loop must be
protected by explicit appearance in a reduction clause
 This clause must appear in the
INDEPENDENT directive for the outermost independent loop that

� Contains the reduction statement�

� Does not have a NEW clause naming the reduction variable� and

� Lies within the innermost independent loop� if any� that contains the reduction state�
ment and does have a NEW clause naming the reduction variable

If the same variable is updated by two or more reduction statements� then the operators in
those statements must be in the same class �e
g
 both must be an add�op if one is�

Advice to users� When a reduction statement is executed� some nest of DO loops
will be active
 If there are several nested INDEPENDENT DO loops surrounding the
reduction statements in which the variable is updated� which one is the right one to
get the reduction clause# The answer is the outermost one� subject to the constraint
that a reduction variable may not appear in a NEW clause for that loop or a contained
loop
 Consider

HPF� INDEPENDENT� NEW�J	� REDUCTION�X	

DO I � �� ��

HPF� INDEPENDENT

DO J � �� ��

X � X � J

END DO

END DO

It would be incorrect to move the reduction clause to the inner INDEPENDENT directive

Since X is updated by reduction operations �twenty times� for each iteration of the
outer loop� it does not have a well�de�ned value until the completion of the outer
loop
 �End of advice to users��

The reduction�variable reference may be an array element or array section
 The two
references that occur in a reduction statement must be lexically identical
 The Fortran rules
of operator precedence and the use of parentheses in the expression must ensure that the
reduction operator is the top�level operator �i
e
 it is evaluated last� on the right�hand side

Therefore�

X � X � A � �

is not a correctly formed reduction statement

Note that the syntax of the INDEPENDENT directive does not allow an array element or
array section to be designated as a reduction variable in the reduction clause
 Even though
such a subobject may occur in a reduction statement� it is the entire array or character
variable that is treated as a reduction variable

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

The allowed reduction operators and functions are all associative �in their mathematical
de�nitions� even though the usual implementations of the arithmetic operators by Fortran
language processors and the underlying hardware are not�

In most cases� only one operator will be used in the reduction statements �if there are
more than one� that update a given reduction variable
 It is sensible� however� to use � and
� together on the same reduction variable� mathematically� subtraction is just addition of
the additive inverse
 For example�

HPF� INDEPENDENT� REDUCTION�X	

DO I � �� ���

X�IDX�I��		 � X�IDX�I��		 � Y�I	

X�IDX�I��		 � X�IDX�I��		 � Y�I	

END DO

The same is true for multiplication ��� and division ���
 No other mixing of operators is
allowed

Advice to users� While it is true that

X � I � X

is permitted as a reduction statement� for most purposes

X � X � I

is stylistically cleaner
 �End of advice to users��

����� Semantics and Implementation of Reduction

HPF speci�es an allowed parallel implementation of an INDEPENDENT DO loop with reduction
statements� thereby specifying the semantics of such a loop

Just as the result of the Fortran intrinsic function SUM is de�ned to be a implementation�
dependent approximation to the sum of the elements of its argument array� the value of a
reduction variable on exit from its INDEPENDENT DO loop is likewise not completely speci�ed
by HPF
 One possible value is that which would have been computed by sequential execution
of the loop� but other implementation�dependent approximations to this value may be
produced
 Any such implementation�dependent value is� however� an approximation to
the value produced by sequential execution of the loop
 If rounding error� under�ow� and
over�ow do not occur� it will be identical to that value

Advice to users� If over�ow� under�ow� or rounding occur� this is one of the few
places where an HPF directive in a conforming program may cause that program to
produce di�erent output
 However� the same problems occur in other systems that
attempt to parallelize these operations� for the same reasons
 �End of advice to users��

Since no reference to a protected reduction variable can occur except in a reduction
statement� it is not necessary to de�ne the values that these variables may have while
protected

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE INDEPENDENT DIRECTIVE ��

Advice to users� The following �advice to implementors� is useful for understanding
the behavior of an INDEPENDENT loop with reduction statements
 �End of advice to
users��

Advice to implementors� In the discussion in this section� the term �processor� means
a single physical processor or a group of physical processors that together sequentially
execute some or all of the iterations of an independent loop

We describe a simple implementation mechanism that applies to commutative reduc�
tion operations
 On entry to an independent loop� every executing processor allocates
a private accumulator variable associated with each variable in the reduction clause
on the INDEPENDENT directive� and initializes it to the identity element for the corre�
sponding intrinsic reduction operator
 The private accumulator variable has the same
shape� type� and kind type parameter as the reduction variable

The identity elements for the intrinsic operators are de�ned in Table �
�

Operator Identity Element

� �

� �

� �

� �

�AND� �TRUE�

�OR� �FALSE�

�EQV� �TRUE�

�NEQV� �FALSE�

Table �
�� Identity elements for intrinsic reduction operators

Function Identity element

IAND�I�J	 NOT��	 �all one�bits�
IOR�I�J	 �

IEOR�I�J	 �

MIN�X�Y	 the positive number of largest absolute value
that has the same type and kind type param�
eter as the reduction variable

MAX�X�Y	 the negative number of largest absolute value
that has the same type and kind type param�
eter as the reduction variable

Table �

� Identity elements for intrinsic reduction functions

The intrinsic functions that may be used as reduction functions are listed� together
with their identity elements� in Table �

Each processor performs a subset of the loop iterations� when it encounters a reduction
statement� it updates its own accumulator variable
 A processor is free to perform its

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

loop iterations in any order� furthermore� it may start an iteration� suspend work on
it� do some or all of the work of other iterations� and resume work on the suspended
iteration
 However� any update of a private accumulator variable occurs through the
execution of a reduction statement� and reduction statements are executed atomically

The �nal value of the reduction variable is computed by combining the private ac�
cumulator variables with the value of the reduction variable on entry to the loop�
using the reduction operator
 The ordering of this reduction is language�processor
dependent� just as it is for the intrinsic reduction functions �SUM� etc
�

As an example� consider�

REAL Z

Z � ��

HPF� INDEPENDENT� REDUCTION�Z	

DO I � �� ��

Z � Z � I

END DO

The �nal value of Z will be � � ���
�������������	���� � ��� the order in
which the additions occur is not speci�ed by HPF

For a second example� here is a SUM SCATTER done as an independent loop�

HPF� INDEPENDENT� REDUCTION�X	

DO I � �� N

X�INDEX�I		 � X�INDEX�I		 � F�I	

END DO

The implementation will most likely make a private copy on every processor of an
accumulator array XLOCAL of the same type and shape as X� and initialize it to zero

Each iteration will subtract the value of F�I	 from its own XLOCAL�INDEX�I		
 To
create the �nal result� the implementation must combine all the private accumulator
arrays with the initial value of X
 The combining operator is the same as the reduction
operator� namely addition� so that the result is the sum of the initial value of X and
the accumulator arrays
 The implementation has the option of using a sparse data
structure to store only the updated elements of the local accumulator

In an MPI based implementation� the MPI REDUCE function could be used for this task

�End of advice to implementors��

��� Further Examples of INDEPENDENT Directives

HPF� INDEPENDENT

DO I � �� ��

WRITE �IOUNIT�I	����	 A�I	

END DO

��� FORMAT � F���� 	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� FURTHER EXAMPLES OF INDEPENDENT DIRECTIVES ��

If IOUNIT�I	 evaluates to a di�erent value for every value of I from � to ��� then the loop
writes to a di�erent I�O unit �and thus a di�erent �le� on every iteration
 The loop is then
properly described as independent
 On the other hand� if IOUNIT�I	�� for all I� then the
assertion is in error and the directive is not HPF�conforming

HPF� INDEPENDENT� NEW �J	

DO I � �� ���� �

HPF� INDEPENDENT� NEW�VL� VR� UL� UR	

DO J � � � ���� �

VL � P�I�J	 � P�I���J	

VR � P�I���J	 � P�I�J	

UL � P�I�J	 � P�I�J��	

UR � P�I�J��	 � P�I�J	

P�I�J	 � F�I�J	 � P�I�J	 � ���� � �VR � VL � UR � UL	

END DO

END DO

Without the NEW clause on the J loop� neither loop would be independent� because an
interleaved execution of loop iterations might cause other values of VL� VR� UL� and UR to
be used in the assignment of P�I�J	 than those computed in the same iteration of the
loop
 The NEW clause� however� speci�es that this is not true if distinct storage units are
used in each iteration of the loop
 Using this implementation makes iterations of the loops
independent of each other
 Note that there is no interference due to accesses of the array
P because of the stride of the DO loop �i
e
 I and J are always even� therefore I��� etc
� are
always odd
�

When loops are nested� a reduction variable may need to be protected in an independent
outer loop even though the reduction operations in which it occurs are nested inside an inner
loop
 Moreover� the inner loop and any intervening loops may or may not be independent

 Nested Loop Example �� Inner loop is sequential

X � ��

OUTER
 DO WHILE �X � ����	
 this loop is sequential

HPF� INDEPENDENT� NEW�J	� REDUCTION�X	

MIDDLE
 DO I � �� N

INNER
 DO J � �� M

X � X � J

 Note that it would be incorrect to refer to X

 here� except in another reduction statement

END DO INNER

 Note that it would be incorrect to refer to X

 here� except in another reduction statement

END DO MIDDLE

PRINT �� X

END DO OUTER

Since the variable X occurs in a reduction clause for loop MIDDLE� it is a protected reduction
variable throughout that loop� including inside the inner loop
 If INNER had an INDEPENDENT

directive� it would be incorrect to include X in a REDUCTION or a NEW clause of that directive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� INDEPENDENT AND RELATED DIRECTIVES

The outermost loop is not independent� and so X need not and cannot be protected in that
part of its range outside the middle loop

A variable that occurs in a NEW clause must not be a reduction variable in the same or
a containing loop� although it may be used as a reduction variable in a contained loop�

 Nested Loop Example �� Outer loop NEW clause�

HPF� INDEPENDENT� NEW�I	

OUTER
 DO K � �� ���

HPF� INDEPENDENT� NEW �J�X	

MIDDLE
 DO I � �� N

X � ��

HPF� INDEPENDENT� REDUCTION�X	

INNER
 DO J � �� M

X � X � J���

 Note that it would be incorrect to refer to X

 here� except in another reduction statement

END DO INNER

Y�I	 � X

END DO MIDDLE

END DO OUTER

Here� X is a protected reduction variable only in the inner loop

INTEGER� DIMENSION�M	

 VECTOR

HPF� INDEPENDENT� REDUCTION�X� Y	

DO I � �� N��

X�I
I��	 � X�I
I��	 � A�I	
 As many as � updates

Y�VECTOR	 � Y�VECTOR	 � B�I��
N	

END DO

Note that the compiler� if it distributes iterations of this loop in a block�wise manner� will
not need to make a private copy of the entire array X on each processor

If a statement that has the form of a reduction statement occurs while an independent
loop is active� but the updated variable is not a protected reduction variable� then the
programmer is guaranteeing that no two iterations of the independent loop will update the
same location
 For example�

HPF� INDEPENDENT

DO I � �� N

 X is NOT a reduction variable� but

 I know there are no repeated values in INDX��
N	

 Updates will be written directly to X�INDX�I		

X�INDX�I		 � X�INDX�I		 � F�I	

 I also guarantee that the condition in the IF statement

 is true for at most one value of I�

IF �A�I	 � B�I		 Y � Y � �

END DO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Extrinsic Program Units

The HPF global model of computation extends �and restricts� Fortran to provide program�
mers with the Fortran model of computation implementable e�ciently on a wide class of
hardware architectures with� in general� multiple processors� multiple memories with non�
uniform access characteristics� and multiple interconnections
 This model of computation
presents a single logical thread of control� including Fortran s data parallel features such
as array syntax and the FORALL statement� and data visibility de�ned by the scoping rules
of Fortran
 In particular� this model does not require the use of low�level features such as
threads libraries and explicit message passing to exploit such architectures
 Programmers
expect their HPF compilers to generate e�cient code by using HPF s features to assist in
mapping data and computation to the given hardware architecture

This chapter de�nes the extrinsic mechanism by which HPF program units may use
non�HPF program units that don t use the HPF global model
 It describes how to write
an explicit interface for a non�HPF procedure and de�nes the caller s assumptions about
handling distributed and replicated data at the interface
 This allows the programmer to
use non�HPF language facilities� for example� to descend to a lower level of abstraction to
handle problems that are not e�ciently addressed by HPF� to hand�tune critical kernels�
or to call optimized libraries
 Such an interface can also be used to interface HPF to other
languages� such as C

�� Overview

An HPF program may need to call a procedure implemented in a di�erent programming
model or in a di�erent programming language
 A procedure s programming model might
provide�

� a single logical thread�of�control where one copy of the procedure is conceptually ex�
ecuting and there is a single locus of control within the program text� this model is
called global when the underlying target hardware has �potentially� multiple proces�
sors or memories and is called serial when the underlying target hardware is treated
as a uniprocessor �or a single node in a multiprocessor��

� multiple threads�of�control� one per processor� each thread executing the same proce�
dure� this model is called local or� more generally� SPMD �Single Program� Multiple
Data�� or

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�� SECTION 	� EXTRINSIC PROGRAM UNITS

� some other model� not discussed here� such as multiple threads�of�control� perhaps
with dynamic assignment of loop iterations to processors or explicit dynamic process
forking� where there is� at least initially upon invocation� one copy of the procedure
that is conceptually executing but that may spawn multiple loci of control� possibly
changing in number over time� within the program text

A programming language provides a speci�c syntax �language features�� semantics
�meanings�� and pragmatics �purposes�
 Examples of programming languages include For�
tran �an ANSI and ISO standard�the most recent revision is expected to be approved
by �		��� HPF �a speci�cation of extensions and restrictions to Fortran�� Fortran �� �a
previous ANSI and ISO standard�� C� C��� Java� Visual Basic� and COBOL

A program unit s language and model� when taken together� constitute its extrinsic
kind
 This extrinsic kind may be speci�ed explicitly by an extrinsic�pre�x or implicitly
by the selection of a compiler and its invocation with a particular set of compiler options

Thus� one might view the compiler as providing a host scoping unit as de�ned by Fortran

For example� a program unit compiled by an HPF compiler will be of extrinsic kind HPF

Alternatively� its extrinsic kind may be speci�ed explicitly by an extrinsic�pre�x such as
EXTRINSIC�HPF	 or EXTRINSIC�LANGUAGE��HPF��MODEL��GLOBAL�	

�� Declaration of Extrinsic Program Units

���� Function and Subroutine Statements

An extrinsic�pre�x may appear in a function�stmt or subroutine�stmt �as de�ned in the
Fortran standard� in the same place that the keywords RECURSIVE� PURE� and ELEMENTAL

may appear
 This is speci�ed by an extension of rule R�
�	 for pre�x�spec in the Fortran
standard
 Rules R�
�� for function�stmt� R�
�� for pre�x� and R�

 for subroutine�stmt
are not changed� but are restated here for reference

H��� function�stmt is ! prefix " FUNCTION function�name
� ! dummy�arg�name�list " 	

! RESULT � result�name 	 "

H��
 subroutine�stmt is ! prefix " SUBROUTINE subroutine�name
! � ! dummy�arg�list " 	 "

H��� prefix is prefix�spec ! prefix�spec " ���

H��� prefix�spec is type�spec
or RECURSIVE

or PURE

or ELEMENTAL

or extrinsic�prefix

Constraint� Within any HPF external�subprogram� every internal�subprogram must be of
the same extrinsic kind as its host and any internal�subprogram whose extrinsic
kind is not given explicitly is assumed to be of that extrinsic kind

The de�nition of characteristics of a procedure as given in F	���

 is extended to
include the procedure s extrinsic kind

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� DECLARATION OF EXTRINSIC PROGRAM UNITS ��

���� Program� Module� and Block Data Statements

An extrinsic�pre�x may also appear at the beginning of a program�stmt� module�stmt� or
block�data�stmt
 The following syntax de�nition extends the Fortran 	� syntax rules R���

for program�stmt� R���� for module�stmt� and R���� for block�data�stmt

H��� program�stmt is ! extrinsic�prefix " PROGRAM program�name

H��� module�stmt is ! extrinsic�prefix " MODULE module�name

H��� block�data�stmt is ! extrinsic�prefix " BLOCK DATA

! block�data�name "

Constraint� Every module�subprogram of any HPF module must be of the same extrinsic
kind as its host� and any module�subprogram whose extrinsic kind is not given
explicitly is assumed to be of that extrinsic kind

Constraint� Every internal�subprogram of any HPF main�program or module�subprogram
must be of the same extrinsic kind as its host� and any internal�subprogram
whose extrinsic kind is not given explicitly is assumed to be of that extrinsic
kind

���	 The EXTRINSIC Pre�x

H��� extrinsic�prefix is EXTRINSIC � extrinsic�spec 	

H��	 extrinsic�spec is extrinsic�spec�arg�list
or extrinsic�kind�keyword

H��� extrinsic�spec�arg is language
or model
or external�name

H��� language is ! LANGUAGE � "
scalar�char�initialization�expr

H��
 model is ! MODEL � "
scalar�char�initialization�expr

H��� external�name is ! EXTERNAL�NAME � "
scalar�char�initialization�expr

Constraint� In an extrinsic�spec�arg�list� at least one of language� model� or external�name
must be speci�ed and none may be speci�ed more than once

Constraint� If language is speci�ed without LANGUAGE�� language must be the �rst item in
the extrinsic�spec�arg�list
 If model is speci�ed without MODEL�� language with�
out LANGUAGE� must be the �rst item and model must be the second item in the
extrinsic�spec�arg�list
 If external�name is speci�ed without EXTERNAL NAME��
language without LANGUAGE� must be the �rst item and model without MODEL�
must be the second item in the extrinsic�spec�arg�list

Constraint� The forms with LANGUAGE�� MODEL�� and EXTERNAL NAME� may appear in any
order except as prohibited above

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION 	� EXTRINSIC PROGRAM UNITS

Note that these rules for extrinsic�spec�arg�list are as if EXTRINSIC were a pro�
cedure with an explicit interface with a dummy�arg�list of LANGUAGE� MODEL�

EXTERNAL NAME� each of which were OPTIONAL

Constraint� In language� values of scalar�char�initialization�expr may be�

� �HPF�� referring to the HPF language� if a model is not explicitly speci�ed�
the model is implied to be �GLOBAL��

� �FORTRAN�� referring to the ANSI�ISO standard Fortran language� if a
model is not explicitly speci�ed� the model is implied to be �SERIAL��

� �F���� referring to the former ANSI�ISO standard FORTRAN �� lan�
guage� if a model is not explicitly speci�ed� the model is implied to be
�SERIAL��

� �C�� referring to the ANSI standard C programming language� if a model
is not explicitly speci�ed� the model is implied to be �SERIAL�� or

� an implementation�dependent value with an implementation�dependent
implied model

Note that� for most implementations� �C� will only be allowed for function�
stmts and subroutine�stmts occurring in an interface�body

Constraint� If language is not speci�ed it is the same as that of the host scoping unit

Constraint� In model� values of scalar�char�initialization�expr may be�

� �GLOBAL�� referring to the global model�

� �LOCAL�� referring to the local model�

� �SERIAL�� referring to the serial model� or

� an implementation�dependent value

Constraint� If model is not speci�ed or implied by the speci�cation of a language� it is the
same as that of the host scoping unit

Constraint� All languages and models whose names begin with the three letters HPF are
reserved for present or future de�nition by this speci�cation and its successors

Constraint� In external�name� the value of scalar�char�initialization�expr is a character
string whose use is determined by the extrinsic kind
 For example� an extrin�
sic kind may use the external�name to specify the name by which the procedure
would be known if it were referenced by a C procedure
 In such an implementa�
tion� a user would expect the compiler to perform any transformations of that
name that the C compiler would perform
 If external�name is not speci�ed�
its value is implementation�dependent

H��� extrinsic�kind�keyword is HPF

or HPF�LOCAL

or HPF�SERIAL

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� CALLING HPF EXTRINSIC SUBPROGRAMS ��

Constraint� EXTRINSIC�HPF	 is equivalent to EXTRINSIC��HPF���GLOBAL�	
 In the ab�
sence of an extrinsic�pre�x an HPF compiler interprets a compilation unit
as if it were of extrinsic kind HPF
 Thus� for an HPF compiler� specifying
EXTRINSIC�HPF	 or EXTRINSIC��HPF���GLOBAL�	 is redundant
 Such explicit
speci�cation may� however� be required for use with a compiler that supports
multiple extrinsic kinds

Constraint� EXTRINSIC�HPF LOCAL	 is equivalent to EXTRINSIC��HPF���LOCAL�	
 A
main�program whose extrinsic kind is HPF LOCAL behaves as if it were a sub�
routine of extrinsic kind HPF LOCAL that is called with no arguments from a
main program of extrinsic kind HPF whose executable part consists solely of
that call

Constraint� EXTRINSIC�HPF SERIAL	 is equivalent to EXTRINSIC��HPF���SERIAL�	
 A
main�program whose extrinsic kind is HPF SERIAL behaves as if it were a sub�
routine of extrinsic kind HPF SERIAL that is called with no arguments from a
main program of extrinsic kind HPF whose executable part consists solely of
that call

Constraint� All extrinsic�kind�keywords whose names begin with the three letters HPF are
reserved for present or future de�nition by this speci�cation and its successors

Advice to implementors�

Other languages or models may be de�ned and provided by compiler vendors
 Al�
though not part of this HPF speci�cation� they are expected to conform to the rules
and spirit of HPF extrinsic kinds

An implementation may place certain restrictions on the programmer� moreover� each
extrinsic kind may call for a di�erent set of restrictions

For example� an implementation on a parallel processor may �nd it convenient to
replicate scalar arguments so as to provide a copy on every processor
 This is permitted
so long as this process is invisible to the caller
 One way to achieve this is to place a
restriction on the programmer� on return from the subprogram� all the copies of this
scalar argument must have the same value
 This implies that if the dummy argument
has INTENT�OUT	� then all copies must have been updated consistently by the time of
subprogram return

�End of advice to implementors��

�	 Calling HPF Extrinsic Subprograms

A call to an extrinsic procedure behaves� as observed by a calling program coded in HPF�
exactly as if the subprogram were coded in HPF
 If a function or subroutine called from
a program unit of an HPF extrinsic kind does not have an explicit interface visible in the
caller� it is assumed to have the same extrinsic kind as the caller

In order to call a subprogram of an extrinsic kind other than that of the caller� that
subprogram must have an explicit interface visible in the caller� and the subprogram is
expected to behave� as observed by the caller� roughly as if it had been written as code of
the same extrinsic kind as the caller
 Some of the responsibility for meeting this requirement

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� EXTRINSIC PROGRAM UNITS

Extrinsic kind of the used module
HPF HPF SERIAL HPF LOCAL

Extrinsic kind HPF T P D T P T P

of the using HPF SERIAL T T P D T
program unit HPF LOCAL T T T P D

T � derived type de�nitions
P � procedures and procedure interfaces
D � data objects

Table �
�� Entities that a using program unit is entitled to access from a module� according
to the HPF extrinsic kind of each

may rest on the compiler and some on the programmer
 This interface de�nes the �HPF
view� of the extrinsic procedure

A called procedure that is written in a model or language other than HPF� whether
or not it uses the local procedure execution model� should be declared EXTRINSIC within
an HPF program that calls it
 The EXTRINSIC pre�x declares what sort of interface should
be used when calling indicated subprograms
 If there is no extrinsic speci�cation� then
the users must assume full responsibility for correctness of the implementation�dependent
interface

A function�stmt or subroutine�stmt that appears within an interface�block within a
program unit of an HPF extrinsic kind may have an extrinsic pre�x mentioning any extrinsic
kind supported by the language implementation
 If no extrinsic�pre�x appears in such a
function�stmt or subroutine�stmt� then it is assumed to be of the same HPF extrinsic kind
as the program unit in which the interface block appears

The procedure characteristics de�ned by an interface�body must be consistent with the
procedure s de�nition

The de�nition and rules for a procedure with an extrinsic interface lies outside the scope
of HPF
 However� explicit interfaces to such procedures must conform to HPF
 Note that any
particular HPF implementation is free to support any selection of extrinsic kinds� or none
at all except for HPF itself� which clearly must be supported by an HPF implementation

�	�� Access to Types� Procedures� and Data

In general� program units of a given extrinsic kind may use names of types� procedures�
or data of another program unit of the same extrinsic kind� subject to the scoping rules of
Fortran

Use of names of types� procedures� or data of another program unit of a di�erent
extrinsic kind are subject to additional restrictions summarized in Table �
� and described
below

Note that� if a module X of one HPF extrinsic kind is used by a program unit Y of
another HPF extrinsic kind� then only names of items in X that Y is entitled to use or
invoke may be use associated� that is� either X must make private all items that Y is not
entitled to use� or the USE statement in Y must have an ONLY option that lists only names
of items it is entitled to use

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� CALLING HPF EXTRINSIC SUBPROGRAMS ��

�	���� Types

Derived type de�nitions without explicitly mapped components may be thought of as �ex�
trinsic kind neutral�� a program unit of any HPF extrinsic kind may use derived type
de�nitions from a module of any HPF extrinsic kind
 Note that an Approved Extension
permits the mapping of components of derived types

�	���� Procedures

An HPF global program or procedure may call other HPF procedures that are global� local�
or serial

An HPF local program or procedure may call only other HPF local procedures and not
HPF global or serial procedures

An HPF serial program or procedure may call only other HPF serial procedures and
not HPF global or local procedures

�	���	 Data

A named COMMON block in any program unit of an HPF kind will be associated with the
COMMON block� if any� of that same name in every other program unit of that same extrinsic
kind� similarly for unnamed COMMON
 �Such COMMON storage behaves like other declared data
objects within program units of that extrinsic kind� in particular� for HPF LOCAL code there
will be one copy of the COMMON block on each processor
�

It is not permitted for any given COMMON block name to be used in program units of
di�erent HPF kinds within a single program� similarly� it is not permitted for unnamed
COMMON to be used in program units of di�erent HPF kinds within a single program

�	�� The E�ect of a Call

A call to an extrinsic procedure must be semantically equivalent to a call of an ordinary
HPF procedure that does not remap its arguments
 Thus a call to an extrinsic procedure
must behave as if the following actions occur
 The HPF technical term as if means that
the described actions should appear to a user as if they occurred� in the order speci�ed� an
implementation may carry out any actions in any order that provide the correct user�visible
e�ects

�
 All actions of the caller preceding the subprogram invocation should be completed
before any action of the subprogram is executed� and all actions of the subprogram
should be completed before any action of the caller following the subprogram invoca�
tion is executed

 Each actual argument is remapped� if necessary� according to the directives �explicit
or implicit� in the declared interface for the extrinsic procedure
 Thus� HPF map�
ping directives appearing in the interface are binding�the compiler must obey these
directives in calling local extrinsic procedures
 As in the case of non�extrinsic sub�
programs� actual arguments may be mapped in any way� if necessary� they are copied
automatically to correctly mapped temporaries before invocation of�and copied back
to the actual arguments after return from�the extrinsic procedure
 Scalar dummy

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� EXTRINSIC PROGRAM UNITS

arguments and scalar function results behave as if they are replicated on each pro�
cessor
 These mappings may� optionally� be explicit in the interface� but any other
explicit mapping is not HPF conforming

�
 IN� OUT� and INOUT intent restrictions should be observed

�
 No HPF variable is modi�ed unless it could be modi�ed by an HPF procedure with the
same explicit interface
 Note that even though HPF LOCAL and HPF SERIAL routines
are not permitted to access and modify HPF global data� other kinds of extrinsic
routines may do so to the extent that an HPF procedure could

�
 When a procedure returns and the caller resumes execution� all objects accessible to
the caller after the call are mapped exactly as they were before the call
 In particular�
the original distribution of arguments is restored� if necessary

�
 Exactly the same set of processors is visible to the HPF environment before and after
the subprogram call

Advice to implementors�

To ensure that all actions that logically precede the call are completed� multiple
processors may need to be synchronized before the call is made

If a variable accessible to the called routine has a replicated representation� then all
copies may need to be updated prior to the call to contain the correct current value
according to the sequential semantics of the source program

Replicated variables� if updated in the procedure� must be updated consistently
 More
precisely� if a variable accessible to a procedure has a replicated representation and
is updated by �one or more copies of� the procedure� then all copies of the replicated
variable must have identical values when the last processor returns from the local
procedure

An implementation might check� before returning from the local subprogram� to make
sure that replicated variables have been updated consistently by the subprogram

Note� however� that there is no requirement for an implementation to do so� it is
merely an implementation tradeo� between speed and� for instance� debuggability

Note that� as with a global HPF subprogram� actual arguments may be copied or
remapped in any way� so long as the e�ect is undone on return from the subprogram

To ensure that all actions of the procedure logically complete before execution in the
caller is resumed� multiple processors may need to be synchronized after the call

�End of advice to implementors��

�� Examples of Extrinsic Procedures

Consider�

PROGRAM DUMPLING

INTERFACE

EXTRINSIC��HPF���LOCAL�	 SUBROUTINE GNOCCHI�P� L� X	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� EXAMPLES OF EXTRINSIC PROCEDURES ��

INTERFACE

SUBROUTINE P�Q	

REAL Q

END SUBROUTINE P

EXTRINSIC��COBOL���LOCAL�	 SUBROUTINE L�R	

REAL R�
�
	

END SUBROUTINE L

END INTERFACE

REAL X�
	

END SUBROUTINE GNOCCHI

EXTRINSIC��HPF���LOCAL�	 SUBROUTINE POTSTICKER�Q	

REAL Q

END SUBROUTINE POTSTICKER

EXTRINSIC��COBOL���LOCAL�	 SUBROUTINE LEBERKNOEDEL�R	

REAL R�
�
	

END SUBROUTINE LEBERKNOEDEL

END INTERFACE

���

CALL GNOCCHI�POTSTICKER� LEBERKNOEDEL� �� ���� ���� ��� �	 	

���

END PROGRAM DUMPLING

The main program� DUMPLING� when compiled by an HPF compiler� is implicitly of ex�
trinsic kind HPF
 Interfaces are declared to three external subroutines GNOCCHI� POTSTICKER�
and LEBERKNOEDEL
 The �rst two are of extrinsic kind HPF LOCAL and the third is of an ex�
trinsic kind speci�ed by the language COBOL and the local model
 Now� GNOCCHI accepts
two dummy procedure arguments and so interfaces must be declared for those
 Because
no extrinsic�pre�x is given for dummy argument P� its extrinsic kind is that of its host
scoping unit� the declaration of subroutine GNOCCHI� which has extrinsic kind HPF LOCAL

The declaration of the corresponding actual argument POTSTICKER needs to have an explicit
extrinsic�pre�x because its host scoping unit is program DUMPLING� of extrinsic kind HPF

Here are some more examples
 In the �rst example� note that the declaration of the
explicit size of BAGEL as ��� refers to its global size and not its local size�

INTERFACE

EXTRINSIC��HPF���LOCAL�	 FUNCTION BAGEL�X	

REAL BAGEL����	

REAL X�
	

HPF� DISTRIBUTE �CYCLIC	

 BAGEL� X

END FUNCTION

END INTERFACE

In the next example� note that the ALIGN statement asserts that X� Y� and Z all have
the same shape�

INTERFACE OPERATOR ��	

EXTRINSIC��C���LOCAL�	 FUNCTION LATKES�X� Y	 RESULT�Z	

REAL� DIMENSION�
�
	� INTENT�IN	

 X

REAL� DIMENSION�
�
	� INTENT�IN	

 Y

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� EXTRINSIC PROGRAM UNITS

REAL� DIMENSION�SIZE�X��	� SIZE�X��		

 Z

HPF� ALIGN WITH X

 Y� Z

HPF� DISTRIBUTE �BLOCK� BLOCK	 X

END FUNCTION

END INTERFACE

In the interface block in this �nal example� two external procedures� one of them
extrinsic and one not� are associated with the same generic procedure name� which returns
a scalar of the same type as its array argument�

INTERFACE KNISH

FUNCTION RKNISH�X	
normal HPF interface

REAL X�
	� RKNISH

END RKNISH

EXTRINSIC��SISAL�	 FUNCTION CKNISH�X	
extrinsic interface

COMPLEX X�
	� CKNISH

END CKNISH

END INTERFACE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Intrinsic and Library Procedures

HPF includes Fortran s intrinsic procedures
 It also adds new intrinsic procedures in two
categories� system inquiry intrinsic functions and computational intrinsic functions

In addition to the new intrinsic functions� HPF de�nes a library module� HPF LIBRARY�
that must be provided by vendors of any full HPF implementation

This description of HPF intrinsic and library procedures follows the form and con�
ventions of the Fortran standard
 The material of Sections F	����
�� F	����

� F	����
��
F	����
�
�� F	����
�
�� F	����
�

� F	����
	� and F	����
�� is applicable to the HPF intrin�
sic and library procedures and to their descriptions in this section of the HPF document

��� Notation

In the examples of this section� T and F are used to denote the logical values true and false

��� System Inquiry Intrinsic Functions

In a multi�processor implementation� the processors may be arranged in an implemen�
tation�dependent multi�dimensional processor array
 The system inquiry functions return
values related to this underlying machine and processor con�guration� including the size and
shape of the underlying processor array
 NUMBER OF PROCESSORS returns the total number
of processors available to the program or the number of processors available to the program
along a speci�ed dimension of the processor array
 PROCESSORS SHAPE returns the shape of
the processor array

The Fortran de�nition of restricted expression is extended to permit references to the
HPF system inquiry intrinsic functions
 In particular� at the end of the numbered list in
Section �
�
�

 of the Fortran standard� add�

���� A reference to one of the system inquiry functions NUMBER OF PROCESSORS or
PROCESSORS SHAPE� where any argument is a restricted expression

A variable that appears in a restricted expression in an HPF directive in the scoping
unit of a module or main program must be an implied�DO variable or an argument in a
reference to an array inquiry function� bit inquiry function� character inquiry function� kind
inquiry function� or numeric inquiry function

The values returned by the system inquiry intrinsic functions remain constant for the
duration of one program execution
 Thus� NUMBER OF PROCESSORS and PROCESSORS SHAPE

have values that are restricted expressions and may be used wherever any other Fortran

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

restricted expression may be used
 In particular� NUMBER OF PROCESSORS may be used in a
speci�cation expression

The values of system inquiry functions may not occur in initialization expressions�
because they may not be assumed to be constants
 In particular� HPF programs may be
compiled to run on machines whose con�gurations are not known at compile time

Note that the system inquiry functions query the physical machine� and have nothing
to do with any PROCESSORS directive that may occur
 If an HPF program is running on a
physical partition of a larger machine� then it is the smaller partition that actually executes
the HPF program whose parameters are returned by the system inquiry functions

Some machines may not have a �natural� shape to return as the value of the func�
tion PROCESSORS SHAPE� for example� a machine with a tree topology
 In these cases� the
implementation must provide some reasonable� consistent description of the machine� such
as an rank�one array of size NUMBER OF PROCESSORS�	
 The compiler will also have to ar�
range to map between this description and the underlying hardware processor identi�cation
mechanism

Advice to users� SIZE�PROCESSORS SHAPE�		 returns the rank of the processor array

References to system inquiry functions may occur in array declarations and in HPF
directives� as in�

INTEGER� DIMENSION�SIZE�PROCESSORS�SHAPE�			

 PSHAPE

HPF� TEMPLATE T����� ��NUMBER�OF�PROCESSORS�		

�End of advice to users��

��	 Computational Intrinsic Functions

HPF adds one new computational intrinsic function� ILEN� which computes the number of
bits needed to store an integer value

��� Library Procedures

The mapping inquiry subroutines and computational functions described in this section
are available in the HPF library module� HPF LIBRARY
 Use of these procedures must be
accompanied by an appropriate USE statement in each scoping unit in which they are used

They are not intrinsic

����� Mapping Inquiry Subroutines

HPF provides data mapping directives that are advisory in nature
 The mapping inquiry
subroutines allow the program to determine the actual mapping of an array at run time
 It
may be especially important to know the exact mapping when an EXTRINSIC subprogram is
invoked
 For these reasons� HPF includes mapping inquiry subroutines which describe how
an array is actually mapped onto a machine
 To keep the number of routines small� the
inquiry procedures are structured as subroutines with optional INTENT �OUT	 arguments

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� LIBRARY PROCEDURES 	�

����� Bit Manipulation Functions

The HPF library includes three elemental bit�manipulation functions
 LEADZ computes the
number of leading zero bits in an integer s representation
 POPCNT counts the number of
one bits in an integer
 POPPAR computes the parity of an integer

����	 Array Reduction Functions

HPF adds additional array reduction functions that operate in the same manner as the
Fortran SUM and ANY intrinsic functions
 The new reduction functions are IALL� IANY�
IPARITY� and PARITY� which correspond to the commutative� associative binary operations
IAND� IOR� IEOR� and �NEQV� respectively

In the speci�cations of these functions� the terms �XXX reduction� are used� where XXX

is one of the binary operators above
 These are de�ned by means of an example
 The IAND

reduction of all the elements of array for which the corresponding element of mask is true
is the scalar integer computed in result by

result � IAND�IDENTITY�ELEMENT

DO i�� � LBOUND�array��	� UBOUND�array��	

���

DO i�n � LBOUND�array�n	� UBOUND�array�n	

IF � mask�i���i�������i�n	 	 �

result � IAND� result� array�i���i�������i�n	 	

END DO

���

END DO

Here� n is the rank of array and IAND IDENTITY ELEMENT is the integer which has all bits
equal to one
 �The interpretation of an integer as a sequence of bits is given in F	����
�
�
�
The other three reductions are similarly de�ned
 The identity elements for IOR and IEOR

are zero
 The identity element for �NEQV� is �FALSE�

����� Array Combining Scatter Functions

The XXX SCATTER functions are generalized array reduction functions in which an arbi�
trary subset of the elements of an array can be combined to produce an element of the
result� the subset corresponding to the result s elements are nonoverlapping
 Each of the
eleven reduction operation in the language corresponds to one of the scatter functions�
while COPY SCATTER supports overwriting an existing value with any one of the values in
the corresponding subset
 The way that elements of the source array are associated with
the elements of the result is described in this section� the method of combining their values
is described in the speci�cations of the individual functions in Section �
�

These functions have the general form

XXX�SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

except in the special cases noted below
 The allowed values of XXX are ALL� ANY� COPY�
COUNT� IALL� IANY� IPARITY� MAXVAL� MINVAL� PARITY� PRODUCT� and SUM
 ARRAY� MASK�
and all the INDX arrays are conformable
 The INDX arrays are integer� and the number

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

of INDX arguments must equal the rank of BASE
 The argument MASK is logical� and it is
optional
 Except for COUNT SCATTER� ARRAY and BASE are arrays of the same type
 For
COUNT SCATTER� ARRAY is of type logical and BASE is of type integer
 �For ALL SCATTER�
ANY SCATTER� COUNT SCATTER�and PARITY SCATTER� the ARRAY argument must be logical

These functions do not have an optional MASK argument
 To conform with the conventions
of the Fortran standard� the required ARRAY argument to these functions is called MASK in
their speci�cations in Section �
�
� In all cases the result array is an array with the same
type� kind type parameter� and shape as BASE

For every element a in ARRAY there is a corresponding element in each of the INDX

arrays� since they all have the same shape as ARRAY
 For each j � ��
� � � � � n� where n is the
rank of BASE� let sj be the value of the element of INDXj that corresponds to element a in
ARRAY
 These indices determine the element of the result that is a�ected by element a of
ARRAY
 For each of the indices sj � let the corresponding index for BASE be given by bj � sj�
LBOUND�BASE� j	 � �

The integers bj� j � �� � � � � n� form a subscript selecting an element of BASE�
BASE�b�� b�� � � � � bn	
 Because BASE and the result are conformable� for each element of BASE
there is a corresponding element of the result

Thus the INDX arrays establish a mapping from all the elements of ARRAY onto selected
elements of the result and BASE
 Viewed in the other direction� this mapping associates with
each element b of BASE a set S of elements from ARRAY

If S is empty� then the element of the result corresponding to the element b of BASE

has the same value as b

If S is non�empty� then the elements of S will be combined with element b to produce
an element of the result
 The detailed speci�cations of the scatter functions describe the
particular means of combining these values
 As an example� for SUM SCATTER� if the elements
of S are a�� � � � � am� then the element of the result corresponding to the element b of BASE
is the result of evaluating SUM���a�� a�� � � � � am� b�		

Note that the elements of the INDX arrays must be non�negative� and that INDXj may
not exceed SIZE�BASE� j	
 The result computed is not a�ected by the declared upper or
lower bounds on indices of BASE� it depends only on the shape of BASE

Note that� since a scalar is conformable with any array� a scalar may be used in place
of an INDX array� in which case one hyperplane of the result is selected
 See the example
below

If the optional� �nal MASK argument is present� then only the elements of ARRAY in
positions for which MASK is true participate in the operation
 All other elements of ARRAY

and of the INDX arrays are ignored and cannot have any in�uence on any element of the
result

For example� if

A is the array

�
�� �
 �

� � �
� � 	

�
��� B is the array

�
�� �� �
 ��

�� �� ��
�� �� �	

�
���

I� is the array

�
�� � � �

 � �
�
 �

�
��� I� is the array

�
�� �
 �

� �

� � �

�
��

then

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� LIBRARY PROCEDURES 	�

SUM SCATTER�A� B� I�� I�	 is

�
�� �� � �

� �� ��
� �� �	

�
���

SUM SCATTER�A� B� �� I�	 is

�
�� �� �
 ��

�� � ��
�� �� �	

�
���

SUM SCATTER�A� B� I�� �	 is

�
�� ��
� ��

�� � ��
�� �� �	

�
���

SUM SCATTER�A� B� �� �	 is

�
�� �� �
 ��

�� �� ��
�� �� �	

�
��

If A is the array
h

��
� �� �� ���
i
� B is the array

h
�
 � �

i
�

and IND is the array
h

�

 � �
i
�

then SUM SCATTER�A� B� IND� MASK��A �GT� �		 is
h

�� �
 �� �
i

����� Array Pre�x and Su�x Functions

In a scan of a vector� each element of the result is a function of the elements of the vector
that precede it �for a pre�x scan� or that follow it �for a su�x scan�
 These functions
provide scan operations on arrays and subarrays
 The functions have the general form

XXX�PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

XXX�SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

except in the special cases noted below
 The allowed values of XXX are ALL� ANY� COPY�
COUNT� IALL� IANY� IPARITY� MAXVAL� MINVAL� PARITY� PRODUCT� and SUM

When comments below apply to both pre�x and su�x forms of the routines� we will
refer to them as YYYFIX functions

The arguments DIM� MASK� SEGMENT� and EXCLUSIVE are optional
 The COPY YYYFIX

functions do not have MASK or EXCLUSIVE arguments
 The ALL YYYFIX� ANY YYYFIX� COUNT �
YYYFIX� and PARITY YYYFIX functions do not have MASK arguments
 Their ARRAY argument
must be of type logical� it is denoted MASK in their speci�cations in Section �
�

The arguments MASK and SEGMENT must be of type logical
 SEGMENT must have the
same shape as ARRAY
 MASK must be conformable with ARRAY
 EXCLUSIVE is a logical scalar

DIM is a scalar integer between one and the rank of ARRAY

Result Value� The result has the same shape as ARRAY� and� with the exception
of COUNT YYYFIX� the same type and kind type parameter as ARRAY
 �The result of
COUNT YYYFIX is default integer
�

In every case� every element of the result is determined by the values of certain
selected elements of ARRAY in a way that is speci�c to the particular function and is
described in its speci�cation
 The optional arguments a�ect the selection of elements
of ARRAY for each element of the result� the selected elements of ARRAY are said to
contribute to the result element
 This section describes fully which elements of ARRAY
contribute to a given element of the result

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

If no elements of ARRAY are selected for a given element of the result� that result
element is set to a default value that is speci�c to the particular function and is
described in its speci�cation

For any given element r of the result� let a be the corresponding element of ARRAY

Every element of ARRAY contributes to r unless disquali�ed by one of the following
rules

�
 If the function is XXX PREFIX� no element that follows a in the array element
ordering of ARRAY contributes to r
 If the function is XXX SUFFIX� no element
that precedes a in the array element ordering of ARRAY contributes to r

 If the DIM argument is provided� an element z of ARRAY does not contribute
to r unless all its indices� excepting only the index for dimension DIM� are the
same as the corresponding indices of a
 �It follows that if the DIM argument is
omitted� then ARRAY� MASK� and SEGMENT are processed in array element order�
as if temporarily regarded as rank�one arrays
 If the DIM argument is present�
then a family of completely independent scan operations are carried out along
the selected dimension of ARRAY
�

�
 If the MASK argument is provided� an element z of ARRAY contributes to r only if
the element of MASK corresponding to z is true
 �It follows that array elements
corresponding to positions where the MASK is false do not contribute anywhere
to the result
 However� the result is nevertheless de�ned at all positions� even
positions where the MASK is false
�

�
 If the SEGMENT argument is provided� an element z of ARRAY does not contribute
if there is some intermediate element w of ARRAY� possibly z itself� with all of
the following properties�

�a� If the function is XXX PREFIX� w does not precede z but does precede a in
the array element ordering� if the function is XXX SUFFIX� w does not follow
z but does follow a in the array element ordering�

�b� If the DIM argument is present� all the indices of w� excepting only the index
for dimension DIM� are the same as the corresponding indices of a� and

�c� The element of SEGMENT corresponding to w does not have the same value
as the element of SEGMENT corresponding to a
 �In other words� z can
contribute only if there is an unbroken string of SEGMENT values� all alike�
extending from z through a
�

�
 If the EXCLUSIVE argument is provided and is true� then a itself does not con�
tribute to r

These general rules lead to the following important cases�

Case �i	� If ARRAY has rank one� element i of the result of XXX PREFIX�ARRAY	 is
determined by the �rst i elements of ARRAY� element SIZE�ARRAY	� i��
of the result of XXX SUFFIX�ARRAY	 is determined by the last i elements
of ARRAY

Case �ii	� If ARRAY has rank greater than one� then each element of the result of
XXX PREFIX�ARRAY	 has a value determined by the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array element

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� LIBRARY PROCEDURES 	�

order
 For XXX SUFFIX� a is determined by the elements of ARRAY that
correspond to or follow a in array element order

Case �iii	� Each element of the result of XXX PREFIX�ARRAY�MASK�MASK	 is deter�
mined by selected elements of ARRAY� namely the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array ele�
ment order� but an element of ARRAY may contribute to the result only
if the corresponding element of MASK is true
 If this restriction results in
selecting no array elements to contribute to some element of the result�
then that element of the result is set to the default value for the given
function

Case �iv	� Each element of the result of XXX PREFIX�ARRAY�DIM�DIM	 is determined
by selected elements of ARRAY� namely the corresponding element a of
the ARRAY and all elements of ARRAY that precede a along dimension
DIM� for example� in SUM PREFIX�A��
N��
N	� DIM��	� result element
�i�� i�� could be computed as SUM�A�i��� � i�		
 More generally� in
SUM PREFIX�ARRAY� DIM	� result element i�� i�� � � � � iDIM � � � � � in could be
computed as SUM�ARRAY� i�� i�� � � � �
iDIM � � � � � in 		
 �Note the colon
before iDIM in that last expression
�

Case �v	� If ARRAY has rank one� then element i of the result of XXX PREFIX�ARRAY�

EXCLUSIVE��TRUE�	 is determined by the �rst i� � elements of ARRAY

Case �vi	� The options may be used in any combination

Advice to users� A new segment begins at every transition from false to true or
true to false� thus a segment is indicated by a maximal contiguous subsequence of like
logical values�

��T�T�T�F�T�F�F�F�T�F�F�T�	

����� � � ����� � ��� � seven segments

�End of advice to users��

Rationale�

One existing library delimits the segments by indicating the start of each segment

Another delimits the segments by indicating the stop of each segment
 Each method
has its advantages
 There is also the question of whether this convention should
change when performing a su�x rather than a pre�x
 HPF adopts the symmetric
representation above
 The main advantages of this representation are�

�A� It is symmetrical� in that the same segment speci�er may be meaningfully used
for pre�x and su�x without changing its interpretation �start versus stop�

�B� The start�bit or stop�bit representation is easily converted to this form by us�
ing PARITY PREFIX or PARITY SUFFIX
 These might be standard idioms for a
compiler to recognize�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

SUM�PREFIX�FOO�SEGMENT�PARITY�PREFIX�START�BITS		

SUM�PREFIX�FOO�SEGMENT�PARITY�SUFFIX�STOP�BITS		

SUM�SUFFIX�FOO�SEGMENT�PARITY�SUFFIX�START�BITS		

SUM�SUFFIX�FOO�SEGMENT�PARITY�PREFIX�STOP�BITS		

�End of rationale��

Examples� The examples below illustrate all possible combinations of optional
arguments for SUM PREFIX
 The default value for SUM YYYFIX is zero

Case �i	� SUM PREFIX�����������		 is
h

� � 	 ��
i

Case �ii	� If B is the array

�
�� �
 �

� � �
� � 	

�
���

then SUM PREFIX�B	 is the array

�
�� � �� ��

� �	 ��
�

� ��

�
��

Case �iii	� If A is the array
h

� � �
 �� � � �
i
�

then SUM PREFIX�A� MASK � A �LT� �	 is
h

� � � � � 	 	
i

Case �iv	� If B is the array

�
�� �
 �

� � �
� � 	

�
��� then SUM PREFIX�B� DIM��	 is the array

�
�� �
 �

� � 	
�
 �� ��

�
�� and SUM PREFIX�B� DIM��	 is the array

�
�� � � �

� 	 ��
� ��
�

�
��

Case �v	� SUM PREFIX�����������	� EXCLUSIVE��TRUE�	 is
h

� � � 	
i

Case �vi	� If B is the array

�
�� �
 � � �

� � � 	 ��
�� �
 �� �� ��

�
��� M is the array

�
�� T T T T T

F F T T T
T F T F F

�
��� and S is the array

�
�� T T F F F

F T T F F
T T T T T

�
��� then�

SUM PREFIX�B� DIM��� MASK�M� SEGMENT�S� EXCLUSIVE��TRUE�	 is�
�� � � � � �

� � � � 	
� �� ��
�
�

�
��

SUM PREFIX�B� DIM��� MASK�M� SEGMENT�S� EXCLUSIVE��FALSE�	 is�
�� � � � � �

� � � 	 �	
�� ��
�
�
�

�
��

SUM PREFIX�B� DIM��� MASK�M� EXCLUSIVE��TRUE�	 is

�
�� � � � � ��

� � � � ��
� �� ��
�
�

�
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� LIBRARY PROCEDURES 	�

SUM PREFIX�B� DIM��� MASK�M� EXCLUSIVE��FALSE�	 is

�
�� � � � �� ��

� � � ��
�
�� ��
�
�
�

�
��

SUM PREFIX�B� DIM��� SEGMENT�S� EXCLUSIVE��TRUE�	 is

�
�� � � � � �

� � � � 	
� ��
� �� ��

�
��

SUM PREFIX�B� DIM��� SEGMENT�S� EXCLUSIVE��FALSE�	 is�
�� � � � � �

� � �� 	 �	
��
� �� �� ��

�
��

SUM PREFIX�B� DIM��� EXCLUSIVE��TRUE�	 is

�
�� � � � � ��

� � ��
� ��
� ��
� �� ��

�
��

SUM PREFIX�B� DIM��� EXCLUSIVE��FALSE�	 is

�
�� � � � �� ��

� ��
� �� ��
��
� �� �� ��

�
��

SUM PREFIX�B� MASK�M� SEGMENT�S� EXCLUSIVE��TRUE�	 is

�
�� � �� � � �

� �� � � �
� �� � � �

�
��

SUM PREFIX�B� MASK�M� SEGMENT�S� EXCLUSIVE��FALSE�	 is�
�� � �� � � �

� �� � �� ��
�� ��
� � �

�
��

SUM PREFIX�B� MASK�M� EXCLUSIVE��TRUE�	 is

�
�� � �
 �� �� ��

� �� �� �
 ��
� ��
� �� ��

�
��

SUM PREFIX�B� MASK�M� EXCLUSIVE��FALSE�	 is

�
�� � �� �� �
 ��

� ��
� �� ��
�
 �� �� �� ��

�
��

SUM PREFIX�B� SEGMENT�S� EXCLUSIVE��TRUE�	 is

�
�� � �� � � �

� �� � � �
�
� � � �

�
��

SUM PREFIX�B� SEGMENT�S� EXCLUSIVE��FALSE�	 is

�
�� � �� � � �

�
� � �� ��
�� �

� �� ��

�
��

SUM PREFIX�B� EXCLUSIVE��TRUE�	 is

�
�� � �� �	 �� 	�

�
� �
 �� 	�
�
� �� �� ���

�
��

SUM PREFIX�B� EXCLUSIVE��FALSE�	 is

�
�� �
� �
 �� 	�

�
� �� �� ���
�� �	 �� 	� �
�

�
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

����
 Array Sorting Functions

HPF includes procedures for sorting multidimensional arrays
 The SORT UP and SORT DOWN

functions return sorted arrays� the GRADE UP and GRADE DOWN functions return sorting per�
mutations
 An array can be sorted along a given axis� or the whole array may be viewed
as a sequence in array element order
 The grade functions use stable sorts� allowing for
convenient sorting of structures by major and minor keys

��� Generic Intrinsic and Library Procedures

For all of the intrinsic and library procedures� the arguments shown are the names that
must be used for keywords when using the keyword form for actual arguments
 Many of the
argument keywords have names that are indicative of their usage� as is the case in Fortran

See Section F	����
��

����� System Inquiry Intrinsic Functions

NUMBER OF PROCESSORS�DIM	 The number of executing processors
Optional DIM

PROCESSORS SHAPE�	 The shape of the executing processor array

����� Mapping Inquiry Subroutines

HPF ALIGNMENT�ALIGNEE� LB� UB� STRIDE� AXIS MAP� IDENTITY MAP� �

NCOPIES	

Optional LB� UB� STRIDE� AXIS MAP� IDENTITY MAP� NCOPIES

HPF DISTRIBUTION�DISTRIBUTEE� AXIS TYPE� AXIS INFO� PROCESSORS RANK� �

PROCESSORS SHAPE	

Optional AXIS TYPE� AXIS INFO� PROCESSORS RANK� PROCESSORS SHAPE

HPF TEMPLATE�ALIGNEE� TEMPLATE RANK� LB� UB� AXIS TYPE� AXIS INFO� �

NUMBER ALIGNED	

Optional TEMPLATE RANK� LB� UB� AXIS TYPE� AXIS INFO�

NUMBER ALIGNED

����	 Bit Manipulation Functions

ILEN�I	 Bit length �intrinsic�
LEADZ�I	 Leading zeros
POPCNT�I	 Number of one bits
POPPAR�I	 Parity

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� GENERIC INTRINSIC AND LIBRARY PROCEDURES 		

����� Array Reduction Functions

IALL�ARRAY� DIM� MASK	 Bitwise logical AND reduction
Optional DIM� MASK

IANY�ARRAY� DIM� MASK	 Bitwise logical OR reduction
Optional DIM� MASK

IPARITY�ARRAY� DIM� MASK	 Bitwise logical EOR reduction
Optional DIM� MASK

PARITY�MASK� DIM	 Logical EOR reduction
Optional DIM

����� Array Combining Scatter Functions

ALL SCATTER�MASK� BASE� INDX� ���� INDXn	

ANY SCATTER�MASK� BASE� INDX�� ���� INDXn	
COPY SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
COUNT SCATTER�MASK� BASE� INDX�� ���� INDXn	
IALL SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
IANY SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
IPARITY SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
MAXVAL SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
MINVAL SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
PARITY SCATTER�MASK� BASE� INDX�� ���� INDXn	
PRODUCT SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK
SUM SCATTER�ARRAY� BASE� INDX�� ���� INDXn� MASK	

Optional MASK

����
 Array Pre�x and Su�x Functions

ALL PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

ALL SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

ANY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

ANY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

COPY PREFIX�ARRAY� DIM� SEGMENT	

Optional DIM� SEGMENT

COPY SUFFIX�ARRAY� DIM� SEGMENT	

Optional DIM� SEGMENT

COUNT PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

COUNT SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

IALL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

IALL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

IANY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

IANY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

IPARITY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

IPARITY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

MAXVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

MAXVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

MINVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

MINVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

PARITY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

PARITY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE	

Optional DIM� SEGMENT� EXCLUSIVE

PRODUCT PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

PRODUCT SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

SUM PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

SUM SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE	

Optional DIM� MASK� SEGMENT� EXCLUSIVE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� SPECIFICATIONS OF INTRINSIC PROCEDURES ���

����� Array Sort Functions

GRADE DOWN�ARRAY�DIM	 Permutation that sorts into descending order
Optional DIM

GRADE UP�ARRAY�DIM	 Permutation that sorts into ascending order
Optional DIM

SORT DOWN�ARRAY�DIM	 Sort into descending order
Optional DIM

SORT UP�ARRAY�DIM	 Sort into ascending order
Optional DIM

��
 Speci�cations of Intrinsic Procedures

ILEN�I�

Description� Returns one less than the length� in bits� of the two s�complement
representation of an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� If I is nonnegative� ILEN�I	 has the value dlog ��I���e� if I is
negative� ILEN�I	 has the value dlog ���I�e

Examples� ILEN��	 � �
 ILEN���	 � �� ���ILEN�N��	 rounds N up to a power
of
 �for N � ��� whereas ����ILEN�N	��	 rounds N down to a power of

 Compare
with LEADZ

The value returned is one less than the length of the two s�complement representation
of I� as the following explains
 The shortest two s�complement representation of �
is ����
 The leading zero is the required sign bit
 In ��bit two s complement� ���
represents ��

NUMBER OF PROCESSORS�DIM�

Optional Argument� DIM

Description� Returns the total number of processors available to the program or
the number of processors available to the program along a speci�ed dimension of the
processor array

Class� System inquiry function

Arguments�

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n where n is the rank of the processor
array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Result Type� Type Parameter� and Shape� Default integer scalar

Result Value� The result has a value equal to the extent of dimension DIM of the
implementation�dependent hardware processor array or� if DIM is absent� the total
number of elements of the implementation�dependent hardware processor array
 The
result is always greater than zero

Examples� For a computer with ��	
 processors arranged in a �
� by �� rectangular
grid� the value of NUMBER OF PROCESSORS�	 is ��	
� the value of NUMBER OF PROCES�

SORS�DIM��	 is �
�� and the value of NUMBER OF PROCESSORS�DIM��	 is ��
 For a
single�processor workstation� the value of NUMBER OF PROCESSORS�	 is �� since the
rank of a scalar processor array is zero� no DIM argument may be used

PROCESSORS SHAPE��

Description� Returns the shape of the implementation�dependent processor array

Class� System inquiry function

Arguments� None

Result Type� Type Parameter� and Shape� The result is a default integer
array of rank one whose size is equal to the rank of the implementation�dependent
processor array

Result Value� The value of the result is the shape of the implementation�dependent
processor array

Example� In a computer with
��� processors arranged in a hypercube� the value
of PROCESSORS SHAPE�	 is !
�
�
�
�
�
�
�
�
�
�
"
 In a computer with ��	
 proces�
sors arranged in a �
� by �� rectangular grid� the value of PROCESSORS SHAPE�	 is
!�
����"
 For a single processor workstation� the value of PROCESSORS SHAPE�	 is !"
�the size�zero array of rank one�

��� Speci�cations of Library Procedures

ALL PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical AND scan along dimension DIM of
MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ALL��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ALL PREFIX� ��T�F�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish
T F F T T

i

ALL SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by
index arrays INDX��

� INDXn
 An element of the result is true if and only if the
corresponding element of BASE and all elements of MASK scattered to that position
are true

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX������INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE has
the value ALL� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of MASK

associated with b as described in Section �
�
�

Example� ALL SCATTER� ��T� T� T� F�	� ��T� T� T�	� ���� �� �� ��	 	 ish
T F T

i
�

ALL SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical AND scan along dimension
DIM of MASK

Class� Transformational function

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ALL��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ALL SUFFIX� ��T�F�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish
F F T T T

i

ANY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical OR scan along dimension DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ANY��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ANY PREFIX� ��F�T�F�F�F�	� SEGMENT� ��F�F�F�T�T�	 	 ish
F T T F F

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

ANY SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by
index arrays INDX��

� INDXn
 An element of the result is true if and only if the
corresponding element of BASE or any element of MASK scattered to that position is
true

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX������INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE has
the value ANY� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of MASK

associated with b as described in Section �
�
�

Example� ANY SCATTER� ��T� F� F� F�	� ��F� F� T�	� ���� �� �� ��	 	 ish
T F T

i
�

ANY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical OR scan along dimension DIM

of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ANY��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ANY SUFFIX� ��F�T�F�F�F�	� SEGMENT� ��F�F�F�T�T�	 	 ish
T T F F F

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

COPY PREFIX�ARRAY� DIM� SEGMENT�

Optional Arguments� DIM� SEGMENT

Description� Computes a segmented copy scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value a� where �a�� � � � � am� is the
set� in array element order� of elements of ARRAY selected to contribute to r by the
rules stated in Section �
�
�
 Note that this set is never empty

Example� COPY PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

COPY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

� INDXn
 Each element of the result is equal to
one of the elements of ARRAY scattered to that position or� if there is none� to the
corresponding element of BASE

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number ofINDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Result Value� Let S be the set of elements of ARRAY associated with element b of
BASE as described in Secion �
�
�

If S is empty� then the element of the result corresponding to the element b of BASE
has the same value as b

If S is non�empty� then the element of the result corresponding to the element b of
BASE is the result of choosing one element from S
 HPF does not specify how the
choice is to be made� the mechanism is implementation dependent

Example� COPY SCATTER����� �� �� ��	� ���� �� ��	� ���� �� �� ��		 is
�x� y� � � where x is a member of the set f��
g and y is a member of the set
f�� �g

COPY SUFFIX�ARRAY� DIM� SEGMENT�

Optional Arguments� DIM� SEGMENT

Description� Computes a reverse� segmented copy scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value am where �a�� � � � � am� is the
set� in array element order� of elements of ARRAY selected to contribute to r by the
rules stated in Section �
�
�
 Note that this set is never empty

Example� COPY SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

COUNT PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented COUNT scan along dimension DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� The result is of type default integer
and of the same shape as MASK

Result Value� Element r of the result has the value COUNT��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� COUNT PREFIX� ��F�T�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish
� �
 �

i

COUNT SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by index
arrays INDX��

� INDXn
 Each element of the result is the sum of the corresponding
element of BASE and the number of true elements of MASK scattered to that position

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type integer
 It must not be scalar

INDX������INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value b � COUNT� ��a�� a�� ���� am�	 	� where �a�� � � � � am� are the elements
of MASK associated with b as described in Section �
�
�

Example� COUNT SCATTER���T� T� T� F�	����� ��� ��	����� �� �� ��		 ish
� � �

i
�

COUNT SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented COUNT scan along dimension DIM of
MASK

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� The result is of type default integer
and of the same shape as MASK

Result Value� Element r of the result has the value COUNT��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� COUNT SUFFIX� ��T�F�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish

 � �
 �

i

GRADE DOWN�ARRAY�DIM�

Optional Argument� DIM

Description� Produces a permutation of the indices of an array� expressed as one�
based coordinates� and sorted by descending array element values

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or character
 It must not
be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is present� the result has the same shape as ARRAY
 If DIM is absent� the result
has shape �� SIZE�SHAPE�ARRAY		� SIZE�ARRAY	 �	�

Result Value�

Case �i	� The result of
S � GRADE DOWN�ARRAY	

� SPREAD�LBOUND�ARRAY	�DIM��� NCOPIES�SIZE�ARRAY		��

is such that if one computes the rank�one array B of size SIZE�ARRAY	 by

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

FORALL �K��
SIZE�B		 B�K	�ARRAY�S���K	�S���K	�����S�N�K		

where N has the value SIZE�SHAPE�ARRAY		� then B is sorted in descend�
ing order� moreover� all of the columns of S are distinct� that is� if
j 	� m then ALL�S�
�j	 �EQ� S�
�m		 will be false
 The sort is stable�
if j � m and B�j	 � B�m	� then ARRAY�S��� j	�S�
� j	�����S�n� j		
precedes ARRAY�S��� m	�S�
�m	�����S�n�m		 in the array element or�
dering of ARRAY
 The collating sequence for an array of type CHARACTER

is that used by the Fortran intrinsic functions� namely ASCII

Case �ii	� The result of
R � GRADE DOWN�ARRAY� DIM�K	 � LBOUND�ARRAY� DIM�K	 ��

has the property that if one computes the array
B�i�� i�� � � � � ik� � � � � in	 �

ARRAY�i�� i�� � � � � R�i�� i�� � � � � ik� � � � � in	� � � � � in 	

then for all i�� i�� � � � � �omit ik�� � � � � in� the vector B�i�� i�� � � � �
� � � � � in	 is
sorted in descending order� moreover� R�i�� i�� � � � �
� � � � � in	 is a permu�
tation of all the integers between � and SIZE�ARRAY� DIM�K	� inclusive

The sort is stable� that is� if j � m and
B�i�� i�� � � � � j� � � � � in	 � B�i�� i�� � � � � m� � � �� in	� then
R�i�� i�� � � � � j� � � � � in	 � R�i�� i�� � � � � m� � � �� in	� The collating sequence
for an array of type CHARACTER is that used by the Fortran intrinsic func�
tions� namely ASCII

Examples�

Case �i	� GRADE DOWN� ����� ��� ��� ��� ����	 	 is a rank two array of shapeh
� �

i
with the value

h
� � �
 �

i

 �To produce a rank�one

result� the optional DIM � � argument must be used
�

If A is the array

�
�� � 	

� �

�
 �

�
���

then GRADE DOWN�A	 has the value

�
�

 � � �
 � �

 � �
 � � � �

�

Case �ii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then GRADE DOWN�A� DIM � �	 has the value

�
��
 � �

�
 �
� �

�
���

and GRADE DOWN�A� DIM � �	 has the value

�
��
 � �

 � �
�
 �

�
��

GRADE UP�ARRAY�DIM�

Optional Argument� DIM

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Description� Produces a permutation of the indices of an array� expressed as one�
based coordinates� and sorted by ascending array element values

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or character
 It must not
be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is present� the result has the same shape as ARRAY
 If DIM is absent� the result
has shape �� SIZE�SHAPE�ARRAY		� SIZE�ARRAY	 �	�

Result Value�

Case �i	� The result of
S � GRADE UP�ARRAY	

� SPREAD�LBOUND�ARRAY	�DIM��� NCOPIES�SIZE�ARRAY		��

is such that if one computes the rank�one array B of size SIZE�ARRAY	 by
FORALL �K��
SIZE�B		 B�K	�ARRAY�S���K	�S���K	�����S�N�K		

where N has the value SIZE�SHAPE�ARRAY		� then B is sorted in ascending
order� moreover� all of the columns of S are distinct� that is� if j 	� m then
ALL�S�
�j	 �EQ� S�
�m		 will be false
 The sort is stable� if j � m

and B�j	 � B�m	� then ARRAY�S��� j	�S�
� j	�����S�n� j		 precedes
ARRAY�S��� m	�S�
�m	�����S�n�m		 in the array element ordering of
ARRAY
 The collating sequence for an array of type CHARACTER is that used
by the Fortran intrinsic functions� namely ASCII

Case �ii	� The result of
R � GRADE UP�ARRAY� DIM�K	 � LBOUND�ARRAY� DIM�K	 � �

has the property that if one computes the array
B�i�� i�� � � � � ik� � � � � in	 �

ARRAY�i�� i�� � � � � R�i�� i�� � � � � ik� � � � � in	� � � � � in 	

then for all i�� i�� � � � � �omit ik�� � � � � in� the vector B�i�� i�� � � � �
� � � � � in	

is sorted in ascending order� moreover� R�i�� i�� � � � �
� � � � � in	 is a permu�
tation of all the integers between � and SIZE�ARRAY� DIM�K	� inclusive

The sort is stable� that is� if j � m and
B�i�� i�� � � � � j� � � � � in	 � B�i�� i�� � � � � m� � � �� in	� then
R�i�� i�� � � � � j� � � � � in	 � R�i�� i�� � � � � m� � � �� in	� The collating sequence
for an array of type CHARACTER is that used by the Fortran intrinsic func�
tions� namely ASCII

Examples�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Case �i	� GRADE UP� ����� ��� ��� ��� ����	 	 is a rank two array of shapeh
� �

i
with the value

h
�
 � � �

i

 �To produce a rank�one

result� the optional DIM � � argument must be used
�

If A is the array

�
�� � 	

� �

�
 �

�
���

then GRADE UP�A	 has the value

�
� � � �

 �
 �
� �
 � � � �

�

Case �ii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then GRADE UP�A� DIM � �	 has the value

�
�� � � �

�

 � �

�
���

and GRADE UP�A� DIM � �	 has the value

�
�� � �

� �

�
 �

�
��

HPF ALIGNMENT�ALIGNEE� LB� UB� STRIDE� AXIS MAP� IDEN�
TITY MAP� NCOPIES�

Optional Arguments� LB� UB� STRIDE� AXIS MAP� IDENTITY MAP� NCOPIES

Description� Returns information regarding the correspondence of a variable and
the align�target �array or template� to which it is ultimately aligned

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued
 It
must not be an assumed�size array
 If it is a member of an
aggregate variable group� then it must be an aggregate
cover of the group
 �See Section �
� for the de�nitions
of �aggregate variable group� and �aggregate cover
�� It
must not be a pointer that is disassociated or an allocat�
able array that is not allocated
 It is an INTENT �IN	

argument

If ALIGNEE is a pointer� information about the align�
ment of its target is returned
 The target must not
be an assumed�size dummy argument or a section of an
assumed�size dummy argument

LB �optional� must be of type default integer and of rank one
 Its
size must be at least equal to the rank of ALIGNEE
 It
is an INTENT �OUT	 argument
 The �rst element of the
ith axis of ALIGNEE is ultimately aligned to the LB�i�th

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

align�target element along the axis of the align�target as�
sociated with the ith axis of ALIGNEE
 If the ith axis of
ALIGNEE is a collapsed axis� LB�i� is implementation de�
pendent

UB �optional� must be of type default integer and of rank one
 Its
size must be at least equal to the rank of ALIGNEE
 It
is an INTENT �OUT	 argument
 The last element of the
ith axis of ALIGNEE is ultimately aligned to the UB�i�th

align�target element along the axis of the align�target as�
sociated with the ith axis of ALIGNEE
 If the ith axis of
ALIGNEE is a collapsed axis� UB�i� is implementation de�
pendent

STRIDE �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT	 argument
 The ith element of STRIDE is
set to the stride used in aligning the elements of ALIGNEE
along its ith axis
 If the ith axis of ALIGNEE is a collapsed
axis� STRIDE�i� is zero

AXIS MAP �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT	 argument
 The ith element of AXIS MAP

is set to the align�target axis associated with the ith axis
of ALIGNEE
 If the ith axis of ALIGNEE is a collapsed axis�
AXIS MAP�i	 is �

IDENTITY MAP �optional� must be scalar and of type default logical
 It is an INTENT

�OUT	 argument
 It is set to true if the ultimate align�
target associated with ALIGNEE has a shape identical to
ALIGNEE� the axes are mapped using the identity per�
mutation� and the strides are all positive �and therefore
equal to �� because of the shape constraint�� otherwise it
is set to false
 If a variable has not appeared as an alignee
in an ALIGN or REALIGN directive� and does not have the
INHERIT attribute� then IDENTITY MAP must be true� it
can be true in other circumstances as well

NCOPIES �optional� must be scalar and of type default integer
 It is an INTENT

�OUT	 argument
 It is set to the number of copies of
ALIGNEE that are ultimately aligned to align�target
 For
a non�replicated variable� it is set to one

Examples� If ALIGNEE is scalar� then no elements of LB� UB� STRIDE� or AXIS MAP

are set

Given the declarations

REAL PI � ���������

DIMENSION A������	�B������	�C���������	�D���	

HPF� TEMPLATE T������	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

HPF� ALIGN A�I�
	 WITH T�����I��
��
�	

HPF� ALIGN C�I���J	 WITH T�J����I	

HPF� ALIGN D�I	 WITH T�I��	

HPF� PROCESSORS PROCS����	� SCALARPROC

HPF� DISTRIBUTE T�BLOCK�BLOCK	 ONTO PROCS

HPF� DISTRIBUTE B�CYCLIC�BLOCK	 ONTO PROCS

HPF� DISTRIBUTE ONTO SCALARPROC

 PI

assuming that the actual mappings are as the directives specify� the results of calling
HPF ALIGNMENT are�

A B C D

LB !��
" !�� �" !
�� N�A� �" !�"
UB !���
�" !
�� ��" ! �� N�A� ��" !��"
STRIDE !��
" !�� �" !��� �� �" !�"
AXIS MAP !��
" !��
" !
� �� �" !�"
IDENTITY MAP false true false false

NCOPIES � � � �

where �N�A� denotes a implementation�dependent result
 To illustrate the use of NCOPIES�
consider�

LOGICAL BOZO������	�RONALD�MCDONALD���	

HPF� TEMPLATE EMMETT�KELLY��������	

HPF� ALIGN RONALD�MCDONALD�I	 WITH BOZO�I��	

HPF� ALIGN BOZO�J�K	 WITH EMMETT�KELLY�J���K	

CALL HPF ALIGNMENT�RONALD MCDONALD� NCOPIES � NC	 sets NC to
�
 Now consider�

LOGICAL BOZO������	�RONALD�MCDONALD���	

HPF� TEMPLATE WILLIE�WHISTLE����	

HPF� ALIGN RONALD�MCDONALD�I	 WITH BOZO�I��	

HPF� ALIGN BOZO�J��	 WITH WILLIE�WHISTLE���J	

CALL HPF ALIGNMENT�RONALD MCDONALD� NCOPIES � NC	 sets NC to one

HPF DISTRIBUTION�DISTRIBUTEE� AXIS TYPE�
AXIS INFO� PROCESSORS RANK� PROCESSORS SHAPE�

Optional Arguments� AXIS TYPE� AXIS INFO� PROCESSORS RANK�
PROCESSORS SHAPE

Description� The HPF DISTRIBUTION subroutine returns information regarding the
distribution of the ultimate align�target associated with a variable

Class� Mapping inquiry subroutine

Arguments�

DISTRIBUTEE may be of any type
 It may be scalar or array valued
 It
must not be an assumed�size array
 If it is a member of an
aggregate variable group� then it must be an aggregate

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

cover of the group
 �See Section �
� for the de�nitions
of �aggregate variable group� and �aggregate cover
�� It
must not be a pointer that is disassociated or an allocat�
able array that is not allocated
 It is an INTENT �IN	

argument

If DISTRIBUTEE is a pointer� information about the dis�
tribution of its target is returned
 The target must not
be an assumed�size dummy argument or a section of an
assumed�size dummy argument

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least 	 in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned� this is the value re�
turned by HPF TEMPLATE in TEMPLATE RANK�
 It is an

INTENT �OUT	 argument
 Its ith element contains infor�
mation on the distribution of the ith axis of that align�
target
 The following values are de�ned by HPF �imple�
mentations may de�ne other values��

�BLOCK� The axis is distributed BLOCK
 The correspond�
ing element of AXIS INFO contains the block size

�COLLAPSED� The axis is collapsed �distributed with the
��� speci�cation�
 The value of the corresponding
element of AXIS INFO is implementation dependent

�CYCLIC� The axis is distributed CYCLIC
 The corre�
sponding element of AXIS INFO contains the block
size

AXIS INFO �optional� must be a rank one array of type default integer� and size
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned �which is returned by
HPF TEMPLATE in TEMPLATE RANK�
 It is an INTENT �OUT	

argument
 The ith element of AXIS INFO contains the
block size in the block or cyclic distribution of the ith axis
of the ultimate align�target of DISTRIBUTEE� if that axis
is a collapsed axis� then the value is implementation de�
pendent

PROCESSORS RANK �optional� must be scalar and of type default integer
 It is set
to the rank of the processor arrangement onto which
DISTRIBUTEE is distributed
 It is an INTENT �OUT	 ar�
gument

PROCESSORS SHAPE �optional� must be a rank one array of type default integer and
of size at least equal to the value� m� returned in PROCES�
SORS RANK
 It is an INTENT �OUT	 argument
 Its �rst m

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

elements are set to the shape of the processor arrange�
ment onto which DISTRIBUTEE is mapped
 �It may be
necessary to call HPF DISTRIBUTION twice� the �rst time
to obtain the value of PROCESSORS RANK in order to allo�
cate PROCESSORS SHAPE
�

Example� Given the declarations in the example illustrating HPF ALIGNMENT� and
assuming that the actual mappings are as the directives specify� the results of
HPF DISTRIBUTION are�

A B PI

AXIS TYPE !�BLOCK�� �BLOCK�" !�CYCLIC�� �BLOCK�" ! "
AXIS INFO !��� ��" !�� ��" ! "
PROCESSORS SHAPE !��
" !
�
" ! "
PROCESSORS RANK

 �

HPF TEMPLATE�ALIGNEE� TEMPLATE RANK� LB� UB�
AXIS TYPE� AXIS INFO� NUMBER ALIGNED�

Optional Arguments� LB� UB� AXIS TYPE� AXIS INFO� NUMBER ALIGNED�
TEMPLATE RANK

Description� The HPF TEMPLATE subroutine returns information regarding the ul�
timate align�target associated with a variable� HPF TEMPLATE returns information
concerning the variable from the point of view of its ultimate align�target� while
HPF ALIGNMENT returns information from the variable s point of view

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued
 It
must not be an assumed�size array
 If it is a member of an
aggregate variable group� then it must be an aggregate
cover of the group
 �See Section �
� for the de�nitions
of �aggregate variable group� and �aggregate cover
�� It
must not be a pointer that is disassociated or an allocat�
able array that is not allocated
 It is an INTENT �IN	

argument

If ALIGNEE is a pointer� information about the align�
ment of its target is returned
 The target must not
be an assumed�size dummy argument or a section of an
assumed�size dummy argument

TEMPLATE RANK �optional� must be scalar and of type default integer
 It is an INTENT

�OUT	 argument
 It is set to the rank of the ultimate
align�target
 This can be di�erent from the rank of the
ALIGNEE� due to collapsing and replicating

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

LB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 The ith element of LB contains the declared align�
target lower bound for the ith template axis

UB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 The ith element of UB contains the declared align�
target upper bound for the ith template axis

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least �� in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
ALIGNEE is ultimately aligned� this is the value returned
in TEMPLATE RANK
 It is an INTENT �OUT	 argument
 The
ith element of AXIS TYPE contains information about the
ith axis of the align�target
 The following values are de�
�ned by HPF �implementations may de�ne other values��

�NORMAL� The align�target axis has an axis of ALIGNEE

aligned to it
 For elements of AXIS TYPE assigned
this value� the corresponding element of AXIS INFO

is set to the number of the axis of ALIGNEE aligned
to this align�target axis

�REPLICATED� ALIGNEE is replicated along this align�tar�
get axis
 For elements of AXIS TYPE assigned this
value� the corresponding element of AXIS INFO is set
to the number of copies of ALIGNEE along this align�
target axis

�SINGLE� ALIGNEE is aligned with one coordinate of the
align�target axis
 For elements of AXIS TYPE assigned
this value� the corresponding element of AXIS INFO

is set to the align�target coordinate to which ALIGNEE

is aligned

AXIS INFO �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 See the description of AXIS TYPE above

NUMBER ALIGNED �optional� must be scalar and of type default integer
 It is an
INTENT �OUT	 argument
 It is set to the total number

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

of variables aligned to the ultimate align�target
 This is
the number of variables that are moved if the align�target
is redistributed

Example� Given the declarations in the example illustrating HPF ALIGNMENT� and
assuming that the actual mappings are as the directives specify� the results of
HPF TEMPLATE are�

A C D

LB !�� �" !�� �" !�� �"
UB !���
�" !���
�" !���
�"
AXIS TYPE !�NORMAL�� !�NORMAL�� !�NORMAL��

�NORMAL�" �NORMAL�" �SINGLE�"
AXIS INFO !��
" !�� �" !�� �"
NUMBER ALIGNED � � �
TEMPLATE RANK

IALL�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical AND reduction along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i	� The result of IALL�ARRAY	 is the IAND reduction of all the elements of
ARRAY
 If ARRAY has size zero� the result is equal to a implementation�
dependent integer value x with the property that IAND�I� x	 � I for all
integers I of the same kind type parameter as ARRAY
 See Section �
�
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

Case �ii	� The result of IALL�ARRAY� MASK�MASK	 is the IAND reduction of all the el�
ements of ARRAY corresponding to the true elements of MASK� if MASK con�
tains no true elements� the result is equal to a implementation�dependent
integer value x �of the same kind type parameter as ARRAY� with the
property that IAND�I� x	 � I for all integers I

Case �iii	� If ARRAY has rank one� IALL�ARRAY� DIM !�MASK"	 has a value equal to
that of IALL�ARRAY !�MASK"	
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IALL�ARRAY� DIM !�MASK"	 is
equal to IALL�ARRAY�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	
��MASK � MASK�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	 	

Examples�

Case �i	� The value of IALL����� �� �� ��		 is

Case �ii	� The value of IALL�C� MASK � BTEST�C��		 is the IAND reduction of the
odd elements of C

Case �iii	� If B is the array

�

 � �
� � �

�
� then IALL�B� DIM � �	 is

h

 � �

i
and IALL�B� DIM � �	 is

h
� �

i

IALL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical AND scan along dimension DIM

of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IALL��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IALL PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

IALL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 The jth bit of an element of the result is
� if and only if the jth bits of the corresponding element of BASE and of the elements
of ARRAY scattered to that position are all equal to �

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value IALL� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� IALL SCATTER����� �� �� ��	� ���� �� ��	� ���� �� �� ��		 ish
� � �

i
�

IALL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical AND scan along di�
mension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IALL��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IALL SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
�

 � �

i

IANY�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical OR reduction along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i	� The result of IANY�ARRAY	 is the IOR reduction of all the elements of
ARRAY
 If ARRAY has size zero� the result has the value zero
 See Sec�
tion �
�
�

Case �ii	� The result of IANY�ARRAY� MASK�MASK	 is the IOR reduction of all the
elements of ARRAY corresponding to the true elements of MASK� if MASK

contains no true elements� the result is zero

Case �iii	� If ARRAY has rank one� IANY�ARRAY� DIM !�MASK"	 has a value equal to
that of IANY�ARRAY !�MASK"	
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IANY�ARRAY� DIM !�MASK"	 is
equal to IANY�ARRAY�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	

!�MASK � MASK�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	"	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Examples�

Case �i	� The value of IANY����� �� �� ��		 is ��

Case �ii	� The value of IANY�C� MASK � BTEST�C��		 is the IOR reduction of the
odd elements of C

Case �iii	� If B is the array

�

 � �
� �

�
� then IANY�B� DIM � �	 is

h

 � �

i
and IANY�B� DIM � �	 is

h
� �

i

IANY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical OR scan along dimension DIM

of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IANY��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IANY PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � �
 �

i

IANY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 The jth bit of an element of the result
is � if and only if the jth bit of the corresponding element of BASE or of any of the
elements of ARRAY scattered to that position is equal to �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value IANY� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� IANY SCATTER����� �� �� ��	� ���� �� ��	� ���� �� �� ��		 ish
� � �

i
�

IANY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical OR scan along dimen�
sion DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IANY��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IANY SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

IPARITY�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical exclusive OR reduction along dimension
DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i	� The result of IPARITY�ARRAY	 is the IEOR reduction of all the elements
of ARRAY
 If ARRAY has size zero� the result has the value zero
 See
Section �
�
�

Case �ii	� The result of IPARITY�ARRAY� MASK�MASK	 is the IEOR reduction of all
the elements of ARRAY corresponding to the true elements of MASK� if MASK
contains no true elements� the result is zero

Case �iii	� If ARRAY has rank one� IPARITY�ARRAY� DIM !�MASK"	 has a value equal
to that of IPARITY�ARRAY !�MASK"	
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IPARITY�ARRAY� DIM !�MASK"	 is
equal to IPARITY�ARRAY�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	
!�MASK � MASK�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn	"	

Examples�

Case �i	� The value of IPARITY������ �� �� ��		 is �

Case �ii	� The value of IPARITY�C� MASK � BTEST�C��		 is the IEOR reduction of
the odd elements of C

Case �iii	� If B is the array

�

 � �
� �

�
� then IPARITY�B� DIM � �	 is

h

 � �

i
and IPARITY�B� DIM � �	 is

h
� �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

IPARITY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical exclusive OR scan along di�
mension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IPARITY��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� IPARITY PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

IPARITY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the re�
sult indicated by index arrays INDX��

 � INDXn
 The jth bit of an element of the
result is � if and only if there are an odd number of ones among the jth bits of the
corresponding element of BASE and the elements of ARRAY scattered to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value IPARITY� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements
of ARRAY associated with b as described in Section �
�
�

Example� IPARITY SCATTER�����������	� ��������	� ����������		 ish
� � �

i
�

IPARITY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical exclusive OR scan
along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IPARITY��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� IPARITY SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � �

i

LEADZ�I�

Description� Return the number of leading zeros in an integer

Class� Elemental function

Argument� I must be of type integer

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

Result Type and Type Parameter� Same as I

Result Value� The result is a count of the number of leading ��bits in the integer
I
 The model for the interpretation of an integer as a sequence of bits is in Section
F	����
�
� LEADZ��	 is BIT SIZE�I	
 For nonzero I� if the leftmost one bit of I occurs
in position k � � �where the rightmost bit is bit �� then LEADZ�I	 is BIT SIZE�I	 �
k

Examples� LEADZ��	 has the value BIT SIZE��	 � �
 For scalar I� LEADZ�I	 �EQ�

MINVAL� �� �J� J��� BIT SIZE�I	 	 �	� MASK�M 	 where M ��� �BTEST�I�J	�

J�BIT SIZE�I	��� �� ��	� �TRUE� �	� A given integer I may produce di�erent
results from LEADZ�I	� depending on the number of bits in the representation of the
integer �BIT SIZE�I	�
 That is because LEADZ counts bits from the most signi�cant
bit
 Compare with ILEN

MAXVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented MAXVAL scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MAXVAL��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MAXVAL PREFIX� �������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � �
 �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

MAXVAL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 Each element of the result is assigned
the maximum value of the corresponding element of BASE and the elements of ARRAY
scattered to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value MAXVAL� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� MAXVAL SCATTER����� �� �� ��	� ���� ��� ��	� ���� �� �� ��		

is
h
� � �

i
�

MAXVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented MAXVAL scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES �
	

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MAXVAL��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MAXVAL SUFFIX� �������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � �� � �

i

MINVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented MINVAL scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MINVAL��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MINVAL PREFIX� �������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � �� � �

i

MINVAL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 Each element of the result is assigned
the minimum value of the corresponding element of BASE and the elements of ARRAY
scattered to that position

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value MINVAL� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� MINVAL SCATTER��� ��������� �	� �� ����� �	� �� ������� �		

is
h
�� �� �

i
�

MINVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented MINVAL scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MINVAL��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MINVAL SUFFIX� �������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
�� �� �� � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

PARITY�MASK� DIM�

Optional Argument� DIM

Description� Determine whether an odd number of values are true in MASK along
dimension DIM

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type logical with
the same kind type parameter as MASK
 It is scalar if DIM is absent or if MASK has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of MASK

Result Value�

Case �i	� The result of PARITY�MASK	 is the �NEQV� reduction of all the elements
of MASK
 If MASK has size zero� the result has the value false
 See Sec�
tion �
�
�

Case �ii	� If MASK has rank one� PARITY�MASK� DIM	 has a value equal to that of
PARITY�MASK	
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of PARITY�MASK� DIM	 is equal to
PARITY�MASK�s�� s�� � � � � sDIM���
� sDIM��� � � � � sn		

Examples�

Case �i	� The value of PARITY���T� T� T� F�		 is true

Case �ii	� If B is the array

�
T T F
T T T

�
� then PARITY�B� DIM � �	 is

h
F F T

i
and PARITY�B� DIM � �	 is

h
F T

i

PARITY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical exclusive OR scan along dimension
DIM of MASK

Class� Transformational function

Arguments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value PARITY��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PARITY PREFIX� ��T�F�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish
T T F T F

i

PARITY SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by index
arrays INDX��

 � INDXn
 An element of the result is true if and only if the number
of true values among the corresponding element of BASE and the elements of MASK

scattered to that position is odd

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX������INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value PARITY� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of
MASK associated with b as described in Section �
�
�

Example� PARITY SCATTER��� T�T�T�T �	� �� T�F�F �	� �� ������� �		 ish
F T F

i
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

PARITY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical exclusive OR scan along di�
mension DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value PARITY��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PARITY SUFFIX� ��T�F�T�T�T�	� SEGMENT� ��F�F�F�T�T�	 	 ish
F T T F T

i

POPCNT�I�

Description� Return the number of one bits in an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� POPCNT�I	 is the number of one bits in the binary representation of
the integer I
 The model for the interpretation of an integer as a sequence of bits is
in Section F	����
�
�

Example� POPCNT�I	 � COUNT��� �BTEST�I�J	� J��� BIT SIZE�I	��	 �		� for
scalar I

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

POPPAR�I�

Description� Return the parity of an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� POPPAR�I	 is � if there are an odd number of one bits in I and zero
if there are an even number
 The model for the interpretation of an integer as a
sequence of bits is in Section F	����
�
�

Example� For scalar I� POPPAR�I	 � MERGE�����BTEST�POPCNT�I	��		�

PRODUCT PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented PRODUCT scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value PRODUCT��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PRODUCT PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
�
 � �
�

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

PRODUCT SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 Each element of the result is equal
to the product of the corresponding element of BASE and the elements of ARRAY

scattered to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE

has the value PRODUCT� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements
of ARRAY associated with b as described in Section �
�
�

Example� PRODUCT SCATTER��� ������� �	� �� ������ �	� �� ������� �		

is
h
� ��� �

i
�

PRODUCT SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented PRODUCT scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value PRODUCT��� a�� � � � � am �		

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PRODUCT SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � �
� �

i

SORT DOWN�ARRAY�DIM�

Optional Argument� DIM

Description� Sort by descending value

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or character
 It must not
be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result has the same shape�
type� and type parameter as ARRAY

Result Value�

Case �i	� The result of SORT DOWN�ARRAY	� when ARRAY is one�dimensional� is a
vector of the same shape as ARRAY� containing the same elements �with
the same number of instances� but sorted in descending element order

The collating sequence for an array of type CHARACTER is that used by
the Fortran intrinsic functions� namely ASCII

Case �ii	� The result of SORT DOWN�ARRAY	 for a multi�dimensional ARRAY is the
result that would be obtained by reshaping ARRAY to a rank�one array
V using array element order� sorting that rank�one array in descending
order� as in Case�i�� and �nally restoring the result to the original shape

That is� it gives the same result as RESHAPE� SORT DOWN�V	� SHAPE �

SHAPE�ARRAY	 	� where V � RESHAPE� ARRAY� SHAPE � �� M �	 and M

� SIZE�ARRAY	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Case �iii	� The result of SORT DOWN�ARRAY� DIM�k	 contains the same elements as A�
but each one�dimensional array section of the form ARRAY�i�� i�� � � � � ik��� �
� ik��� � � � � in�� where n is the rank of ARRAY� has been sorted in descending
element order� as in Case�i� above

Examples�

Case �i	� SORT DOWN� ����� ��� ��� ��� ����	 	

has the value
h

�� �� ��
� ���
i

Case �ii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then SORT DOWN�A	 has the value

�
�� 	 �

�
 �
�
 �

�
���

Case �iii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then SORT DOWN�A� DIM � �	 has the value

�
�� � 	 �

� �

�

�
��

SORT UP�ARRAY�DIM�

Optional Argument� DIM

Description� Sort by ascending value

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or character
 It must not
be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result has the same shape�
type� and type parameter as ARRAY

Result Value�

Case �i	� The result of SORT UP�ARRAY	� when ARRAY is one�dimensional� is a vector
of the same shape as ARRAY� containing the same elements �with the same
number of instances� but sorted in ascending element order
 The collating
sequence for an array of type CHARACTER is that used by the Fortran
intrinsic functions� namely ASCII

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Case �ii	� The result of SORT UP�ARRAY	 for a multi�dimensional ARRAY is the re�
sult that would be obtained by reshaping ARRAY to a rank�one array V

using array element order� sorting that rank�one array in ascending or�
der� as in Case�i�� and �nally restoring the result to the original shape

That is� it gives the same result as RESHAPE� SORT UP�V	� SHAPE �

SHAPE�ARRAY	 	� where V � RESHAPE� ARRAY� SHAPE � �� M �	 and
M � SIZE�ARRAY	

Case �iii	� The result of SORT UP�ARRAY� DIM�k	 contains the same elements as A�
but each one�dimensional array section of the form ARRAY�i�� i�� � � � � ik��� �
� ik��� � � � � in�� where n is the rank of ARRAY� has been sorted in ascending
element order� as in Case�i� above

Examples�

Case �i	� SORT UP� ����� ��� ��� ��� ����	 	

has the value
h

���
� �� �� ��
i

Case �ii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then SORT UP�A	 has the value

�
�� �
 �

�
 �

 � 	

�
���

Case �iii	� If A is the array

�
�� � 	

� �

�
 �

�
���

then SORT UP�A� DIM � �	 has the value

�
�� �

� �

� 	 �

�
��

SUM PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented SUM scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value SUM��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� SUM PREFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � � 	

i

SUM SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

 � INDXn
 Each element of the result is equal to
the sum of the corresponding element of BASE and the elements of ARRAY scattered
to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX������INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE has
the value SUM� ��a�� a�� ���� am� b�	 	� where �a�� � � � � am� are the elements of ARRAY
associated with b as described in Section �
�
�

Example� SUM SCATTER����� �� �� ��	� ���� ��� ��	� ���� �� �� ��		 ish
� �� �

i
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

SUM SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented SUM scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value SUM��� a�� � � � � am �		 where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� SUM SUFFIX� ������������	� SEGMENT� ��F�F�F�T�T�	 	 ish
� � � 	 �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Part III

HPF Approved Extensions

This major section describes the syntax and semantics of features of approved

extensions to High Performance Fortran� In most cases� these features build
on concepts found in HPF itself� it may therefore be necessary to refer back to

Parts I and II for background information�

���

Section 	

Approved Extensions for
Data Mapping

This section describes a set of data mapping features that extend the capabilities provided by
the base set as described in Section �
 These extensions can be divided into two categories

The �rst set of extensions provides the user greater control over the mapping of the data

These include directives for dynamic remapping of data� which allow the user to redistribute
and realign at run time data that has been declared DYNAMIC
 The ONTO clause used in
the DISTRIBUTE directive is extended to allow direct distribution to subsets of processors

Explicit mapping of pointers and components of derived types are also introduced
 Two
new distributions are included� the GEN BLOCK distribution� which generalizes the block
distribution� and the INDIRECT distribution� which allows the mapping of individual array
elements to be speci�ed through a mapping array

The programmer can use the second set of extensions to provide the compiler with
information useful for generating e�cient code
 This category includes the RANGE directive�
which allows the user to specify the range of distributions that a dynamically distributed
array� a pointer� or a dummy argument may have
 The SHADOW directive allows the user to
specify the amount of additional space required on a processor to accommodate non�local
elements in a nearest�neighbor computation

Since this section deals with extensions� we repeat some of the sections of Sections �
and �� providing new rules and extending old ones where necessary
 In particular� subsec�
tions �
��� �
�� and �
�� extend the corresponding subsections in Section � based on the �
approved extensions described here

��� Extended Model

The fundamental model for allocation of data to abstract processors still remains a two�level
mapping as described in Section �
 However� it is extended to allow the dynamic remapping �

of the data objects as illustrated by the following diagram�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

��
��

��
��

��
��

��
��

� � �

Arrays or

other objects

Group of

aligned objects

Abstract

processors as a

user�declared

Cartesian mesh

Physical

processors

ALIGN

�static� or

REALIGN

�dynamic�

DISTRIBUTE

�static� or

REDISTRIBUTE

�dynamic�

Optional

implementation�

dependent

directive

Thus� objects can be remapped at execution time using the executable directives
REALIGN and REDISTRIBUTE
 Any object that is the root of an alignment tree �i
e
� is not
explicitly aligned to another object� can be explicitly redistributed
 Redistributing such an
object causes all objects ultimately aligned with it also to be redistributed so as to maintain
the alignment relationships

Any object that is not a root of an alignment tree can be explicitly realigned but
not explicitly redistributed
 Such a realignment does not change the mapping of any other
object
 Note that such remapping of data may require communication among the processors

By analogy with the Fortran ALLOCATABLE attribute� HPF includes the DYNAMIC at�
tribute
 It is not permitted to REALIGN an array that has not been declared DYNAMIC

Similarly� it is not permitted to REDISTRIBUTE an array or template that has not been
declared DYNAMIC

Saved local variables� variables in common� and variables accessed by use association
must not be implicitly remapped �e
g
� by having variable distribution formats or being
aligned with entities having variable distribution formats�
 Of these three categories of
variables� only variables accessed by use association may have the DYNAMIC attribute

As in Section �
�� an object is considered to be explicitly mapped if it appears in an HPF
mapping directive within the scoping unit in which it is declared� otherwise it is implicitly
mapped
 The de�nition of a mapping directive in Section �
� is extended as follows� A
mapping directive is an ALIGN� DISTRIBUTE� INHERIT� DYNAMIC� RANGE� or SHADOW directive��

or any directive that confers an alignment� a distribution� or the INHERIT� DYNAMIC� RANGE�
or SHADOW attributes

��� Syntax of Attributed Forms of Extended Data Mapping Directives

Like other mapping directives� the executable directives REALIGN and REDISTRIBUTE also
come in two forms �statement form and attribute form� but may not be combined with
other attributes in a single directive
 The RANGE and SHADOW attributes may be combined
with other attributes in a single directive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE REDISTRIBUTE DIRECTIVE ���

H��� combined�attribute�extended is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list 	

or DYNAMIC

or RANGE range�attr�stuff
or SHADOW shadow�attr�stuff
or SUBSET

Constraint� The SUBSET attribute may be applied only to a processors arrangement

The SUBSET attribute is discussed in Section 	� the rest are discussed below

��	 The REDISTRIBUTE Directive

The REDISTRIBUTE directive is similar to the DISTRIBUTE directive but is considered ex�
ecutable
 An object or template may be redistributed at any time� provided it has been
declared DYNAMIC �see Section �
��
 Any other objects currently ultimately aligned with
an array �or template� when it is redistributed are also remapped to re�ect the new distri�
bution� in such a way as to preserve alignment relationships �see Section �
��
 �This can �
require a lot of computational and communication e�ort at run time� the programmer must
take care when using this feature
�

The DISTRIBUTE directive may appear only in the speci�cation�part of a scoping unit

The REDISTRIBUTE directive may appear only in the execution�part of a scoping unit
 The
principal di�erence between DISTRIBUTE and REDISTRIBUTE is that DISTRIBUTE must con�
tain only a speci�cation�expr as the argument to a distribution format such as BLOCK or
CYCLIC� whereas in REDISTRIBUTE such an argument may be any integer expression
 An�
other di�erence is that DISTRIBUTE is an attribute� and so can be combined with other
attributes as part of a combined�directive� whereas REDISTRIBUTE is not an attribute �al�
though a REDISTRIBUTE statement may be written in the style of attributed syntax� using
�

� punctuation�

The syntax of the REDISTRIBUTE directive is�

H��
 redistribute�directive is REDISTRIBUTE distributee dist�directive�stuff
or REDISTRIBUTE dist�attribute�stuff

distributee�list

Constraint� A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute �see Section �
��

Constraint� A distributee in a REDISTRIBUTE directive may not appear as an alignee in an
ALIGN or REALIGN directive

Constraint� Neither the dist�format�clause nor the dist�target in a REDISTRIBUTE directive
may begin with ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

Note that� although an object may not have both the INHERIT attribute and the
DISTRIBUTE attribute� any object�whether or not it has the INHERIT attribute�may ap�
pear as a distributee in a REDISTRIBUTE directive� provided that it has the DYNAMIC attribute
and that it does not appear as an alignee in a ALIGN or REALIGN directive

If a range directive �see Section �
��� has been used to restrict the set of distribution
formats allowed for a distributee� then the new mapping must match one of the formats
speci�ed in the range directive

The statement form of a REDISTRIBUTE directive may be considered an abbreviation
for an attributed form that happens to mention only one distributee� for example�

HPF� REDISTRIBUTE distributee � dist�format�list 	 ONTO dist�target

is equivalent to

HPF� REDISTRIBUTE � dist�format�list 	 ONTO dist�target

 distributee

��� The REALIGN Directive

The REALIGN directive is similar to the ALIGN directive but is considered executable
 An
array �or template� may be realigned at any time� provided it has been declared DYNAMIC

�see Section �
��
 Unlike redistribution �also in Section �
��� realigning a data object does
not cause any other object to be remapped
 �However� realignment of even a single object�
if it is large� can require a lot of computational and communication e�ort at run time� the
programmer must take care when using this feature
�

The ALIGN directive may appear only in the speci�cation�part of a scoping unit
 The
REALIGN directive is similar but may appear only in the execution�part of a scoping unit

The principal di�erence between ALIGN and REALIGN is that ALIGN must contain only a
speci�cation�expr as a subscript or in a subscript�triplet� whereas in REALIGN an expression
as a subscript or in a subscript�triplet need not be a speci�cation�expr
 Another di�erence
is that ALIGN is an attribute� and so can be combined with other attributes as part of a
combined�directive� whereas REALIGN is not an attribute �although a REALIGN statement
may be written in the style of attributed syntax� using �

� punctuation�

The syntax of REALIGN is as follows�

H��� realign�directive is REALIGN alignee align�directive�stuff
or REALIGN align�attribute�stuff

 alignee�list

Constraint� Any alignee that appears in a REALIGN directive must have the DYNAMIC at�
tribute �see Section �
��

Constraint� If the align�target speci�ed in the align�with�clause has the DYNAMIC attribute�
then each alignee must also have the DYNAMIC attribute

Constraint� An alignee in a REALIGN directive may not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive

Note that� although an object may not have both the INHERIT attribute and the ALIGN
attribute� any object�whether or not it has the INHERIT attribute�may appear as an
alignee in a REALIGN directive� provided it has the DYNAMIC attribute and that it does not
appear as a distributee in a DISTRIBUTE or REDISTRIBUTE directive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE DYNAMIC DIRECTIVE ���

If a range directive �see Section �
��� has been used to restrict the set of distribution
formats allowed for an alignee� then the new mapping must match one of the formats
speci�ed in the range directive

��� The DYNAMIC Directive

The DYNAMIC attribute speci�es that an object may be dynamically realigned or redis�
tributed

H��� dynamic�directive is DYNAMIC alignee�or�distributee�list

H��� alignee�or�distributee is alignee
or distributee

Constraint� An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object �or template� that is DYNAMIC
 �To get this kind of e�ect� modules
must be used instead of COMMON blocks
�

Constraint� A component of a derived type may have the DYNAMIC attribute only if it also
has the POINTER attribute
 �See Section �
	 for further discussion
�

Constraint� An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object �or template� that is DYNAMIC

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC

attribute
 A REDISTRIBUTE directive may not be applied to a distributee that does not have
the DYNAMIC attribute

A DYNAMIC directive may be combined with other directives� with the attributes stated
in any order� consistent with the Fortran attribute syntax

Examples�

HPF� DYNAMIC A�B�C�D�E

HPF� DYNAMIC

 A�B�C�D�E

HPF� DYNAMIC� ALIGN WITH SNEEZY

 X�Y�Z

HPF� ALIGN WITH SNEEZY� DYNAMIC

 X�Y�Z

HPF� DYNAMIC� DISTRIBUTE�BLOCK� BLOCK	

 X�Y

HPF� DISTRIBUTE�BLOCK� BLOCK	� DYNAMIC

 X�Y

The �rst two examples mean exactly the same thing
 The next two examples mean exactly
the same second thing
 The last two examples mean exactly the same third thing

The three directives

HPF� TEMPLATE A������	�B������	�C������	�D������	

HPF� DISTRIBUTE�BLOCK� BLOCK	 ONTO P

 A�B�C�D

HPF� DYNAMIC A�B�C�D

may be combined into a single directive as follows�

HPF� TEMPLATE� DISTRIBUTE�BLOCK� BLOCK	 ONTO P� �

HPF� DIMENSION������	�DYNAMIC

 A�B�C�D

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

An ALLOCATABLE object may also be given the DYNAMIC attribute
 If an ALLOCATE state�
ment is immediately followed by REDISTRIBUTE and�or REALIGN directives� the meaning in
principle is that the array is �rst created with the statically declared mapping� if any� then
immediately remapped
 In practice there is an obvious optimization� create the array in
the processors to which it is about to be remapped� in a single step
 HPF implementors are
strongly encouraged to implement this optimization and HPF programmers are encouraged
to rely upon it
 Here is an example�

REAL�ALLOCATABLE�
�
	

 TINKER� EVERS

HPF� DYNAMIC

 TINKER� EVERS

REAL� ALLOCATABLE

 CHANCE�
	

HPF� DISTRIBUTE�BLOCK	�DYNAMIC

 CHANCE

���

READ ��M�N

ALLOCATE�TINKER�N�M�N�M		

HPF� REDISTRIBUTE TINKER�CYCLIC� BLOCK	

ALLOCATE�EVERS�N�N		

HPF� REALIGN EVERS�
�
	 WITH TINKER�M

M��

M	

ALLOCATE�CHANCE������		

HPF� REDISTRIBUTE CHANCE�CYCLIC	

While CHANCE is by default always allocated with a BLOCK distribution� it should be possible
for a compiler to notice that it will immediately be remapped to a CYCLIC distribution

Similar remarks apply to TINKER and EVERS
 �Note that EVERS is mapped in a thinly�
spread�out manner onto TINKER� adjacent elements of EVERS are mapped to elements of
TINKER separated by a stride M
 This thinly�spread�out mapping is put in the lower left
corner of TINKER� because EVERS����	 is mapped to TINKER�M��	
�

In Section �
�� a list is given of operations that� if performed in a do loop� cause the
iterations of the loop to interfere with each other� and thereby prevent the loop from being�
characterized as INDEPENDENT
 To that list must be added�

� Any REALIGN or REDISTRIBUTE directive performed in the loop interferes with any
access to or any other remapping of the same data

Rationale� REALIGN and REDISTRIBUTEmay change the processor storing a particular
array element� which interferes with any assignment or use of that element
 Similarly�
multiple remapping operations may cause the same element to be stored in multiple
locations
 �End of rationale��

��
 Remapping and Subprogram Interfaces

If the dummy argument of any subprogram has the DYNAMIC attribute� then an explicit
interface is required for the subprogram �see subsection �
���
 The rules on the interaction
of the REALIGN and REDISTRIBUTE directives with a subprogram argument interface are�

�
 A dummy argument may be declared DYNAMIC
 However� it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated
template

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� REMAPPING AND SUBPROGRAM INTERFACES ��	

The e�ect of any redistribution of the dummy after the procedure returns to the caller
is dependent on the attribute of the actual argument
 If the actual argument associ�
ated with the dummy has also been declared DYNAMIC� then any explicit remapping
of the dummy is visible in the caller after the procedure returns
 If a range directive
�see Section �
��� has been used to restrict the set of distribution formats allowed for
the actual argument� then the new mapping must match one of the formats speci�ed
in the range directive

A dummy argument whose associated actual argument has the DYNAMIC attribute may
be used in REALIGN and REDISTRIBUTE as an alignee or distributee if and only if the
associated actual argument is a whole array� not an array section

If the actual argument associated with the dummy has not been declared DYNAMIC

then the original mapping of the actual has to be restored on return
 When the
subprogram returns and the caller resumes execution� all objects accessible to the
caller after the call that are not declared DYNAMIC are mapped exactly as they were
before the call

 If an array or any section thereof is accessible by two or more paths� it is not HPF�
conforming to remap it through any of those paths
 For example� if an array is passed
as an actual argument� it is forbidden to realign that array� or to redistribute an array
or template to which it was aligned at the time of the call� until the subprogram has
returned from the call
 This prevents nasty aliasing problems
 An example�

MODULE FOO

REAL A������	

HPF� DYNAMIC

 A

END

PROGRAM MAIN

USE FOO

CALL SUB�A��
���
�		

END

SUBROUTINE SUB�B	

USE FOO

REAL B�
�
	

HPF� DYNAMIC

 B

���

HPF� REDISTRIBUTE A
Nonconforming

���

END

Situations such as this are forbidden� for the same reasons that an assignment to A

at the statement marked �Nonconforming� would also be forbidden
 In general� in
any situation where assignment to a variable would be nonconforming by reason of
aliasing� remapping of that variable by an explicit REALIGN or REDISTRIBUTE directive
is also forbidden

Note that it is permitted to remap a host�associated or use�associated variable in a
subprogram if it has been declared DYNAMIC and is accessible only through a single

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

path
 Such remappings stay in e�ect even after the subprogram has returned to its
caller

��� Mapping to Processor Subsets

This extension allows objects to be directly distributed to processor subsets by allowing a
processor subset to be speci�ed where a processor could be named� e
g
� in a DISTRIBUTE

directive
 The speci�ed subset must be a proper subset of the named processor arrangement

The syntax of the extended dist�target is as follows�

H��� extended�dist�target is processors�name ! � section�subscript�list 	 "
or � processors�name ! � section�subscript�list 	 "
or �

Constraint� The section�subscripts in the section�subscript�list may not be vector�subscripts
and are restricted to be either subscripts or subscript�triplets

Constraint� In the section�subscript�list� the number of section�subscripts must equal the
rank of the processor�name

Constraint� Within a DISTRIBUTE directive� each section�subscript must be a speci�cation�
expr

Constraint� Within a DISTRIBUTE or a REDISTRIBUTE directive� if both a dist�format�list
and a dist�target appear� the number of elements of the dist�format�list that
are not ��� must equal the number of subscript�triplets in the named processor
arrangement

Constraint� Within a DISTRIBUTE or a REDISTRIBUTE directive� if a dist�target appears but
not a dist�format�list� the rank of each distributee must equal the number of
subscript�triplets in the named processor arrangement

Example �

HPF� PROCESSORS P���	

REAL A����	

HPF� DISTRIBUTE A�BLOCK	 ONTO P��
�	

Example �

HPF� PROCESSORS Q������	

REAL A��������	

HPF� DISTRIBUTE B�BLOCK�BLOCK	 ONTO Q��
����
��	

In Example �� the array A is distributed by block across the processors P�
� to P���
while in the second example� the array B is distributed across the lower right quadrant of
the processor array Q

Advice to users� This extension is most useful in conjunction with the tasking con�
struct� see Section 	
�� which allows multiple independent phases of a computation to
execute simultaneously on di�erent subsets of processors
 A similar situation arises

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� POINTERS ���

when the code uses multiple data structures which can be computed in parallel where
the computation on each individual object also exhibits parallelism� e
g
� the multiple
blocks in a multi�block grid used in some �uid dynamics calculation
 Here� the indi�
vidual blocks have to be distributed over subsets of processors to exploit both levels
of parallelism
 �End of advice to users��

��� Pointers

����� Mapped Pointers

As an approved extension to HPF� pointers and targets can be explicitly mapped
 Formally�
this implies that the constraints that a distributee and an alignee may not have the POINTER
or TARGET attribute as stated in Sections �
� and �
� respectively� have to be removed
 �

As in the case of an allocatable object� the mapping speci�cation for a pointer does
not take e�ect immediately but plays a role when the pointer becomes pointer associated
with a target either through allocation or through pointer assignment

When a pointer with an explicit mapping is used in an ALLOCATE statement� the data
is allocated with the speci�ed mapping

For example�

REAL� POINTER� DIMENSION�
	

 A� B

HPF� ALIGN B�I	 WITH A�I	

HPF� DISTRIBUTE A�BLOCK	

���

ALLOCATE�A����		

ALLOCATE�B���		

���

ALLOCATE�B����		
 Nonconforming

Pointer A is declared to have a BLOCK distribution while pointer B is declared to be
identically aligned with A
 When A is allocated� it is created with a block distribution
 When
B is allocated� it is aligned with the �rst �� elements of A
 Note that the allocation statements
may not occur in the opposite order� since an object may be aligned to another only if it
has already been created or allocated
 Also� the second allocation for B is nonconforming�
since a larger object� B here� cannot be aligned with a smaller object� A in this case

A pointer P with an explicit mapping can be pointer associated with a target T through
a pointer assignment statement under the following conditions�

�
 The mapping of T is a specialization of the mapping of P �in particular� T must be a
whole array�� and

 If P is explicitly aligned� its ultimate align target has a fully�speci�ed non�transcriptive
distribution� and

�
 P and T are either both DYNAMIC or neither is

Here are some examples�

REAL� POINTER� DIMENSION�
�
	

 P

HPF� DISTRIBUTE P�BLOCK�BLOCK	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

REAL� TARGET� DIMENSION ����� ���	

 B� C� D

HPF� DISTRIBUTE B�BLOCK� BLOCK	

HPF� DISTRIBUTE C�BLOCK� CYCLIC	

���

P �� B
 Conforming

P �� B��
��� �
��	
 Nonconforming
 target must be a whole array�

P �� C
 Nonconforming
 the distribution in the

 second dimension does not match

P �� D
 Nonconforming
 D is not explicitly mapped

���

The intuitive reason that the pointer assignment P �� B��
��� �
��	 above is non�
conforming is similar to the reason that the example on page �� �illustrating the di�erence
between INHERIT A and DISTRIBUTE A � ONTO �� is nonconforming� Suppose for instance
that the array B is distributed over a
�
 processor arrangement
 Then the section B��
���

�
��	 would live entirely on processor ��� ��
 This mapping is not correctly described by a
�BLOCK� BLOCK	 distribution for P

The following pointer assignment is valid even though no processor arrangement is
speci�ed for the pointer� in this case� the mapping of B is a specialization of the mapping
of P�

REAL� POINTER� DIMENSION�
	

 P

REAL� TARGET� DIMENSION����	

 B

HPF� PROCESSORS PROC�NUMBER�OF�PROCESSORS�		

HPF� DISTRIBUTE P�BLOCK	

HPF� DISTRIBUTE �BLOCK	 ONTO PROC

 B

���

P �� B
 Conforming

���

REAL� POINTER� DIMENSION�
	

 P

HPF� DISTRIBUTE �

 P

REAL� TARGET� DIMENSION����	

 B� C

HPF� DISTRIBUTE B�BLOCK	� C�CYCLIC	

���

P �� B
 Conforming

P �� C
 Conforming

P �� C��
��	
 Nonconforming
 target must be a whole array

���

Here� the � is used to indicate a transcriptive distribution for the pointer P and thus
it can be pointer associated with both targets B and C distributed by BLOCK and CYCLIC

respectively
 However� it still cannot be used to point to an array section such as C��
��	

To do that� the pointer must have the INHERIT attribute�

REAL� POINTER� DIMENSION�
	

 P

HPF� INHERIT

 P

REAL� TARGET� DIMENSION����	

 B� C

HPF� DISTRIBUTE B�BLOCK	� C�CYCLIC	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� POINTERS ���

���

P �� B
 Conforming

P �� C
 Conforming

P �� C��
��	
 Conforming

���

To allow pointers to have transcriptive distributions� we have to change the constraint
for dist�format�clause as speci�ed in Section �
�� to read as follows� �

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument� except if
the distributee has the POINTER attribute�

The constraint for align�spec as speci�ed in Section �
�� should be changed to read as �
follows�

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument� except if the alignee has the POINTER attribute�

The constraint for inheritee as speci�ed in Section �
�

� should be changed to read as �

follows�

Constraint� An inheritee must be a dummy argument� except if the alignee has the POINTER
attribute�

When pointers with such transcriptive mappings are used in an ALLOCATE statement�
the compiler may choose any arbitrary mapping for the allocated data
 A range declaration
�see Section �
��� can be used to restrict the set of distribution formats

If a pointer has the DYNAMIC attribute� then any target associated with the pointer
�which must therefore also have the DYNAMIC attribute� may be remapped using a REALIGN

or REDISTRIBUTE statement under the following restriction�

A pointer may be used in REALIGN and REDISTRIBUTE as an alignee� align�target� or
distributee if and only if it is currently associated with a whole array� not an array section

Note that when an object is remapped� the new mapping is visible through any pointer
that may be associated with the object

����� Pointers and Subprograms

If a pointer dummy argument is not explicitly mapped� then the actual argument must also
not be explicitly mapped

If a pointer dummy argument has an explicit mapping� then the actual argument must
follow the rules for pointer assignment as stated above� with one exception� If the actual
argument has the DYNAMIC attribute� it is not necessary that the corresponding dummy
argument have the DYNAMIC attribute
 That is� item � on page ��� is weakened to

�
 If a pointer dummy argument has the DYNAMIC attribute� then the corresponding
actual argument must also have the DYNAMIC attribute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

A range declaration �see Section �
��� can be used to restrict the set of distribution
formats of the actual

A pointer dummy argument may have the DYNAMIC attribute
 In this case� the actual
argument must also have the DYNAMIC attribute
 The target associated with the dummy
argument may be redistributed under the restrictions stated in the last subsection
 Follow�
ing Fortran rules� if the actual is also visible �through host� or use�association�� the target
may be redistributed only through the dummy argument
 If the dummy argument is redis�
tributed� then the actual argument has the new mapping on return from the procedure
 In
such a case� the new mapping must match the range restrictions �if any� of the actual

����	 Restrictions on Pointers and Targets

If� on invocation of a procedure P� �a� a dummy argument has the TARGET attribute� and
�b� the corresponding actual argument has the TARGET attribute and is not an array section
with a vector subscript �and therefore is an object A or a section of an array A�� then the
program is HPF�conforming only if�

�
 No remapping of the actual argument occurs during the call� or

 the remainder of program execution would be una�ected if

�a� each pointer associated with any portion of A before the call were to acquire
unde�ned pointer association status on entry to P and� if not reassigned during
execution of P� were to be restored on exit to the pointer association status it
had before entry

�b� each pointer associated with any portion of the dummy argument or with any
portion of A during execution of P were to acquire unde�ned pointer association
status on exit from P� and

Advice to users� One way of ensuring that no remapping occurs is to give the dummy
argument the INHERIT attribute
 �End of advice to users��

Rationale� These restrictions are made in order to support the following part of the
Fortran standard �F	���

�
�
�� in the face of implicit remapping across the subpro�
gram interface�

If the dummy argument does not have the TARGET or POINTER attribute�
any pointers associated with the actual argument do not become associated
with the corresponding dummy argument on invocation of the procedure

If the dummy argument has the TARGET attribute and the corresponding
actual argument has the TARGET attribute but is not an array section with
a vector subscript�

�
 Any pointers associated with the actual argument become associated
with the corresponding dummy argument on invocation of the proce�
dure

 When execution of the procedure completes� any pointers associated
with the dummy argument remain associated with the actual argument

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� MAPPING OF DERIVED TYPE COMPONENTS ���

If the dummy argument has the TARGET attribute and the corresponding
actual argument does not have the TARGET attribute or is an array section
with a vector subscript� any pointers associated with the dummy argument
become unde�ned when execution of the procedure completes

�End of rationale��

Here is an example that illustrates the restrictions of this section�

INTEGER� TARGET� DIMENSION ���	

 ACT

INTEGER� POINTER� DIMENSON �
	

 POINTS�TO�ACT� POINTS�TO�DUM

HPF� DISTRIBUTE ACT�BLOCK	

POINTS�TO�ACT �� ACT

CALL F�ACT	

POINTS�TO�DUM��	 � �
 ILLEGAL

CONTAINS

SUBROUTINE F�DUM	

INTEGER� TARGET� DIMENSION���	

 DUM

HPF� DISTRIBUTE DUM�CYCLIC	

POINTS�TO�DUM �� DUM

POINTS�TO�ACT��	 � �
 ILLEGAL

END SUBROUTINE

END

The assignment to POINTS TO DUM��	 is illegal because it violates item
b� the assign�
ment to POINTS TO ACT��	 is illegal because it violates item
a

��� Mapping of Derived Type Components

An ALIGN� DISTRIBUTE� or DYNAMIC directive may appear within a derived�type�def wherever
a component�def�stmt may appear
 Every alignee or distributee within such a directive must
be the name of a component de�ned within that derived�type�def
 To allow mapping of the
structure components� the rules have to be extended as follows�

H��� distributee�extended is object�name
or template�name
or component�name
or structure�component

A derived type is said to be an explicitly mapped type if any of its components is
explicitly mapped or if any of its components is of an explicitly mapped type

Constraint� A component of a derived type may be explicitly distributed only if the type
of the component is not an explicitly mapped type

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

Constraint� An object of a derived type may be explicitly distributed only if the derived
type is not an explicitly mapped type

Constraint� A distributee in a DISTRIBUTE directive may not be a structure�component

Constraint� A distributee in a DISTRIBUTE directive which occurs in a derived�type�def must
be the component�name of a component of the derived type

Constraint� A component�name may occur as a distributee in a DISTRIBUTE directive oc�
curing within the derived type de�nition only

Constraint� A distributee that is a structure�component may occur only in a REDISTRIBUTE

directive and every part�ref except the rightmost must be scalar �rank zero�

The rightmost part�name in the structure�component must have the DYNAMIC

attribute

H��� alignee�extended is object�name
or component�name
or structure�component

Constraint� A component of a derived type may be explicitly aligned only if the type of
the component is not an explicitly mapped type

Constraint� An object of a derived type may be explicitly aligned only if the derived type
is not an explicitly mapped type

Constraint� An alignee in an ALIGN directive may not be a structure�component

Constraint� An alignee in an ALIGN directive that occurs in a derived�type�def must be the
component�name of a component of the derived type

Constraint� A component�name may occur as an alignee only in an ALIGN directive occuring
within the derived type de�nition

Constraint� An alignee that is a structure�component may occur only in a REALIGN di�
rective and every part�ref except the rightmost must be scalar �rank zero�

The rightmost part�name in the structure�component must have the DYNAMIC

attribute

H��	 align�target�extended is object�name
or template�name
or component�name
or structure�component

Constraint� A component�name may appear as an align target only in an ALIGN directive
occuring within the derived type de�nition that de�nes that component

Constraint� In an align�target that is a structure�component� every part�ref except the
rightmost must be scalar �rank zero�

The above constraints imply that components of derived type can be mapped within
the derived type de�nition itself such that when any objects of that type are created the
components will be created with the speci�ed mapping

Consider the following example�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� MAPPING OF DERIVED TYPE COMPONENTS ���

TYPE DT

REAL C����	

HPF� DISTRIBUTE C�BLOCK	 ONTO P

END TYPE DT

TYPE �DT	

 S�

TYPE �DT	

 S�����	

a derived type with one component� array C� which is speci�ed to be distributed block

Therefore the scalar variable S� of derived type DT has a structure component S�!C that is
distributed block onto the processor arrangement P
 Similarly� the component C of each of
the elements of the array S� will also be distributed block onto the processor arrangement
P

An align directive inside a derived type de�nition may align a component of the derived
type with another component of the same derived type or with another object
 A structure
component can be used as a target to align other objects including components of derived
types

Example�

HPF� TEMPLATE T����	

HPF� DISTRIBUTE T�CYLIC	

TYPE DT

REAL� DIMENSION����	

 A� B� C

HPF� ALIGN WITH A

 B

HPF� DISTRIBUTE �BLOCK	

 A

HPF� ALIGN WITH T

 C

END TYPE DT

Here variables of derived type DT will be created such the component B is aligned with A�
which is itself distributed block� and such that the component C is aligned with a template
T that is external to the derived type de�nition

Note that if a derived type component is given a partial mapping� it is up to the
compiler to choose the rest of the mapping of that component
 However� it is expected
that the compiler will choose the same mapping for this component of all variables of
such a derived type
 For example� consider a modi�cation of the above code in which the
distribution of the component A is omitted
 B and A are speci�ed to be aligned but no
distribution is given for A
 In such a situation� it is expected that all variables of the derived
type DT will be created such that the component A �and in turn the component B� have the
same distribution

The constraints for the mapping of derived type components allow the mapping of
structure variables at only one level
 Consider for example the following code in which a
derived type contains a components that is itself a derived type�

TYPE SIMPLE

REAL S����	

HPF� DISTRIBUTE S�BLOCK	

END TYPE SIMPLE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

HPF� TEMPLATE� DISTRIBUTE�BLOCK� �	

 HAIRY�TEMPLATE������	

TYPE COMPLICATED

INTEGER SIZE

REAL RV��������	� KV��������	� QV������	

 Arrays RV� KV� and QV may be mapped

HPF� DISTRIBUTE �BLOCK� BLOCK	

 RV� KV

HPF� ALIGN WITH HAIRY�TEMPLATE

 QV

TYPE�SIMPLE	 SV����	

 The following directive is not valid because SIMPLE

 is an explicitly mapped type�

HPF� DISTRIBUTE SV�BLOCK	

END TYPE COMPLICATED

TYPE�COMPLICATED	 LOTSOF���	

 The following directive is not valid because COMPLICATED

 is an explicitly mapped type�

HPF� DISTRIBUTE LOTSOF�BLOCK	

Here� a component of the derived type SIMPLE has been mapped� thus objects of this
type� e
g
� SV in type COMPLICATED� cannot be distributed
 The array LOTSOF cannot be
distributed for the same reason

Structure components having the POINTER attribute can be remapped using the
REALIGN or REDISTRIBUTE directive if they have been declared DYNAMIC
 For example� the
following code fragment can be used to allocate and map multiple blocks �called SUBGRID

here� of a multi�block grid�

HPF� PROCESSORS P� number�of�processors�	 	

TYPE SUBGRID

INTEGER SIZE

INTEGER LO� HI
 target subset of processors

REAL� POINTER BL�
	

HPF� DYNAMIC BL

END TYPE SUBGRID

TYPE �SUBGRID	� ALLOCATABLE

 GRID�
	

READ ����	 SUBGRID�COUNT

ALLOCATE GRID�SUBGRID�COUNT	

DO I � �� SUBGRID�COUNT

READ����	 GRID�I	!SIZE

END DO

 Compute processor subsets for each subgrid� setting

 the LO and HI values

CALL FIGURE�THE�PROCS � GRID� number�of�processors�		

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� MAPPING OF DERIVED TYPE COMPONENTS ��	

 Allocate each subgrid and distribute to the computed processors subset

DO I � �� SUBGRID�COUNT

ALLOCATE� GRID�I	!BL� GRID�I	!SIZE 	 	

HPF� REDISTRIBUTE GRID�I	!BL�BLOCK	 ONTO P� GRID�I	!LO
 GRID�I	!HI 	

END DO

Rationale� Components of derived types can be remapped only if they have the
POINTER attribute in addition to the DYNAMIC attribute
 This restriction has been
placed to disallow mappings which cannot be directly speci�ed using HPF directives

Consider� for instance� the following code fragment�

HPF� PROCESSORS P��	

TYPE DT

REAL C����	

HPF� DISTRIBUTE C�BLOCK	 ONTO P

HPF� DYNAMIC C
 Nonconforming

END TYPE DT

TYPE �DT	

 S���	

���

J � �

���

HPF� REDISTRIBUTE S�J	!C�CYCLIC	 ONTO P

��� S�
	!C��	 ���

Here the component C of derived type DT has been declared DYNAMIC
 Thus� the array
variable S consists of �� elements each of which is a structure with a component C

initially distributed block
 The REDISTRIBUTE directive remaps the structure com�
ponent C of the Jth element of S so that it is distributed cyclic
 Consider now the
mapping of the data object referred to by the expression S�
	!C��	 which picks out
the second element from each of the ten structures that make up the array variable
S
 After the redistribution of one of the elements of S �element � in this case�� each
element of the object will reside on processor P��	 except for the third element� which
will reside on processor P��	
 Such a distribution cannot be speci�ed directly using
HPF directives

The Fortran standard disallows such expressions for components with the POINTER

attribute
 In particular� if a part�name in a data reference has the POINTER attribute
then each part�ref to its left must be scalar �F	���
�

�
 Thus� we avoid the above
situation by

� disallowing the remapping of components that do not have the POINTER attribute�
and

� relying on the Fortran standard to disallow expressions such as the above for
components with the POINTER attribute

�End of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

���
 New Distribution Formats

This section describes two new distribution formats
 The syntax is extended as follows�

H��� extended�dist�format is BLOCK ! � int�expr 	 "
or CYCLIC ! � int�expr 	 "
or GEN BLOCK � int�array 	

or INDIRECT � int�array 	

or �

Constraint� An int�array appearing in a extended�dist�format of a DISTRIBUTE directive or
REDISTRIBUTE directive must be an integer array of rank �

Constraint� An int�array appearing in a extended�dist�format of a DISTRIBUTE directive
must be a restricted�expr

Constraint� The size of any int�array appearing with a GEN BLOCK distribution must be
equal to the extent of the corresponding dimension of the target processor
arrangement

Constraint� The size of any int�array appearing with an INDIRECT distribution must be
equal to the extent of the corresponding dimension of the distributee to which
the distribution is to be applied

The �generalized� block distribution� GEN BLOCK� allows contiguous segments of an
array� of possibly unequal sizes� to be mapped onto processors
 The sizes of the segments
are speci�ed by values of a user�de�ned integer mapping array� one value per target processor
of the mapping
 That is� the ith element of the mapping array speci�es the size of the block
to be stored on the ith processor of the target processor arrangement
 Thus� the values of
the mapping arrays are restricted to be non�negative numbers and their sum must be greater
than or equal to the extent of the corresponding dimension the array being distributed

The mapping array has to be a restricted expression when used in the DISTRIBUTE

directive� but can be an array variable in a REDISTRIBUTE directive
 In the latter case�
changing the value of the map array after the directive has been executed will not change
the mapping of the distributed array

Let l and u be the lower and upper bounds of the dimension of the distributee� MAP
be the mapping array and let BS�i	�BE�i	 be the resultant elements mapped to the ith
processor in the corresponding dimension of the target processor arrangements
 Then�

BS��� � l�

BE�i� � min�BS�i� � MAP�i�� �� u��

BS�i� � BE�i� �� � ��

Example�

PARAMETER �S � ����������������	

HPF� PROCESSORS P��	

REAL A����	� B����	� new��	

HPF� DISTRIBUTE A� GEN�BLOCK� S	 	 ONTO P

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� NEW DISTRIBUTION FORMATS ���

HPF� DYNAMIC B

���

new � ���

HPF� REDISTRIBUTE � B� GEN�BLOCK�new	 	

Given the above speci�cation� array elements A���
� are mapped on P���� A���
�� are
mapped on P�
�� A�
����� are mapped on P���� no elements are mapped on P���� A�������
are mapped on P���� and A�������� are mapped on P���
 The array B is distributed based
on the array new whose values are computed at runtime

Advice to implementors� Accessing elements of an array distributed using the gen�
eralized block distribution may require accessing the values of the mapping array at
runtime
 However� since the size of such an array is equal to that of the processor
arrangement� it can in most cases be replicated over all processors

For dynamic arrays� an independent copy of the mapping array will have to be main�
tained internally so that a change in the values of the mapping array does not a�ect
the access of the distributed array
 �End of advice to implementors��

There are many scienti�c applications in which the structure of the underlying domain is
such that it does not map directly onto Fortran data structures
 For example� in many CFD
applications an unstructured mesh �consisting of triangles in
D or tetrahedra in �D� is used
to represent the underlying domain
 The nodes of such a mesh are generally represented by
a one�dimensional array while another is used to represent their interconnections
 Mapping
such arrays using the structured distribution mechanisms� BLOCK and CYCLIC� results in
mappings in which unrelated elements are mapped onto the same processor
 This in turn
leads to massive amounts of unnecessary communication
 What is required is a mechanism
to map a related set of arbitrary array elements onto the same processor
 The INDIRECT

distribution provides such a mechanism

The INDIRECT distribution allows a many�to�one mapping of elements of a dimension
of a data array to a dimension of the target processor arrangement
 An integer array is
used to specify the target processor of each individual element of the array dimension being
distributed
 That is� the ith element of the mapping array provides the processor number
onto which the ith array element is to be mapped
 Since the mapping array maps array
elements onto processor elements� the extent of the mapping array must match the extent of
the dimension of the array it is distributing
 Also� the values of the mapping array must lie
between the lower and upper bound of the target dimension of the processor arrangement

The mapping array has to be a restricted expression when used in the DISTRIBUTE

directive� but can be an array variable in a REDISTRIBUTE directive
 In the latter case�
changing the value of the mapping array after the directive has been executed will not
change the mapping of the distributed array

Example�

HPF� PROCESSORS P��	

REAL A����	� B���	

INTEGER map�����	� map����	

PARAMETER �map� � ����������������� �����	

HPF� DYNAMIC B

HPF� DISTRIBUTE A� INDIRECT�map�	 	 ONTO P

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

HPF� DISTRIBUTE map��BLOCK	 ONTO P

map� � ���

HPF� DISTRIBUTE B� INDIRECT�map�	 	 ONTO P

����

Here� the array A is distributed statically using the constant array map�
 Thus�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	�
A��	 is mapped onto P��	� and so on

The array B is declared dynamic and is redistributed using the mapping array map�

Advice to implementors� In general� the INDIRECT distribution is going to be used
in the REDISTRIBUTE directive with an array variable as the map array
 Also� since
the size of the mapping array must be the same as the array being distributed� it
will itself be distributed most likely using the BLOCK distribution
 This raises several
issues
 To correctly implement this distribution� the runtime system should maintain
a �distributed� copy of the mapping array so that if the program modi�es the mapping
array� the distribution does not change
 Using an array variable as a mapping array
implies that the location of each element of the array will not be known until runtime

Thus� a communication maybe required to �gure out the location of a speci�c array
element
 �End of advice to implementors��

���� The RANGE Directive

The RANGE attribute is used to restrict the possible distribution formats for an object or
template that has the DYNAMIC attribute or a transcriptive distribution format �including
pointers�

H��� range�directive is RANGE ranger range�attr�stuff

H��
 ranger is object�name
or template�name

H��� range�attr�stuff is range�distribution�list

H��� range�distribution is � range�attr�list 	

H��� range�attr is range�dist�format
or ALL

H��� range�dist�format is BLOCK ! � 	 "
or CYCLIC ! � 	 "
or GEN BLOCK

or INDIRECT

or �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� THE RANGE DIRECTIVE ���

Constraint� At least one of the following must be true�

� The ranger has the DYNAMIC attribute

� The ranger has the INHERIT attribute

� The ranger is speci�ed with a dist�format�clause of � in a DISTRIBUTE or
combined directive

Constraint� The length of each range�attr�list must be equal to the rank of the ranger

Constraint� The ranger must not appear as an alignee in an ALIGN or REALIGN directive

Since the length of each range�attr�list is the same as the rank of the ranger� each
range�attr� R� in each range�distribution corresponds positionally to a dimension D of the
ranger
 This dimension D in turn either corresponds �though not necessarily positionally�
to an axis A of the template with which the ranger is ultimately aligned� or corresponds to
no axis in that template

With this notation� a RANGE attribute on a ranger is equivalent to the following restric�
tion�

For at least one range�distribution in the range�distribution�list� every range�attr� R�
must either

� be compatible with the distribution format of the corresponding axis A� if such a
corresponding axis exists� or

� be either � or ALL� if no such corresponding axis exists

This compatibility must be maintained by any DISTRIBUTE or REDISTRIBUTE directive
in which the ranger appears as a distributee� or if the ranger has the POINTER attribute and
is transcriptively distributed� for any target with which the ranger becomes associated

A distribution format of

�
 BLOCK is compatible with a range�dist�format of BLOCK� BLOCK�	 or CYCLIC�	�

 BLOCK�n	 is compatible with a range�dist�format of BLOCK�	� or CYCLIC�	�

�
 CYCLIC is compatible with a range�dist�format of CYCLIC or CYCLIC�	�

�
 CYCLIC�n	 is compatible with a range�dist�format of CYCLIC�	�

�
 GEN BLOCK�a	 is compatible with a range�dist�format of GEN BLOCK�

�
 INDIRECT�a	 is compatible with a range�dist�format of INDIRECT�

�
 � is compatible with a range�dist�format of �

All distribution formats are compatible with a range�dist�format of ALL

Note that the possibility of a RANGE directive of the form

HPF� RANGE range�attr�stuff�list

 ranger�list

is covered by syntax rule H��� for a combined�directive using combined�attribute�extended
as de�ned in rule H���

Examples�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

HPF� DISTRIBUTE T�BLOCK	

HPF� ALIGN A�I�J	 WITH T�I	

CALL SUB�A	

����

SUBROUTINE SUB�X	

HPF� INHERIT X

HPF� RANGE X �BLOCK� �	� �CYCLIC� �	

Since the ultimate align target of X� the inherited template T in this case� does not
have a second dimension� only a � or ALL can be used in the second dimension of each
range�distribution for X

REAL A����� ���� ���	

HPF� DISTRIBUTE A�BLOCK� �� CYCLIC	

CALL SUB� A�
�
��	 	
 Conforming

CALL SUB� A�
���
	 	
 Nonconforming

CALL SUB� A���
�
	 	
 Nonconforming

����

SUBROUTINE SUB�X	

REAL X�
�
	

HPF� INHERIT X

HPF� RANGE X �BLOCK� �	

Given the range directive in the subroutine SUB� only the �rst call to SUB is conforming

However� all three calls can be made conforming if the range directive above is replaced by
the following directive�

HPF� RANGE �BLOCK� �	� �BLOCK� CYCLIC	� ��� CYCLIC	

 X

���� The SHADOW Directive

In compiling nearest�neighbor code�for example� in discretizing partial di�erential equa�
tions or implementing convolutions�a standard technique is to allocate storage on each
processor for the local array section so as to include additional space for the elements that
have to be moved in from neighboring processors
 This additional storage is referred to as
�shadow edges
� There are conceptually two shadow edges for each array dimension� one
at the low end of the local array section and the other at the high end

In a single routine� the compiler can tell which arrays require shadow edges and allocate
this additional space accordingly
 However� since the width of the shadow area is dependent
on the size of the computational stencil being used� an array may require di�erent shadow
widths in di�erent routines
 Thus� without interprocedural analysis� an array argument
may need to be copied into a space with the appropriate shadow width on each procedure
call
 A similar data motion would be required to copy the data back to its original location
on exit from the subroutine
 This unnecessary data motion can be avoided by allowing the
user to specify the required shadow width when the array is declared

The syntax for declaring shadow widths is as follows�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� EQUIVALENCE AND PARTIAL ORDER ON THE SET OF MAPPINGS ���

H��� shadow�directive is SHADOW shadow�target shadow�attr�stuff

H��� shadow�target is object�name
or component�name

H��	 shadow�attr�stuff is � shadow�spec�list 	

H�
� shadow�spec is width
or low�width
 high�width

H�
� width is int�expr

H�

 low�width is int�expr

H�
� high�width is int�expr

Constraint� The int�expr representing a width� low�width� or high�width must be a constant
speci�cation�expr with value greater than or equal to �

A shadow�spec of width is equivalent to a shadow�spec of width�width
 Thus� the direc�
tives

HPF� DISTRIBUTE �BLOCK	

 A

HPF� SHADOW �w	

 A

specify that the array A is distributed BLOCK and is to have a shadow width of w on both
sides
 If A is a dummy argument� this gives the compiler enough information to inhibit
unnecessary data motion at procedure calls

Alternatively� di�erent shadow widths can be speci�ed for the low end and high end of
a dimension
 For example�

REAL� DIMENSION �����	

 A

HPF� DISTRIBUTE�BLOCK	� SHADOW��
�	

 A

����

FORALL �i � �� ���	

A�i	 � ���� � �A�i	 � A�i��	 � A�i��	 � A�i��		

END FORALL

speci�es that only one non�local element is needed at the lower end while two are needed
at the high end

���	 Equivalence and Partial Order on the Set of Mappings

Section �
� has to be changed to accommodate the new distributions� the SHADOW attribute� �

and mapping of components of derived types� all introduced as approved extensions
 The
relevant text now reads as follows� additions are in bold
face type

First� we de�ne a notion of equivalence for dist�format speci�cations�

�
 Using the notation � for the phrase �is equivalent to��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

BLOCK � BLOCK

CYCLIC � CYCLIC

� � �

BLOCK�n	 � BLOCK�m	 i� m and n have the same value
CYCLIC�n	 � CYCLIC�m	 i� m and n have the same value

CYCLIC � CYCLIC��	

GEN BLOCK�v	 � GEN BLOCK�w	 i� the values of corresponding
elements of v and w are equal

INDIRECT�v	 � INDIRECT�w	 i� the values of corresponding
elements of v and w are equal

 Other than this� no two lexically distinct dist�format speci�cations are equivalent

This is an equivalence relation in the usual mathematical sense

Next we de�ne a notion of equivalence for SHADOW attributes �see Section
���
for the syntax��

�� The shadow�spec expressions w� and w� are equivalent i� they have the
same value�

�� The shadow�spec w is equivalent to the shadow�spec w �w�

�� The shadow�spec l� �h� is equivalent to the shadow�spec l� �h� i� l� is equiv

alent to l� and h� is equivalent to h��

�� Other than this� no two lexically distinct shadow�spec speci�cations are
equivalent�

We then say that two SHADOW attributes are equivalent i� the shadow�spec�list

of one is elementwise equivalent to the shadow�spec�list of the other�

Now we de�ne the partial order on mappings� Let S ��special�� and G ��general�� be
two data objects

The mapping of S is a specialization of the mapping of G if and only if either

�
 G has the INHERIT attribute� or

 S does not have the INHERIT attribute� and the following constraints all hold�

�a� S is a named object or structure component� and

�b� The shapes of the ultimate align targets of S and G are the same� and

�c� Corresponding dimensions of S and G are mapped to corresponding dimensions
of their respective ultimate align targets� and corresponding elements of S and G

are aligned with corresponding elements of their respective ultimate align targets�
and

�d� Either

i
 The ultimate align targets of both S and G are not explicitly distributed� or

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� CONDITIONS FOR OMITTING EXPLICIT INTERFACES ���

ii
 The ultimate align targets of both S and G are explicitly distributed
 In this
case� the distribution directive speci�ed for the ultimate align target of G

must satisfy one of the following conditions�

A
 It has no dist�onto�clause� or

B
 It has a dist�onto�clause of �ONTO $�� or

C
 It has a dist�onto�clause specifying a processor arrangement having the
same shape as that explicitly speci�ed in a distribution directive for the
ultimate align target of S

and must also satisfy one of the following conditions�

A
 It has no dist�format�clause� or

B
 It has a dist�format�clause of �$�� or

C
 Each dist�format is equivalent �in the sense de�ned above� to the dist�
format in the corresponding position of the dist�format�clause in an ex�
plicit distribution directive for the ultimate align target of S

�e� Either S and G both have no SHADOW attribute or they have equivalent
SHADOW attributes�

���� Conditions for Omitting Explicit Interfaces

The requirements in Section �
� are extended as follows to account for the possible presence �
of the DYNAMIC attribute� the addition is in bold
face type�

An explicit interface is required except when all of the following conditions hold�

�
 Fortran does not require one� and

 No dummy argument is distributed transcriptively or with the INHERIT attribute� and

�
 No dummy argument has the DYNAMIC attribute� and

�
 For each pair of corresponding actual and dummy arguments� either�

�a� They are both implicitly mapped� or

�b� They are both explicitly mapped and

i
 The mapping of the actual argument is a specialization of the mapping of
the dummy argument� and

ii
 If the ultimate align targets of the actual and dummy arguments are both ex�
plicitly distributed� then the dist�onto�clause of each must specify processor
arrangements with the same shape

and

�
 For each pair of corresponding actual and dummy arguments� either�

�a� Both are sequential� or

�b� Both are nonsequential

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA MAPPING

���� Characteristics of Procedures

The SHADOW and DYNAMIC attributes� if present� are HPF�characteristics of dummy argu�
ments and procedure return values
 To be precise� the de�nitions in Section �
� are rewritten
as follows� additions are in bold
face type��

� A processor arrangement has one HPF�characteristic� its shape

� A template has up to three HPF�characteristics�

�
 its shape�

 its distribution� if explicitly stated�

�
 the HPF�characteristic �i
e
� the shape� of the processor arrangement onto which
it is distributed� if explicitly stated

� A dummy data object has the following HPF�characteristics�

�
 its alignment� if explicitly stated� as well as all HPF�characteristics of its align
target�

 its distribution� if explicitly stated� as well as the HPF�characteristic �i
e
� the
shape� of the processor arrangement onto which it is distributed� if explicitly
stated�

�
 its SHADOW attribute� if explicitly stated�

�
 its DYNAMIC attribute� if explicitly stated�

� A function result has the same HPF�characteristics as a dummy data object
 Specif�
ically� it has the following HPF�characteristics�

�
 its alignment� if explicitly stated� as well as all HPF�characteristics of its align
target�

 its distribution� if explicitly stated� as well as the HPF�characteristic �i
e
� the
shape� of the processor arrangement onto which it is distributed� if explicitly
stated�

�
 its SHADOW attribute� if explicitly stated�

�
 its DYNAMIC attribute� if explicitly stated�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section

Approved Extensions for Data and
Task Parallelism

Modern parallel machines achieve their best performance if operations are performed by
many processors with each processor accessing its own data
 As such� the highest�performing
programs will be those for which the computation partitioning and data mapping work in
synergy
 Three approved extensions provide the means to exploit this symmetry�

�
 The ON directive partitions computations among the processors of a parallel machine
�much as the DISTRIBUTE directive partitions the data among the processors�

 The RESIDENT directive asserts that certain data accesses do not require interprocessor
data movement for their implementation

�
 The TASK REGION construct provides the means to create independent coarse�grain
tasks� each of which can itself execute a data�parallel �or nested task�parallel� com�
putation

All three constructs are related to the concept of active processors� introduced in Section 	
�
below
 By assigning computations to processors� the ON directive �Section 	

� de�nes the
active processors
 The RESIDENT directive �Section 	
�� uses this set and the information
given by mapping directives in its assertions of locality
 Finally� the TASK REGION construct
�Section 	
�� builds its tasks from active processor sets

��� Active Processor Sets

Active processors are an extension of the idea of processors and processors arrangements
as used in HPF

�
 HPF

� assumes that a �static� set of processors exists� and that the
program uses these processors to store data �e
g
� through the DISTRIBUTE directive� and
perform computations �e
g
� by execution of FORALL statements�
 Finer divisions of the pro�
cessor set are seldom mentioned� although they do have uses �e
g
� mapping onto processor
subsets as in an approved extension� Section �
�� or in explaining the performance of com�
putations on subarrays�
 Features such as task parallelism� however� require considering a
more dynamic set of processors
 In particular� to answer the question �What processor�s�
is �are� currently executing#� it is important to de�ne these features

Simply put� an active processor is one that executes an HPF statement �or group of
statements�
 Active processors perform all operations required to execute the statement�s�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	

���SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

except �perhaps� for the initial access of data and writing of results
 Some operations require
certain processors to be active� as described below� but for the most part any processor can
be active in the execution of any statement
 An HPF program begins execution with all
processors active
 As described in Section 	

� the ON directive restricts the active processor
set for the duration of execution of statements in its scope
 Consider this simple example
�which has a reasonably intuitive meaning��

HPF� ON HOME� Z�INDX	 	

X�INDX��	 � X�INDX��	 � Y�INDX	 � Z�INDX��	

Let X� Y� and Z have the same distribution� which does not replicate data
 Following the ON

directive� the statement would be executed as follows�

�
 The processor owning Z�INDX	 is identi�ed as the active processor
 On di�erent
executions of this ON block� this may be a di�erent processor

 The values of X�INDX��	� Y�INDX	� and Z�INDX��	 are made available to the active
processor
 Because of the identical distributions� Y�INDX	 is already stored there

Depending on the data distribution and the hardware running the program� retrieving
the others might correspond to the active processor loading registers from memory� or
it might mean one or two other processors sending messages to the active processor

�
 The active processor performs an addition and a multiplication� using the values sent
in the last step

�
 The result is stored to X�INDX��	� which may be on another processor
 Again� this
may require synchronization or other cross�processor operations

There are considerable subtleties of this scheme when one of the statements involved is a
function or subroutine call
 Section 	

� deals with these cases
 Advice on the implemen�
tation of the ON directive is given in Section 	

 below

A few additional terms are useful in conjunction with the concept of active processors

If all processors in a set are active� then the set is called an active processor set
 The set of
all active processors is sometimes called the active processor set
 This set is dynamic� and
if a statement is executed repeatedly the active processor set may be di�erent each time
 In
general� an HPF construct can only restrict the active set� not enlarge it
 However� if the
original active set is partitioned into several independent sets� all partitions may execute
simultaneously
 This is exactly how the TASK REGION construct �described in Section 	
��
works

The universal processor set is the set of all processors available to the HPF program
 It
is precisely the set of processors that is active when execution of the main program begins

A processor that is not in the active set is called inactive
 �Note that a processor
may be inactive with respect to one statement� but active with respect to another
 This is
common in TASK REGION constructs
�

It is sometimes necessary to query properties of the active processor set� this is accom�
plished by the approved extension intrinsics ACTIVE NUM PROCS and ACTIVE PROCS SHAPE

described in Section �

�

The data mapped to a processor is said to be resident on it
 A replicated object is
resident on all of the processors that have a copy of it

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ACTIVE PROCESSOR SETS ���

Rationale� It may seem odd at �rst to concentrate on shrinking the active processor
set
 However� HPF s design assumes that all processors are available at the beginning
of execution
 For example� implementing DISTRIBUTE requires information about the
number of processors �in order to determine block sizes� for example� and their identity
�in order to allocate the memory and perform data motion�
 Therefore� the execution
model uses a static set of processors that can be subdivided and reunited dynamically

�End of rationale��

����� The SUBSET Directive

This subsection explains the interaction of active and inactive processor sets with explicitly
mapped data
 The rule of thumb is that allocating memory must be done locally� that is�
if a processor stores part of an array� then that processor must be active when the array is
created
 Implications of this rule include�

� Local objects must be stored on a set of active processors� either when their subpro�
gram is invoked or when they are allocated

� Dummy arguments are always mapped to a set of active processors
 Section 	

�
explains the mechanism that ensures this

� Global objects �i
e
� objects in COMMON or MODULEs or objects accessed via host asso�
ciation� may be explicitly mapped to inactive processors
 However� those processors
must have been active when the globals were allocated� whether at program initial�
ization �when all processors were active�� or at on entry to another subprogram� or
on execution of an ALLOCATE statement

It should be clear from the treatment of local and global objects that declarations may
need to refer to two classes of processors arrangements
 The �rst� used mainly for the
declaration of global data� consists of arrangements of the universal processor set
 These
are known as universal processors arrangements
 Since they always represent the same
processors� these serve as a �xed frame of reference� allowing consistent declarations
 A
processors�directive �Rule H�
	� de�nes a universal processors arrangement by default
 To
accommodate active processors� two slight changes to the rules in Section �
� need to be
made� �

� An HPF compiler is required to accept any universal processors arrangement that is
scalar� or whose size �i
e
� product of the arrangement s dimensions� is equal to the
size of the universal processor set

� If two universal processors arrangements have the same shape� then corresponding
elements of the two arrangements are understood to refer to the same abstract pro�
cessor

In both cases� the only change is the addition of the word �universal
�

Restricted processors arrangements represent only processors that� at the time the
arrangement is declared� are active
 They are used for mapping local objects and dummy
arguments
 To declare a subset processors arrangement� one can use the SUBSET option of
combined�attribute�extended �H����� de�ned on page ���
 One can also use the statement
form of the SUBSET attribute�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

H	�� subset�directive is SUBSET processors�name

Examples of the two forms are

HPF� PROCESSORS� SUBSET

 P�NP����	

HPF� PROCESSORS Q�ACTIVE�NUM�PROCS�		

HPF� SUBSET Q

As for universal arrangements� there are some modi�ed rules for the use of subset processors
arrangements�

� An HPF compiler is required to accept any subset processors arrangement that is
scalar� or whose size is equal to the number of active processors� i
e
� the number that
would be returned by the call ACTIVE NUM PROCS�	

� If two subset processors arrangements are declared with the same shape and the active
processor set has not changed between their declarations� then corresponding elements
of the two arrangements are understood to refer to the same abstract processor

It is important to note that a scalar subset processors arrangement is considered to represent
a processor that is active at the time the arrangement is created

Note that it is permitted for a subset processors arrangements to have fewer than
NUMBER OF PROCESSORS�	 elements� this re�ects the way that the active processor set can
shrink
 Also note that there is an added condition before two subset processors arrangements
are considered identical� this re�ects the dynamic nature of the active processor set
 Finally�
note that a local� subset processors arrangement will be an arrangement of the set of active
processors until such time as the active processor set is further restricted by an ON directive

����� Mapping Local Objects and Dummy Arguments

For explicitly mapped local objects without the SAVE attribute� the declarations must map
all elements of the object onto active processors
 This requirement gives rise to several
cases�

� If the local object is mapped via a DISTRIBUTE directive� then it must be distributed
onto a set of active processors
 One way� but not the only way� is to use a local�
subset processor arrangement as the dist�target
 If there is no explicit ONTO clause�
the implementation is free to choose any arrangement of active processors as the
dist�target

� A local� universal processors arrangement of size one is always identi�ed with an active
processor� and may occur as the dist�target for a local object

� If the local object is mapped by an ALIGN directive� then the corresponding elements of
the ultimate align target must be distributed exclusively onto active processors
 This
certainly occurs if the whole of the ultimate align target is distributed onto active
processors
 It also occurs if the local object is aligned to a section of a target that
is distributed onto both active and inactive processors� provided the section that is
�hit� by the aligned object is mapped only to active processors
 If the align replicates
the alignee over one or more axes of the align target� then the distribution of the align
target must ensure that all copies of the alignee are mapped to active processors

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ACTIVE PROCESSOR SETS ���

In any of these cases� the active processor set is determined at the time that the DISTRIBUTE
or ALIGN becomes instantiated
 That is� the mapping directives for ALLOCATABLE variables
are instantiated when the variable is allocated� other objects have their mapping instantiated
when they are declared

The declaration of subset processors arrangements does not cause processors to become
active or inactive� only the execution of ON directives does that
 In particular� if a program
contains no ON directives or constructs that modify a program s active processor set� then all
processors are always active and all DISTRIBUTE directives can use universal arrangements

Explicitly mapped global objects must have consistent mappings wherever they appear

This will usually �for COMMON and USE associated objects� be accomplished by distribution
onto universal processors arrangements
 Notice that the interpretation of an implicit �i
e
�
missing� ONTO clause di�ers for local and global objects� globals may be distributed onto
all processors� while locals must use only active processors
 Also note that� since universal
processors arrangements are the default for the PROCESSORS directive� no modi�cation to
the mapping of global objects is needed when active processors are introduced

Dummy arguments must be explicitly mapped in the same way as local objects� using
the rules above
 As Section 	

� explains� the e�ect of this is that dummy arguments are
always stored on the active processor set
 Other data objects� particularly objects local to
the subprogram� can therefore be aligned to the dummy arguments and allocated on the
active processor set

Objects with the SAVE attribute must be mapped consistently whenever they come
into scope
 They are not subject to the restriction of mapping to active processors� where
mapping is concerned� they conform to the same rules as global objects

����	 Other Restrictions on Active Processors

In addition to the mapping of locals and dummy arguments� several other constructs are
restricted when the active processor set does not match the universal processor set
 In
general� the intent of these restrictions is to ensure that all processors that are needed for
an operation are active when it is performed
 In particular� allocating or freeing memory
mapped to a processor requires the cooperation of that processor

For a REDISTRIBUTE directive� the active processor set must include�

� All processors that stored any element of the distributee before the REDISTRIBUTE was
encountered� and

� The processors that will store any element of the distributee after the REDISTRIBUTE

is performed

This implies that all elements of the redistributed object reside on active processors� both
before and after the REDISTRIBUTE operation
 E�ectively� this means that all data move�
ment for the REDISTRIBUTE will be among active processors
 In addition� the processors
that owned the distributee �or anything aligned to it� beforehand can free the memory� and
processors that now own the distributee can allocate memory for it

Similarly� for a REALIGN directive� the set of active processors must include all processors
that stored elements of the alignee before the REALIGN and all processors that will store
alignee elements after the REALIGN

For an ALLOCATE statement that creates an explicitly mapped object� the set of active
processors must include the processors used by the mapping directive for the allocated
object
 The allocated object s ultimate align target may fall into one of two classes�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

� Distributed with no explicit ONTO clause
 �This case includes ultimate align targets
with no DISTRIBUTE directive at all
� In this case� the compiler must choose a set of
active processors that the object will be stored on

� Distributed ONTO a section of a processors arrangement
 In this case� the speci�ed
section must be an arrangement of an active processor set

For example�

HPF� PROCESSORS P�NUMBER�OF�PROCESSORS�		

HPF� ON �P��
�		

CALL OF�THE�WILD�	

���

SUBROUTINE OF�THE�WILD�	

INTEGER� ALLOCATABLE� DIMENSION�
	

 A� B� C� D� E� F

HPF� PROCESSORS P�NUMBER�OF�PROCESSORS�		� ONE�P

HPF� PROCESSORS� SUBSET

 Q�ACTIVE�NUM�PROCS�		

HPF� DISTRIBUTE �BLOCK	

 A� E

HPF� DISTRIBUTE �BLOCK	 ONTO P��
�	

 B

HPF� DISTRIBUTE ��	 ONTO ONE�P

 C

HPF� DISTRIBUTE �BLOCK	 ONTO Q

 D� F

ALLOCATE �A����		
 No explicit ONTO� block size is probably ��

ALLOCATE �B����		
 Block size IS ��

ALLOCATE �C����		
 On one active processor

ALLOCATE �D����		
 On Q��
�	� block size ��

HPF� ON HOME�B��
��		 BEGIN

ALLOCATE �E����		
 No ONTO� E is allocated on Q��
�	

ALLOCATE �F����		
 Nonconforming since Q��
�	 are inactive

HPF� END ON

For a DEALLOCATE statement that destroys an explicitly mapped object� the active
processor set must include all processors that own any element of that object
 Again� there
are two cases for the deallocated object s ultimate align target�

� Distributed onto a section of a processors arrangement
 In this case� the processors
that store part of the object must be active when it is deallocated
 One way to
guarantee this is to ensure that any ON block enclosing the DEALLOCATE statement
also encloses the corresponding ALLOCATE

� Distributed with no explicit ONTO clause
 �This case includes ultimate align targets
with no DISTRIBUTE directive at all
� In this case� the active processor set must
include all the processors that were active when the object was allocated in order
to guarantee that the processors that store part of the object are active when it is
deallocated
 Again� this is ensured if all ON blocks that enclose the deallocation also
enclose the allocation operation

An example may be helpful�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

REAL� ALLOCATABLE

 X�
	� Y�
	

HPF� PROCESSORS P��	

HPF� DISTRIBUTE X�BLOCK	 ONTO P��
�	

HPF� DISTRIBUTE Y�CYCLIC	

HPF� ON � P��
�	 	

HPF� ON � P��
�	 	

ALLOCATE� X�����	� Y�����	

HPF� ON � P��
�	 	

 Point �

HPF� END ON

 Point �

HPF� END ON

 Point �

HPF� END ON

���

HPF� ON � P��
�	 	

 Point �

HPF� END ON

 Point �

At point �� neither X nor Y can be deallocated� since some of the processors that store their
elements might not be active
 If the innermost directive were

HPF� ON � P��
�	 	

then X could be safely deallocated because of its explicit ONTO clause� it would still be
incorrect to deallocate Y
 At points
 and �� both X and Y can safely be deallocated
 In
general� if the deallocation occurs at the same level of ON nesting or at an outer level and
the �ow of control has not left the outer ON construct� then the deallocation is safe
 At
point � it is correct to deallocate X because its ONTO clause matches the enclosing ON
 It is
not� however� correct to deallocate Y� since some processors �e
g
� P��	� that were active at
the ALLOCATE statement are not active at point �
 This illustrates the care that must be
exercised if a DEALLOCATE statement is controlled by an ON clause
 One can avoid potential
problems by performing the deallocation outside of any ON construct in the same procedure�
as at point �

It is possible that only of subset of the processors active at allocation time and named
in the ONTO clause actually store part of the object�

HPF� DISTRIBUTE A�BLOCK���		 ONTO P��
�	

INTEGER� ALLOCATABLE

 A�
	

ALLOCATE A���	

HPF� ON �P��		

DEALLOCATE�A	
 Correct� because only P��	 owns any part of A

��� The ON Directive

The purpose of the ON directive is to allow the programmer to control the distribution of
computations among the processors of a parallel machine
 In a sense� this is the computa�
tional analog of the DISTRIBUTE and ALIGN directives for data
 The ON directive does this

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

by specifying the active processor set for a statement or set of statements
 This temporarily
shrinks the active processor set

If the computations in two ON block executions are not related �for example� if the ON

block executions are two iterations of an INDEPENDENT loop�� their ON directives give the
compiler clear instructions for exploiting this potential parallelism

����� Syntax of the ON Directive

There are two �avors of the ON directive� a single�statement form and a multi�statement
form
 The syntax for these directives is

H	�
 on�directive is ON on�stuff

H	�� on�stuff is home ! � resident�clause " ! � new�clause "

H	�� on�construct is
directive�origin block�on�directive
block
directive�origin end�on�directive

H	�� block�on�directive is ON on�stuff BEGIN

H	�� end�on�directive is END ON

H	�� home is HOME � variable 	

or HOME � template�elmt 	

or � processors�elmt 	

H	�� template�elmt is template�name ! � section�subscript�list 	 "

H	�	 processors�elmt is processors�name ! � section�subscript�list 	 "

The nonterminal resident�clause will be de�ned in Section 	
�
 For the present� it su�ces
to say that this is a form of the RESIDENT directive mentioned in the introduction

The home is often called the HOME clause� even in cases where the keyword HOME is not used

Note that variable is a Fortran syntax term that means �roughly� �a reference� including
an array element� array section� or derived type �eld�� variable does not include template
or processor elements because they are de�ned only in directives
 Note also that block is a
Fortran syntax term for �a series of statements treated as a group��for example� the body
of a DO construct

The on�directive is a kind of executable�directive �see rule H
���
 This means that an
on�directive can appear wherever an executable statement can

An on�construct is a Fortran executable�construct
 This syntax implies that such con�
structs can be nested� and if so they will be properly nested

Rationale� Note the use of parentheses in the last option of the home rule �involving
processors�elmt�
 This prevents the following ambiguity�

INTEGER X��	
 X�I	 will be on processor I

HPF� PROCESSORS HOME��	

HPF� DISTRIBUTE X�BLOCK	

X � �� ������� �	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

HPF� ON HOME�X��		

X��	 � X��	

If the parentheses were not required� where should the computation be done#

�
 Processor HOME��	 �i
e
� the owner of X��	�#

 Processor HOME��	 �i
e
� use the value of X��	� before the assignment�#

�
 Processor HOME��	 �i
e
� use the value of X��	� after the assignment�#

The de�nition of ON clearly indicates that interpretation � is correct
 One can get the
e�ect of interpretation
 by the directive

HPF� ON�HOME�X��			

There is no way to get the e�ect of interpretation �
 Introducing reserved keywords
into Fortran was suggested as a better solution to this problem� but was seen as too
large a change to the underlying language
 �End of rationale��

����� Semantics of the ON Directive

The ON directive restricts the active processor set for a computation to those processors
named in its home
 The computation controlled is either the following Fortran statement
�for a on�directive or the contained block for a block�on�directive
 We refer to the controlled
computation as the ON�block

That is� it advises the compiler to use the named processor�s� to perform the ON block

Like the mapping directives ALIGN and DISTRIBUTE� this is advice rather than an absolute
commandment� the compiler may override an ON directive
 Also like ALIGN and DISTRIBUTE�
the ON directive may a�ect the e�ciency of computation� but not the �nal results

Advice to implementors� If the compiler may override the user s advice in an ON

directive� then the compiler should also o�er the user an option to force all directives
to be obeyed
 Because dummy arguments and local objects are required to be mapped
onto active processors� an HPF compiler that fails to heed the programmer s advice
with respect to the active processor set may also be required to ignore some of the
programmer s advice concerning data mapping
 �End of advice to implementors��

The single�statement ON directive sets the active processor set for the �rst non�comment
statement that follows it
 It is said to apply to that statement
 If the statement is a
compound statement �e
g
� a DO loop or an IF�THEN�ELSE construct�� then the ON directive
also applies to all statements nested therein
 Similarly� the ON construct applies the initial
ON clause to�i
e
� sets the active processor set for�all statements up to the matching END

ON directive

The evaluation of any function referred to in the home expression is not a�ected by
the ON directive� these functions are called on all processors active when control reached the
directive
 Thus�

HPF� ON HOME� P��
 �ACTIVE�NUM�PROCS�	 � �		 	 ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

is a reasonable way to idle one active processor� and is not paradoxically self�referential

The HOME clause can name a program object� a template� or a processors arrangement

For each of these possibilities� it can specify a single element or multiple elements
 This is
translated into the processor�s� executing the ON block as follows�

� If the HOME clause names a program object� then every processor owning any part of
that object should execute the ON block
 For example� if A is an explicitly mapped
array� then

HPF� ON HOME � A��
�	 	

tells the compiler to perform the statement on the processors owning A��	� A��	� and
A��	
 If A were distributed BLOCK� this might be one processor� if it were distributed
CYCLIC� it would be three processors �assuming that many processors were available�

Extra copies of elements created by a SHADOW directive �H���� are not taken into
consideration by the HOME clause

� If the HOME clause names a template element or section� then every processor owning
any element of the template element or section should execute the ON block
 The
example above applies here as well� if A is a template rather than an array

� If the HOME clause names a processors arrangement� then the processor�s� referenced
there should execute the ON block
 For example� if P is a processors arrangement� then

HPF� ON � P��
�	 	

will execute the following statement on the three processors P��	� P��	� and P��	

In every case� the ON directive speci�es the processor�s� that should perform a com�
putation
 More formally� it sets the active processors for the statements governed by the
ON directive� as described in Section 	
�
 That section also describes how some statements
�notably ALLOCATE and dynamic remapping directives� require that particular processors
be included in the active set
 If one of these constructs occurs in the ON block and the
active processor set does not contain all the required processors� then the program is not
standard�conforming

Note that the ON directive only speci�es how computation is partitioned among pro�
cessors� it does not indicate processors that may be involved in data transfer
 Also� the
ON clause by itself does not guarantee that its body can be executed in parallel with any
other operation
 However� placing the computation can have a signi�cant e�ect on data
locality
 As later examples will show� the combination of ON and INDEPENDENT can also
provide control over the load balance of parallel computations

Advice to implementors� If the HPF program is compiled into Single�Program�
Multiple�Data �SPMD� code� then the ON clause can always be implemented �albeit
ine�ciently� by having all processors compare their processor id to an id �or list of ids�
generated from the HOME clause
 �Similar naive implementations can be constructed
in other paradigms as well
� If the ON clause will be executed repeatedly� for example
in a DO loop� it is worthwhile to invert this process
 That is� instead of all processors
executing all the HOME clause tests� the compiler should determine the range of loop
iterations that will test true on the given processor
 �See the �Advice to implementors�
in Section 	

� for more details
� For example� consider the following complex case�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ��	

DO I � �� N

HPF� ON HOME� A�MY�FCN�I		 	 BEGIN

���

HPF� END ON

END DO

Here� the generated code can perform an �inspector� �i
e
� a skeleton loop that only
evaluates the HOME clause of each iteration� to produce a list of iterations assigned to
each processor
 This list can be produced in parallel� since MY FCN must be side�e�ect
free �at least� the programmer cannot rely on any side e�ects�
 However� distributing
the computation of home to all processors may require unstructured communications
patterns� possibly negating the advantage of parallelism
 In general� more advanced
compilers will be able to e�ciently invert more complex HOME clauses
 It is recom�
mended that the abilities �and limitations� of a particular compiler be documented
clearly for users

Note that processors �screened out� by the naive implementation may still be re�
quired to participate in data transfer
 If the underlying architecture allows one�sided
communication �e
g
� shared memory or GET�PUT�� this is not a problem
 On message�
passing machines� a request�reply protocol may be used
 This requires the inactive
processors to enter a wait loop until the ON block completes� or requires the runtime
system to handle requests asynchronously
 Again� it is recommended that the docu�
mentation tell programmers which cases are likely to be e�cient and which ine�cient
on a particular system
 �End of advice to implementors��

Advice to users� The form of the home in an ON directive can be arbitrarily complex

This is a two�edged sword� it can express very complicated computation partitioning�
but the implementation of these partitions may not be e�cient
 More concretely� it
may express a perfectly load�balanced computation� but force the compiler to serialize
the computation to implement the HOME clauses
 Although the amount of overhead
for an ON clause will vary based on the HPF code� the compiler� and the hardware� one
can expect that compilers will generate very good code based solely on array mappings
or a named processors arrangement� and progressively worse code as the complexity
of the home increases
 A rough measure of the complexity of an ON directive is the
amount of run�time data used to compute it� for example� a constant o�set is fairly
simple� while a permutation array is very complex
 See Section 	

� below for more
concrete examples of this phenomenon

It should also be noted that the ON clause does not change the semantics of a program�
in the same sense that DISTRIBUTE does not change semantics
 In particular� an ON

clause by itself does not change sequential code into parallel code� because the code
in the ON block can still interact with code outside the ON block
 �To put it another
way� ON does not spawn processes
� �End of advice to users��

It is legal to nest ON directives� if the set of active processors named by the inner ON

directive is included in the set of active processors from the outer directive
 The syntax of on�
construct automatically ensures that it is properly nested inside other compound statements�
and that compound statements properly nest inside of it
 As with other Fortran compound
statements� transfer of control to the interior of an on�construct from outside the block is
prohibited� an on�construct may be entered only by executing the �executable� ON directive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

Transfers within a block may occur
 However� HPF also prohibits transfers of control from
the interior of an on�construct to outside the on�construct� except by �falling through�
the END ON directive
 Note that this is stricter than in ordinary Fortran
 If ON clauses
are nested� then the innermost home e�ectively controls execution of the statement�s�
 A
programmer can think of this as successively restricting the set of processors at each level of
ON nesting� clearly� the last restriction must be the strongest
 Alternately� the programmer
can think of this as a fork�join approach to nested parallelism

Rationale� The restrictions about control �ow into and out of an ON block essentially
make it a single�entry single�exit region� thus simplifying the semantics considerably

�End of rationale��

If an ON directive includes a NEW clause� the meaning is the same as a NEW clause in
an INDEPENDENT directive
 The operation of the program would be identical if the NEW

variables were allocated anew� and distributed onto the active processors� on every entry
to the ON directive s scope� and deallocated on exit from the ON block
 That is� the NEW

variables are unde�ned on entry �i
e
� assigned before use in the ON block� and unde�ned
on exit �i
e
� not used after the ON block� unless �rst reassigned�
 In addition� NEW variables
cannot be remapped in the ON clause s scope� whether by REALIGN� REDISTRIBUTE� or by
argument association �at subroutine calls�
 If a variable appears in a NEW clause but does
not meet these conditions� then the program is not HPF�conforming
 NEW variables are not
considered by any nested RESIDENT directives� as detailed in Section 	
�

The NEW variables are implictly reallocated and remapped onto the active processors
on entry to the ON block
 For this reason� there are restrictions on their explicit mappings

� An ON block NEW variable may not occur as an alignee

� An ON block NEW variable may occur as a distributee only if there is no ONTO clause

HPF� DISTRIBUTE X�BLOCK� �	

HPF� DISTRIBUTE Y ONTO P
 Nonconforming due to ONTO clause

HPF� ALIGN WITH X

 Z
 Nonconforming� ALIGN forbidden

HPF� ON �P��
�	� NEW�X� Y� Z	� BEGIN

HPF� END ON

Rationale� NEW clauses provide a simple way to create temporary variables
 This
ability is particularly important when RESIDENT directives come into play� as will be
clear below
 �End of rationale��

Advice to implementors� Because they are not used outside of the ON blocks� NEW
variables need not be kept consistent before and after ON clauses
 Therefore� no
communication outside of the active processor set� determined by the ON directive�
is required to implement them
 Scalar NEW variables should be replicated over the
active processor set� or allocated in memory areas shared by the active processor
set
 Note that memory must be dynamically allocated if there is a possibility that
multiple instances of the ON block could be active concurrently
 This is similar to the
requirements for implementing NEW variables in INDEPENDENT loops
 �End of advice
to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

����	 Examples of ON Directives

The following are valid examples of ON directives
 Most of them illustrate idioms that
programmers might want to use� rather than contrived situations
 For simplicity� the �rst
several examples assume the following array declarations�

REAL A�N	� B�N	� C�N	� D�N	

HPF� DISTRIBUTE A�BLOCK	� B�BLOCK	� C�BLOCK	� D�BLOCK	

One of the most commonly requested capabilities for HPF is to control how loop iterations
were assigned to processors
 �Historically� the ON clause �rst appeared to perform exactly
this role in the Kali FORALL construct
� This can be done by the ON directive� as shown
in the following examples�

HPF� INDEPENDENT

DO I � �� N��

HPF� ON HOME�A�I		

A�I	 � �B�I	 � B�I��	 � B�I��		��

END DO

HPF� INDEPENDENT

DO J � �� N��

HPF� ON HOME�A�J��		 BEGIN

A�J	 � B�J��	 � C�J��	 � D�J��	

HPF� END ON

END DO

The ON directive in the I loop sets the active processor for each iteration of the loop to
be the processor that stores A�I	
 In other words� it advises the compiler to have each
processor run over its own section of the A array �and therefore B as well�
 The references
to B�I��	 and B�I��	 must be fetched from o��processor for the �rst and last iterations
on each processor �except for the boundary processors�� note that those processors are not
mentioned in the HOME clause
 The ON directive in the J loop similarly sets the active set for
each iteration� but advises the compiler to shift computations
 As a result� each processor
does a vector sum of its own sections of B� C� and D� stores the �rst element of the result on
the processor to its left� and stores the rest of the result �shifted by one� in A
 It is worth
noting that the directives would still be valid �and minimize nonresident data accesses� if
the arrays were distributed CYCLIC� although the number of nonresident references would
be much higher

Advice to implementors� It is highly recommended that compilers concentrate on op�
timizing DO loops with a single ON clause including the entire loop body
 Schematically�
the code will be�

DO i � lb� ub� stride

HPF� ON HOME�array�f�i			 BEGIN

body

HPF� END ON

END DO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

where array has some data mapping
 Assume the mapping gives processor p the
elements myset�p�
 �In a BLOCK distribution� for example� myset�p� is a contiguous
range of integers
� Then the generated code on processor p should be

DO i
 !lb � ub � stride" � f���myset�p��

body

END DO

�This schematic does not show where communication or synchronization must be
placed� that must be derived from analysis of the body
� Moreover� f is likely to be
the identity function or a linear function with integer coe�cients� both of which can
be inverted easily
 Given this� techniques for iterating through the set can be found
in several recent conferences
 �End of advice to implementors��

Advice to users� One can expect the I loop above to generate e�cient code for the
computation partitioning
 In e�ect� the compiler will arrange for each processor to
iterate over its own section of array A
 The J loop is slightly more complex� since the
compiler must �nd the inverse of the HOME clause s subscripting function
 That is�
the compiler must solve K�J�� for J� where K ranges over the resident elements of
A
 Of course� in this case J�K��� in general� linear functions can be inverted by the
compiler
 �It should be pointed out� however� that complex combinations of ALIGN

and DISTRIBUTE may make the description of K unwieldy� and this may add overhead
to the inversion process
� �End of advice to users��

Sometimes it is advantageous to �split� an iteration between processors
 The following
case shows one example of this�

HPF� INDEPENDENT

DO I � �� N��

HPF� ON HOME�A�I		

A�I	 � �B�I	 � B�I��	 � B�I��		��

HPF� ON HOME C�I��	

C�I��	 � A�I	 � D�I��	

END DO

Here� the active processor sets for the two statements in the loop body are di�erent

Due to the �rst ON clause� the reference to A�I	 is resident in the �rst statement
 The
second ON clause makes A�I	 nonresident �for some values of I� there
 This maximizes the
data locality in both statements� but does require data movement between the two

Advice to implementors� If there are several non�nested ON clauses in a loop� then
the schematic above needs to be generalized
 In essence� the iteration range for each
individual ON clause must be generated
 A processor will then iterate over the union
of these ranges
 Statements guarded by an ON directive must now be guarded by an
explicit test
 In summary� the code for

DO i � lb� ub� stride

HPF� ON HOME�array��f��i			
stmt�

HPF� ON HOME�array��f��i			

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

stmt�
END DO

on processor p becomes

set� � !lb � ub � stride"� f�
���myset��p��

set� � !lb � ub � stride"� f�
���myset��p��

DO i
 set� � set�

IF �i
 set�	 THEN

stmt�

END IF

IF �i
 set�	 THEN

stmt�

END IF

END DO

where myset��p� is the resident set for array�� and myset��p� is the resident set
for array�
 �Again� synchronization and communication must be handled by other
means
� Code transformations such as loop distribution and loop peeling can be used
to eliminate the tests in many cases
 They will be particularly pro�table if there are
data dependences between the ON blocks
 �End of advice to implementors��

Advice to users� Splitting an iteration like this is likely to require either additional
tests at runtime or additional analysis by the compiler
 Even if the compiler can
generate low�overhead scheduling for the individual ON clauses� combining them is not
necessarily low�overhead
 The locality bene�ts must be rather substantial for this
to pay o�� but there are cases where multiple ON clauses are valuable
 �All these
statements are particularly true if one ON block uses data computed in another one
�
�End of advice to users��

Because ON clauses nest naturally� they can be useful for expressing parallelism along
di�erent dimensions
 Consider the following examples�

REAL X�M�M	

HPF� DISTRIBUTE X�BLOCK�BLOCK	

HPF� INDEPENDENT� NEW�I	

DO J � �� M

HPF� ON HOME�X�
�J		 BEGIN

DO I � �� M

HPF� ON HOME�X�I�J		

X�I�J	 � �X�I���J	 � X�I�J		 � �

END DO

HPF� END ON

END DO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

The active processor set for each iteration of the J loop is a column of the �presumably
universal� processors arrangement
 The I loop further subdivides the computation� giving
each processor responsibility for computing the elements it owns
 Many compilers would
have chosen this computation partitioning automatically for such a simple example
 How�
ever� the compiler might have attempted to fully parallelize the outer loop� executing each
inner loop sequentially on one processor
 �This might be attractive on a machine with
very fast communications
� By inserting the ON clauses� the user has advised against this
strategy� thus trading additional locality for restricted parallelism
 Notice that the ON direc�
tive neither requires nor implies the INDEPENDENT assertion
 In both nests� each iteration
of the I loop depends on the preceding iteration� but the ON directive can still partition
the computation among processors
 The ON directive does not automatically make a loop
parallel

Advice to implementors� �Dimension�based� nesting� as above� will probably be a
common case
 The HOME clauses can be inverted at each level� treating indices from
outer loops as run�time invariants
 �End of advice to implementors��

Advice to users� Nested ON directives will tend to have e�cient implementations if
their HOME clauses refer to di�erent dimensions of the processors arrangements� as in
the above example
 This minimizes the interaction between the levels of the loops�
simplifying the implementation
 �End of advice to users��

Consider the following variation on the above example�

HPF� DISTRIBUTE Y�BLOCK��	

HPF� INDEPENDENT� NEW�I	

DO J � �� M

HPF� ON HOME�Y�
�J		 BEGIN

DO I � �� M

HPF� ON HOME�Y�I�J		

Y�I�J	 � �Y�I���J	 � Y�I�J		 � �

END DO

HPF� END ON

END DO

Note that the ON clauses have not changed� except for the name of the array
 The
interpretation is similar to the above� except that the outer ON directive assigns each iteration
of the J loop to all of the processors
 The inner ON directive again implements a simple
owner�computes rule
 The programmer has directed the compiler to distribute a serial
computation across all the processors
 There are a few scenarios where this is more e�cient
than parallelizing the outer loop�

�
 Parallelizing the outer loop will generate many nonresident references� since only a
part of each column is on any processor
 If nonresident references are very expen�
sive �or if M is relatively small�� this overhead may outweigh any gain from parallel
execution

 The compiler may take advantage of the INDEPENDENT directive to avoid inserting any
synchronization
 This allows a natural pipelined execution
 A processor will execute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

its part of the I loop for one value of J� then immediately go on to the next J iteration

Thus� the �rst processor will start on J�� while the second receives the data it needs
�from processor one� for J��
 �A similar pipeline would develop in the X example
above
�

Clearly� the suitability of these ON clauses will depend on the underlying parallel architec�
ture

Advice to users� This example points out how ON may improve software engineering

While the �value� of HOME�X�I		 will change if X s mapping changes� its intent will
usually stay the same � run the loop �aligned with� the array X
 Moreover� the form of
the clauses is portable� and they simplify experimenting with alternative computation
partitioning
 Both qualities are similar to the advantages of DISTRIBUTE and ALIGN

over low�level data layout mechanisms
 �End of advice to users��

ON directives are particularly useful when the compiler cannot accurately estimate
data locality� for example when the computation uses indirection arrays
 Consider three
variations of the same loop�

REAL X�N	� Y�N	

INTEGER IX��M	� IX��M	

HPF� DISTRIBUTE X�BLOCK	� Y�BLOCK	

HPF� DISTRIBUTE IX�BLOCK	� IY�BLOCK	

HPF� INDEPENDENT

DO I � �� N

HPF� ON HOME� X�I	 	

X�I	 � Y�IX�I		 � Y�IY�I		

END DO

HPF� INDEPENDENT

DO J � �� N

HPF� ON HOME� IX�J	 	

X�J	 � Y�IX�J		 � Y�IY�J		

END DO

HPF� INDEPENDENT

DO K � �� N

HPF� ON HOME� X�IX�K		 	

X�K	 � Y�IX�K		 � Y�IY�K		

END DO

In the I loop� each processor runs over its section of the X array
 �That is� the active
processor for iteration I is the owner of X�I	
� Only the reference X�I	 is guaranteed to be
resident
 �If M 	� N � then IX and IY have a di�erent block size than X� and thus a di�erent
mapping
� However� if it is usually the case that X�I	� Y�IX�I		� and Y�IY�I		 are located
on the same processor� then this choice of active processors may be the best available
 �If
X�I	 and one of the other references are always on the same processor� then the programmer
should add the RESIDENT clause as explained in Section 	
�
� In the next loop� iteration J s

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

active processor is the owner of IX�J	
 Because IY has the same distribution as IX� reference
IY�J	 is always resident as well as IX�J	
 This is the most common array reference class in
the loop� so it minimizes the number of nonresident data references in the absence of any
special properties of IX and IY
 It may not evenly balance the load among processors� for
example� if �� N�M�
 �� then half the processors will be idle
 As before� if the values in
IX or IY ensure that one of the Y references is always resident� a RESIDENT assertion should
be added
 In the K loop� only reference Y�IX�K		 is guaranteed to be resident �because Y

and X have the same distribution�
 However� the values stored in IX and IY may ensure
that Y�IY�K		 and X�K	 are always resident
 Even if the three REAL values are not always�
but merely �usually� on the same processor� this may be a good computation partitioning
for both locality and parallelism
 However� these advantages must be weighed against the
cost of computing this partitioning
 Since the HOME clause depends on a �presumably large�
array of runtime values� substantial time may be required to determine which iterations
are assigned to each processor
 It should be clear from this discussion that there is no
magic solution for handling complex computation partitionings� the best answer is usually
a combination of application knowledge� careful data structure design �including ordering
of the elements�� and e�cient compilation methodology and runtime support

Advice to implementors� The K loop is the situation that the inspector strategy
described above was designed for
 If there is an outer loop around any of these
examples� and that loop does not modify the distribution of X or the values of IX�
then a record of each processor s iterations can be saved for reuse
 The cost is at
worst linear in the sizes of the arrays
 �End of advice to implementors��

Advice to users� It is unlikely that any current production compiler will generate
low�overhead code for K loop
 The di�erence from previous examples is that the HOME

clause is not a function that can be easily inverted by the compiler
 Some compilers
may choose to execute every iteration on all processors� testing the HOME clause at
run�time� others may pre�compute a list of iterations for every processor
 Of course�
the cost of computing the list will be substantial

In practice� one would make all the arrays the same size to avoid some of the alignment
problems above� the example was written this way for pedagogical reasons� not as an
example of good data structure design
 �End of advice to users��

����� ON Directives Applied to Subprogram Invocations

The key rule about ON directives when applied to subprogram invocations is that the in�
vocation does not change the active processor set
 In e�ect� the callee inherits the caller s
active processors
 Thus�

HPF� PROCESSORS P���	

HPF� DISTRIBUTE X�BLOCK	 ONTO P

HPF� ON � P��
�	 	

CALL PERSON�TO�PERSON�	

HPF� ON � P��
�	 	

CALL COLLECT� X 	

calls PERSON TO PERSON on three processors� while it calls COLLECT on four
 The actual
argument to COLLECT does not reside completely on the active set of processors
 This is

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ���

allowed� with appropriate declarations of the corresponding dummy argument as explained
below

The above rule has interesting implications for data distributions within the called
routine
 In particular� dummy arguments must be declared under the same restrictions as
local objects� thus ensuring that the dummy is always stored on the active processor set

This does not imply that the corresponding actual argument is local� however
 Consider
the possibilities for how a dummy can be explicitly mapped�

� Prescriptive mapping� If the actual is not mapped on the active processor set� it
will be remapped
 This is exactly analogous to remapping a BLOCK�distributed array
to CYCLIC via a prescriptive mapping

� Descriptive mapping� The user is asserting that the actual is already mapped
onto the set of active processors
 If the assertion is true� then the dummy is already
stored locally� if not� then the compiler inserts a remapping operation �and reports a
warning� following the recommendations in Section ��

� Transcriptive mapping� In this case� a new restriction must be made to allow
e�cient access to the dummy argument
 If a dummy is transcriptively mapped� then
the actual argument must be resident on the active processor set at the time of the
invocation� This may be checked at run�time

In summary� a dummy argument is always mapped to the set of active processors� although
the actual argument need not be �except in the case of transcriptive mappings�

Rationale� The treatment of dummy arguments as local objects is consistent with all
previous Fortran �and FORTRAN� standards
 Moreover� it has the advantage that
it re�ects the usual expectations and wishes of programmers
 Dummy arguments are
not expected to create great ine�ciencies in Fortran programs� ensuring that they are
always stored locally tends to reinforce that expectation
 Also� programmers are used
to �pass by reference� behavior� in which arguments are not copied� the restrictions
on data mapping to active processor sets allow this implementation when the data
is not remapped on subprogram call
 One case of this deserves special mention�
transcriptive mappings
 If the programmer wants to keep the data in place �the usual
expectation of INHERIT and related features� and control which processors execute
the computation �the meaning of ON�� then the basic principles of active sets �set
forth in Section 	
�� imply that the data must be resident before the call is made

When remapping occurs due to explicit directives� then surely the user expects a
communication cost to accompany the remapping

It should also be noted that these rules do not invalidate any HPF programs written
without using the ON directive
 In those programs� the active processor set never
changes �at least� not from the view of the language�
 Therefore� subset and universal
processors arrangements can be used interchangeably� and the restriction on use of
transcriptive mappings is obeyed automatically
 �End of rationale��

Advice to implementors� These restrictions imply that accesses to dummy arguments
never require one�sided communication if the argument is explicitly mapped and the
ON clause is used
 Of course� accesses to global data may still run into serious compli�
cations
 If the compiler itself partitions the computation� it is not restricted by the
ON directive rules
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

Advice to users� The idea to remember in calling subprograms from an ON block
is this� make sure that the actual arguments are stored on the active set
 If the
subroutine interface uses transcriptive ��take anything�� mappings� then this is a
requirement
 If the subroutine uses any other type of mapping� then having resident
actual arguments may avoid the expense of remapping data
 �Of course� it does not
by itself guarentee that remapping doesn t occur�a prescriptive interface can force
a BLOCK�to�CYCLIC redistribution�but it does ensure that the remapping is between
active processors
 This allows simpler and more e�cient collective communications
operations to be generated in the runtime system
� �End of advice to users��

Let us return to the previous example�

HPF� PROCESSORS P���	

HPF� DISTRIBUTE X�BLOCK	 ONTO P

HPF� ON � P��
�	 	

CALL COLLECT� X 	

If COLLECT were declared as

SUBROUTINE COLLECT� A 	

HPF� DISTRIBUTE A�CYCLIC	

then the call will be executed as follows�

�
 X will be remapped from BLOCK on �� processors �i
e
� all of P� to CYCLIC on � pro�
cessors �i
e
� P��
�	�
 This will be a many�to�many exchange pattern

 COLLECT will be called on processors P��	� P��	� P��	� and P��	
 Accesses to A within
the subroutine will be satis�ed from the redistributed array on those processors

�
 A will be remapped back to the distribution of X
 This is the inverse of step �

Note that the distribution of A is onto � processors �the active processor set inside the call��
not onto the universal processor set
 If the interface is

SUBROUTINE COLLECT� A 	

HPF� DISTRIBUTE A�BLOCK	

then the process would be the same� except that there would be a remapping from BLOCK

on �� processors to BLOCK on � processors
 That is� the block size would increase by

�
times �with related shu%ing of data� and then revert to the original
 Again� it is important
to note that the distribution of A is onto the active processor set rather than onto all of P

The similar examples

REAL X��������	� Y��������	

HPF� PROCESSORS P��	� Q����	

HPF� DISTRIBUTE X�BLOCK��	 ONTO P

HPF� DISTRIBUTE Y�BLOCK�BLOCK	 ONTO Q

INTERFACE

SUBROUTINE A�CAB� B 	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE ON DIRECTIVE ��	

REAL B�
	

HPF� DISTRIBUTE B ��BLOCK	

END INTERFACE

HPF� ON � P��
�	 	

CALL A�CAB� X� �
���� � 	

HPF� ON HOME� X��
�����	 	

CALL A�CAB� X��
�������	 	

HPF� ON HOME� Y��
�����	 	

CALL A�CAB� Y��
�����	 	

HPF� ON HOME� Y�����
���	 	

CALL A�CAB� Y�����
���	 	

can be explained as follows
 Calling A CAB��
�����	 on P��
�	 will produce a remapping
from �� processors to �� as in the example above
 �The compiler would be expected to
produce a warning in this case� as explained in Section �
� Calling A CAB�X��
�������		 on
HOME�X��
�����		 produces no such remapping �or warning�� because the active processor
set does not change� therefore� the descriptive mapping correctly asserts that the data is
already on the right processors
 The last two examples� calling A CAB�Y��
�����		 and
A CAB� Y�����
���	 	 on the homes of their arguments� are also accomplished without
remapping
 In both cases� the actual arguments are mapped BLOCK�wise onto a subset of
the processors �a column of Q in the �rst case� a row of Q in the second�
 Some compilers
may not be able to generate code for these more complex examples� however

Two examples of transcriptive mapping are also useful�

 Assume

 PROCESSORS P��	

 is declared in a module

REAL X����	

HPF� DISTRIBUTE X�CYCLIC��		 ONTO P

INTERFACE

SUBROUTINE FOR�HELP� C 	

REAL C�
	

HPF� INHERIT C

END INTERFACE

HPF� ON HOME� X���
��	 	

CALL FOR�HELP� X���
��	 	

HPF� ON � P��	 	

CALL FOR�HELP� X���
��	 	
 Nonconforming

The �rst example is valid�the actual argument is �trivially� distributed on the active
processor set
 The second example is invalid�for example� element X���	 is stored on P��	�
which is not in the active processor set for the call
 The second example would be valid
if the ON directive speci�ed P��
�	 or HOME�X���
��		� both of which map to the same
processor set

Calls to EXTRINSIC subprograms also deserve mention
 The �standard� HPF

� de�
scription of calling an EXTRINSIC �Section �� says in part�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

�
A call to an extrinsic procedure must be semantically equivalent to a call of

an ordinary HPF procedure
 Thus a call to an extrinsic procedure must behave
as if the following actions occur

�
 Exactly the same set of processors are visible to the HPF environment
before and after the subprogram call

This constraint is changed to read

� Exactly the same set of active processors are available to the HPF environment before
and after the subprogram call

� Exactly the same universal processor set is visible to the HPF environment before
and after the subprogram call

The intent is the same as in the original language design
 Processors where data is stored can
neither appear not disappear� nor may the set of processors executing the program change
without notice to the program
 Similarly� some extrinsic kinds specify �all processors must
be synchronized� or �execution of a local procedure on each processor�� such language is
understood to mean �all active processors must be synchronized� or �execution of a local
procedure on each active processor
�

Rationale� This gives the combination of EXTRINSIC procedures and ON directives a
fork�join model of parallelism� which seems to be both natural and semantically clean

�End of rationale��

If a procedure uses alternate return� then the target of the return must be have the
same active processor set as the CALL statement
 In e�ect� this means that labels passed as
arguments must refer to statements in the same ON block as the CALL statement

Rationale� This constraint is similar to the prohibition against jumping out of an ON

block� and has the same justi�cation
 �End of rationale��

Explicit use of CALLs in ON directives is often associated with task parallelism
 Several
examples can be found in Section 	
�
 The following example illustrates how processors can
be used for a one�dimensional domain decomposition algorithm�

HPF� PROCESSORS PROCS�NP	

HPF� DISTRIBUTE X�BLOCK	 ONTO PROCS

 Compute ILO�IP	 � lower bound on PROCS�IP	

 Compute IHI�IP	 � upper bound on PROCS�IP	

DONE � �FALSE�

DO WHILE ��NOT� DONE	

HPF� INDEPENDENT

DO IP � �� NP

HPF� ON �PROCS�IP		

CALL SOLVE�SUBDOMAIN� IP� X�ILO�IP	
IHI�IP		 	

END DO

HPF� ON HOME�X	 BEGIN

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE RESIDENT CLAUSE
 DIRECTIVE
 AND CONSTRUCT �	�

CALL SOLVE�BOUNDARIES� X� ILO��
NP	� IHI��
NP	 	

DONE � CONVERGENCE�TEST� X� ILO��
NP	� IHI��
NP	 	

HPF� END ON

END DO

The algorithm divides the entire computational domain �array X� into NP subdomains� one
for each processor
 The INDEPENDENT IP loop performs a computation on each subdomain s
interior
 The ON directive tells the compiler which processors to use in executing these �con�
ceptually� parallel operations
 This can increase data locality substantially� particularly
if the compiler could not otherwise analyze the data access patterns in SOLVE SUBDOMAIN

The subroutine SOLVE SUBDOMAIN can use a transcriptive or descriptive mapping for its
array argument� placing it on a single processor
 In the next phase� the processors collab�
orate to update the boundaries of the subdomains and test for convergence
 Subroutines
SOLVE BOUNDARIES and CONVERGENCE TEST may well have their own loops similar to the IP

loop� with similar RESIDENT clauses
 Note that only the lower and upper bounds of each sub�
domain is recorded� this allows di�erent processors to process di�erent�sized subdomains

However� each subdomain must ��t� into one processor s section of the X array

Advice to implementors� The IP loop above is likely to be a common idiom among
programmers doing block�structured codes
 In general� it can be implemented by
inverting the HOME clause as was done above
 In the one�to�one case shown here
�probably very popular with programmers�� it can be implemented by assigning the
processor id to the loop index variable and testing the range of the loop �once�
 �End
of advice to implementors��

Rationale� Some compilers will propagate the ON information from the caller to the
callee at compile time� and some at run time
 Repeating the ON clause in the caller and
callee will tend to give the compiler better information� resulting in better generated
code
 �End of rationale��

��	 The RESIDENT Clause� Directive� and Construct

The purpose of the RESIDENT clause is to promise that data accessed by a computation
are mapped to active processors
 That is� RESIDENT asserts that certain references �or all
references� in its scope are stored on the active processor set
 The compiler can use this
information to avoid generating communication or to simplify array address calculations

Note that whether a given data element is resident depends on two facts�

� Where the data is stored �i
e
� DISTRIBUTE and ALIGN attributes for the object�

� Where the computation is executed �i
e
� its active set� as speci�ed by an ON directive�

For these reasons� the RESIDENT clause is added to the ON directive� which is usually the
earliest point in the program where the needed facts might be available
 The RESIDENT

clause can also appear as a stand�alone directive� this is useful when the locality information
is not true for an entire ON region
 Note that changing the ON directive may invalidate some
RESIDENT clauses� or may make more RESIDENT clauses true

H	�� resident�clause is RESIDENT resident�stuff

H	�� resident�stuff is ! � res�object�list 	 "

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	
SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

H	�
 resident�directive is RESIDENT resident�stuff

H	�� resident�construct is
directive�origin block�resident�directive
block
directive�origin end�resident�directive

H	�� block�resident�directive is RESIDENT resident�stuff BEGIN

H	�� end�resident�directive is END RESIDENT

H	�� res�object is object

A resident�directive is a kind of executable�directive
 Similarly� a resident�construct is
a kind of executable�construct

Any top�level objects in the RESIDENT clause must be explicitly mapped
 Similarly� the
RESIDENT clause must appear at a point in the program with a declared active processor
set �i
e
� inside an ON block�
 Otherwise� the assertion �see below� is a statement about how
the compiler works� not about the program

Advice to implementors� RESIDENT removes the need for inactive processors to par�
ticipate in communication into�out of an ON clause
 �End of advice to implementors��

The RESIDENT directive is an assertion to the compiler that certain object references
made within the ON are stored on the active processors if the computation is performed by
the speci�ed active processor set
 The scope of the assertion is the next Fortran statement
if the resident�directive form is used and the enclosed block of code if the resident�construct
form is used
 If RESIDENT appears as a clause in an ON directive� then the ON and RESIDENT

apply to the same statements

RESIDENT�var	 means the lexical expression var� when encountered in the execution

of statements in the scope of the RESIDENT directive� accesses only data resident on the set
of active processors
 �That is� the set of processors named by the innermost available ON

directive
� If var is accessed by the statement �e
g
� it appears on the right�hand side of an
assignment statement� or in the evaluation of a conditional expression�� then at least one
copy of the object and any subobject of the object must be mapped to the active processor
set
 If var is assigned to by the statement �e
g
� it appears on the left hand side of an
assignment statement� or in the variable list of a READ statement�� or in any other context
that may cause its value to change� then all copies of the variable and all subobjects of
the variable must reside in the active processor set
 The application of RESIDENT to CALL

statements and function invocations introduces some complexity into this interpretation�
these issues will be dealt with in Section 	
�

Note that RESIDENT is always an assertion relative to the surrounding ON directive

Therefore� if the compiler does not implement the ON directive then it must be careful in
interpreting RESIDENT
 Similarly� if the compiler overrules the programmer�speci�ed ALIGN

and DISTRIBUTE directives� then it may not rely on the RESIDENT clause in general

Finally� NEW variables are not considered by any nested RESIDENT directives� as detailed

below

Rationale� The di�erent treatment of variable reads and writes is due to the imple�
mentation requirements
 If a variable s value is read �but not written�� then it can be
taken from any consistent copy
 Therefore� RESIDENT only asserts that one of those

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE RESIDENT CLAUSE
 DIRECTIVE
 AND CONSTRUCT �	�

copies is available
 Conversely� all copies of a replicated variable must be consistent�
so RESIDENT asserts that all copies are available if it is updated

The RESIDENT assertion is always relative to the declared data mappings and ON

clauses because both pieces of information are necessary to determine the locality of
data references
 Data mapping determines where the data is stored� while ON clauses
determine where they are used� in essence they determine the endpoints of a data
path
 RESIDENT itself says that the path length is very short� obviously� one cannot
measure a path without knowing both endpoints
 �End of rationale��

Consider the following�

HPF� ON HOME�Z�I		� RESIDENT�X�Y�RECORD�I		

X�I	 � Y�I��	 � RECORD�I	!FIELD� � RECORD�I��	!FIELD�

The following facts are asserted by the directive�

� Z�I	 would be local if it appeared� due to its use in the HOME directive

� All copies of X�I	 are stored on processors that also store a copy of Z�I	� due to
the RESIDENT clause
 This may be true because X and Z have the same mapping� or
because Z is replicated over a set of processors that contains the set of processors that
store X�I	

� At least one copy of Y�I��	 is on the same processor as Z�I	� due to the RESIDENT

clause
 This may be true because Y is replicated on all processors� because Z�I	 and
Y�I��	 are the only elements of their arrays that are mapped to the same processor�
or because the directive

HPF� ALIGN Y�J	 WITH Z�J��	

appears elsewhere in the program
 �Other situations also make the RESIDENT assertion
true
�

� At least one copy of all subobjects of RECORD�I	 is mapped on the same processor
as Z�I	
 In particular� the reference RECORD�I	!FIELD� �i
e
� a subobject consist�
ing of one component� can be accessed locally
 The situations in which this is true
are similar to those for X�I	
 No information is available in this example regarding
RECORD�I��	!FIELD�

If there is no res�object�list� then all references to all variables referenced during ex�
ecution of the RESIDENT directive s body except those declared NEW in a surrounding ON

directive are local in the sense described above
 That is� for every usage of any variable s
value� at least one copy of the variable will be mapped to the ON processor set
 Likewise�
for every operation that assigns to a variable� all copies of that variable are mapped to
the ON processor set
 References and assignments to NEW variables are always considered
resident
 If there are no function or subroutine invocations� this is syntactic sugar for list�
ing all variable references within the directive s scope
 �See Section 	
�

 for a discussion
of RESIDENT clauses applied to subprogram calls
� It might well have been named the
ALL RESIDENT clause� the present form� however� does not add yet another keyword to the
directive sublanguage

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	�SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

Note that if the active set includes more than one processor� then RESIDENT only
asserts that the variables are stored on one of the processors
 For example� if a statement
is executed on a section of the processors arrangement� then communication within that
section may be needed for some variables in the RESIDENT clause
 Communication with
processors outside of the section will not be needed for those variables� however

Rationale� The alternative to this interpretation would be that any variable named
in the RESIDENT clause would be local to all processors� i
e
� replicated
 While that
certainly allows more extensive optimizations� it is a less common case
 In addition�
it does not seem to capture the intent of ON directives applied to CALL statements or
compound statements
 For example�

HPF� PROCESSORS PROCS�MP�MP	

HPF� DISTRIBUTE X�BLOCK�BLOCK	 ONTO PROCS

HPF� ON HOME�PROCS����
MP		� RESIDENT�X�K��
N	 	

CALL FOO� X�K��
N	 	

would presumably call FOO on a row of the processors arrangement� passing elements
of X in place
 This is what the current de�nition does� if RESIDENT meant �resident
on every processor�� the call would force X to be replicated
 �End of rationale��

It is not correct to assert that an unmapped object� including of necessity any sequential
object� is mapped exclusively to the active processors� unless the programmer knows that
all of the processors are active
 Thus� when a proper subset of processors is active� no
such object can occur in a res�object�list or in the scope of a RESIDENT directive with no
res�object�list

The RESIDENT directive is similar to the INDEPENDENT directive� in that if it is cor�
rect it does not change the meaning of the program
 If the RESIDENT clause is incorrect�
the program is not standard�conforming �and is thus unde�ned�
 Like the INDEPENDENT

directive� the compiler may use the information in the RESIDENT clause� or ignore it if it is
insu�cient for the compiler s purposes
 If the compiler can detect that the RESIDENT clause
is incorrect �i
e
� that a RESIDENT variable is de�nitely nonlocal�� it is justi�ed in producing
a warning
 Unlike the INDEPENDENT directive� however� the truth of the RESIDENT clause
depends on the mapping of computations �speci�ed with the ON clause� and the mapping
of data �speci�ed with DISTRIBUTE and ALIGN clauses�� if the compiler overrides either of
these� then it may not be able to use information in the RESIDENT directive

Rationale� Knowing that a reference is local is valuable information for the optimizer

It is in keeping with the spirit of HPF to phrase this as an assertion of fact� which
the compiler can use as it pleases
 Expressing it as advice to the compiler seems
to have disadvantages
 Some possible ways this advice could be phrased� and the
counter�arguments� are

� �Don t generate communication for this reference� has great potential for chang�
ing the meaning of the program
 Some programmers want this capability� but
it violates the �correct directives should not change the meaning of a program�
principle of HPF
 Also� once communication is �turned o�� for a reference� it s
not clear how to turn it back on

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE RESIDENT CLAUSE
 DIRECTIVE
 AND CONSTRUCT �	�

� �Generate communication for this reference� is not a useful directive� since the
compiler has to do this anyway

� �Generate communication for this reference� and place it here� is useful� since
it can override the default placement by the compiler
 It still has potential
for changing program meaning
 It also has the potential to create programs as
complex as message�passing� as programmers try to move communication out of
loops

�End of rationale��

��	�� Examples of RESIDENT Clauses

As in Section 	

�� our aim here is to suggest idioms that may be generally useful to
programmers
 We begin by expanding on two earlier examples

RESIDENT is most useful in cases where the compiler cannot detect access patterns

Often this arises due to the use of indirection� as in the following examples�

REAL X�N	� Y�N	

INTEGER IX��M	� IX��M	

HPF� PROCESSORS P�NP	

HPF� DISTRIBUTE �BLOCK	 ONTO P

 X� Y

HPF� DISTRIBUTE �BLOCK	 ONTO P

 IX� IY

HPF� INDEPENDENT

DO I � �� N

HPF� ON HOME� X�I	 	� RESIDENT� Y�IX�I		 	

X�I	 � Y�IX�I		 � Y�IY�I		

END DO

HPF� INDEPENDENT

DO J � �� N

HPF� ON HOME� IX�J	 	� RESIDENT� Y 	

X�J	 � Y�IX�J		 � Y�IY�J		

END DO

HPF� INDEPENDENT

DO K � �� N

HPF� ON HOME� X�IX�K		 	� RESIDENT� X�K	 	

X�K	 � Y�IX�K		 � Y�IY�K		

END DO

As we saw in Section 	

�� X�I	 is always local in the I loop and IX�I	 and IY�I	

rarely are
 The RESIDENT directive above ensures that Y�IX�I		 is local as well
 This would
most likely be due to some property of the algorithm that generated IX �for example� if
IX�I	�I for all I�
 Note that it is possible for an expression �e
g
� Y�IX�I		� to be local
even though one of its subexpressions �IX�I	� is not

The directive gives no information about Y�IY�I		� it might have only one nonlocal
value� or all its values might be nonlocal
 �We assume that if there were no nonlocal values�
then the RESIDENT clause would include Y�IY�I		 as well
� If there are many local elements

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

referenced by this expression� and they can easily be separated from the local elements� then
it may be worthwhile to restructure the loop to make this clear to the compiler
 For example�
suppose that we knew that only the ��rst� and �last� X elements on each processor were
nonlocal
 The loop could then be split thus�

HPF� INDEPENDENT� NEW�LOCALI	

DO I � �� N

HPF� ON HOME� X�I	 	� RESIDENT� Y�IX�I		� Y�IY�I		 	 BEGIN

LOCALI � MOD�I�N�NP	

IF �LOCALI"�� �AND� LOCALI"��	 THEN

X�I	 � Y�IX�I		 � Y�IY�I		

END IF

HPF� END ON

END DO

HPF� INDEPENDENT� NEW�LOCALI	

DO I � �� NP

HPF� ON �P�I		� RESIDENT� X�LOCALI	� Y�IX�LOCALI		 	 BEGIN

LOCALI � �I��	�N�NP

X�LOCALI	 � Y�IX�LOCALI		 � Y�IY�LOCALI		

LOCALI � I�N�NP

X�LOCALI	 � Y�IX�LOCALI		 � Y�IY�LOCALI		

HPF� END ON

END DO

The �rst loop �ine�ciently� processes the local elements of Y�IY�I		� while the second
�more e�ciently� handles the rest
 On most machines� it would pay to rewrite both loops
to avoid the division operations� for example by creating a logical mask a priori

In the J loop� the RESIDENT clause asserts that all accessed elements of Y are local
 In
this case� that is equivalent to the assertion

HPF� RESIDENT� Y�IX�J		� Y�IY�J		 	

Although the original RESIDENT clause only referred to the lexical expression Y� the compiler
can infer that the subexpressions are also local
 This is because it is impossible for a
subobject to be on a di�erent processor than the �parent� object is
 This observation can
often shorten RESIDENT clauses substantially

In the K loop� the following references are local�

� Y�IX�K		� because Y has the same distribution as X and X�IX�K		 is local �due to the
ON clause�

� X�K	� because of the RESIDENT clause

Note that a reference may be local even if it does not appear explicitly in a RESIDENT clause

One mark of a good compiler will be that it aggressively identi�es these elements

Because it is an assertion of act� the compiler can draw many inferences from a single
RESIDENT clause
 For example� consider the following case�

HPF� ALIGN Y�I	 WITH X�I	

HPF� ALIGN Z�J	 WITH X�J��	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE RESIDENT CLAUSE
 DIRECTIVE
 AND CONSTRUCT �	�

HPF� ON HOME� X�K	 	� RESIDENT� X�INDX�K		 	

X�K	 � X�INDX�K		 � Y�INDX�K		 � Z�INDX�K		

The compiler is justi�ed in making the following assumptions in compiling the assignment
statement �assuming it honors both the ALIGN directives and the ON directive��

� X�K	 requires no communication �because of the HOME clause�

� X�INDX�K		 requires no communication �because of the RESIDENT clause�

� Y�INDX�K		 requires no communication �because Y has the same mapping as X� and
INDX�K	 clearly cannot change values between its use in the two references X�INDX�K		
and Y�INDX�K			

The compiler cannot make any assumption about INDX�K	 or Z�INDX�K		 from the above
code
 There is no indication how INDX is mapped relative to X� so the ON directive gives
no guidance
 Note that the fact that an expression �here� X�INDX�K		� is local does not
imply that its subexpressions �here� INDX�K	� are also local
 Similarly� Z s mapping does not
determine if Z�INDX�K		 would be local� it indicates that Z�INDX�K	��	 is local� but that
isn t a great help
 If the compiler has additional information �for example� X is distributed
by BLOCK and INDX�K	 is not near a block boundary�� it might be able to make additional
deductions

Advice to implementors� One mark of a good compiler will be that it aggressively
propagates RESIDENT assertions
 This is likely to signi�cantly reduce communication
costs
 Note the cases under �Advice to users� below
 �End of advice to implementors��

Advice to users� One can expect compilers to di�er in how aggressive they are
in drawing these deductions
 Higher�quality compilers will be able to identify more
references as local� and use this information to eliminate data movement
 All compilers
should recognize that if an element of one array is local� then the same element of
any other arrays with the same static mapping �i
e
� arrays aligned together� or with
the same DISTRIBUTE pattern and array size� will also be local
 That is� any compiler
should recognize Y�INDX�K		 in the above example as local
 Dynamically changing
array mappings �i
e
� REALIGN and REDISTRIBUTE� will tend to limit such information
and information propagation
 Also� assignments that might change subexpressions
�for example� an assignment to K or any element of INDX in the above example� will
force the compiler to be conservative in its deductions
 �End of advice to users��

��	�� RESIDENT Directives Applied to Procedure Reference

If a RESIDENT directive applies to procedure reference� then the assertion is more subtle

� If a res�object�list appears in the RESIDENT directive� then no assertion is made about
behavior within the called procedure
 For example� consider the statements�

HPF� RESIDENT� A�I	� B 	

A�I	 � F� A�I	� B�LO
HI	 	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	�SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

The directive declares all variable refences in the statement �including the actual
arguments� to be local to the current ON processor set
 However� the execution of F

itself could access elements of arrays named A and B stored on arbitrary processors

Rationale� Propagating assertions about the behavior of lexical entities is
di�cult to de�ne consistently and usefully
 For example� consider the following
function called from the code fragment above�

REAL FUNCTION F� X� Y 	

USE MODULE�DEFINING�A

REAL X� Y�
	� B�I	

HPF� INHERIT Y

HPF� ALIGN B�
	 WITH Y�
	

INTEGER I

Z � ���

DO I � �� SIZE�Y	

Z � Z � A�I	�X � B�I	�Y�I	

END DO

F � Z

END FUNCTION

Assume A is de�ned as a distributed� global array in module MODULE DEFINING A

What should the RESIDENT clause mean regarding operations in F# The expres�
sion A�I	 in the RESIDENT directive might reasonably mean references only to
the array A that is visible in the caller� or it might mean references to any array
named A
 Note that the A in the caller may be local� the same global array as the
A in F �if the caller used MODULE DEFINING A�� or a di�erent global array �if the
caller used a di�erent module�
 Perhaps a limiting case is array B
 The array B

in function F is local� and thus di�erent from the caller� however� because of the
restrictions on ON clauses it is certain that the local B will be mapped to the ON

processor set
 Thus� the RESIDENT assertion is trivially true
 To further confuse
matters� RESIDENT variables might seem to apply to dummy arguments that be�
come associated with those variables
 Unfortunately� this implies that the lexical
expression B in the caller refers to the lexical expression Y in F� which stretches
the de�nition of �lexical� beyond the breaking point
 For all these reasons� it
was decided to limit the meaning of named variables in RESIDENT clauses to the
lexical scope of the directive
 �End of rationale��

� If the RESIDENT directive does not contain a res�object�list� then the directive asserts
that all references in the caller and the called procedures are local as de�ned above

For example� consider the statements�

HPF� RESIDENT

A�I	 � F� A�I	� B�LO
HI	 	

The directive declares all variable refences in the statement �including the actual
arguments� to be local to the current ON processor set� and that F itself does not
reference or update any nonlocal variables

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE RESIDENT CLAUSE
 DIRECTIVE
 AND CONSTRUCT �		

Rationale� The RESIDENT assertion is always true for data local to the called
procedure
 This is true because the called procedure must use a declarative
ON clause� which in turn limits the set of processors that can store any local
explicitly mapped variables
 The above de�nition extends this assertion to all
global explicitly mapped data� producing a very powerful directive
 This is sim�
ilar to the meaning of INDEPENDENT� in that it also makes an assertion about
variable accesses in any called procedure in the loop
 An alternative semantics
for RESIDENT would have been to avoid propagating the assertion interprocedu�
rally �i
e
� treat both the variable�list version and the no�list version the same�

However� this would not provide enough information to optimize code on certain
machines
 In particular� it would have made task parallelism quite di�cult on
message�passing machines
 �End of rationale��

Advice to implementors� RESIDENT without a variable list guarantees that no one�
sided communication outside of the ON processor set will be generated by the callee

Such a procedure can be called only on the �active� processors� unless the runtime
system has additional constraints �for example� if the runtime system requires all
processors to participate in collective communications�

The other forms of RESIDENT provide information that could be propagated inter�
procedurally
 For example� if the actual argument to a subprogram is asserted to be
RESIDENT and is passed transcriptively� then anything that is aligned to it in the callee
will also be RESIDENT
 If the information is not propagated� the only result will be
less optimization
 �End of advice to implementors��

Advice to users� Although the RESIDENT assertion applies interprocedurally� it is by
no means certain that all compilers will make use of this information
 In particular�
separate compilation limits the propagation that can take place
 It is therefore good
practice to include a RESIDENT clause both in the caller s ON directive and in the
callee
 �This assumes that the assertion is true� of course&� This ensures that the
compiler has the RESIDENT information available when it is compiling both ends of
the procedure call
 This is especially useful for RESIDENT clauses without a variable
list� knowing that all data accessed is local allows many optimizations that are not
otherwise possible
 �End of advice to users��

Locality information is particularly critical interprocedurally
 Here� the RESIDENT di�
rective without a res�object�list can be used to good advantage
 Consider the following
extension of the block�structured example from Section 	

��

HPF� PROCESSORS PROCS�NP	

HPF� DISTRIBUTE X�BLOCK	 ONTO PROCS

 Compute ILO�IP	 � lower bound on PROCS�IP	

 Compute IHI�IP	 � upper bound on PROCS�IP	

DONE � �FALSE�

DO WHILE ��NOT� DONE	

HPF� INDEPENDENT

DO IP � �� NP

HPF� ON �PROCS�IP		� RESIDENT

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

CALL SOLVE�SUBDOMAIN� IP� X�ILO�IP	
IHI�IP		 	

END DO

HPF� ON HOME�X	 BEGIN

CALL SOLVE�BOUNDARIES� X� ILO��
NP	� IHI��
NP	 	

HPF� RESIDENT

DONE � CONVERGENCE�TEST� X� ILO��
NP	� IHI��
NP	 	

HPF� END ON

END DO

Recall that the INDEPENDENT IP loop performs a computation on each subdomain s interior�
where a subdomain is mapped to a particular processor
 The �rst RESIDENT clause addition�
ally informs the compiler that no subdomain uses data from another processor
 Without
this information� the compiler would have to assume a worst�case scenario in which each
subdomain performed its updates based on non�local read�only data
 Any nonlocal data
could not be written by another processor without violating the tt INDEPENDENT direc�
tive� however� if the data were not updated �for example� a large lookup table� it could be
stored remotely
 Particularly on nonshared�memory machines� access to this remote data
would be di�cult
 The RESIDENT clause ensures that this possibility need not be considered

All data required by SOLVE SUBDOMAIN is stored locally
 The second RESIDENT clause asserts
that all data for CONVERGENCE TEST is stored on the same processors that store X
 The same
cannot be said for SOLVE BOUNDARIES� which does not fall in the scope of the RESIDENT

directive
 For example� there might be a processors arrangement other than PROCS with
necessary data
 Accessing this data might well cause a bottleneck in the computation as
described above

Again� note the usefulness of RESIDENT clauses in giving the compiler information
 Few
compilers would be able to unravel nontrivial assignments to ILO and IHI� and no current
compiler would even attempt to understand the comments in the above code fragment
 End
of advice to programmers

��� The TASK REGION Construct

Task parallelism is expressed in HPF by mapping data objects onto subsets of processors
and adding assertions that allow concurrent execution of di�erent code blocks on di�erent
processor subsets
 A data object is mapped to a processor subset by distribution onto a
subsection of a processors arrangement
 Execution on a subset of processors is speci�ed by
using an ON directive
 This section introduces a TASK REGION directive that allows the user
to specify that disjoint processor subsets can execute blocks of code concurrently

A TASK REGION directive is used to assert that a block of code satis�es the following set
of constraints
 All lexically outermost ON blocks inside a task region must have a RESIDENT

attribute implying that all data accessed inside them is mapped to the corresponding active
processor subset
 Further� the code inside two such ON blocks must not have interfering
I�O
 Under these constraints� two such ON blocks can safely execute concurrently if they
execute on disjoint processor subsets

����� Syntax of the TASK REGION Construct

A task region is a single entry region delimited by two structured comments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE TASK REGION CONSTRUCT
��

H	�� task�region�construct is

directive�origin block�task�region�directive
block
directive�origin end�task�region�directive

H	�� block�task�region�directive is TASK�REGION

H	�	 end�task�region�directive is END TASK�REGION

A task�region�construct is a kind of executable�construct

There must not be a transfer of control from outside the task�region�construct to inside

the task�region�construct
 Transfer of control out of the task�region�construct is allowed
provided that the transfer does not originate inside an ON block
 �The reason for this will
be apparent later
�

����� Semantics of the TASK REGION Construct

We will refer to a block of code enclosed by a TASK REGION ��� END TASK REGION pair as
a task region
 The TASK REGION directives are a way for the programmer to assert that a
section of code satis�es a set of conditions
 The compiler is expected to use these assertions
to generate task�parallel code

A task region can contain blocks of code that are directed to execute ON processor
subsets
 All other code executes on a subset that contains all active processors
 Every ON

block at the outermost nesting level �i
e
� not inside another ON block or another task region�
inside a task region is de�ned as a lexical task
 Every execution instance of a lexical task is
de�ned as an execution task and will also be referred to as just task when the distinction
is clear from the context
 An execution task is associated with a set of active processors
discussed earlier in this chapter

The following restrictions must hold inside a task region�

� Every ON block corresponding to a lexical task must have the RESIDENT attribute

This means that� for reading a variable inside an execution task� the corresponding
active processors must own at least one copy of the variable� and for writing� they
must own all copies of that variable

� An I�O operation inside an execution task may interfere with an I�O operation inside
another execution task if and only if the two tasks execute on identical subsets of
processors
 Note that two execution tasks can be instances of the same or di�erent
lexical tasks
 In general� two I�O operations interfere if they access the same �le or
unit
 The conditions for interference of I�O operations are detailed in Section �
� in
the context of the INDEPENDENT directive

����	 Execution Model and Usage

A task region does not introduce a fundamentally new execution model
 However� the
assertions implicit in a task region imply that only the speci�ed active processors of an
execution task need to participate in its execution� and that other processors can skip
its execution
 A processor executing a task region participates in the execution of all tasks
executing on a processor subset that it belongs to� and does not participate in the execution
of tasks executing on processor subsets that it does not belong to
 Code outside lexical tasks
is executed as normal data parallel code by all active processors of the task region
 The

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

access restrictions for a task region guarantee that the results obtained by this execution
paradigm will be consistent with pure data parallel execution of a task region

A task region presents a simple yet powerful model to write integrated task and data
parallel programs
 We illustrate three basic computation structures in which task paral�
lelism can be e�ectively exploited with this model

�
 Parallel sections� A task region can be used to divide the available processors into dis�
joint sets for performing independent computations� simulating what is often referred
to as parallel sections
 This form of task parallelism is relatively straightforward and
useful in many application scenarios� an example being multiblock applications
 The
task region simply contains a sequence of RESIDENT ON blocks on disjoint processor
subsets
 Note that the division of processors among subsets can be dynamic� that is�
it can be in terms of other variables computed during execution

 Nested parallelism� Task regions can be nested� and in particular� a subroutine call
made from an execution task can further subdivide the active processors using another
task region directive
 This allows the exploitation of nested parallelism
 An example
is the implementation of dynamic tree structured divide and conquer computations

As a speci�c example� quicksort can be implemented by recursively partitioning the
input array of keys around a pivot� and assigning proportionate number of processors
to the two new arrays obtained as a result of partitioning

�
 Data parallel pipelines� Task regions can be used to implement pipelined data parallel
computations
 We will illustrate this with a
 dimensional fast Fourier transform �
D
FFT� computation
 The �rst stage of a
D FFT reads a two dimensional matrix and
performs a � dimensional FFT on each row of the matrix
 The second stage performs
a � dimensional FFT on each column of the matrix and generates the �nal output

In a pipelined data parallel implementation of this form of
D FFT� the two stages
are mapped on to disjoint subsets of processors
 Task and data parallel code for a
D
FFT� along with a brief description� is included in Section 	
�
�

����� Implementation

A task region is simply an assertion about a code block and the exploitation of task paral�
lelism is� at least partially� dependent on the compilation scheme
 While the speci�cs of how
task parallelism is exploited will be strongly dependent on the parallel system architecture�
the compiler� and the underlying communication model� we will point out some important
considerations and illustrate task parallel code generation with an example
 We primarily
address distributed memory machines using a message passing communication and synchro�
nization model� but will point out some of the important issues relating to shared memory
implementations

������� Localized computation and communication

It is of central importance that computation and communication inside an executing task
should not involve any processors other than those directed to execute the task in the
relevant ON clause

On entry to a lexical task� the compiler has to insert checks so that the inactive pro�
cessors jump to the code following the task
 Since an execution task cannot access data

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE TASK REGION CONSTRUCT
��

outside of the active processor set� no communication needs to be generated between the
relevant active processors and other processors
 In a message passing model� a communica�
tion generation algorithm that only generates necessary messages will naturally achieve the
desired results
 However� some communication schemes can involve generation of empty
messages between processors that do not communicate and it is important to ensure that
empty messages are not generated between active processors of an executing task and other
processors

A communication model that uses barriers for synchronization �in shared or distributed
memory machines� must ensure that all barriers inside an executing task are subset barriers
that only span the active processors
 An implementation may also need to include a subset
barrier� on entry to and on exit from� an executing task for consistency of data accesses
inside and outside an executing task
 In general� the compilation framework has to ensure
the consistency of data accesses inside and and outside an executing task and this can
be done in the context of virtually any synchronization scheme in a shared or distributed
memory environment

������� Replicated computations

All computations exclusively involving replicated variables should be replicated on all ex�
ecuting processors
 A simple alternative is that one processor performs the computation
and broadcasts the results to all processors
 While such replication is generally pro�table
in HPF anyway� it has additional importance in a task region since the communication
generated by a broadcast can cause additional synchronization that may interfere with task
parallelism

������	 Implications for I�O

In some parallel system implementations� I�O is performed through a single processor of the
system
 Task parallelism in the presence of I�O assumes that all processors can perform
I�O independently and this paradigm has to be supported� although it is not necessary
that each processor be able to physically perform all I�O operations independently
 One
simple solution is to have a single designated I�O processor that performs all I�O but
is not considered an executing processor and hence does not have any execution related
dependences

������� SPMD or MIMD code generation

Another issue for the compiler is whether or not the same code image should execute on
all processors
 Since di�erent processor groups may need di�erent variables� a naive SPMD
implementation is likely to be wasteful of memory since it must allocate all variables on all
processors
 This can be addressed by dynamic memory allocation� but at the cost of added
complexity
 Using di�erent code images for di�erent processor subsets is another solution
that also leads to signi�cant added complexity

����� Example� ��D FFT

This section shows the use of task parallelism to build a pipelined data�parallel
�
dimensional FFT and illustrates the compilation of task parallelism by showing SPMD
code generated from the HPF program

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

The basic sequential
DFFT code is as follows�

REAL� DIMENSION�n�n	

 a�� a�

DO WHILE��true�	

READ �unit � �� end � ���	 a�

CALL rowffts�a�	

a� � a�

CALL colffts�a�	

WRITE �unit � �	 a�

CYCLE

��� CONTINUE

EXIT

END DO

To write a pipelined task and data parallel
D FFT in HPF� the code is slightly
modi�ed and several HPF directives are added
 First� variables a� and a� are distributed
onto disjoint subsets of processors� and then a task region is used to create two lexical tasks
to perform rowffts and colffts on di�erent subsets of processors
 The assignment a� �

a� in the task region speci�es the transfer of data between the tasks
 A new variable done�

is introduced to store the termination condition
 The modi�ed code is as follows�

REAL� DIMENSION�n�n	

 a��a�

LOGICAL done�

HPF� PROCESSORS procs��	

HPF� DISTRIBUTE a��block��	 ONTO procs��
�	

HPF� DISTRIBUTE a����block	 ONTO procs��
�	

HPF� TEMPLATE� DIMENSION��	� DISTRIBUTE�BLOCK	 ONTO procs��
�	

 td�

HPF� ALIGN WITH td���	

 done�

HPF� TASK�REGION

done� � �false�

DO WHILE ��true�	

HPF� ON �procs��
�		 BEGIN� RESIDENT

READ �unit � iu�end����	 a�

CALL rowffts�a�	

GOTO ���

��� done� � �true�

��� CONTINUE

HPF� END ON

IF �done�	 EXIT

a� � a�

HPF� ON �procs��
�		 BEGIN� RESIDENT

CALL colffts�a�	

WRITE�unit � ou	 a�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE TASK REGION CONSTRUCT
��

HPF� END ON

END DO

HPF� END TASK�REGION

Finally� we show simpli�ed SPMD code generated for each processor
 We assume a
message passing model where sends are asynchronous and nonblocking and receives block
until the data is available
 We use a simple memory model where variable declarations are
identical across all processors even though some variables will be referenced only on subsets
of the processors
 A shadow variable done� copy is created by the compiler to transfer
information from processor subset � to processor subset
 about termination of processing

The code is as follows�

REAL DIMENSION�n���n	

 a�

REAL DIMENSION�n�n��	

 a�

LOGICAL done�

C Following are compiler generated variables

LOGICAL done��copy

LOGICAL inset�� inset�

C

C Following magic compiler function call is to set the variables

C inset� and inset� to �true� for subset � and subset � processors

C respectively� and �false� otherwise�

C

CALL initialize�tasksets�inset��inset�	

C Code for processor subset �

IF �inset�	

done� � �false�

DO WHILE ��true�	

C Read is left unchanged as the code depends on the I�O model

READ �unit � ��end����	 a�

CALL rowffts�a�	

GOTO ���

��� done� � �true�

��� CONTINUE

�send�done��procs��
�		

IF �done�	 EXIT

�send�a��proces��
�		

END DO

END IF

C Code for processor subset �

IF �inset�	

DO WHILE��true�	

�receive�done��copy�procs��
�		

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��SECTION �� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM

IF �local�done�	 EXIT

�receive�a��procs��
�		

CALL colffts�a�	

C Write is left unchanged as the code depends on the I�O model�

WRITE �unit � �	 a�

END DO

END IF

send and receive are communication calls to transfer variables between subsets of
processors
 Program execution until the end of input is as follows
 Subset � processors
repeatedly read input� compute rowffts� and send the computed output as well as done�

�ag� which normally has the value �false�� to subset
 processors
 The subset
 processors
receive the �ag and the data set� compute colffts and write the results to the output

When the end of input is reached� subset � processor set the value �ag done� to �true��
send it and terminate execution
 Subset
 processors receive the �ag� recognize that the
end of input has been reached� and terminate execution

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section ��

Approved Extension for
Asynchronous I�O

This section de�nes a mechanism for performing Asynchronous I�O from an HPF or For�
tran program
 These are presented as changes to the Fortran 	� proposed draft standard�
X�J��	�����r�
 This extension is a subset of the proposed X�J� Asynchronous I�O exten�
sion� paper X�J��	�����r

 Brie�y� this extension allows direct unformatted data transfers
to be performed asynchronously with program execution
 The WAIT statement can be used
to wait for the data transfers to complete
 The INQUIRE statement can be used to determine
if the data transfers are complete

To section 	
�
�� rule R	�� connect�spec� add

or ASYNCHRONOUS

Add a new section after 	
�
�
��� entitled �ASYNCHRONOUS speci�er in the
OPEN statement�� containing the following paragraphs�

If the ASYNCHRONOUS speci�er is speci�ed for a unit in an OPEN statement� then
READ and WRITE statements for that unit may include the ASYNCHRONOUS speci�er
in the control information list

The presence of an ASYNCHRONOUS speci�er in a READ or WRITE statement permits
�but does not require� a processor to perform the data transfer asynchronously

The WAIT statement is used to wait for or inquire as to the status of asynchronous
input�output operations

To section 	
�
�� rule R	�
 io�control�spec� add

or ID � scalar�default�int�variable
or ASYNCHRONOUS

and also add the constraints

Constraint� If either an ASYNCHRONOUS or an ID� speci�er is present� then both
shall be present

Constraint� If an ASYNCHRONOUS speci�er is present� the REC� speci�er shall
appear� a format shall not appear� and a namelist�group�name shall
not appear

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSION FOR ASYNCHRONOUS I�O

Constraint� If an ASYNCHRONOUS speci�er is present� then no function reference
may appear in an expression anywhere in the data transfer state�
ment

At the end of section 	
�
�� add the following paragraphs�

The addition of the ID� speci�er results in the initiation of an asynchronous data
transfer
 Execution of the data transfer statement shall be eventually followed
by execution of a WAIT statement specifying the same ID value that was returned
to the ID variable in a data transfer statement
 This WAIT statement is called
the matching WAIT statement
 Note that asynchronous data transfer shall be
direct and unformatted

The matching WAIT statement shall be executed in the same instance of the same
subprogram in which the asynchronous data transfer statement was executed

Advice to implementors� The above restriction is to prevent the com�
piler from performing code motion optimizations across WAIT statements

Any operations involving variables listed in asynchronous input�output
lists must be performed after the matching WAIT statement is executed

�End of advice to implementors��

No ASYNCHRONOUS speci�er nor any ID� speci�er shall be speci�ed if the io�unit
was not opened with the ASYNCHRONOUS speci�er

In section 	
�
�� in the fourth and �fth paragraphs after the constraints� change both
instances of �IOSTAT� or a SIZE�� to �IOSTAT�� SIZE�� or an ID��

Insert the following text at the end of section 	
�
� before the �nal paragraph�

For an asynchronous data transfer� errors may occur either during execution of
the data transfer statement or during subsequent data transfer
 If these errors
occur during the data transfer statement and do not result in termination of
the program� then they will be detectable using ERR� and IOSTAT� speci�ers in
the data transfer statement
 If these error conditions occur during subsequent
data transfer and do not result in termination of the program� then they will be
detectable using ERR� and IOSTAT� speci�ers in the matching WAIT statement

In the paragraph at the end of section 	
�
�� change the �rst occurrence of �execution�
to read �execution or subsequent data transfer
�

To section 	
�
�� add the following paragraphs�

For asynchronous data transfers steps ��� correspond to both the asynchronous
data transfer statement and the matching WAIT statement
 Steps ��� may oc�
cur asynchronously with program execution
 If an implementation does not
support asynchronous data transfers then steps ��� may be performed by the
asynchronous data transfer statement
 The matching WAIT statement shall still
be executed� the only e�ect being to return status information

Any variable that appears as an input�item or output�item in an asynchronous
data transfer statement� or that is associated with such a variable� shall not
be referenced� become de�ned� or become unde�ned until the execution of the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� THE WAIT STATEMENT
�	

matching WAIT statement
 However� it is allowed for a pointer to become asso�
ciated with such a variable

Multiple outstanding asynchronous data transfer operations �READ or WRITE� are
allowed� however� no two WRITE operations may use the same unit and record
number without an intervening WAIT

Advice to users� HPF permits left�to�right de�nition of the I�O list on a READ�
whether or not it is asynchronous
 This means that a statement such as

READ����ID�IDNUM�REC���	 I�A�I	

is conforming and has the same input behavior as a synchronous READ
 �End of advice
to users��

In section 	� change �and INQUIRE statements� to �� INQUIRE� and WAIT statements�

In section 	
�
�
��� add the following sentence as the last sentence of the paragraph�

If there are outstanding data transfer operations for the speci�ed unit� the value
assigned to the NEXTREC� speci�er is computed as if all the outstanding data
transfers had already completed� in the order in which they were issued

To section 	
�
�� rule R	
� inquire�spec� add

or ID � scalar�default�int�variable
or PENDING � scalar�default�logical�variable

and also add the constraints

Constraint� The ID� and PENDING� speci�ers shall not appear in an INQUIRE

statement if the FILE� speci�er is present

Constraint� If either an ID� speci�er or a PENDING� speci�er is present� then
both shall be present

Add a new section after 	
�
�

� entitled �ID� and PENDING� speci�ers in

the INQUIRE statement�� containing the following paragraph�

If an ID� speci�er is present in an INQUIRE statement� then the variable speci�ed
in the PENDING� speci�er is assigned the value true if the data transfer identi�ed
by the ID� speci�er for the speci�ed unit has not yet completed
 In all other
cases� the variable speci�ed in the PENDING� speci�er is set to false

�
�� The WAIT Statement

H���� wait�stmt is WAIT � wait�spec�list 	

H���
 wait�spec is UNIT � io�unit
or ID � scalar�default�int�expr
or ERR � label
or IOSTAT � label

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSION FOR ASYNCHRONOUS I�O

Constraint� A wait�spec�list shall contain exactly one UNIT� speci�er� exactly one ID� spec�
i�er� and at most one of each of the other speci�ers

The WAIT statement terminates an asynchronous data transfer
 The IOSTAT� and ERR�

speci�ers are optional and are described in sections 	
�
�
� and 	
�
�
�� respectively

Advice to implementors� Implementors may choose to implement any or all asyn�
chronous I�O synchronously
 This essentially means using the ID� clause on the data
transfer statement to record the results of the transfer� then supplying the results to
the matching WAIT statement
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section ��

Approved Extensions for
HPF Extrinsics

This section builds on Section � by de�ning speci�c interfaces for HPF with di�erent mod�
els of parallelism� LOCAL and SERIAL �Section ��
��� and di�erent languages� HPF �Sec�
tion ��
��� C �Section ��
��� Fortran �Section ��
��� and Fortran �� �Section ��
��
 Library
routines useful in the extrinsic models are de�ned in Section ��
�
 These are de�ned with
Fortran bindings
 An implementation may chose to de�ne similar routines for use with C

The intent of the HPF extrinsic mechanism is to generalize
 These de�nitions may serve as
a model for other interfaces
 Some additional extrinsic interfaces are given after Annex E

In HPF �
�� speci�c extrinsic types HPF� HPF LOCAL� and HPF SERIAL were de�ned

There was also a short discussion of F�� LOCAL
 In this more general setting� the HPF

keywords are retained for compatibility
 As de�ned in Section �� a model of HPF refers
to the global language� HPF LOCAL is the same as LANGUAGE��HPF��MODEL��LOCAL�� and
HPF SERIAL is the same as LANGUAGE��HPF��MODEL��SERIAL�
 The F�� LOCAL extrinsic is
now addressed by the LANGUAGE��FORTRAN��MODEL��SERIAL� extrinsic kind

From the caller s standpoint� an invocation of an extrinsic procedure from a �global�
HPF program has the same semantics as an invocation of a regular procedure
 The callee
may see a di�erent picture
 The following sections describe sets of conventions for coding
callees in the various extrinsic options
 The set of extrinsic options supported by a partic�
ular HPF compiler is implementation dependent
 They are not limited to those described
in this chapter
 Furthermore� the language processor used to compile the actual extrinsic
subprogram need not be an HPF compiler
 More speci�cally� it need not actually be a com�
piler for the language noted in the LANGUAGE speci�cation� as long as the executing extrinsic
code conforms to the conventions de�ned for the language
 We de�ne these interfaces to
promote portability and interoperability� but a given implementation and the programmer
are free to create other combinations of models and languages

���� Alternative Extrinsic Models� LOCAL and SERIAL

A global HPF program may be thought of as a set of processors cooperating in a loosely
synchronous fashion on a single logical thread of program control
 Section � de�nes two
additional models that may be invoked from global HPF� LOCAL� where the model is single�
processor �node� code� in which all active processors participate� but with only the data
that is mapped to a given physical processor directly accessible� and SERIAL� where the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�
 SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

model is a single�processor operating alone� with all necessary data aggregated by the caller
before the serial subprogram is invoked
 As examples of use� the LOCAL model is useful for
programs that drop down into code with explicit message passing for data communications�
while the SERIAL model may be needed for calls to system libraries or specialized I�O
routines

Both the LOCAL and the SERIAL models can be invoked from a global HPF program�
but in general these models may not be mixed
 Calling global HPF from local or serial
procedures is not allowed
 Furthermore� calling a serial procedure from a local one is not
allowed
 Section �
�
� gives more detail about how various models can interact with each
other

Some additional restrictions are placed on all local and serial subprograms invoked
from global HPF�

� The subprogram directly invoked by global HPF must not be recursive

� The subprogram directly invoked by global HPF must not use any alternate return
mechanism

The behavior of I�O statements in local and serial subprograms is implementation
dependent

������ The LOCAL Model

An extrinsic procedure can be de�ned as explicit SPMD code by specifying the local pro�
cedure code that is to execute on each processor
 In this section� we describe the contract
between the caller and an EXTRINSIC�MODEL��LOCAL�	 callee
 It is important not to con�
fuse the extrinsic procedure� which is conceptually a single procedural entity called from
the HPF program� with the individual local procedures that are executed on each node�
one apiece
 An invocation of an extrinsic procedure results in a separate invocation of a
local procedure on each processor
 The execution of an extrinsic procedure consists of the
concurrent execution of a local procedure on each executing processor
 Each local proce�
dure may terminate at any time by executing a RETURN statement
 However� the extrinsic
procedure as a whole terminates only after every local procedure has terminated� in e�ect�
the processors are synchronized before return to a global HPF caller

With the exception of returning from a local procedure to the global caller that initi�
ated local execution� there is no implicit synchronization required of the locally executing
processors
 Variables declared in a local procedure are held in local storage� private to each
processor
 To access data outside the processor requires either preparatory communication
to copy data into the processor before running the local code� or explicit communication
operations between the separately executing copies of the local procedure
 Individual imple�
mentations may provide implementation�dependent means for communicating� for example�
through a message�passing library or a shared�memory mechanism
 Such communication
mechanisms are beyond the scope of this speci�cation
 Note� however� that many useful
portable algorithms that require only independence of control structure can take advantage
of local routines� without requiring a communication facility

The LOCAL model assumes only that nonsequential array axes are mapped indepen�
dently to axes of a rectangular processor grid� each array axis to at most one processor axis
�no �skew� distributions� and no two array axes to the same processor axis
 This restriction
su�ces to ensure that each physical processor contains a subset of array elements that can

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� ALTERNATIVE EXTRINSIC MODELS� LOCAL AND SERIAL
��

be locally arranged in a rectangular con�guration
 �Of course� to compute the global indices
of an element given its local indices� or vice versa� may be quite a tangled computation�but
it will be possible
� In the case of cyclic distributions� multiple sections of the array may
be mapped to the local processors

It is recommended that if� in any given implementation� an extrinsic type does not
obey the conventions described in this section� then its model name or keyword should not
contain the word LOCAL

�������� Conventions for Calling LOCAL Subprograms

The default mapping of scalar dummy arguments� of scalar function results� and of se�
quential arrays is such that the argument is replicated on each physical processor
 These
mappings may� optionally� be explicit in the interface �except in the case of sequential ar�
rays� which may not be explicitly mapped�� but any other explicit mapping is not HPF
conforming
 Dummy arguments may not be of explicitly mapped derived types or have
explicitly mapped structure components

As in the case of non�extrinsic subprograms� actual arguments may be mapped in any
way� if necessary� they are copied automatically to correctly mapped temporaries before
invocation of and after return from the extrinsic procedure

It should be noted that the conventions for calling local subprograms apply only at
the interface between the GLOBAL and LOCAL models
 The conventions do not propagate to
further subprograms called from within the LOCAL model

�������� LOCAL Calling Sequence

Execution of an extrinsic local procedure must be performed as if the actions detailed
below occur prior to the invocation of the local procedure on each processor �see Section
�
�

 for a related list of conditions and for the meaning of as if �
 Any actions thus required
are enforced by the compiler of the calling routine� and are not the responsibility of the
programmer� nor do they impact the local procedure

�
 The processors are synchronized
 In other words� all actions that logically precede the
call are completed

 Each actual argument is remapped� if necessary� according to the directives �explicit
or implicit� in the declared interface for the extrinsic procedure
 Thus� HPF map�
ping directives appearing in the interface are binding�the compiler must obey these
directives in calling local extrinsic procedures
 �The reason for this rule is that data
mapping is explicitly visible in local routines�
 Actual arguments corresponding to
sequential arrays and scalar dummy arguments are replicated �by broadcasting� for
example� in all processors
 Scalars of derived types with explicitly mapped structure
components or of an explicitly mapped derived type cannot be passed from global
HPF to an extrinsic local procedure

�
 If a variable accessible to the called routine has a replicated representation� then all
copies are updated prior to the call to contain the correct current value according to
the sequential semantics of the source program

After these actions have occurred� the local procedure is invoked on each processor

The information available to the local invocation is described below in Section ��
�
�
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

When control is transferred back to the caller at the conclusion of the extrinsic local
procedure� execution must resume as if the following actions have already been performed

�
 All processors are synchronized after the call
 In other words� global computation
procedes as if the execution of every copy of the local routine is completed before
execution in the caller is resumed

 The original distribution of arguments �and of the result of an extrinsic function� is
restored� if necessary

Advice to implementors� An implementation might check� before returning from
the local subprogram� to make sure that replicated variables have been updated con�
sistently by the subprogram
 However� there is certainly no requirement�perhaps
not even any encouragement�to do so
 This is the responsibilty of the local subpro�
gram� and any checks in the caller are a tradeo� between speed and� for instance�
debuggability
 �End of advice to implementors��

�������	 Information Available to the Local Procedure

The local procedure invoked on each processor is passed a local argument for each global
argument passed by the caller to the �global� extrinsic procedure interface
 Each global
argument is an HPF array or scalar
 The corresponding local argument is the part of the
global array stored locally� or a local copy of a scalar argument or sequential array replicated
across processors
 Note that if the HPF array is replicated� each local procedure receives
a copy of the entire actual
 An array actual argument passed by an HPF caller is called a
global array � the subgrid of that global array passed to one copy of a local routine �because
it resides in that processor� is called a local array

If the extrinsic procedure is a function� then the local procedure is also a function

Only scalar�valued extrinsic functions are allowed
 All local functions must return the same
value

If a global HPF program calls local subprogram A with an actual array argument X�
and A receives a portion of array X as dummy argument P� then A may call another local
subprogram B and pass P or a section of P as an actual argument to B

The run�time interface must provide enough information that each local function can
discover for each local argument the mapping of the corresponding global argument� trans�
late global indices to local indices� and vice�versa
 A speci�c set of procedures that provide
this information is listed in the HPF Local Library Section ��
�
�
 The manner in which
this information is made available to the local routine depends on the implementation and
the programming language used for the local routine

������ The SERIAL Model

This section de�nes a set of conventions for writing code in which an instance of a subpro�
gram executes on only one processor �of which there may be more than one�

If a program unit has extrinsic model SERIAL� an HPF compiler should assume that
the subprogram is coded to be executed on a single processor
 From the point of view of
a global HPF caller� the SERIAL procedure behaves the same as an identically coded HPF
procedure would
 Di�erences might only arise in implementation�speci�c behavior �such as
the performance�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� EXTRINSIC LANGUAGE BINDINGS
��

There is currently no manner in which to specify which processor is to execute an
HPF SERIAL procedure

�������� SERIAL Calling Sequence

Prior to invocation of a SERIAL procedure from global HPF� the behavior of the program
will be as if the following actions take place�

�
 The processors are synchronized
 All actions that logically precede the call are com�
pleted

 All actual arguments are remapped to the processor that will actually execute the
SERIAL procedure
 Each argument will appear to the SERIAL procedure as a sequential
argument

The behavior of the SERIAL procedure will be as if it was executed on only one processor

After the instance of the SERIAL procedure invoked from global HPF has completed� the
behavior will be as if the following happens�

�
 All processors are synchronized after the call

 The original mappings of actual arguments are restored

���� Extrinsic Language Bindings

The previous section lays out the rules and considerations for execution models de�ned
for HPF extrinsics
 The HPF extrinsic interface is also used to tell the compiler what the
language conventions of a called subprogram are
 Four language bindings are de�ned here�
HPF� Fortran� F��� and C
 A given implementation may support additional interfaces or
allow a user to construct custom interfaces
 Taken together� these sections de�ne the special
extrinsics HPF LOCAL and HPF SERIAL

The key feature of the language interface is an extended set of attributes for dummy
arguments in explicit extrinsic interfaces� which can give the programmer control over as�
pects of argument passing between procedures of di�erent extrinsic types
 This mechanism
is used extensively in the interfaces to C and Fortran ��� but it is de�ned in this more
general context because it can also apply to other language interfaces

������ Control of Arguments

The special data attributes for dummy arguments in routines of certain extrinsic types are
MAP TO� LAYOUT� and PASS BY
 These may only appear in data types statements declaring
dummy arguments within explicit interfaces to procedures of appropriate extrinsic types
 In
particular� all of these attributes have been de�ned for extrinsic interfaces of type LANGUAGE
� �C� �Section ��
��� and the latter two have been de�ned for extrinsic interfaces of type
LANGUAGE � �F��� �Section ��
��

The purpose of this language extension is to increase the �exibility of the EXTRINSIC

interface mechanism to facilitate argument passing between procedures written in di�erent
programming languages
 These three attributes provide a convenient way to pass data
between nearly equivalent data type representations and array layouts� as well as to allow
for di�erent data passing conventions and options
 It should be noted� however� that these

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

mechanisms are by no means expected to address the problems of full equivalence between
data types and implementations of di�erent languages

In particular� the MAP TO attribute is designed to provide a standard� portable mecha�
nism for passing arguments between data types �in di�erent languages� that have substantial
overlap but not necessarily identical ranges of values or an identical machine representation

The programmer� not the language implementer� retains the responsibility for determining
whether or not any actual argument s value will be adequately represented in the new data
type� or whether that value may be altered in successive operations involved in conversion
�rst to the new language� in operations within the extrinsic procedure� and then potentially
in conversion back to the original language
 The LAYOUT attribute is used in cases when
the ordering of array elements within one or more processors may need to be changed when
passing them as arguments between procedures of di�erent languages
 Finally� the PASS BY

attribute is designed to o�er more detailed control of passing mechanisms for arguments to
allow for di�erences between language implementations� to choose between distinct passing
options o�ered in the non�HPF language� and to enable passing implementation�speci�c
data structures when it is desired to convey HPF mapping information along with data
values to non�HPF procedures

These attributes are speci�ed by an extension of the syntax rule R��� for attr�spec in
the Fortran standard
 Rule R��� for type�declaration�stmt is not changed except to refer
to the extended attr�spec
 The �rst two constraints below are repeated without change
from the Fortran standard for clarity� since they apply generally to all attributes
 The
remaining constraints in the Fortran standard following rules R��� through R��� are speci�c
to attributes already de�ned in the standard and will also be assumed but not repeated
here

These changes to Fortran syntax are made in anticipation of such extensions being
considered for addition to the standard language in the next revision� as language interop�
erability is an area of active interest to the full Fortran community

H���� type�declaration�stmt�extended is type�spec ! ! � attr�spec�extended " ���

 " entity�decl�list

H���
 attr�spec�extended is PARAMETER

or access�spec
or ALLOCATABLE

or DIMENSION � array�spec 	

or EXTERNAL

or INTENT � intent�spec 	

or INTRINSIC

or OPTIONAL

or POINTER

or SAVE

or TARGET

or MAP�TO � map�to�spec 	

or LAYOUT � layout�spec 	

or PASS�BY � pass�by�spec 	

H����map�to�spec is scalar�char�initialization�expr

H���� layout�spec is scalar�char�initialization�expr

H���� pass�by�spec is scalar�char�initialization�expr

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� EXTRINSIC LANGUAGE BINDINGS
��

Constraint� The same attr�spec�extended shall not appear more than once in a given type�
declaration�stmt

Constraint� An entity shall not be explicitly given any attribute more than once in a scoping
unit

Constraint� The attributes MAP TO� LAYOUT� and PASS BY may be speci�ed only for dummy
arguments within a scoping unit of an extrinsic type for which these attributes
have been explicitly de�ned

The de�nition of characteristics of a dummy data object as given in F	���

�
� and
extended in Section �
�� is further extended to include the dummy data object s MAP TO�
LAYOUT� and PASS BY attributes

In the MAP TO attribute� values of map�to�spec are intended to describe how the data
type of the named actual argument is mapped to the data type of the dummy argument in
the extrinsic procedure
 An example is given in Section ��
�

�

For a given extrinsic type that allows the MAP TO attribute� the set of permitted values
for the map�to�spec will be speci�ed
 If the range of permitted values of the type and
mapped�to type di�er� and the value of the actual argument or some subobject of the
actual argument is not within the permitted range of the mapped�to type� the value of the
associated dummy argument or subobject becomes unde�ned
 Conversely� if the value of
the dummy argument or some subobject of the dummy is not within the permitted range of
values of the associated actual argument� and the associated actual argument is a variable�
the value of the associated actual argument or subobject of the actual becomes unde�ned

If there is a mismatch between the precision� representation method� range of permitted
values� or storage sequence between the type of the dummy argument and the permitted
mapped�to type of the dummy argument� the compiler shall ensure that� for the duration
of the reference to the extrinsic� the dummy argument is represented in a manner that is
compatible with the expectations of the callee for an object of the permitted mapped�to
type
 Upon return from the procedure� the compiler shall ensure that the value of an actual
argument that is a variable is restored to the speci�ed type and kind

Advice to users� This rule was created to ensure the portability of interoperability

However� it should be noted that for large objects� a signi�cant overhead may be
incurred if there is a mismatch between the representation method used for the data
type versus the representation method used for the permitted mapped�to type
 �End
of advice to users��

In the LAYOUT attribute� any permitted values of layout�spec for a given extrinsic inter�
face are intended to describe how the data layout of the named actual argument is mapped
to the data layout of the dummy argument in the extrinsic procedure
 An example is given
in Section ��
�
�
 If no LAYOUT attribute is speci�ed for a dummy array argument� the
data layout shall be the same as if it were being passed to an HPF procedure of the same
model� unless another default layout is de�ned for the given extrinsic type

In the PASS BY attribute� any permitted values of pass�by�spec for a given extrinsic
interface indicate a choice of mechanism used to associate the named actual argument with
the dummy argument in the extrinsic procedure
 Examples are given in Sections ��
�
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

and ��
�

�
 If no PASS BY attribute is speci�ed� the argument association mechanism
is implementation dependent� based on the compiler s knowlege of the extrinsic language
processor

���	 HPF Bindings

HPF is the default language assumption
 It requires no MAP TO� LAYOUT� or PASS BY at�
tributes in explicit interface de�nitions
 All required subprogram binding information can
be accomplished via the standard Fortran explicit interface

The rules stated in section ��
� of the Fortran standard will apply to variables de�ned
in Fortran�based SERIAL and LOCAL scoping units
 In particular� if the de�nition status�
association status� or allocation status of a variable is de�ned upon execution of a RETURN

statement or an END statement in a Fortran subprogram� such a variable in an SERIAL

or LOCAL subprogram will be de�ned upon execution of a RETURN statement or an END

statement

Any I�O performed within an extrinsic subprogram of a di�erent model� and the cor�
respondence between �le names and unit numbers used in global HPF and those used in
local or serial subprogram code will be implementation de�ned

���	�� Additional Special Considerations for HPF LOCAL

There are some considerations about what HPF features may be used in writing a local�
per�processor procedure

Local program units can use all HPF constructs except for REDISTRIBUTE and REALIGN

Moreover� DISTRIBUTE� ALIGN� and INHERIT directives may be applied only to dummy
arguments� that is� every alignee and distributee must be a dummy argument� and every
align�target must be a template or a dummy argument
 Mapping directives in local HPF
program units are understood to have global meaning� as if they had appeared in global
HPF code� applying to the global array of which a portion is passed on each processor

�The principal use of such mapping directives is in an HPF LOCAL module that is used by a
global HPF module
�

HPF ALIGNMENT� HPF TEMPLATE� and HPF DISTRIBUTION� the distribution query library
subroutines� may be applied to non�sequential local arrays
 Their outcome is the same as
for a global array that happens to have all its elements on a single node

As introduced in Section �
�
�� a local HPF program unit may not access global HPF
data other than data that is accessible� either directly or indirectly� via the actual arguments

In particular� a local HPF program unit does not have access to global HPF COMMON blocks�
COMMON blocks appearing in local HPF program units are not identi�ed with global HPF
COMMON blocks
 The same name may not be used to identify a COMMON block both within a
local HPF program unit and an HPF program unit in the same executable program

Like local variables in local subprograms� COMMON blocks in local subprograms contain
local data� held in local storage on each processor
 This storage is only accessible locally�
and it will in general contain data that is di�erent on each processor
 Indeed� the size of a
local COMMON block can be di�erent on each processor

According to the Fortran speci�cation� a COMMON block that goes out of scope is not
preserved� unless it has the SAVE attribute
 This is true of local COMMON blocks� which should
be given the SAVE attribute if they are intended to convey information between calls to the
local subprogram

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� HPF BINDINGS
�	

Scalars of an explicitly mapped derived type cannot be passed to an HPF LOCAL sub�
program

The attributes �type� kind� rank� optional� intent� of the dummy arguments must match
the attributes of the corresponding dummy arguments in the explicit interface
 A dummy
argument of an EXTRINSIC��HPF���LOCAL�	 routine may not be a procedure name

A dummy argument of an EXTRINSIC��HPF���LOCAL�	 routine may not have the
POINTER attribute

A nonsequential dummy array argument of an EXTRINSIC��HPF���LOCAL�	 routine
must have assumed shape
 Note that� in general� the shape of a dummy array argument
di�ers from the shape of the corresponding actual argument� unless there is a single exe�
cuting processor

Explicit mapping directives for dummy arguments may appear in a local procedure

Such directives are understood as applying to the global array whose local sections are passed
as actual arguments or results on each processor
 If such directives appear� corresponding
mapping directives must be visible to every global HPF caller
 This may be done by
providing an interface block in the caller� or by placing the local procedure in a module of
extrinsic kind HPF LOCAL that is then used by the global HPF program unit that calls the
local procedure

An EXTRINSIC��HPF���LOCAL�	 routine may not be invoked� either directly or indi�
rectly� in the body of a FORALL construct or in the body of an INDEPENDENT loop

A local procedure may have several ENTRY points
 A global HPF caller must contain a
separate extrinsic interface for each entry point that can be invoked from the HPF program

���	�� Argument Association

If a dummy argument of an EXTRINSIC��HPF���LOCAL�	 routine is a scalar� then the cor�
responding dummy argument of the local procedure must be a scalar of the same type and
type parameters
 Only scalars of intrinsic types� or of derived types that are not explicitly
mapped� may be passed from a global to an HPF LOCAL routine
 When the extrinsic proce�
dure is invoked� the local procedure is passed an argument that consists of a local copy of
the scalar
 This copy will be a valid HPF scalar

If a dummy argument of an EXTRINSIC��HPF���LOCAL�	 routine is an array� then the
corresponding dummy argument in the speci�cation of the local procedure must be an array
of the same rank� type� and type parameters

If the array is sequential in the extrinsic interface� the corresponding actual argument
will be passed by replicatation on all processors� just as scalar arguments are passed
 Each
local dummy argument will be associated with a full copy of the actual array argument

The dummy argument in the extrinsic interface and the corresponding dummy argument
in the speci�cation of the local procedure may be declared with the same explicit shape

All sequential dummy arguments passed by replication to an EXTRINSIC��HPF���LOCAL�	

procedure must either be INTENT�IN	 arguments or should be updated consistently across
processors

If the dummy argument is a nonsequential array� then� when the extrinsic procedure is
invoked� the local dummy argument is associated with the local array that consists of the
subgrid of the global array that is stored locally
 This local array will be a valid HPF array

If an EXTRINSIC��HPF���LOCAL�	 routine is a function� then the local procedure is a
function that returns a scalar of the same type and type parameters as the HPF extrinsic
function
 The value returned by each local invocation must be the same

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

Each physical processor has at most one copy of each HPF variable

Consider the following extrinsic interface�

INTERFACE

EXTRINSIC��HPF���LOCAL�	 FUNCTION MATZOH�X� Y	 RESULT�Z	

REAL� DIMENSION�
�
	

 X

REAL� DIMENSION�
	

 Y

REAL Z

HPF� ALIGN WITH X�
��	

 Y�
	

 note that this asserts that size�Y	 � size�X��	

HPF� DISTRIBUTE X�BLOCK� CYCLIC	

END FUNCTION

END INTERFACE

The corresponding local HPF procedure is speci�ed as follows

EXTRINSIC��HPF���LOCAL�	 FUNCTION MATZOH�XX� YY	 RESULT�ZZ	

REAL� DIMENSION�
�
	

 XX

REAL� DIMENSION��
	

 YY
 assumed shape with lower bound of �

REAL ZZ

NX� � SIZE�XX� �	

LX� � LBOUND�XX� �	

UX� � UBOUND�XX� �	

NX� � SIZE�XX� �	

LX� � LBOUND�XX� �	

UX� � UBOUND�XX� �	

NY � SIZE�YY� �	

LY � LBOUND�YY� �	

UY � UBOUND�YY� �	

���

END FUNCTION

Assume that the function is invoked with an actual �global� array X of shape �� � and
an actual vector Y of length � on a ��processor machine� using a
�
 processor arrangement
�assuming one abstract processor per physical processor�

Then each local invocation of the function MATZOH receives the following actual argu�
ments�

Processor ����� Processor ���
�

X����	 X����	 X����	

X����	 X����	 X����	

Y��	 Y��	

Y��	 Y��	

Processor �
��� Processor �
�
�

X����	 X����	 X����	

Y��	 Y��	

Here are the values to which each processor would set NX�� LX�� UX�� NX�� LX�� UX�� NY� LY�
and UY�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� HPF BINDINGS

�

Processor ����� Processor ���
�

NX� � � LX� � � UX� � � NX� � � LX� � � UX� � �

NX� � � LX� � � UX� � � NX� � � LX� � � UX� � �

NY � � LY � � UY � � NY � � LY � � UY � �

Processor �
��� Processor �
�
�

NX� � � LX� � � UX� � � NX� � � LX� � � UX� � �

NX� � � LX� � � UX� � � NX� � � LX� � � UX� � �

NY � � LY � � UY � � NY � � LY � � UY � �

An actual argument to an extrinsic procedure may be a pointer
 Since the correspond�
ing dummy argument may not have the POINTER attribute� the dummy argument becomes
associated with the target of the HPF global pointer
 In no way may a local pointer become
pointer associated with a global HPF target
 Therefore� an actual argument may not be of
a derived�type containing a pointer component

Rationale� It is expected that global pointer variables will have a di�erent represen�
tation from that of local pointer variables� at least on distributed memory machines�
because of the need to carry additional information for global addressing
 This restric�
tion could be lifted in the future
 �End of rationale��

Other inquiry intrinsics� such as ALLOCATED or PRESENT� should also behave as expected

Note that when a global array is passed to a local routine� some processors may receive an
empty set of elements

���	�	 Special Considerations for HPF SERIAL

There are restrictions that apply to an HPF SERIAL subprogram

No speci�cation�directive� realign�directive� or redistribute�directive is permitted to be

appear in an HPF SERIAL subprogram or interface body

Rationale� An HPF mapping directive would likely be meaningless in an HPF SERIAL

subprogram
 Note� however� the independent�directive may appear in an HPF SERIAL

subprogram� since it may provide meaningful information to a compiler about a DO

loop or a FORALL statement or construct
 �End of rationale��

Any dummy data objects and any function result variables of an HPF SERIAL procedure
will be considered to be sequential

An HPF SERIAL subprogram must not contain a de�nition of a common block that has
the same name as a common block de�ned in an HPF or HPF LOCAL program unit
 In
addition� an HPF SERIAL subprogram must not contain a de�nition of the blank common
block if an HPF or HPF LOCAL program unit has a de�nition of the blank common block

A dummy argument or function result variable of an HPF SERIAL procedure that is
referenced in global HPF must not have the POINTER attribute
 A subobject of a dummy
argument or function result of an HPF SERIAL procedure that is referenced in global HPF�
must not have the POINTER attribute

A dummy argument of an HPF SERIAL procedure that is referenced in global HPF and
any subobject of such a dummy argument must not have the TARGET attribute

A dummy procedure argument of an HPF SERIAL procedure must be an HPF SERIAL

procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

 SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

PROGRAM MY�TEST

INTERFACE

EXTRINSIC��HPF���SERIAL�	 SUBROUTINE GRAPH�DISPLAY�DATA	

INTEGER� INTENT�IN	

 DATA�
�
	

END SUBROUTINE GRAPH�DISPLAY

END INTERFACE

INTEGER� PARAMETER

 X�SIZE � ����� Y�SIZE � ����

INTEGER DATA�ARRAY�X�SIZE� Y�SIZE	

HPF� DISTRIBUTE DATA�ARRAY�BLOCK� BLOCK	

 Compute DATA�ARRAY

���

CALL DISPLAY�DATA�DATA�ARRAY	

END PROGRAM MY�TEST

 The definition of a graphical display subroutine�

 In some implementation�dependent fashion�

 this will plot a graph of the data in DATA�

EXTRINSIC��HPF���SERIAL�	 SUBROUTINE GRAPH�DISPLAY�DATA	

INTEGER� INTENT�IN	

 DATA�
�
	

INTEGER

 X�IDX� Y�IDX

DO Y�IDX � LBOUND�DATA� �	� UBOUND�DATA� �	

DO X�IDX � LBOUND�DATA� �	� UBOUND�DATA� �	

���

END DO

END DO

END SUBROUTINE GRAPH�DISPLAY

���� C Language Bindings

A common problem faced by Fortran users is the need to call procedures written in other
languages� particularly those written in C or ones that have interfaces that can be described
by C prototypes
 Although many Fortran implementations provide methods that solve this
problem� these solutions are rarely portable

This section de�nes a method of specifying interfaces to procedures de�ned in C that
removes most of the common obstacles to interoperability� while retaining portability

������ Speci�cation of Interfaces to Procedures De�ned in C

If a user wishes to specify that a procedure is de�ned by a C procedure� this is speci�ed with
an extrinsic�spec�arg of LANGUAGE � �C�� or an extrinsic�kind�keyword of C� as speci�ed in
Section �

For C subprograms for which EXTRINSIC �LANGUAGE � �C�	 has been speci�ed� the
constraints associated with the syntax for attr�spec�extended �H���
� are extended as fol�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� C LANGUAGE BINDINGS

�

lows�

Constraint� A LANGUAGE � �C� function shall have a scalar result of type integer� real or
double precision

Constraint� A dummy argument of a LANGUAGE � �C� procedure shall not be an assumed�
shape array� shall not have the POINTER attribute� shall not have the TARGET

attribute� nor shall it have a subobject that has the POINTER attribute

Constraint� The bounds of a dummy argument shall not be speci�ed by speci�cation ex�
pressions that are not constant speci�cation expressions� nor shall the character
length parameter of a dummy argument of such a procedure be speci�ed by a
speci�cation expression that is not a constant speci�cation expression

Constraint� A dummy�arg�list of a LANGUAGE � �C� subroutine shall not have a dummy�arg
that is � or a dummy procedure

The value of the scalar�char�initialization�expr in the EXTERNAL NAME speci�er gives the
name of the procedure as de�ned in C
 This value need not be the same as the procedure
name speci�ed by the function�stmt or subroutine�stmt
 If EXTERNAL NAME is not speci�ed�
it is as if it were speci�ed with a value that is the same as the procedure name in lower case
letters

Advice to users� Note that the EXTERNAL NAME speci�er does not necessarily specify
the name by which a binder knows the procedure
 It speci�es the name by which
the procedure would be known if it were referenced by a C program� and the HPF
compiler is required to perform any transformations of that name that the C compiler
would perform

The EXTERNAL NAME speci�er also allows the user to specify a name that might not
be permitted by an HPF compiler� such as a name beginning with an underscore� or
as a way of enforcing the distinction between upper and lower case characters in the
name
 �End of advice to users��

The extrinsic�spec�arg of LANGUAGE � �C� helps a compiler identify a procedure that
is de�ned in C so that it can take appropriate steps to ensure that the procedure is invoked
in the manner required by the C compiler

Advice to implementors� A vendor may feel compelled to provide support for more
than one C compiler� if di�erent C compilers available for a system provide di�erent
procedure calling conventions or di�erent data type sizes
 For instance� a vendor s
compiler may provide support for a value of GNU C in the LANGUAGE� speci�er� or
it may provide support through the use of compiler switches
 �End of advice to
implementors��

������ Speci�cation of Data Type Mappings for C

The extrinsic dummy argument feature� consisting of the MAP TO� LAYOUT� and PASS BY

attributes� is the principal feature that facilitates referencing procedures de�ned in C from
within Fortran programs
 Together� these attributes allow the user to specify conversions
required to associate the actual arguments speci�ed in the procedure reference with the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

formal arguments de�ned by the referenced procedure
 In particular� the MAP TO attribute
indicates the type of the C data to which the HPF data shall be converted by the compiler�
the PASS BY attribute indicates whether a C pointer to the dummy argument needs to be
passed� the LAYOUT attribute indicates for an array whether the array element order needs
to be changed from Fortran s array element ordering to C s

For C� the constraints associated with attr�spec�extended� map�to�spec� layout�spec� and
pass�by�spec �H���
�H����� are further extended as follows

Constraint� The MAP TO attribute shall be speci�ed for all dummy arguments and function
result variables of a LANGUAGE � �C� explicit interface

Constraint� The map�to�spec associated with a dummy argument shall be compatible with
the type of the dummy argument
 �See below for compatibility rules
�

Constraint� A LAYOUT attribute shall only be speci�ed for a dummy argument that is an
array

Constraint� A LAYOUT attribute shall not be speci�ed for an assumed�size array

If the compiler is capable of representing letters in both upper and lower case� the value
speci�ed for a map�to�spec� layout�spec or pass�by�spec is without regard to case
 Any blanks
speci�ed for a map�to�spec� layout�spec or pass�by�spec shall be ignored by the compiler for
the purposes of determining its value

An implementation shall provide a module� ISO C� that shall de�ne a derived type�
C VOID POINTER
 The components of the C VOID POINTER type shall be private

Advice to users� The C VOID POINTER type provides a method of using void �

pointers in a program� but does not give the user any way of manipulating such a
pointer in the Fortran part of the program� since I�O cannot be performed on an
object with private components outside the module that de�nes the type� neither can
the components or structure constructor of such a structure be used outside of the
module that de�nes the type
 �End of advice to users��

The values permitted for a map�to�spec for LANGUAGE � �C� are �INT�� �LONG��
�SHORT�� �SIGNED CHAR�� �FLOAT�� �DOUBLE�� �LONG DOUBLE�� �CHAR�� �CHAR PTR��
�VOID PTR�� or a comma�separated list� delimited by parentheses� of any of these values

The HPF types with which these are compatible are shown in the table below

A map�to�spec that is a parenthesized list of values is compatible with a dummy argu�
ment of derived type if each value in the list is compatible with the corresponding component
of the derived type

When the PASS BY attribute is used� the values permitted for a pass�by�spec are �VAL��
���� or ����
 If no PASS BY attribute is speci�ed� then PASS BY ��VAL�	 is assumed
 If a
pass�by�spec of VAL is speci�ed� the dummy argument shall not have the INTENT�OUT	 or
INTENT�INOUT	 attribute speci�ed
 If a value of ��� or ���� is speci�ed for the pass�by�spec�
an associated actual argument shall be a variable

The value of the map�to�spec speci�ed for a dummy argument in the interface body of a
procedure for which a LANGUAGE� speci�er whose value is C appears shall be such that at least
one of the permitted mapped�to types is the same as the C data type of the corresponding
formal argument in the C de�nition of the procedure �or a type that is compatible with
one of the permitted mapped�to types�
 The C data type of a function in the C de�nition

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� C LANGUAGE BINDINGS

�

of a procedure shall be one of the permitted mapped�to types �or a type that is equivalent
to the permitted mapped�to types� speci�ed for the function result variable in the interface
body of a function with the LANGUAGE� speci�er whose value is C
 If a subroutine has been
speci�ed with a LANGUAGE� speci�er whose value is C� the C de�nition of the procedure shall
be speci�ed with a data type of void

The permitted mapped�to types for scalar dummy arguments of intrinsic type or of the
derived type C VOID POINTER� are shown in the following table

MAP TO Compatible C Type if PASS BY

With �VAL� ��� ����

�INT� INTEGER int int� int��

�LONG� INTEGER long long� long��

�SHORT� INTEGER short short� short��

�SIGNED CHAR� INTEGER signed char signed char� signed char��

�FLOAT� REAL float float� float��

�DOUBLE� REAL double double� double��

�LONG DOUBLE� REAL double double� double��

�CHAR� CHARACTER��	 char char� char��

�CHAR PTR� CHARACTER char� char�� char���

�VOID PTR� C VOID POINTER void� void�� void���

The permitted mapped�to types of an array are the same as the permitted mapped�
to types of a scalar variable of that type followed by a left bracket ���� followed by the
extent of the corresponding dimension of the dummy argument� followed by a right bracket
� �� for each dimension of the array
 If no value is speci�ed for the LAYOUT attribute� the
corresponding dimensions of the dummy argument are determined from right to left� if the
value C ARRAY is speci�ed for the LAYOUT attribute� the corresponding dimensions of the
dummy argument are determined from left to right

The value permitted for a LANGUAGE � �C� layout�spec is C ARRAY

The permitted mapped�to types of a scalar variable of derived type are the structures
whose corresponding members are of one of the permitted mapped�to types of the compo�
nents of the derived type

If there is a mismatch between the precision� representation method� range of permitted
values or storage sequence between the type of the dummy argument and the permitted
mapped�to type of the dummy argument� the compiler shall ensure that� for the duration
of the reference to a procedure de�ned with a LANGUAGE� speci�er whose value is C� the
dummy argument is represented in a manner that is compatible with the expectations of
the C processor for an object of the permitted mapped�to type
 Upon return from the
procedure� the compiler shall ensure that the value of an actual argument that is a variable
is restored to the speci�ed type and kind

If the range of permitted values of the type and mapped�to type di�er and the value of
the actual argument or some subobject of the actual argument is not within the permitted
range of the mapped�to type� the value of the associated dummy argument or subobject
becomes unde�ned
 Conversely� if the value of the dummy argument or some subobject of
the dummy is not within the permitted range of values of the associated dummy argument�
and the associated actual argument is a variable� the value of the associated actual argument
or subobject of the actual becomes unde�ned

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

Advice to users� These rules were created to ensure the portability of interoperability

However� it should be noted that for large objects� a signi�cant overhead may be
incurred if there is a mismatch between the representation method used for the data
type versus the representation method used for the permitted mapped�to type
 �End
of advice to users��

Advice to users� In some cases� this may cause the value of the actual argument to
change without the value being modi�ed by the procedure referenced
 For example�

PROGRAM P

INTERFACE

EXTRINSIC�LANGUAGE��C�	 SUBROUTINE C�SUB�R�I	

REAL�KIND����D�		� MAP�TO��FLOAT�	� PASS�BY����	

 R

INTEGER� MAP�TO��INT�	� PASS�BY����	

 I

END SUBROUTINE C�SUB

END INTERFACE

REAL�KIND����D�		 RR

RR � ���D� � ���D���

I � ���������

PRINT �� RR

CALL C�SUB�RR� I	

PRINT �� RR

END PROGRAM P

void c�sub�float �r� int �i	

#

$

might print

�������������������

�������������������

although the value of �r is not modi�ed in c sub
 Similarly� the value of I might
become unde�ned after the reference to c sub� although �i is not modi�ed

Although it is good practice to avoid specifying a mapped�to type of float for a
dummy argument of any type other than default real� or a mapped�to type of double
for a dummy argument of any type other than double precision real� selecting an
appropriate dummy argument type for objects requiring a mapped�to type int or
long might not be so simple
 �End of advice to users��

If no layout�spec is speci�ed for a dummy array argument� the array element order shall
be the same as that speci�ed by Fortran
 If the value of layout�spec speci�ed is C ARRAY�
the array element order of the array shall be transposed for the duration of the reference
to the procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� FORTRAN LANGUAGE BINDINGS

�

�������� Examples of Data Type Mappings

Some examples should help to clarify what sorts of C procedure de�nitions would be per�
mitted given an interface body in a Fortran program
 For example� the following interface
body

INTERFACE

EXTRINSIC��C�	 SUBROUTINE C�SUB�I� R� DARR� STRUCT	

INTEGER� MAP�TO��INT�	

 I

REAL� MAP�TO��FLOAT�	� PASS�BY����	

 R

REAL�KIND����D�		� MAP�TO��DOUBLE�	

 DARR���	

TYPE DT

SEQUENCE

INTEGER

 I� J

END TYPE DT

TYPE�DT	� MAP�TO���INT� LONG	�	� PASS�BY����	

 STRUCT

END SUBROUTINE C�SUB

END INTERFACE

could correspond to a C procedure that has the prototype

void c�sub�int i� float r�� double darr��� � struct #int i� long j$ �	

In the following example of the LAYOUT attribute�

PROGRAM P

INTERFACE

EXTRINSIC��C�	 SUBROUTINE C�SUB�A� B	

INTEGER� MAP�TO��INT�	

 A����	

INTEGER� MAP�TO��INT�	� LAYOUT��C�ARRAY�	

 B����	

END SUBROUTINE C�SUB

END INTERFACE

INTEGER

 AA����	� BB����	

CALL C�SUB�AA� BB	

END PROGRAM P

void c�sub�int a�� �� � b�� �� 	

the correspondence between elements of AA and a� and elements of BB and b is

AA����	 a�� �� BB����	 b�� ��

AA����	 a�� �� BB����	 b�� ��

AA����	 a�� �� BB����	 b�� ��

AA����	 a�� �� BB����	 b�� ��

���� Fortran Language Bindings

When the language speci�ed in an extrinsic de�nition is Fortran the rules are basically the
same as those for HPF because HPF is based on the Fortran standard
 There are a few
issues to consider in this case�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

� Only Fortran constructs should be used
 Features such as asynchronous I�O or the
HPF library may not be supported

� It is recommended that Fortran language processors to be used for this purpose be
extended to support the HPF LOCAL distribution query routines and the associated
HPF LOCAL LIBRARY

� Assuming the intent is to compile the extrinsic routines with a Fortran processor�
these routines should be in separate �les rather than incorporated into �les with HPF
source code

� The programmer should expect any HPF directives may be ignored

���
 Fortran �� Language Bindings

For language interface purposes� Fortran �� is still essentially a subset of ANSI�ISO stan�
dard Fortran� so most considerations relating to HPF calling Fortran also apply to HPF
calling Fortran �� extrinsic procedures
 However� two chief di�erences between Fortran and
Fortran �� complicate the speci�cation of any EXTRINSIC�LANGUAGE��F���	� interface from
HPF� especially for the local model�

� Arguments are usually passed di�erently
 Fortran �� implementations typically pass
arguments between subprograms by address �reference�
 That is� no other information
about the actual argument is passed � for example� data type� size� distribution� etc

In contrast� HPF implementations often pass by variables by descriptor in order to
make such information available to the subprogram

� Very di�erent information about how array elements are to be assigned to speci�c
memory locations is available to Fortran �� and HPF programmers

In Fortran ��� the declaration of an array prescribes exactly the mapping of array
elements to the linear sequence of storage locations
 In HPF� the mapping of ar�
ray elements to di�erent processors may be controlled �e
g
� with DISTRIBUTION and
ALIGN directives� and queried �e
g
� with HPF ALIGNMENT� HPF DISTRIBUTION� and
HPF TEMPLATE� but there is absolutely no information about how array elements on
a given processor are organized within local� serial memory
 Even in Fortran 	�� as�
sumed shape dummy arrays� for example� do not have to follow the same storage and
sequence association rules as Fortran �� arrays do

Indeed� di�erent HPF compilers may organize the data locally in di�erent manners �
perhaps including border cells for �stencil� optimizations� or global padding to ensure
equal�size subgrids on all processors
 Certainly� di�erent HPF compilers are not bound
to organize local data in any particular manner� and some may choose imaginative
orderings in such cases as SMP s� for example

���
�� Special Considerations for F�� LOCAL

The EXTRINSIC�F�� LOCAL	 interface extends the HPF LOCAL and FORTRAN LOCAL extrinsic
interfaces to meet the needs of Fortran �� programmers

This EXTRINSIC type uses the syntax for calling extrinsic subprograms described above

It can be described more precisely as an EXTRINSIC�LANGUAGE��F����MODEL��LOCAL�	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���	� FORTRAN

 LANGUAGE BINDINGS

	

interface
 The basic conventions for transferring control between global and local routines
described previously in Section ��
� also apply

However� the di�erences in argument passing and data distribution between these two
languages� as well as the di�erent possible motivations for using such an interface� can be
better addressed by allowing additional options for passing data and distribution informa�
tion
 These options are provided with the help of LAYOUT and PASS BY attributes

���
�� Argument Passing to F�� LOCAL Procedures

A typical Fortran �� implementation passes arguments by reference� usually by passing
the base address of the location of the �rst data element� and such arguments may also
be assumed to be sequence associated
 These facts make it most practical for the default
method of passing a distributed data structure from HPF to an F�� LOCAL procedure by
passing the base address of that section of local memory that has been allocated to it

To allow for sequence association of actual and dummy arguments� data should also be
reordered or compressed or both� if necessary� on all processors
 This is the safest method
of passing distributed data to an EXTRINSIC�F�� LOCAL	 procedure� and hence it should
be the default one
 However� it tends to have the greatest performance costs

A second argument passing option is to pass distributed array data �as is� from a
global HPF procedure to the local F�� ones� not guaranteeing sequence association of the
dummy arguments in order to avoid unwanted local data motion that might be required
to compress or reorder the elements of an array local to a processor
 In other words� it
should be possible to do no more data motion than if the same argument were being passed
to another HPF procedure
 The guarantee of a sequence associated dummy argument is
sacri�ced for the possible gains in performance available because the local components of
the actual argument are not reordered or compressed
 The local programmer must be able
to use the implementation�dependent ordering created by the global HPF program

A third option that can be useful to permit HPF LOCAL�style local programming from
an EXTRINSIC�F�� LOCAL	 procedure call is to pass an array via a descriptor or handle� as
is typically done in HPF implementations or for Fortran 	� assumed shape arrays
 The local
procedure may not access elements of this dummy argument directly but may only pass it
on to special utility routines� perhaps to obtain local or global distribution information

The following attributes su�ce to support the above three alternate form of passing
data to an EXTRINSIC�F�� LOCAL	x procedure�

� LAYOUT��F�� ARRAY�	 indicates that the rectangular con�guration should be FOR�
TRAN �� sequence associated in local� serial memory

For example� many compilers add border elements for �stencil� optimizations or pad
array allocations on particular processors so that all processors allocate equal amounts
of memory for each array
 Local reordering eliminates such padding and provides
FORTRAN �� sequence association for actual data values

Any local reordering is in addition to any global remapping that may be dictated by
DISTRIBUTION or ALIGN directives in the INTERFACE block

If no LAYOUT attribute is speci�ed� then LAYOUT��F�� ARRAY�	 is assumed

� LAYOUT��HPF ARRAY�	 indicates that an array argument is passed just as it would be
to a global HPF procedure� with no local reordering of the data

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

This option is desirable when the programmer decides that the overhead of local
reordering should be eliminated or that certain characteristics of the global HPF
compiler s ordering �border cells� equal�size allocations among processors� etc
� should
be preserved at the local level
 It forces the local programmer to access the local data
in whatever implementation�dependent style the global HPF compiler employs

Furthermore� each argument in the INTERFACE block can also have its PASS BY attribute
speci�ed to indicate whether the data is passed by reference� for Fortran ���style access� or
via a special handle� perhaps a descriptor used for HPF variable passing� that permits the
global HPF caller to pass special mapping information for use within the local Fortran ��
procedure

� PASS BY����	 indicates that the local procedure should be able to access the dummy
argument locally as an F���style variable� passed by reference

� PASS BY��HPF HANDLE�	 indicates that the local procedure should receive a reference
to a global descriptor that can be used with special inquiry routines to obtain useful
distribution information

Thus� the default dummy argument attributes are LAYOUT��F�� ARRAY�	� a guarantee
of sequence association� and PASS BY����	� an indication that data is being passed via a
pointer to its location

Advice to implementors�

In addition to providing argument passing and data reordering options� a good
EXTRINSIC�F�� LOCAL	 implementation should address the problem of declaring arbi�
trary sized local subgrids and accessing their elements without being able to describe
them as assumed�shape arrays� as in HPF
 Dealing with the local results of global
data distributions within each local procedure initiated by an extrinsic procedure call
can also be di�cult without Fortran 	� array inquiry functions and the inquiry sub�
routines in the HPF Library
 Special inquiry routines� callable globally or locally�
such as the proposed library of Fortran �� function interfaces in Annex G are recom�
mended as supplements to the EXTRINSIC�F�� LOCAL	 procedure interface in order
to permit more �exible and e�cient use of a broad range of possible global HPF data
distributions

�End of advice to implementors��

���
�	 F�� LOCAL Programming Examples

���
�	�� LAYOUT��F�� ARRAY�� and PASS BY�����

This example illustrates F�� LOCAL programming using the default LAYOUT��F�� ARRAY�	

and PASS BY����	 attributes� and the use of inquiry routines from the local level using the
LAYOUT��HPF ARRAY�	 attribute

� HPF caller

PROGRAM EXAMPLE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���	� FORTRAN

 LANGUAGE BINDINGS
��

 Declare the data array and a verification copy

INTEGER� PARAMETER

 NX � ���� NY � ���

REAL� DIMENSION�NX�NY	

 X� Y

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X� Y

 The global sum will be computed

 by forming partial sums on the processors

REAL PARTIAL�SUM�NUMBER�OF�PROCESSORS�		

HPF� DISTRIBUTE PARTIAL�SUM�BLOCK	

 Local subgrid parameters are declared per processor

 for a rank�two array

INTEGER� DIMENSION�NUMBER�OF�PROCESSORS�	��	

� LB� UB� NUMBER

HPF� DISTRIBUTE�BLOCK��	

 LB� UB� NUMBER

 Define interfaces

INTERFACE

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL�

� � LB�� UB�� LB�� UB�� X � X�DESC 	

INTEGER� DIMENSION�
	

 LB�� UB�� LB�� UB�

REAL�DIMENSION�
�
	�LAYOUT��HPF�ARRAY�	

 X

REAL�DIMENSION�
�
	�LAYOUT��HPF�ARRAY�	� �

PASS�BY��HPF�HANDLE�	

 X�DESC

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�� UB�

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X� X�DESC

END

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL��N�X�R	

INTEGER N�
	

REAL X�
�
	� R�
	

 Defaults

 LAYOUT��F���ARRAY�	 sequential� column�major storage

 PASS�BY����	 pass by reference �local address	

HPF� DISTRIBUTE N�BLOCK	

HPF� DISTRIBUTE X�BLOCK�BLOCK	

HPF� DISTRIBUTE R�BLOCK	

END

END INTERFACE

 Determine result using only global HPF

 Initialize values

FORALL �I��
NX�J��
NY	 X�I�J	 � I � �J��	 � NX

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

 Determine and report global sum

PRINT �� �Global HPF result
 ��SUM�X	

 Determine result using local subroutines

 Initialize values � assume stride � � 	

CALL HPF�SUBGRID�INFO� Y� IERR� LB�lb� UB�UB 	

IF �IERR�NE��	 STOP �ERROR
�

CALL LOCAL�� LB�
��	� UB�
��	� LB�
��	� UB�
��	� Y � Y 	

 DETERMINE AND REPORT GLOBAL SUM

NUMBER � UB � LB � �

CALL LOCAL� � NUMBER�
��	 � NUMBER�
��	 � Y � PARTIAL�SUM 	

PRINT �� �F���LOCAL result %�
 ��SUM�PARTIAL�SUM	

END

� FORTRAN �� callee

SUBROUTINE LOCAL�� LB�� UB�� LB�� UB�� X � DESCRX 	

REAL X � LB�
 UB� � LB�
 UB� 	

INTEGER DESCRX � � 	

 Get the global extent of the first axis

 This is an HPF�LOCAL type of inquiry routine with an �F���� prefix

CALL F���GLOBAL�SIZE � NX � DESCRX � � 	

 Initialize elements of the array

DO J � LB�� UB�

DO I � LB�� UB�

X�I�J	 � I � �J��	 � NX

END DO

END DO

END

SUBROUTINE LOCAL��N�X�R	

 Here� the correspondence to the global indices is not important

 Only the total size of the subgrid is passed in

REAL X�N	

R � ��

DO I � �� N

R � R � X�I	

END DO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���	� FORTRAN

 LANGUAGE BINDINGS
��

END

���
�	�� LAYOUT��HPF ARRAY�� and PASS BY��HPF HANDLE��

This example performs only the initialization of the above example
 It illustrates use of the
LAYOUT��F�� ARRAY�	 attribute to pass an HPF distributed array without remapping� as
well as use of PASS BY��HPF HANDLE�	 to pass an HPF�style descriptor or handle for use
in the F�� LOCAL subgrid inquiry function
 It also illustrates the addressing of data in
terms of �embedding arrays
�

� HPF caller

PROGRAM EXAMPLE

INTEGER� PARAMETER

 NX � ���� NY � ���

REAL� DIMENSION�NX�NY	

 Y

HPF� DISTRIBUTE�BLOCK�BLOCK	

 Y

 Local subgrid parameters are declared per processor

 for a rank�two array

INTEGER� DIMENSION�NUMBER�OF�PROCESSORS�	��	

� LB� UB� LB�EMBED� UB�EMBED

HPF� DISTRIBUTE�BLOCK��	

 LB� UB� LB�EMBED� UB�EMBED

 Define interfaces

INTERFACE

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL��

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�� X� X�DESC 	

INTEGER� DIMENSION�
	

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�

 By default� X is passed by reference

REAL� DIMENSION�
�
	� LAYOUT��HPF�ARRAY�	

 X

 X�DESC is passed by its descriptor or �handle�

REAL� DIMENSION�
�
	� LAYOUT��HPF�ARRAY�	�

� PASS�BY��HPF�HANDLE�	

 X�DESC

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�EMBED�� UB�EMBED�

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�EMBED�� UB�EMBED�

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X

END

END INTERFACE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

 Initialize values

 � Assume stride � � and no axis permutation 	

CALL HPF�SUBGRID�INFO� Y� IERR�

� LB�LB� LB�EMBED�LB�EMBED�

� UB�UB� UB�EMBED�UB�EMBED	

IF �IERR�NE��	 STOP �ERROR
�

CALL LOCAL��

� LB�
��	� UB�
��	� LB�EMBED�
��	� UB�EMBED�
��	�

� LB�
��	� UB�
��	� LB�EMBED�
��	� UB�EMBED�
��	� Y� Y 	

END

� Fortran �� callee

SUBROUTINE LOCAL��

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�� X� X�DESC 	

 The subgrid has been passed in its �embedded� form

REAL X � LB�EMBED�
 UB�EMBED� � LB�EMBED�
 UB�EMBED� 	

 This argument is used only as input to inquiry functions

INTEGER X�DESC

 Get the global extent of the first axis

 This is an HPF�LOCAL type of inquiry routine with an �F���� prefix

CALL F���GLOBAL�SIZE�NX�X�DESC��	

 Otherwise� initialize elements of the array

 Loop only over actual array elements

DO J � LB�� UB�

DO I � LB�� UB�

X�I�J	 � I � �J��	 � NX

END DO

END DO

END

���� The Extrinsic Library

Following are Fortran bindings for routines useful in intrinsic subprograms

������ HPF Local Routine Library

Local HPF procedures can use any HPF intrinsic or library procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� THE EXTRINSIC LIBRARY
��

Advice to implementors� The arguments to such procedures will be local arrays

Depending on the implementation� the actual code for the intrinsic and library routines
used by local HPF procedures may or may not be the same code used when called
from global HPF code
 �End of advice to implementors��

In addition� local library procedures GLOBAL ALIGNMENT� GLOBAL DISTRIBUTION� and
GLOBAL TEMPLATE are provided to query the global mapping of an actual argument to an
extrinsic function
 Other local library procedures are provided to query the size� shape�
and array bounds of an actual argument
 These library procedures take as input the name
of a dummy argument and return information on the corresponding global HPF actual
argument
 They may be invoked only by a local procedure that was directly invoked
by global HPF code
 If module facilities are available� they reside in a module called
HPF LOCAL LIBRARY� a local routine that calls them should include the statement

USE HPF�LOCAL�LIBRARY

or some functionally appropriate variant thereof

The HPF local routine library identi�es each physical processor by an integer in

the range � to n � �� where n is the value returned by the global HPF LIBRARY func�
tion NUMBER OF PROCESSORS
 Processor identi�ers are returned by ABSTRACT TO PHYSICAL�
which establishes the one�to�one correspondence between the abstract processors of an
HPF processors arrangement and the physical processors
 Also� the local library function
MY PROCESSOR returns the identi�er of the calling processor

In all cases� when an argument of one of the procedures of the local HPF library is
required to be a local dummy argument associated with a global HPF actual argument�
such association is not considered to be transitive
 That is� the local dummy argument
must be a dummy argument of a procedure which was referenced from global HPF� not
from another local subprogram

�������� Accessing Dummy Arguments by Blocks

The mapping of a global HPF array to the physical processors places one or more blocks�
which are groups of elements with consecutive indices� on each processor
 The number
of blocks mapped to a processor is the product of the number of blocks of consecutive
indices in each dimension that are mapped to it
 For example� a rank�one array X with
a CYCLIC��	 distribution will have blocks containing four elements� except for a possible
last block having � � SIZE�X	 mod � elements
 On the other hand� if X is �rst aligned to a
template or an array having a CYCLIC��	 distribution� and a non�unit stride is employed �as
is
HPF� ALIGN X�I	 WITH T���I	�� then its blocks may have fewer than four elements

In this case� when the align stride is three and the template has a block�cyclic distribution
with four template elements per block� the blocks of X have either one or two elements each

If the align stride were �ve� then all blocks of X would have exactly one element� as template
blocks to which no array element is aligned are not counted in the reckoning of numbers of
blocks

The portion of a global array argument associated with a dummy argument in an
HPF LOCAL subprogram may be accessed in a block�by�block fashion
 Three of the local
library routines� LOCAL BLKCNT� LOCAL LINDEX� and LOCAL UINDEX� allow easy access to the
local storage of a particular block
 Their use for this purpose is illustrated by the following
example� in which the local data are initialized one block at a time�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

EXTRINSIC�HPF�LOCAL	 SUBROUTINE NEWKI�DONT�HEBLOCK�X	

REAL X�
�
�
	

INTEGER BL��	

INTEGER� ALLOCATABLE LIND��
	� LIND��
	� LIND��
	

INTEGER� ALLOCATABLE UIND��
	� UIND��
	� UIND��
	

BL � LOCAL�BLKCNT�X	

ALLOCATE LIND��BL��		

ALLOCATE LIND��BL��		

ALLOCATE LIND��BL��		

ALLOCATE UIND��BL��		

ALLOCATE UIND��BL��		

ALLOCATE UIND��BL��		

LIND� � LOCAL�LINDEX�X� DIM � �	

UIND� � LOCAL�UINDEX�X� DIM � �	

LIND� � LOCAL�LINDEX�X� DIM � �	

UIND� � LOCAL�UINDEX�X� DIM � �	

LIND� � LOCAL�LINDEX�X� DIM � �	

UIND� � LOCAL�UINDEX�X� DIM � �	

DO IB� � �� BL��	

DO IB� � �� BL��	

DO IB� � �� BL��	

FORALL �I� � LIND��IB�	
 UIND��IB�	� �

I� � LIND��IB�	
 UIND��IB�	� �

I� � LIND��IB�	
 UIND��IB�	 	 �

X�I�� I�� I�	 � IB� � ���IB� � ����IB�

ENDDO

ENDDO

ENDDO

END SUBROUTINE NEWKI�DONT�HEBLOCK

GLOBAL ALIGNMENT�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF ALIGNMENT�
but it returns information about the global HPF array actual argument associated with the
local dummy argument ARRAY� rather than returning information about the local array

GLOBAL DISTRIBUTION�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF DISTRIBUTION�
but it returns information about the global HPF array actual argument associated with the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� THE EXTRINSIC LIBRARY
��

local dummy argument ARRAY� rather than returning information about the local array

GLOBAL TEMPLATE�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF TEMPLATE�
but it returns information about the global HPF array actual argument associated with the
local dummy argument ARRAY� rather than returning information about the local array

GLOBAL SHAPE�SOURCE�

Description� Returns the shape of the global HPF actual argument associated with
an array or scalar dummy argument of an HPF LOCAL procedure

Class� Inquiry function

Argument�

SOURCE may be of any type
 It may be array valued or a scalar
 It must be
a dummy argument of an HPF LOCAL procedure which is argument
associated with a global HPF actual argument

Result Type� Type Parameter and Shape� The result is a default integer array
of rank one whose size is equal to the rank of SOURCE

Result Value� The value of the result is the shape of the global actual argument
associated with the actual argument associated with SOURCE

Examples� Assuming A is declared by the statement

INTEGER A��
���� ���	

and is argument associated with B� the value of GLOBAL SHAPE�B	 is
h

	�
��
i

 If B

is argument associated with the section� A��
��� ��	� the value of GLOBAL SHAPE�B	

is
h

�
i

GLOBAL SIZE�ARRAY� DIM�

Optional argument� DIM

Description� Returns the extent along a speci�ed dimension of the global HPF
actual array argument associated with a dummy array argument of an HPF LOCAL
procedure

Class� Inquiry function

Argument�

ARRAY may be of any type
 It must not be a scalar
 It must be a dummy
argument of an HPF LOCAL procedure which is argument associated
with a global HPF actual argument

DIM �optional� must be scalar and of type integer with a value in the range � �
DIM � n� where n is the rank of ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

Result Type� Type Parameter and Shape� Default integer scalar

Result Value� The result has a value equal to the extent of dimension DIM of the
actual argument associated with the actual argument associated with ARRAY or� if
DIM is absent� the total number of elements in the actual argument associated with
the actual argument associated with ARRAY

Examples� Assuming A is declared by the statement

INTEGER A��
��� ��	

and is argument associated with B� the value of GLOBAL SIZE�B� �	 is �
 If B is
argument associated with the section� A��
��� �
�	� the value of GLOBAL SIZE�B	

is ��

ABSTRACT TO PHYSICAL�ARRAY� INDEX� PROC�

Description� Returns processor identi�cation for the physical processor associated
with a speci�ed abstract processor relative to a global actual argument array

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN	 argument

INDEX must be a rank�� integer array containing the coordinates
of an abstract processor in the processors arrangement
onto which the global HPF array is mapped
 It is an
INTENT�IN	 argument
 The size of INDEX must equal the
rank of the processors arrangement
 The value of the ith

element must be in the range � to ei� where ei is the extent
of the ith dimension of the processors arrangement

PROC must be scalar and of type integer
 It is an INTENT�OUT	

argument
 It receives the identifying value for the physi�
cal processor associated with the abstract processor spec�
i�ed by INDEX

PHYSICAL TO ABSTRACT�ARRAY� PROC� INDEX�

Description� Returns coordinates for an abstract processor� relative to a global
actual argument array� corresponding to a speci�ed physical processor

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN	 argument

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� THE EXTRINSIC LIBRARY
�	

PROC must be scalar and of type default integer
 It is an
INTENT�IN	 argument
 It contains an identifying value
for a physical processor

INDEX must be a rank�� integer array
 It is an INTENT�OUT	 ar�
gument
 The size of INDEX must equal the rank of the
processor arrangement onto which the global HPF array
is mapped
 INDEX receives the coordinates within this
processors arrangement of the abstract processor associ�
ated with the physical processor speci�ed by PROC
 The
value of the ith element will be in the range � to ei� where
ei is the extent of the ith dimension of the processors ar�
rangement

This procedure can be used only on systems where there is a one�to�one correspondence
between abstract processors and physical processors
 On systems where this correspondence
is one�to�many an equivalent� system�dependent procedure should be provided

LOCAL TO GLOBAL�ARRAY� L INDEX� G INDEX�

Description� Converts a set of local coordinates within a local dummy array to an
equivalent set of global coordinates within the associated global HPF actual argument
array

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN	 argument

L INDEX must be a rank�� integer array whose size is equal to the
rank of ARRAY
 It is an INTENT�IN	 argument
 It contains
the coordinates of an element within the local dummy
array ARRAY
 The value of the ith element must be in the
range � to ei� where ei is the extent of the ith dimension
of ARRAY

G INDEX must be a rank�� integer array whose size is equal to
the rank of ARRAY
 It is an INTENT�OUT	 argument
 It re�
ceives the coordinates within the global HPF array actual
argument of the element identi�ed within the local array
by L INDEX
 The value of the ith element will be in the
range � to ei� where ei is the extent of the ith dimension
of the global HPF actual argument array associated with
ARRAY

GLOBAL TO LOCAL�ARRAY� G INDEX� L INDEX�
LOCAL� NCOPIES� PROCS�

Optional arguments� L INDEX� LOCAL� NCOPIES� PROCS

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

Description� Converts a set of global coordinates within a global HPF actual
argument array to an equivalent set of local coordinates within the associated local
dummy array

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN	 argument

G INDEX must be a rank�� integer array whose size is equal to the
rank of ARRAY
 It is an INTENT�IN	 argument
 It contains
the coordinates of an element within the global HPF ar�
ray actual argument associated with the local dummy
array ARRAY
 The value of the ith element must be in the
range � to ei� where ei is the extent of the ith dimension
of the global HPF actual argument array associated with
ARRAY

L INDEX �optional� must be a rank�� integer array whose size is equal to
the rank of ARRAY
 It is an INTENT�OUT	 argument
 It
receives the coordinates within a local dummy array of
the element identi�ed within the global actual argument
array by G INDEX
 �These coordinates are identical on any
processor that holds a copy of the identi�ed global array
element
�

The value of the ith element will be in the range � to ei�
where ei is the extent of the ith dimension of ARRAY

LOCAL �optional� must be scalar and of type LOGICAL
 It is an INTENT�OUT	

argument
 It is set to �TRUE� if the local array contains
a copy of the global array element and to �FALSE� oth�
erwise

NCOPIES �optional� must be scalar and of type integer
 It is an INTENT�OUT	

argument
 It is set to the number of processors that hold
a copy of the identi�ed element of the global actual array

PROCS �optional� must be a rank�� integer array whose size is at least the
number of processors that hold copies of the identi�ed
element of the global actual array
 The identifying num�
bers of those processors are placed in PROCS
 The order
in which they appear is implementation dependent

MY PROCESSOR��

Description� Returns the identifying number of the calling physical processor

Class� Pure function

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� THE EXTRINSIC LIBRARY
��

Result Type� Type Parameter� and Shape� The result is scalar and of type
default integer

Result Value� Returns the identifying number of the physical processor from which
the call is made
 This value is in the range � � MY PROCESSOR � n � � where n is
the value returned by NUMBER OF PROCESSORS

LOCAL BLKCNT�ARRAY� DIM� PROC�

Optional arguments� DIM� PROC

Description� Returns the number of blocks of elements in each dimension� or of a
speci�c dimension of the array on a given processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is of type default integer

It is scalar if DIM is present� otherwise the result is an array of rank one and size n�
where n is the rank of ARRAY

Result Value�

Case �i	� The value of LOCAL BLKCNT�ARRAY� DIM� PROC	 is the number of blocks
of the ultimate align target of ARRAY in dimension DIM that are mapped
to processor PROC and which have at least one element of ARRAY aligned
to them

Case �ii	� LOCAL BLKCNT�ARRAY� DIM	 returns the same value as
LOCAL BLKCNT�ARRAY� DIM� PROC�MY PROCESSOR�		

Case �iii	� LOCAL BLKCNT�ARRAY	 has a value whose ith component is equal to
LOCAL BLKCNT�ARRAY� i	� for i � �� � � � � n� where n is the rank of ARRAY

Examples� Given the declarations

REAL A������	� B���	

HPF� TEMPLATE T��������	

HPF� ALIGN B�J	 WITH A���J	

HPF� ALIGN A�I�J	 WITH T���I� ��J	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

HPF� PROCESSORS PR����	

HPF� DISTRIBUTE T�CYCLIC��	� CYCLIC��		 ONTO PR

HPF� CALL LOCAL�COMPUTE�A� B	

���

���

���

EXTRINSIC�HPF�LOCAL	 SUBROUTINE LOCAL�COMPUTE�X� Y	

USE HPF�LOCAL�LIBRARY

REAL X�
�
	� Y�
	

INTEGER NBY��	� NBX��	

NBX � LOCAL�BLKCNT�X	

NBY � LOCAL�BLKCNT�Y	

the values returned on the physical processor corresponding to PR����	 in NBX is
h

� �
i

and in NBY is
h

�
i

LOCAL LINDEX�ARRAY� DIM� PROC�

Optional argument� PROC

Description� Returns the lowest local index of all blocks of an array dummy argu�
ment in a given dimension on a processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is a rank�one
array of type default integer and size b� where b is the value returned by
LOCAL BLKCNT�ARRAY� DIM �� PROC 	

Result Value�

Case �i	� The value of LOCAL LINDEX�ARRAY� DIM� PROC	 has a value whose ith

component is the local index of the �rst element of the ith block in di�
mension DIM of ARRAY on processor PROC
 The value of the ith element
will be in the range � to ei� where ei is the extent of the ith dimension of
ARRAY

Case �ii	� LOCAL LINDEX�ARRAY� DIM	 returns the same value as
LOCAL LINDEX�ARRAY� DIM� PROC�MY PROCESSOR�		

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� THE EXTRINSIC LIBRARY
��

Examples� With the same declarations as in the example under LOCAL BLKCNT� on
the physical processor corresponding to PR����	 the value returned by

LOCAL LINDEX�X� DIM��	 is
h

�
 � �
i
�

the value of LOCAL LINDEX�X� DIM��	 is
h

� � �
i

LOCAL UINDEX�ARRAY� DIM� PROC�

Optional argument� PROC

Description� Returns the highest local index of all blocks of an array dummy
argument in a given dimension on a processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is a rank�one
array of type default integer and size b� where b is the value returned by
LOCAL BLKCNT�ARRAY� DIM �� PROC 	

Result Value�

Case �i	� The value of LOCAL UINDEX�ARRAY� DIM� PROC	 has a value whose ith

component is the local index of the last element of the ith block in di�
mension DIM of ARRAY on processor PROC
 The value of the ith element
will be in the range � to ei� where ei is the extent of the ith dimension of
ARRAY

Case �ii	� LOCAL UINDEX�ARRAY� DIM	 returns the same value as
LOCAL UINDEX�ARRAY� DIM� PROC�MY PROCESSOR�		

Examples� With the same declarations as in the example under LOCAL BLKCNT� on
the physical processor corresponding to PR����	 the value returned by

LOCAL UINDEX�X� DIM��	 is
h

�
 � �
i
�

the value of LOCAL UINDEX�X� DIM��	 is
h

 � �
i

������ Library Access from Serial Extrinsics

A SERIAL subprogram may contain references to any HPF LIBRARY procedure or HPF intrin�
sic function� except HPF ALIGNMENT� HPF DISTRIBUTION or HPF TEMPLATE
 Within a SERIAL

scope the HPF LOCAL LIBRARY module must not be used

References to the intrinsic functions NUMBER OF PROCESSORS and PROCESSORS SHAPE

will return the same value as if the function reference appeared in global HPF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section ��

Approved Extensions to the HPF
Intrinsic and Library Procedures

This chapter describes intrinsic and library routines that have been approved as extensions
to HPF Version

�

The extended intrinsic procedures include a transpose function that generalizes the
Fortran TRANSPOSE intrinsic function
 Certain algorithms require access to multidimensional
arrays along di�erent axes
 In modern machines� it will usually be best to make the array
axis along which an inner loop runs the �rst axis� so that in local memory the elements will
be contiguous
 A generalized transpose is required to do this data rearrangement� which is
not simply a data remapping
 In many cases� the result of the transpose will be assigned
to a variable whose �rst axis is distributed with a dist�format of �$�

For this sort of operation� FORALL is adequate when the rank and the particular set of
axes to be exchanged are known� for example�

FORALL�I� � �
SIZE�ARRAY��		

FORALL�I� � �
SIZE�ARRAY��		

FORALL�I� � �
SIZE�ARRAY��		

RESULT�I��I��I�	 � ARRAY�I��I��I�	

ENDFORALL

ENDFORALL

ENDFORALL

If� however� the relation between input and result axes is to be variable� FORALL is an
inconvenient idiom
 Thus we have generalized the TRANSPOSE intrinsic function� allowing as
arguments an input array �which is to be transposed� of any nonzero rank� and an integer
rank�one array �giving the axis permutation� whose size is the rank of the �rst input array

The default value for the order argument makes this an extension of the existing Fortran
one�argument TRANSPOSE function

Two new intrinsic inquiry functions� ACTIVE NUM PROCS and ACTIVE PROCS SHAPE are
useful for determining the size and the shape of the processor subset executing the program�
as modi�ed by ON constructs

The extended library consists of mapping inquiry subroutines
 Extended versions of
HPF ALIGNMENT and HPF TEMPLATE allow an additional� optional� DYNAMIC output argument

This allows a program to determine whether an object� or its align ultimate target� has the
DYNAMIC attribute
 There is a new version of HPF DISTRIBUTION� and two new mapping

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

inquiry subroutines that are especially useful for determining mappings produced by the
general block and indirect distribution forms

���� Speci�cations of Extended Intrinsic Procedures

ACTIVE NUM PROCS�DIM�

Optional Argument� DIM

Description� Returns the total number of processors currently executing the pro�
gram or the number of processors currently executing the program along a speci�ed
dimension of the processor array� as determined by the innermost ON block

Class� Processors inquiry function

Arguments�

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n where n is the rank of the processor
array

Result Type� Type Parameter� and Shape� Default integer scalar

Result Value� The result has a value equal to the extent of dimension DIM of
the processor array determined by the innermost containing ON block or� if DIM is
absent� the total number of elements of this processor array
 The result is always
greater than zero
 Outside of any ON block� the result is the same as that returned
by NUMBER OF PROCESSORS�	

Examples� The program fragment

INTEGER X���� �	

hpf� TEMPLATE T���� �	

hpf� PROCESSORS PROCS��� �	

hpf� ALIGN X�I� J	 WITH T�I� ��J��	

hpf� DISTRIBUTE T�CYCLIC��	� BLOCK	 ONTO PROCS

hpf� ON �PROCS�
�
		 BEGIN

hpf� ON HOME�X��
��
���
		 BEGIN

PRINT �� ACTIVE�NUM�PROCS�	

PRINT �� ACTIVE�NUM�PROCS�DIM��	

PRINT �� ACTIVE�NUM�PROCS�DIM��	

hpf� END ON

hpf� END ON

prints ��
 and � regardless of the size or shape of the hardware processor array on which
the program is running�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED INTRINSIC PROCEDURES
��

ACTIVE PROCS SHAPE��

Description� Returns the shape of the currently active processor array� as deter�
mined by the innermost ON block

Class� Processors inquiry function

Arguments� None

Result Type� Type Parameter� and Shape� The result is a default integer array
of rank one whose size is equal to the rank of the processor array determined by the
innermost containing ON block

Result Value� The value of the result is the shape of the processor array determined
by the innermost containing ON block
 Outside of any ON block� the result is the same
as that returned by PROCESSORS SHAPE�	

Examples� The program fragment

INTEGER X���� �	

hpf� TEMPLATE T���� �	

hpf� PROCESSORS PROCS��� �	

hpf� ALIGN X�I� J	 WITH T�I� ��J��	

hpf� DISTRIBUTE T�CYCLIC��	� BLOCK	 ONTO PROCS

hpf� ON �PROCS�
�
		 BEGIN

PRINT �� ACTIVE�PROCS�SHAPE�	

hpf� ON HOME�X��
��
���
		 BEGIN

PRINT �� ACTIVE�PROCS�SHAPE�	

hpf� END ON

hpf� END ON

prints �� � and
� � regardless of the size or shape of the hardware processor array on which
the program is running�

TRANSPOSE�ARRAY�ORDER�

Optional Argument� ORDER

Description� Permute the axes �a generalized transpose� of an array

Class� Transformational function

Arguments�

ARRAY may be of any type� and must be array valued

ORDER �optional� must be of type integer� rank one� and of size equal to
the rank of ARRAY
 Its elements must be a permutation
of ���
� � � � � n�� where n is RANK�ARRAY	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

Result Type� Type Parameters� and Shape� The result is an array of the same
rank� type� and type parameters as ARRAY
 Its shape satis�es the relation RS�ORDER	

�� AS� where RS is the shape of the result and AS is SHAPE�ARRAY	
 If ORDER is
absent� it defaults to �n� n� �� � � � � ��� where n is RANK�ARRAY	

Result value� Element �j�� j�� � � � � jn� of the result is
ARRAY�jorder���� jorder���� � � � � jorder�n��

Examples� For an array of rank two� TRANSPOSE�ARRAY	 is the usual matrix trans�
pose

If ARRAY has shape
h

�
 �
i

and ARRAY���
�
	 is

�
��� ��
 ���
�
� �

 �
�

�

and ORDER is
h

� �

i

then the shape of the result is
h

 � �
i
�

if R is the result then R�
�
��	 is equal to ARRAY���
�
	
 The rule is that axis i of
ARRAY becomes axis ORDER�i	 of the result

���� Speci�cations of Extended Library Procedures

HPF ALIGNMENT�ALIGNEE� LB� UB� STRIDE� AXIS MAP� IDEN�
TITY MAP� DYNAMIC� NCOPIES�

Optional Arguments� LB� UB� STRIDE� AXIS MAP� IDENTITY MAP� DYNAMIC�
NCOPIES

Description� Returns information regarding the correspondence of a variable and
the align�target �array or template� to which it is ultimately aligned

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued

It must not be an assumed�size array
 It must not be a
pointer that is disassociated or an allocatable array that
is not allocated
 It is an INTENT �IN	 argument

If ALIGNEE has the pointer attribute� information about
the alignment of its target is returned
 The target must
not be an assumed�size dummy argument or a section of
an assumed�size dummy argument

LB �optional� must be of type default integer and of rank one
 Its
size must be at least equal to the rank of ALIGNEE
 It
is an INTENT �OUT	 argument
 The �rst element of the
ith axis of ALIGNEE is ultimately aligned to the LB�i�th

align�target element along the axis of the align�target as�
sociated with the ith axis of ALIGNEE
 If the ith axis of
ALIGNEE is a collapsed axis� LB�i� is implementation de�
pendent

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED LIBRARY PROCEDURES
�	

UB �optional� must be of type default integer and of rank one
 Its
size must be at least equal to the rank of ALIGNEE
 It
is an INTENT �OUT	 argument
 The last element of the
ith axis of ALIGNEE is ultimately aligned to the UB�i�th

align�target element along the axis of the align�target as�
sociated with the ith axis of ALIGNEE
 If the ith axis of
ALIGNEE is a collapsed axis� UB�i� is implementation de�
pendent

STRIDE �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT	 argument
 The ith element of STRIDE is
set to the stride used in aligning the elements of ALIGNEE
along its ith axis
 If the ith axis of ALIGNEE is a collapsed
axis� STRIDE�i� is zero

AXIS MAP �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT	 argument
 The ith element of AXIS MAP

is set to the align�target axis associated with the ith axis
of ALIGNEE
 If the ith axis of ALIGNEE is a collapsed axis�
AXIS MAP�i	 is �

IDENTITY MAP �optional� must be scalar and of type default logical
 It is an INTENT

�OUT	 argument
 It is set to true if the ultimate align�
target associated with ALIGNEE has a shape identical to
ALIGNEE� the axes are mapped using the identity per�
mutation� and the strides are all positive �and therefore
equal to �� because of the shape constraint�� otherwise it
is set to false
 If a variable has not appeared as an alignee
in an ALIGN or REALIGN directive� and does not have the
INHERIT attribute� then IDENTITY MAP must be true� it
can be true in other circumstances as well

DYNAMIC �optional� must be scalar and of type default logical
 It is an INTENT

�OUT	 argument
 It is set to true if ALIGNEE has the
DYNAMIC attribute� otherwise it is set to false

NCOPIES �optional� must be scalar and of type default integer
 It is an INTENT

�OUT	 argument
 It is set to the number of copies of
ALIGNEE that are ultimately aligned to align�target
 For
a non�replicated variable� it is set to one

If ALIGNEE is scalar� then no elements of LB� UB� STRIDE�
or AXIS MAP are set

Examples�

REAL PI � ���������

DIMENSION A������	�B������	�C���������	�D���	

HPF� TEMPLATE T������	

HPF� DYNAMIC A

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

HPF� ALIGN A�I�
	 WITH T�����I��
��
�	

HPF� ALIGN C�I���J	 WITH T�J����I	

HPF� ALIGN D�I	 WITH T�I��	

HPF� PROCESSORS PROCS����	� SCALARPROC

HPF� DISTRIBUTE T�BLOCK�BLOCK	 ONTO PROCS

HPF� DISTRIBUTE B�CYCLIC�BLOCK	 ONTO PROCS

HPF� DISTRIBUTE ONTO SCALARPROC

 PI

assuming that the actual mappings are as the directives specify� the results of calling
HPF ALIGNMENT are�

A B C D

LB !��
" !�� �" !
�� N�A� �" !�"
UB !���
�" !
�� ��" ! �� N�A� ��" !��"
STRIDE !��
" !�� �" !��� �� �" !�"
AXIS MAP !��
" !��
" !
� �� �" !�"
IDENTITY MAP false true false false

DYNAMIC true false false false

NCOPIES � � � �

where �N�A� denotes a implementation�dependent result
 To illustrate the use of NCOPIES�
consider�

LOGICAL BOZO������	�RONALD�MCDONALD���	

HPF� TEMPLATE EMMETT�KELLY��������	

HPF� ALIGN RONALD�MCDONALD�I	 WITH BOZO�I��	

HPF� ALIGN BOZO�J�K	 WITH EMMETT�KELLY�J���K	

Then CALL HPF ALIGNMENT�RONALD MCDONALD� NCOPIES � NC	 sets NC to
�
 Now con�
sider�

LOGICAL BOZO������	�RONALD�MCDONALD���	

HPF� TEMPLATE WILLIE�WHISTLE����	

HPF� ALIGN RONALD�MCDONALD�I	 WITH BOZO�I��	

HPF� ALIGN BOZO�J��	 WITH WILLIE�WHISTLE���J	

Then CALL HPF ALIGNMENT�RONALD MCDONALD� NCOPIES � NC	 sets NC to one

HPF DISTRIBUTION�DISTRIBUTEE� AXIS TYPE� AXIS INFO�
PROCESSORS RANK� PROCESSORS SHAPE� PLB� PUB� PSTRIDE�
LOW SHADOW� HIGH SHADOW�

Optional Arguments� AXIS TYPE� AXIS INFO� PROCESSORS RANK�
PROCESSORS SHAPE� PLB� PUB� PSTRIDE� LOW SHADOW� HIGH SHADOW

Description� The HPF DISTRIBUTION subroutine returns information regarding the
distribution of the ultimate align�target associated with a variable

Class� Mapping inquiry subroutine

Arguments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED LIBRARY PROCEDURES
��

DISTRIBUTEE may be of any type
 It may be scalar or array valued
 It
must not be sequential
 It must not be a pointer that is
disassociated or an allocatable array that is not allocated

It is an INTENT �IN	 argument

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least 	 in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned� this is the value re�
turned by HPF TEMPLATE in TEMPLATE RANK
 It is an
INTENT �OUT	 argument
 Its ith element contains infor�
mation on the distribution of the ith axis of that align�
target
 The following values are de�ned by HPF �imple�
mentations may de�ne other values��

�BLOCK� The axis is distributed BLOCK
 The correspond�
ing element of AXIS INFO contains the block size

�GEN BLOCK� The axis is distributed BLOCK�array	
 The
value of the corresponding element of AXIS INFO is
implementation dependent

�COLLAPSED� The axis is collapsed �distributed with the
��� speci�cation�
 The value of the corresponding
element of AXIS INFO is implementation dependent

�CYCLIC� The axis is distributed CYCLIC
 The corre�
sponding element of AXIS INFO contains the block
size

�INDIRECT� The axis is distributed
INDIRECT�map�array	
 The value of the corre�
sponding element of AXIS INFO is implementation
dependent

AXIS INFO �optional� must be a rank one array of type default integer� and size
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned �which is returned by
HPF TEMPLATE in TEMPLATE RANK�
 It is an INTENT �OUT	

argument
 The ith element of AXIS INFO contains the
block size in the block or cyclic distribution of the ith axis
of the ultimate align�target of DISTRIBUTEE� if that axis
is a collapsed axis� then the value is implementation de�
pendent

PROCESSORS RANK �optional� must be scalar and of type default integer
 It is set
to the rank of the processor arrangement onto which
DISTRIBUTEE is distributed
 It is an INTENT �OUT	 ar�
gument

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

PROCESSORS SHAPE �optional� must be a rank one array of type default integer and
of size at least equal to the value� m� returned in PROCES�
SORS RANK
 It is an INTENT �OUT	 argument
 Its �rst m
elements are set to the shape of the processor arrange�
ment onto which DISTRIBUTEE is mapped
 �It may be
necessary to call HPF DISTRIBUTION twice� the �rst time
to obtain the value of PROCESSORS RANK in order to allo�
cate PROCESSORS SHAPE
�

PLB �optional� must be a rank one array of type default integer and
of size at least equal to the rank of the ultimate align�
target of DISTRIBUTEE
 It is an INTENT �OUT	 argument

The ith element is set to the smallest processor index
ONTO which the ith axis of the ultimate align�target of
DISTRIBUTEE is mapped� if that axis is collapsed� then the
corresponding element of PLB is implementation depen�
dent
 The value returned is in the range � to ei where ei is
the extent of processor arrangement axis onto which the
selected axis of the ultimate align�target of DISTRIBUTEE
is mapped

PUB �optional� must be a rank one array of type default integer and
of size at least equal to the rank of the ultimate align�
target of DISTRIBUTEE
 It is an INTENT �OUT	 argument

The ith element is set to the largest processor index ONTO

which the ith axis of the ultimate align�target of DISTRI�
BUTEE is mapped� if that axis is collapsed� then the cor�
responding element of PUB is implementation dependent

The value returned is in the range � to ei where ei is the
extent of processor arrangement axis onto which the se�
lected axis of the ultimate align�target of DISTRIBUTEE is
mapped

PSTRIDE �optional� must be a rank one array of type default integer and
of size at least equal to the rank of DISTRIBUTEE
 It is
an INTENT �OUT	 argument
 The ith element is set to
the interprocessor stride in the ONTO clause with which
the ith axis of DISTRIBUTEE is mapped� if that axis is
collapsed� then the corresponding element of PSTRIDE is
set to zero

LOW SHADOW �optional� must be a rank one array of type default integer� and size
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned �which is returned
by HPF TEMPLATE in TEMPLATE RANK�
 It is an INTENT

�OUT	 argument
 The ith element of LOW SHADOW con�
tains the low�side shadow width in the block or cyclic
distribution of the ith axis of the ultimate align�target of
DISTRIBUTEE� if that axis is a collapsed axis� then the
value is implementation dependent

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED LIBRARY PROCEDURES
��

HIGH SHADOW �optional� must be a rank one array of type default integer� and size
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned �which is returned
by HPF TEMPLATE in TEMPLATE RANK�
 It is an INTENT

�OUT	 argument
 The ith element of HIGH SHADOW con�
tains the high�side shadow width in the block or cyclic
distribution of the ith axis of the ultimate align�target of
DISTRIBUTEE� if that axis is a collapsed axis� then the
value is implementation dependent

Example� Given the declarations in the example illustrating HPF ALIGNMENT and
assuming that the actual mappings are as the directives specify� the results of
HPF DISTRIBUTION are�

A B PI

AXIS TYPE !�BLOCK�� �BLOCK�" !�CYCLIC�� �BLOCK�" ! "
AXIS INFO !��� ��" !�� ��" ! "
PROCESSORS SHAPE !��
" !
�
" ! "
PROCESSORS RANK

 �
PLB !�� �" !
� �" ! "
PUB !��
" !��
" ! "
PSTRIDE !����" !�� �" ! "

HPF TEMPLATE�ALIGNEE� TEMPLATE RANK� LB� UB�
AXIS TYPE� AXIS INFO� NUMBER ALIGNED� DYNAMIC�

Optional Arguments� LB� UB� AXIS TYPE� AXIS INFO� NUMBER ALIGNED�
TEMPLATE RANK� DYNAMIC

Description� The HPF TEMPLATE subroutine returns information regarding the ul�
timate align�target associated with a variable� HPF TEMPLATE returns information
concerning the variable from the point of view of its ultimate align�target� while
HPF ALIGNMENT returns information from the variable s point of view

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued

It must not be an assumed�size array
 It must not be a
pointer that is disassociated or an allocatable array that
is not allocated
 It is an INTENT �IN	 argument

If ALIGNEE has the pointer attribute� information about
the alignment of its target is returned
 The target must
not be an assumed�size dummy argument or a section of
an assumed�size dummy argument

TEMPLATE RANK �optional� must be scalar and of type default integer
 It is an INTENT

�OUT	 argument
 It is set to the rank of the ultimate
align�target
 This can be di�erent from the rank of the
ALIGNEE� due to collapsing and replicating

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

LB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 The ith element of LB contains the declared align�
target lower bound for the ith template axis

UB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 The ith element of UB contains the declared align�
target upper bound for the ith template axis

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least �� in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
ALIGNEE is ultimately aligned� this is the value returned
in TEMPLATE RANK
 It is an INTENT �OUT	 argument
 The
ith element of AXIS TYPE contains information about the
ith axis of the align�target
 The following values are de�
�ned by HPF �implementations may de�ne other values��

�NORMAL� The align�target axis has an axis of ALIGNEE

aligned to it
 For elements of AXIS TYPE assigned
this value� the corresponding element of AXIS INFO

is set to the number of the axis of ALIGNEE aligned
to this align�target axis

�REPLICATED� ALIGNEE is replicated along this align�tar�
get axis
 For elements of AXIS TYPE assigned this
value� the corresponding element of AXIS INFO is set
to the number of copies of ALIGNEE along this align�
target axis

�SINGLE� ALIGNEE is aligned with one coordinate of the
align�target axis
 For elements of AXIS TYPE assigned
this value� the corresponding element of AXIS INFO

is set to the align�target coordinate to which ALIGNEE

is aligned

AXIS INFO �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT	 argu�
ment
 See the description of AXIS TYPE above

NUMBER ALIGNED �optional� must be scalar and of type default integer
 It is an
INTENT �OUT	 argument
 It is set to the total number

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED LIBRARY PROCEDURES
��

of variables aligned to the ultimate align�target
 This is
the number of variables that are moved if the align�target
is redistributed

DYNAMIC �optional� must be scalar and of type default logical
 It is an INTENT

�OUT	 argument
 It is set to true if the align�target has
the DYNAMIC attribute� and to false otherwise

Example� Given the declarations in the example illustrating HPF ALIGNMENT� and
assuming that the actual mappings are as the directives specify� the results of
HPF TEMPLATE are�

A C D

LB !�� �" !�� �" !�� �"
UB !���
�" !���
�" !���
�"
AXIS TYPE !�NORMAL�� !�NORMAL�� !�NORMAL��

�NORMAL�" �NORMAL�" �SINGLE�"
AXIS INFO !��
" !�� �" !�� �"
NUMBER ALIGNED � � �
TEMPLATE RANK

DYNAMIC false false false

HPF MAP ARRAY�ARRAY� TEMPLATE DIM� MAP ARRAY�

Description� Returns the map array used in the indirect distribution of axis
TEMPLATE DIM of the ultimate align�target associated with ARRAY

Class� Mapping inquiry subroutine

Arguments�

ARRAY may be of any type
 It must not be scalar
 It must not be
sequential
 It must not be a pointer that is disassociated
or an allocatable array that is not allocated
 It is an
INTENT�IN	 argument

TEMPLATE DIM must be scalar and of type default integer
 Its value must
be between one and the rank of the ultimate align�target
of ARRAY
 It is an INTENT�IN	 argument

MAP ARRAY must be of type default integer and of rank one

Its size must be no smaller than the extent of the
PROCESSORS DIMth axis of the processors arrangement
onto which is distributed the ultimate align�target asso�
ciated with ARRAY
 It is an INTENT�OUT	 argument

The ith element of MAP ARRAY is set to the processor in�
dex to which the ith element of the ultimate align�target
of ARRAY along axis TEMPLATE DIM is mapped
 If axis
TEMPLATE DIM of the ultimate align�target of ARRAY is col�
lapsed� then all elements of the result have the value one

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

Example� Given the declarations

DIMENSION A��	

HPF� TEMPLATE T����	

HPF� ALIGN A�I��	 WITH T���I��	

HPF� PROCESSORS PROCS����	

HPF� DISTRIBUTE T�INDIRECT� ����������	 	� BLOCK� ������	 		 ONTO PROCS

assuming that the actual mappings are as the directives specify� Then after calling

HPF MAP ARRAY�A�TEMPLATE DIM��� MAP ARRAY�M	� M has the value
h

�

 �
i

After calling HPF MAP ARRAY�A�TEMPLATE DIM��� MAP ARRAY�M	� M has the valueh
� � �

i

HPF NUMBER MAPPED�ARRAY� PROCESSORS DIM�
NUMBER MAPPED�

Description� Returns the number of elements of the ultimate align�target of ARRAY
mapped to the each element of axis PROCESSORS DIM of the processors arrangement
onto which the ultimate align�target of ARRAY is distributed

Class� Mapping inquiry subroutine

Arguments�

ARRAY may be of any type
 It must not be scalar
 It must not be
sequential
 It must not be a pointer that is disassociated
or an allocatable array that is not allocated

PROCESSORS DIM must be scalar and of type default integer
 Its value must
be between one and the rank of the processors arrange�
ment onto which the ultimate align�target of ARRAY is
distributed

NUMBER MAPPED must be of type default integer and of rank one

Its size must be no smaller than the extent of axis
PROCESSORS DIM of the processors arrangement onto
which the ultimate align�target of ARRAY is distributed

The ith element of NUMBER MAPPED is set to the num�
ber of elements of an axis of the ultimate align�target
of ARRAY that are mapped to the ith processor of axis
PROCESSORS DIM of the processors arrangement onto
which the ultimate align�target of ARRAY is distributed
 If
axis PROCESSORS DIM of the processors arrangement onto
which the ultimate align�target of ARRAY is distributed is
associated with a BLOCK distributed axis� then MAP ARRAY

is set to the array of block sizes used to distribute that
axis

Example� Given the declarations

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� SPECIFICATIONS OF EXTENDED LIBRARY PROCEDURES
��

DIMENSION A�����	

HPF� TEMPLATE T���������	

HPF� ALIGN A�I��	 WITH T���I� �� �� �	

HPF� PROCESSORS PROCS������	

HPF� DISTRIBUTE T�INDIRECT�����������		� BLOCK�������		� �� BLOCK	 �

HPF� ONTO PROCS

assuming that the actual mappings are as the directives specify� after calling

HPF NUMBER MAPPED�A�PROCESSORS DIM��� NUMBER MAPPED � M	 M has the value
h

� �
i
�

after calling HPF NUMBER MAPPED�A�PROCESSORS DIM��� NUMBER MAPPED � M	 M has the

value
h

� �
i
� after calling HPF NUMBER MAPPED�A�PROCESSORS DIM��� NUMBER MAPPED �

M	 M has the value
h

� � �
i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION ��� EXTENSIONS TO INTRINSIC AND LIBRARY PROCEDURES

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Part IV

Annexes

This major section organizes descriptions of the syntax and semantics of features
of the High Performance Fortran language� version ��� �described n Parts I

and II� and its approved extensions �described in Part III� for reference use� It
is not a part of the HPF language speci�cation proper�

�	

Annex A

Syntax Rules

This Appendix collects the formal syntax de�nitions of this High Performance Fortran
Language Speci�cation

A�� Notation and Syntax

A���� Syntax of Directives

H
�� hpf�directive�line is directive�origin hpf�directive

H
�
 directive�origin is
HPF�

or CHPF�

or �HPF�

H
�� hpf�directive is specification�directive
or executable�directive

H
�� specification�directive is processors�directive
or align�directive
or distribute�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive

H
�� executable�directive is independent�directive

Constraint� An hpf�directive�line cannot be commentary following another statement on
the same line

Constraint� A speci�cation�directive may appear only where a declaration�construct may
appear

Constraint� An executable�directive may appear only where an executable�construct may
appear

Constraint� An hpf�directive�line follows the rules of either Fortran free form �F	���
�
�
��
or �xed form �F	���
�

�� comment lines� depending on the source form of the
surrounding Fortran source form in that program unit
 �F	���
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�
 ANNEX A� SYNTAX RULES

H
�� specification�directive�extended is processors�directive
or subset�directive
or align�directive
or distribute�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive
or dynamic�directive
or range�directive
or shadow�directive

H
�� executable�directive�extended is independent�directive
or realign�directive
or redistribute�directive
or on�directive
or resident�directive

H
�� executable�construct�extended is action�stmt
or case�construct
or do�construct
or if�construct
or where�construct
or on�construct
or resident�construct
or task�region�construct

A�	 Data Mapping

A�	�� Syntax of Data Alignment and Distribution Directives

H��� combined�directive is combined�attribute�list

 combined�decl�list

H��
 combined�attribute is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list 	

H��� combined�decl is hpf�entity ! � explicit�shape�spec�list 	 "
or object�name

H��� hpf�entity is processors�name
or template�name

Constraint� The same kind of combined�attribute must not appear more than once in a
given combined�directive

Constraint� If the DIMENSION attribute appears in a combined�directive� any entity to which
it applies must be declared with the HPF TEMPLATE or PROCESSORS type spec�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� DATA MAPPING
��

i�er

A�	�	 The DISTRIBUTE Directive

H��� distribute�directive is DISTRIBUTE distributee dist�directive�stuff

H��� dist�directive�stuff is dist�format�clause ! dist�onto�clause "

H��� dist�attribute�stuff is dist�directive�stuff
or dist�onto�clause

H��� distributee is object�name
or template�name

H��	 dist�format�clause is � dist�format�list 	

or � � dist�format�list 	

or �

H��� dist�format is BLOCK ! � scalar�int�expr 	 "
or CYCLIC ! � scalar�int�expr 	 "
or �

H��� dist�onto�clause is ONTO dist�target

H��
 dist�target is processors�name
or � processors�name
or �

Constraint� An object�name mentioned as a distributee must be a simple name and not a
subobject designator or a component�name

Constraint� An object�name mentioned as a distributee may not appear as an alignee

Constraint� An object�name mentioned as a distributee may not have the POINTER at�
tribute

Constraint� An object�name mentioned as a distributee may not have the TARGET attribute

Constraint� If the distributee is scalar� the dist�format�list �and its surrounding parenthe�
ses� must not appear
 In this case� the statement form of the directive is
allowed only if a dist�format�clause of ��� is present

Constraint� If a dist�format�list is speci�ed� its length must equal the rank of each distribu�
tee to which it applies

Constraint� If both a dist�format�list and a dist�target appear� the number of elements
of the dist�format�list that are not ��� must equal the rank of the speci�ed
processor arrangement

Constraint� If a dist�target appears but not a dist�format�list� the rank of each distributee
must equal the rank of the speci�ed processor arrangement

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument

Constraint� Any scalar�int�expr appearing in a dist�format of a DISTRIBUTE directive must
be a speci�cation�expr

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

A�	�� The ALIGN Directive

H��� align�directive is ALIGN alignee align�directive�stuff

H��� align�directive�stuff is � align�source�list 	 align�with�clause

H��� align�attribute�stuff is ! � align�source�list 	 " align�with�clause

H��� alignee is object�name

H��� align�source is

or �

or align�dummy

H��� align�dummy is scalar�int�variable

Constraint� An object�name mentioned as an alignee must be a simple name and not a
subobject designator or a component�name

Constraint� An object�name mentioned as an alignee may not appear as a distributee

Constraint� An object�name mentioned as an alignee may not have the POINTER attribute

Constraint� An object�name mentioned as an alignee may not have the TARGET attribute

Constraint� If the alignee is scalar� the align�source�list �and its surrounding parentheses�
must not appear
 In this case the statement form of the directive is not allowed

Constraint� If the align�source�list is present� its length must equal the rank of each alignee
to which it applies

Constraint� An align�dummy must be a named variable

Constraint� An object may not have both the INHERIT attribute and the ALIGN attribute

H��	 align�with�clause is WITH align�spec

H�
� align�spec is align�target ! � align�subscript�list 	 "
or � align�target ! � align�subscript�list 	 "

H�
� align�target is object�name
or template�name

H�

 align�subscript is int�expr
or align�subscript�use
or subscript�triplet
or �

H�
� align�subscript�use is ! ! int�level�two�expr " add�op "
align�add�operand

or align�subscript�use add�op int�add�operand

H�
� align�add�operand is ! int�add�operand � " align�primary
or align�add�operand � int�mult�operand

H�
� align�primary is align�dummy
or � align�subscript�use 	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� DATA MAPPING
��

H�
� int�add�operand is add�operand

H�
� int�mult�operand is mult�operand

H�
� int�level�two�expr is level���expr

Constraint� An object�name mentioned as an align�target must be a simple name and not
a subobject designator or a component�name

Constraint� An align�target may not have the OPTIONAL attribute

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument

Constraint� In an align�directive any int�expr� int�level�two�expr� int�add�operand or int�
mult�operand must be a speci�cation expression

Constraint� Any subscript or stride in a subscript�triplet that is an align�subscript in an
align�directive must be a speci�cation expression

Constraint� Each align�dummy may appear at most once in an align�subscript�list

Constraint� An align�subscript�use expression may contain at most one occurrence of an
align�dummy

Constraint� A scalar�int�variable that is used as an align�dummy may not appear any�
where in the align�spec except where explicitly permitted to appear by virtue
of the grammar shown above
 Paraphrased� one may construct an align�
subscript�use only by starting with an align�dummy and then doing additive
and multiplicative things to it with integer speci�cation expressions that con�
tain no align�dummy

Constraint� A subscript within an align�subscript may not contain occurrences of any align�
dummy

Constraint� An int�add�operand� int�mult�operand� or int�level�two�expr must be of type
integer

A�	�
 The PROCESSORS Directive

H�
	 processors�directive is PROCESSORS processors�decl�list

H��� processors�decl is processors�name
! � explicit�shape�spec�list 	 "

A�	�� The TEMPLATE Directive

H��� template�directive is TEMPLATE template�decl�list

H��
 template�decl is template�name ! � explicit�shape�spec�list 	 "

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

A�	�� Storage and Sequence Association

H��� sequence�directive is SEQUENCE ! !

 " association�name�list "
or NO SEQUENCE ! !

 " association�name�list "

H��� association�name is object�name
or � ! common�block�name " �

Constraint� An object name or COMMON block name may appear at most once in a sequence�
directive within any scoping unit

Constraint� Only one sequence directive with no association�name�list is permitted in the
same scoping unit

A�� Data Mapping in Subprogram Interfaces

A���� Alignment

H��� inherit�directive is INHERIT inheritee�list

H��
 inheritee is object�name

Constraint� An inheritee must be a dummy argument

Constraint� An inheritee must not be an alignee

Constraint� An inheritee must not be a distributee

A�� INDEPENDENT and Related Directives

A���� The INDEPENDENT Directive

H��� independent�directive is INDEPENDENT ! � new�clause "
! � reduction�clause "

H��
 new�clause is NEW � variable�name�list 	

H��� reduction�clause is REDUCTION � reduction�variable�list 	

H��� reduction�variable is array�variable�name
or scalar�variable�name
or structure�component

Constraint� The �rst non�comment line following an independent�directive must be a do�
stmt� forall�stmt� or a forall�construct

Constraint� If the �rst non�comment line following an independent�directive is a do�stmt�
then that statement must contain a loop�control option containing a do�vari�
able

Constraint� If either the NEW clause or the REDUCTION clause is present� then the �rst non�
comment line following the directive must be a do�stmt

Constraint� A variable named in the NEW or the REDUCTION clause and any component or
element thereof must not�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A�	� EXTRINSIC PROGRAM UNITS
��

� Be a dummy argument�

� Have the SAVE or TARGET attribute�

� Occur in a COMMON block�

� Be storage associated with another object as a result of appearing in an
EQUIVALENCE statement�

� Be use associated�

� Be host associated� or

� Be accessed in another scoping unit via host association

Constraint� A variable that occurs as a reduction�variable may not appear in a new�clause
in the same independent�directive� nor may it appear in either a new�clause or
a reduction�clause in the range �i
e
� the lexical body� of the following do�stmt�
forall�stmt� or forall�construct to which the independent�directive applies

Constraint� A structure�component in a reduction�variable may not contain a subscript�
section�list

Constraint� A variable that occurs as a reduction�var must be of intrinsic type
 It may not
be of type CHARACTER

H��� reduction�stmt is variable � variable mult�op mult�operand
or variable � add�operand � variable
or variable � variable add�op add�operand
or variable � level���expr � variable
or variable � variable and�op and�operand
or variable � and�operand and�op variable
or variable � variable or�op or�operand
or variable � or�operand or�op variable
or variable � variable equiv�op equiv�operand
or variable � equiv�operand equiv�op variable
or variable � reduction�function � variable � expr 	

or variable � reduction�function � expr � variable 	

H��� reduction�function is MAX

or MIN

or IAND

or IOR

or IEOR

Constraint� The two occurances of variable in a reduction�stmt must be textually identical

A�
 Extrinsic Program Units

A�
�� Declaration of Extrinsic Program Units

H��� function�stmt is ! prefix " FUNCTION function�name
� ! dummy�arg�name�list " 	

! RESULT � result�name 	 "

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

H��
 subroutine�stmt is ! prefix " SUBROUTINE subroutine�name
! � ! dummy�arg�list " 	 "

H��� prefix is prefix�spec ! prefix�spec " ���

H��� prefix�spec is type�spec
or RECURSIVE

or PURE

or ELEMENTAL

or extrinsic�prefix

Constraint� Within any HPF external�subprogram� every internal�subprogram must be of
the same extrinsic kind as its host and any internal�subprogram whose extrinsic
kind is not given explicitly is assumed to be of that extrinsic kind

H��� program�stmt is ! extrinsic�prefix " PROGRAM program�name

H��� module�stmt is ! extrinsic�prefix " MODULE module�name

H��� block�data�stmt is ! extrinsic�prefix " BLOCK DATA

! block�data�name "

Constraint� Every module�subprogram of any HPF module must be of the same extrinsic
kind as its host� and any module�subprogram whose extrinsic kind is not given
explicitly is assumed to be of that extrinsic kind

Constraint� Every internal�subprogram of any HPF main�program or module�subprogram
must be of the same extrinsic kind as its host� and any internal�subprogram
whose extrinsic kind is not given explicitly is assumed to be of that extrinsic
kind

H��� extrinsic�prefix is EXTRINSIC � extrinsic�spec 	

H��	 extrinsic�spec is extrinsic�spec�arg�list
or extrinsic�kind�keyword

H��� extrinsic�spec�arg is language
or model
or external�name

H��� language is ! LANGUAGE � "
scalar�char�initialization�expr

H��
 model is ! MODEL � "
scalar�char�initialization�expr

H��� external�name is ! EXTERNAL�NAME � "
scalar�char�initialization�expr

Constraint� In an extrinsic�spec�arg�list� at least one of language� model� or external�name
must be speci�ed and none may be speci�ed more than once

Constraint� If language is speci�ed without LANGUAGE�� language must be the �rst item in
the extrinsic�spec�arg�list
 If model is speci�ed without MODEL�� language with�
out LANGUAGE� must be the �rst item and model must be the second item in the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A�	� EXTRINSIC PROGRAM UNITS
�	

extrinsic�spec�arg�list
 If external�name is speci�ed without EXTERNAL NAME��
language without LANGUAGE� must be the �rst item and model without MODEL�
must be the second item in the extrinsic�spec�arg�list

Constraint� The forms with LANGUAGE�� MODEL�� and EXTERNAL NAME� may appear in any
order except as prohibited above

Note that these rules for extrinsic�spec�arg�list are as if EXTRINSIC were a pro�
cedure with an explicit interface with a dummy�arg�list of LANGUAGE� MODEL�

EXTERNAL NAME� each of which were OPTIONAL

Constraint� In language� values of scalar�char�initialization�expr may be�

� �HPF�� referring to the HPF language� if a model is not explicitly speci�ed�
the model is implied to be �GLOBAL��

� �FORTRAN�� referring to the ANSI�ISO standard Fortran language� if a
model is not explicitly speci�ed� the model is implied to be �SERIAL��

� �F���� referring to the former ANSI�ISO standard FORTRAN �� lan�
guage� if a model is not explicitly speci�ed� the model is implied to be
�SERIAL��

� �C�� referring to the ANSI standard C programming language� if a model
is not explicitly speci�ed� the model is implied to be �SERIAL�� or

� an implementation�dependent value with an implementation�dependent
implied model

Note that� for most implementations� �C� will only be allowed for function�
stmts and subroutine�stmts occurring in an interface�body

Constraint� If language is not speci�ed it is the same as that of the host scoping unit

Constraint� In model� values of scalar�char�initialization�expr may be�

� �GLOBAL�� referring to the global model�

� �LOCAL�� referring to the local model�

� �SERIAL�� referring to the serial model� or

� an implementation�dependent value

Constraint� If model is not speci�ed or implied by the speci�cation of a language� it is the
same as that of the host scoping unit

Constraint� All languages and models whose names begin with the three letters HPF are
reserved for present or future de�nition by this speci�cation and its successors

Constraint� In external�name� the value of scalar�char�initialization�expr is a character
string whose use is determined by the extrinsic kind
 For example� an extrin�
sic kind may use the external�name to specify the name by which the procedure
would be known if it were referenced by a C procedure
 In such an implementa�
tion� a user would expect the compiler to perform any transformations of that
name that the C compiler would perform
 If external�name is not speci�ed�
its value is implementation�dependent

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

H��� extrinsic�kind�keyword is HPF

or HPF�LOCAL

or HPF�SERIAL

Constraint� EXTRINSIC�HPF	 is equivalent to EXTRINSIC��HPF���GLOBAL�	
 In the ab�
sence of an extrinsic�pre�x an HPF compiler interprets a compilation unit
as if it were of extrinsic kind HPF
 Thus� for an HPF compiler� specifying
EXTRINSIC�HPF	 or EXTRINSIC��HPF���GLOBAL�	 is redundant
 Such explicit
speci�cation may� however� be required for use with a compiler that supports
multiple extrinsic kinds

Constraint� EXTRINSIC�HPF LOCAL	 is equivalent to EXTRINSIC��HPF���LOCAL�	
 A
main�program whose extrinsic kind is HPF LOCAL behaves as if it were a sub�
routine of extrinsic kind HPF LOCAL that is called with no arguments from a
main program of extrinsic kind HPF whose executable part consists solely of
that call

Constraint� EXTRINSIC�HPF SERIAL	 is equivalent to EXTRINSIC��HPF���SERIAL�	
 A
main�program whose extrinsic kind is HPF SERIAL behaves as if it were a sub�
routine of extrinsic kind HPF SERIAL that is called with no arguments from a
main program of extrinsic kind HPF whose executable part consists solely of
that call

Constraint� All extrinsic�kind�keywords whose names begin with the three letters HPF are
reserved for present or future de�nition by this speci�cation and its successors

A�� Approved Extensions for Data Mapping

A���� Syntax of Attributed Forms of Extended Data Mapping Directives

H��� combined�attribute�extended is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list 	

or DYNAMIC

or RANGE range�attr�stuff
or SHADOW shadow�attr�stuff
or SUBSET

Constraint� The SUBSET attribute may be applied only to a processors arrangement

A���	 The REDISTRIBUTE Directive

H��
 redistribute�directive is REDISTRIBUTE distributee dist�directive�stuff
or REDISTRIBUTE dist�attribute�stuff

distributee�list

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� APPROVED EXTENSIONS FOR DATA MAPPING
��

Constraint� A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute �see Section �
��

Constraint� A distributee in a REDISTRIBUTE directive may not appear as an alignee in an
ALIGN or REALIGN directive

Constraint� Neither the dist�format�clause nor the dist�target in a REDISTRIBUTE directive
may begin with ���

A���� The REALIGN Directive

H��� realign�directive is REALIGN alignee align�directive�stuff
or REALIGN align�attribute�stuff

 alignee�list

Constraint� Any alignee that appears in a REALIGN directive must have the DYNAMIC at�
tribute �see Section �
��

Constraint� If the align�target speci�ed in the align�with�clause has the DYNAMIC attribute�
then each alignee must also have the DYNAMIC attribute

Constraint� An alignee in a REALIGN directive may not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive

A���� The DYNAMIC Directive

H��� dynamic�directive is DYNAMIC alignee�or�distributee�list

H��� alignee�or�distributee is alignee
or distributee

Constraint� An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object �or template� that is DYNAMIC
 �To get this kind of e�ect� modules
must be used instead of COMMON blocks
�

Constraint� A component of a derived type may have the DYNAMIC attribute only if it also
has the POINTER attribute
 �See Section �
	 for further discussion
�

Constraint� An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object �or template� that is DYNAMIC

A���� Mapping to Processor Subsets

H��� extended�dist�target is processors�name ! � section�subscript�list 	 "
or � processors�name ! � section�subscript�list 	 "
or �

Constraint� The section�subscripts in the section�subscript�list may not be vector�subscripts
and are restricted to be either subscripts or subscript�triplets

Constraint� In the section�subscript�list� the number of section�subscripts must equal the
rank of the processor�name

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 ANNEX A� SYNTAX RULES

Constraint� Within a DISTRIBUTE directive� each section�subscript must be a speci�cation�
expr

Constraint� Within a DISTRIBUTE or a REDISTRIBUTE directive� if both a dist�format�list
and a dist�target appear� the number of elements of the dist�format�list that
are not ��� must equal the number of subscript�triplets in the named processor
arrangement

Constraint� Within a DISTRIBUTE or a REDISTRIBUTE directive� if a dist�target appears but
not a dist�format�list� the rank of each distributee must equal the number of
subscript�triplets in the named processor arrangement

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument� except if
the distributee has the POINTER attribute�

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument� except if the alignee has the POINTER attribute�

Constraint� An inheritee must be a dummy argument� except if the alignee has the POINTER
attribute�

A���� Mapping of Derived Type Components

H��� distributee�extended is object�name
or template�name
or component�name
or structure�component

Constraint� A component of a derived type may be explicitly distributed only if the type
of the component is not an explicitly mapped type

Constraint� An object of a derived type may be explicitly distributed only if the derived
type is not an explicitly mapped type

Constraint� A distributee in a DISTRIBUTE directive may not be a structure�component

Constraint� A distributee in a DISTRIBUTE directive which occurs in a derived�type�def must
be the component�name of a component of the derived type

Constraint� A component�name may occur as a distributee in a DISTRIBUTE directive oc�
curing within the derived type de�nition only

Constraint� A distributee that is a structure�component may occur only in a REDISTRIBUTE

directive and every part�ref except the rightmost must be scalar �rank zero�

The rightmost part�name in the structure�component must have the DYNAMIC

attribute

H��� alignee�extended is object�name
or component�name
or structure�component

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� APPROVED EXTENSIONS FOR DATA MAPPING
��

Constraint� A component of a derived type may be explicitly aligned only if the type of
the component is not an explicitly mapped type

Constraint� An object of a derived type may be explicitly aligned only if the derived type
is not an explicitly mapped type

Constraint� An alignee in an ALIGN directive may not be a structure�component

Constraint� An alignee in an ALIGN directive that occurs in a derived�type�def must be the
component�name of a component of the derived type

Constraint� A component�name may occur as an alignee only in an ALIGN directive occuring
within the derived type de�nition

Constraint� An alignee that is a structure�component may occur only in a REALIGN di�
rective and every part�ref except the rightmost must be scalar �rank zero�

The rightmost part�name in the structure�component must have the DYNAMIC

attribute

H��	 align�target�extended is object�name
or template�name
or component�name
or structure�component

Constraint� A component�name may appear as an align target only in an ALIGN directive
occuring within the derived type de�nition that de�nes that component

Constraint� In an align�target that is a structure�component� every part�ref except the
rightmost must be scalar �rank zero�

A����
 New Distribution Formats

H��� extended�dist�format is BLOCK ! � int�expr 	 "
or CYCLIC ! � int�expr 	 "
or GEN BLOCK � int�array 	

or INDIRECT � int�array 	

or �

Constraint� An int�array appearing in a extended�dist�format of a DISTRIBUTE directive or
REDISTRIBUTE directive must be an integer array of rank �

Constraint� An int�array appearing in a extended�dist�format of a DISTRIBUTE directive
must be a restricted�expr

Constraint� The size of any int�array appearing with a GEN BLOCK distribution must be
equal to the extent of the corresponding dimension of the target processor
arrangement

Constraint� The size of any int�array appearing with an INDIRECT distribution must be
equal to the extent of the corresponding dimension of the distributee to which
the distribution is to be applied

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

A����� The RANGE Directive

H��� range�directive is RANGE ranger range�attr�stuff

H��
 ranger is object�name
or template�name

H��� range�attr�stuff is range�distribution�list

H��� range�distribution is � range�attr�list 	

H��� range�attr is range�dist�format
or ALL

H��� range�dist�format is BLOCK ! � 	 "
or CYCLIC ! � 	 "
or GEN BLOCK

or INDIRECT

or �

Constraint� At least one of the following must be true�

� The ranger has the DYNAMIC attribute

� The ranger has the INHERIT attribute

� The ranger is speci�ed with a dist�format�clause of � in a DISTRIBUTE or
combined directive

Constraint� The length of each range�attr�list must be equal to the rank of the ranger

Constraint� The ranger must not appear as an alignee in an ALIGN or REALIGN directive

A����� The SHADOW Directive

H��� shadow�directive is SHADOW shadow�target shadow�attr�stuff

H��� shadow�target is object�name
or component�name

H��	 shadow�attr�stuff is � shadow�spec�list 	

H�
� shadow�spec is width
or low�width
 high�width

H�
� width is int�expr

H�

 low�width is int�expr

H�
� high�width is int�expr

Constraint� The int�expr representing a width� low�width� or high�width must be a constant
speci�cation�expr with value greater than or equal to �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� APPROVED EXTENSIONS FOR DATA AND TASK PARALLELISM
��

A�� Approved Extensions for Data and Task Parallelism

A���� Active Processor Sets

H	�� subset�directive is SUBSET processors�name

A���� The ON Directive

H	�
 on�directive is ON on�stuff

H	�� on�stuff is home ! � resident�clause " ! � new�clause "

H	�� on�construct is
directive�origin block�on�directive
block
directive�origin end�on�directive

H	�� block�on�directive is ON on�stuff BEGIN

H	�� end�on�directive is END ON

H	�� home is HOME � variable 	

or HOME � template�elmt 	

or � processors�elmt 	

H	�� template�elmt is template�name ! � section�subscript�list 	 "

H	�	 processors�elmt is processors�name ! � section�subscript�list 	 "

A���	 The RESIDENT Clause� Directive� and Construct

H	�� resident�clause is RESIDENT resident�stuff

H	�� resident�stuff is ! � res�object�list 	 "

H	�
 resident�directive is RESIDENT resident�stuff

H	�� resident�construct is

directive�origin block�resident�directive
block
directive�origin end�resident�directive

H	�� block�resident�directive is RESIDENT resident�stuff BEGIN

H	�� end�resident�directive is END RESIDENT

H	�� res�object is object

A���� The TASK REGION Construct

H	�� task�region�construct is
directive�origin block�task�region�directive
block
directive�origin end�task�region�directive

H	�� block�task�region�directive is TASK�REGION

H	�	 end�task�region�directive is END TASK�REGION

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX A� SYNTAX RULES

A��
 Approved Extension for Asynchronous I�O

or ASYNCHRONOUS

or ID � scalar�default�int�variable
or ASYNCHRONOUS

Constraint� If either an ASYNCHRONOUS or an ID� speci�er is present� then both shall be
present

Constraint� If an ASYNCHRONOUS speci�er is present� the REC� speci�er shall appear� a
format shall not appear� and a namelist�group�name shall not appear

Constraint� If an ASYNCHRONOUS speci�er is present� then no function reference may appear
in an expression anywhere in the data transfer statement

or ID � scalar�default�int�variable
or PENDING � scalar�default�logical�variable

Constraint� The ID� and PENDING� speci�ers shall not appear in an INQUIRE statement if
the FILE� speci�er is present

Constraint� If either an ID� speci�er or a PENDING� speci�er is present� then both shall be
present

A��
�� The WAIT Statement

H���� wait�stmt is WAIT � wait�spec�list 	

H���
 wait�spec is UNIT � io�unit
or ID � scalar�default�int�expr
or ERR � label
or IOSTAT � label

Constraint� A wait�spec�list shall contain exactly one UNIT� speci�er� exactly one ID� spec�
i�er� and at most one of each of the other speci�ers

A��� Approved Extensions for HPF Extrinsics

A����� Extrinsic Language Bindings

H���� type�declaration�stmt�extended is type�spec ! ! � attr�spec�extended " ���

 " entity�decl�list

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A���� APPROVED EXTENSIONS FOR HPF EXTRINSICS
��

H���
 attr�spec�extended is PARAMETER

or access�spec
or ALLOCATABLE

or DIMENSION � array�spec 	

or EXTERNAL

or INTENT � intent�spec 	

or INTRINSIC

or OPTIONAL

or POINTER

or SAVE

or TARGET

or MAP�TO � map�to�spec 	

or LAYOUT � layout�spec 	

or PASS�BY � pass�by�spec 	

H����map�to�spec is scalar�char�initialization�expr

H���� layout�spec is scalar�char�initialization�expr

H���� pass�by�spec is scalar�char�initialization�expr

Constraint� The same attr�spec�extended shall not appear more than once in a given type�
declaration�stmt

Constraint� An entity shall not be explicitly given any attribute more than once in a scoping
unit

Constraint� The attributes MAP TO� LAYOUT� and PASS BY may be speci�ed only for dummy
arguments within a scoping unit of an extrinsic type for which these attributes
have been explicitly de�ned

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex B

Syntax Cross�reference

This Appendix cross�references symbols used in the formal syntax rules
 Rule identi�ers
beginning with �H� refer to syntax rules of this High Performance Fortran Language Spec�
i�cation� the full rule may be found in Appendix A
 Rule identi�ers beginning with �R�
refer to syntax rules of the Fortran Language Standard ��Fortran 	���

B�� Nonterminal Symbols That Are De�ned

Symbol De�ned Referenced
action�stmt R
�� H
��
add�op R��� H�
� H���
add�operand R��� H�
� H���
align�add�operand H�
� H�
� H�
�
align�attribute�stu� H��� H��
 H��� H���
align�directive H��� H
�� H
��
align�directive�stu� H��� H��� H���
align�dummy H��� H��� H�
�
align�primary H�
� H�
�
align�source H��� H��� H���
align�spec H�
� H��	
align�subscript H�

 H�
�
align�subscript�use H�
� H�

 H�
� H�
�
align�target H�
� H�
�
align�target�extended H��	
align�with�clause H��	 H��� H���
alignee H��� H��� H��� H���
alignee�extended H���
alignee�or�distributee H��� H���
allocate�object R�
�
allocate�stmt R�

and�op R�
� H���
and�operand R��� H���
array�constructor R��

array�spec R��� H���

assignment�stmt R���

��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

B��� NONTERMINAL SYMBOLS THAT ARE DEFINED
�	

association�name H��� H���
attr�spec R���
attr�spec�extended H���
 H����
block R��� H	�� H	�� H	��
block�data�stmt H���
block�on�directive H	�� H	��
block�resident�directive H	�� H	��
block�task�region�directive H	�� H	��
call�stmt R�
��
case�construct R��� H
��
combined�attribute H��
 H���
combined�attribute�extended H���
combined�decl H��� H���
combined�directive H��� H
�� H
��
data�stmt R��

deallocate�stmt R���
directive�origin H
�
 H
�� H	�� H	�� H	��
dist�attribute�stu� H��� H��
 H��� H��

dist�directive�stu� H��� H��� H��� H��

dist�format H��� H��	
dist�format�clause H��	 H���
dist�onto�clause H��� H��� H���
dist�target H��
 H���
distribute�directive H��� H
�� H
��
distributee H��� H��� H��
 H���
distributee�extended H���
do�construct R��� H
��
dummy�arg R�

� H��

dynamic�directive H��� H
��
end�function�stmt R�

�
end�on�directive H	�� H	��
end�resident�directive H	�� H	��
end�subroutine�stmt R�

�
end�task�region�directive H	�	 H	��
entity�decl R��� H����
equiv�op R�

 H���
equiv�operand R��� H���
executable�construct R
��
executable�construct�extended H
��
executable�directive H
�� H
��
executable�directive�extended H
��
execution�part R
��
explicit�shape�spec R��� H��
 H��� H��� H��
 H���
expr R�
� H���
extended�dist�format H���
extended�dist�target H���
external�name H��� H���
extrinsic�kind�keyword H��� H��	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX B� SYNTAX CROSS�REFERENCE

extrinsic�pre�x H��� H��� H��� H��� H���
extrinsic�spec H��	 H���
extrinsic�spec�arg H��� H��	
function�reference R�
��
function�stmt H���
function�subprogram R�
��
high�width H�
� H�
�
home H	�� H	��
hpf�directive H
�� H
��
hpf�directive�line H
��
hpf�entity H��� H���
if�construct R��
 H
��
independent�directive H��� H
�� H
��
inherit�directive H��� H
�� H
��
inheritee H��
 H���
input�item R	��
int�add�operand H�
� H�
� H�
�
int�expr R�
� H��� H�

 H��� H�
� H�

 H�
�
int�level�two�expr H�
� H�
�
int�mult�operand H�
� H�
�
int�variable R��� H���
interface�body R�
��
internal�subprogram�part R
��
io�unit R	�� H���

kind�selector R���
label R��� H���

language H��� H���
layout�spec H���� H���

level�
�expr R��� H�
� H���
low�width H�

 H�
�
map�to�spec H���� H���

mask�expr R���
model H��
 H���
module�stmt H���
mult�op R��	 H���
mult�operand R��� H�
� H���
namelist�stmt R���
new�clause H��
 H��� H	��
nullify�stmt R�
	
on�construct H	�� H
��
on�directive H	�
 H
��
on�stu� H	�� H	�
 H	��
or�op R�
� H���
or�operand R��� H���
output�item R	��
pass�by�spec H���� H���

pointer�assignment�stmt R���
pointer�object R���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

B��� NONTERMINAL SYMBOLS THAT ARE DEFINED
��

pre�x H��� H��� H��

pre�x�spec H��� H���
processors�decl H��� H�
	
processors�directive H�
	 H
�� H
��
processors�elmt H	�	 H	��
program�stmt H���
range�attr H��� H���
range�attr�stu� H��� H��� H���
range�directive H��� H
��
range�dist�format H��� H���
range�distribution H��� H���
ranger H��
 H���
read�stmt R	�	
realign�directive H��� H
��
redistribute�directive H��
 H
��
reduction�clause H��� H���
reduction�function H��� H���
reduction�stmt H���
reduction�variable H��� H���
res�object H	�� H	��
resident�clause H	�� H	��
resident�construct H	�� H
��
resident�directive H	�
 H
��
resident�stu� H	�� H	�� H	�
 H	��
section�subscript R��� H��� H	�� H	�	
sequence�directive H��� H
�� H
��
shadow�attr�stu� H��	 H��� H���
shadow�directive H��� H
��
shadow�spec H�
� H��	
shadow�target H��� H���
speci�cation�directive H
�� H
��
speci�cation�directive�extended H
��
speci�cation�expr R���
speci�cation�part R
��
stat�variable R�
�
stop�stmt R���
stride R�
�
structure�component R��� H��� H��� H��� H��	
subroutine�stmt H��

subscript R���
subscript�triplet R��	 H�

subset�directive H	�� H
��
target R���
task�region�construct H	�� H
��
template�decl H��
 H���
template�directive H��� H
�� H
��
template�elmt H	�� H	��
type�declaration�stmt R���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 ANNEX B� SYNTAX CROSS�REFERENCE

type�declaration�stmt�extended H����
type�spec R��
 H��� H����
variable R��� H��� H	��
wait�spec H���
 H����
wait�stmt H����
where�construct R��	 H
��
where�stmt R���
width H�
� H�
�
write�stmt R	��

B�� Nonterminal Symbols That Are Not De�ned

Symbol Referenced
access�spec H���

array�variable�name H���
block�data�name H���
char�initialization�expr H��� H��
 H��� H���� H���� H����
common�block�name H���
component�name H��� H��� H��	 H���
default�int�expr H���

dummy�arg�name H���
function�name H���
int�array H���
intent�spec H���

module�name H���
object H	��
object�name H��� H��� H��� H�
� H��� H��

H��� H��� H��	 H��
 H���
processors�name H��� H��
 H��� H��� H	�� H	�	
program�name H���
result�name H���
subroutine�name H��

template�name H��� H��� H�
� H��
 H��� H��	

H��
 H	��
variable�name H��
 H���

B�	 Terminal Symbols

Symbol Referenced

HPF� H
�

� H��
 H��� H��	 H��� H��� H���

H�
� H�
� H��� H��
 H��
 H���
H��� H��� H��
 H��� H��� H���
H��� H��� H��� H��	 H	�� H	��
H	�	 H	�� H���� H���

	 H��
 H��� H��	 H��� H��� H���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

B��� TERMINAL SYMBOLS
��

H�
� H�
� H��� H��
 H��
 H���
H��� H��� H��
 H��� H��� H���
H��� H��� H��� H��	 H	�� H	��
H	�	 H	�� H���� H���

� H��	 H��� H��
 H��� H�
� H�

H�
� H��� H��� H��� H���

�HPF� H
�

� H���
� H��� H��� H	�� H����
� H���

 H��� H�
�

 H��� H��� H��
 H��� H����
� H��� H��� H��
 H��� H���

ALIGN H��
 H��� H���
ALL H���
ALLOCATABLE H���

BEGIN H	�� H	��
BLOCK H��� H��� H��� H���
CHPF� H
�

CYCLIC H��� H��� H���
DATA H���
DIMENSION H��
 H��� H���

DISTRIBUTE H��
 H��� H���
DYNAMIC H��� H���
ELEMENTAL H���
END H	�� H	�� H	�	
ERR H���

EXTERNAL H���

EXTERNAL NAME H���
EXTRINSIC H���
FUNCTION H���
GEN BLOCK H��� H���
HOME H	��
HPF H���
HPF LOCAL H���
HPF SERIAL H���
IAND H���
ID H���

IEOR H���
INDEPENDENT H���
INDIRECT H��� H���
INHERIT H��
 H��� H���
INTENT H���

INTRINSIC H���

IOR H���
IOSTAT H���

LANGUAGE H���
LAYOUT H���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX B� SYNTAX CROSS�REFERENCE

MAP TO H���

MAX H���
MIN H���
MODEL H��

MODULE H���
NEW H��

NO H���
ON H	�
 H	�� H	��
ONTO H���
OPTIONAL H���

PARAMETER H���

PASS BY H���

POINTER H���

PROCESSORS H��
 H�
	 H���
PROGRAM H���
PURE H���
RANGE H��� H���
REALIGN H���
RECURSIVE H���
REDISTRIBUTE H��

REDUCTION H���
RESIDENT H	�� H	�
 H	�� H	��
RESULT H���
SAVE H���

SEQUENCE H���
SHADOW H��� H���
SUBROUTINE H��

SUBSET H��� H	��
TARGET H���

TASK REGION H	�� H	�	
TEMPLATE H��
 H��� H���
UNIT H���

WAIT H����
WITH H��	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex C

HPF ��� Subset

As part of the de�nition of the previous version of the High Performance Fortran language�
HPF �
�� a subset language was formally de�ned� based on the Fortran �� language
 The
goal was to permit more rapid implementations of a useful subset of HPF that did not
require full implementation of the new ANSI�ISO standard Fortran ��Fortran 	���

No subset language is de�ned as part of the current version� HPF

�
 This Annex
is included in the HPF

� language document as a convenient summary of the HPF �
�
Subset� which has served as a minimum requirement for HPF implementations

C�� Fortran �
 Features in the HPF ��� Subset

The features of the HPF �
� subset languages are listed below
 For reference� the section
numbers from the Fortran 	� standard are given along with the related syntax rule numbers�

� All FORTRAN �� standard conforming features� except for storage and sequence
association

� The Fortran 	� de�nitions of MIL�STD����� features�

� DO WHILE statement ��
�
�
�
� � R�
��

� END DO statement ��
�
�
�
� � R�
��

� IMPLICIT NONE statement ��
� � R����

� INCLUDE line ��
��

� scalar bit manipulation intrinsic procedures� IOR� IAND� NOT� IEOR� ISHFT�
ISHFTC� BTEST� IBSET� IBCLR� IBITS� MVBITS ���
���

� binary� octal and hexadecimal constants for use in DATA statements ��
�
�
� �
R��� and �

	 � R����

� Arithmetic and logical array features�

� array sections ��

� � R�����
��

� subscript triplet notation ��

�
��

� vector�valued subscripts ��

�

�

� array constructors limited to one level of implied DO ��
� � R����

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��

�� ANNEX C� HPF ��� SUBSET

� arithmetic and logical operations on whole arrays and array sections �

�
��

�
��
and �
��

� array assignment �

�
�� �
�� �
�
�
�� and �
�
�
��

� masked array assignment ��
�
��

� WHERE statement ��
�
� � R����

� block WHERE

 ELSEWHERE construct ��
�
� � R��	�

� array�valued external functions ��

�

�

� automatic arrays ��
�

�
��

� ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements ��
�

�
��
�
�
� � R�

� and �
�
� � R����

� assumed�shape arrays ��
�

�

 � R����

� Intrinsic procedures�

The list of intrinsic functions and subroutines below is a combination of �a� routines
which are entirely new to Fortran and �b� routines that have always been part of
Fortran� but have been extended here to new argument and result types
 The new
or extended de�nitions of these routines are part of the subset
 If a FORTRAN ��
routine is not included in this list� then only the original FORTRAN �� de�nition is
part of the subset

For all of the intrinsics that have an optional argument DIM� only actual argument
expressions for DIM that are initialization expressions are part of the subset
 The
intrinsics with this constraint are marked with yin the list below

� the argument presence inquiry function� PRESENT ���
��
��

� all the numeric elemental functions� ABS� AIMAG� AINT� ANINT� CEILING� CMPLX�
CONJG� DBLE� DIM� DPROD� FLOOR� INT� MAX� MIN� MOD� MODULO� NINT� REAL� SIGN
���
��

�

� all mathematical elemental functions� ACOS� ASIN� ATAN� ATAN�� COS� COSH� EXP�
LOG� LOG��� SIN� SINH� SQRT� TAN� TANH ���
��
��

� all the bit manipulation elemental functions � BTEST� IAND� IBCLR� IBITS� IBSET�
IEOR� IOR� ISHFT� ISHFTC� NOT ���
��
���

� all the vector and matrix multiply functions� DOT PRODUCT� MATMUL ���
��
���

� all the array reduction functions� ALLy� ANYy� COUNTy� MAXVALy� MINVALy�
PRODUCTy� SUMy���
��
���

� all the array inquiry functions� ALLOCATED� LBOUNDy� SHAPE� SIZEy�
UBOUNDy���
��
���

� all the array construction functions� MERGE� PACK� SPREADy� UNPACK ���
��
���

� the array reshape function� RESHAPE ���
��
���

� all the array manipulation functions� CSHIFTy� EOSHIFTy� TRANSPOSE ���
��
���

� all array location functions� MAXLOCy� MINLOCy���
��
�	�

� all intrinsic subroutines� DATE AND TIME� MVBITS� RANDOM NUMBER� RANDOM SEED�
SYSTEM CLOCK ��
���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

C��� HPF ��� DIRECTIVES AND LANGUAGE EXTENSIONS IN THE HPF ��� SUBSET
��

� Declarations�

� Type declaration statements� with all forms of type�spec except kind�selector
and TYPE�type�name�� and all forms of attr�spec except access�spec� TARGET� and
POINTER
 ��
� � R�������� R����

� attribute speci�cation statements� ALLOCATABLE� INTENT� OPTIONAL� PARAMETER�
SAVE ��

�

� Procedure features�

� INTERFACE blocks with no generic�spec or module�procedure�stmt ��

�

��

� optional arguments ��

�

� keyword argument passing ��

�
� �R�
�
�

� Syntax improvements�

� long ��� character� names ��

�

� lower case letters ��
�
��

� use of � � in names ��
�
��

� �&� initiated comments� both full line and trailing ��
�

��

C�� HPF ��� Directives and Language Extensions in the HPF ��� Subset

The following HPF �
� directives and language extensions to Fortran 	� were included in
the HPF �
� Subset�

� The basic data distribution and alignment directives� ALIGN� DISTRIBUTE�
PROCESSORS
 and TEMPLATE

� The forall�statement �but not the forall�construct�

� The INDEPENDENT directive

� The SEQUENCE and NO SEQUENCE directives

� The system inquiry intrinsic functions NUMBER OF PROCESSORS and
PROCESSORS SHAPE

� The computational intrinsic functions ILEN� and the HPF extended Fortran intrin�
sics MAXLOC and MINLOC� with the restriction that any actual argument expression
corresponding to an optional DIM argument must be an initialization expression

For a discussion of the rationale by which features were chosen for the HPF �
� Subset�
please consult HPF Language Speci�cation Version �
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX C� HPF ��� SUBSET

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex D

Previous HPFF Acknowledgments

The current HPF

� document would not have been possible without the contributions of
the previous series of HPFF meetings
 Following are the acknowlegements for those e�orts

D�� HPFF Acknowledgments

Technical development for HPF �
� was carried out by subgroups� and was reviewed by the
full committee
 Many people served in positions of responsibility�

� Ken Kennedy� Convener and Meeting Chair�

� Charles Koelbel� Executive Director and Head of the FORALL Subgroup�

� Mary Zosel� Head of the Fortran 	� and Storage Association Subgroup�

� Guy Steele� Head of the Data Distribution Subgroup�

� Rob Schreiber� Head of the Intrinsics Subgroup�

� Bob Knighten� Head of the Parallel I�O Subgroup�

� Marc Snir� Head of the Extrinsics Subgroup�

� Joel Williamson and Marina Chen� Heads of the Subroutine Interface Subgroup� and

� David Loveman� Editor

Geo�rey Fox convened the �rst HPFF meeting with Ken Kennedy and later led a group
to develop benchmarks for HPF
 Clemens�August Thole organized a group in Europe and
was instrumental in making this an international e�ort
 Charles Koelbel produced detailed
meeting minutes that were invaluable to subgroup heads in preparing successive revisions
to the draft proposal
 Guy Steele developed LATEX macros for a variety of tasks� including
formatting BNF grammar� Fortran code and pseudocode� and commentary material� the
document would have been much less aesthetically pleasing without his e�orts

Many companies� universities� and other entities supported their employees attendance
at the HPFF meetings� both directly and indirectly
 The following organizations were
represented at two or more meetings by the following individuals �not including those present
at the �rst HPFF meeting in January of �		
� for which there is no accurate attendee list��
Alliant Computer Systems Corporation � David Reese

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

	� ANNEX D� PREVIOUS HPFF ACKNOWLEDGMENTS

Amoco Production Company � Jerrold Wagener� Rex Page
Applied Parallel Research � � � � � � �John Levesque� Rony Sawdayi� Gene Wagenbreth
Archipel � Jean�Laurent Philippe
CONVEX Computer Corporation �Joel Williamson
Cornell Theory Center � David Presberg
Cray Research� Inc
 �Tom MacDonald� Andy Meltzer
Digital Equipment Corporation � David Loveman
Fujitsu America � Siamak Hassanzadeh� Ken Muira
Fujitsu Laboratories � Hidetoshi Iwashita
GMD�I�
T� Sankt Augustin �Clemens�August Thole
Hewlett Packard � � � � � � � � � � � � � � Maureen Ho�ert� Tin�Fook Ngai� Richard Schooler
IBM � � � � � � � � � � � � � � �Alan Adamson� Randy Scarborough� Marc Snir� Kate Stewart
Institute for Computer Applications in Science � Engineering � � �Piyush Mehrotra
Intel Supercomputer Systems Division � Bob Knighten
Lahey Computer � � � � � �Lev Dyadkin� Richard Fuhler� Thomas Lahey� Matt Snyder
Lawrence Livermore National Laboratory �Mary Zosel
Los Alamos National Laboratory � � � � � � � � � � � � � Ralph Brickner� Margaret Simmons
Louisiana State University � J
 Ramanujam
MasPar Computer Corporation � Richard Swift
Meiko� Inc
 �James Cownie
nCUBE� Inc
 �Barry Keane� Venkata Konda
Ohio State University �P
 Sadayappan
Oregon Graduate Institute of Science and Technology � � � � � � � � � � � � �Robert Babb II
The Portland Group� Inc
 �Vince Schuster
Research Institute for Advanced Computer Science � � � � � � � � � � � � � �Robert Schreiber
Rice University � Ken Kennedy� Charles Koelbel
Schlumberger �Peter Highnam
Shell � Don Heller
State University of New York at Bu�alo �Min�You Wu
SunPro and Sun Microsystems � � � � � � � � � � � � � � � � � � Prakash Narayan� Douglas Walls
Syracuse University � Alok Choudhary� Tom Haupt
TNO�TU Delft � Edwin Paalvast� Henk Sips
Thinking Machines Corporation � � � � � � � � � Jim Bailey� Richard Shapiro� Guy Steele
United Technologies Corporation � Richard Shapiro
University of Stuttgart � � � � � � � � � � � � �Uwe Geuder� Bernhard Woerner� Roland Zink
University of Southampton � John Merlin
University of Vienna �Barbara Chapman� Hans Zima
Yale University �Marina Chen� Aloke Majumdar

Many people contributed sections to the �nal language speci�cation and HPF Journal
of Development� including Alok Choudhary� Geo�rey Fox� Tom Haupt� Maureen Ho�ert�
Ken Kennedy� Robert Knighten� Charles Koelbel� David Loveman� Piyush Mehrotra� John
Merlin� Tin�Fook Ngai� Rex Page� Sanjay Ranka� Robert Schreiber� Richard Shapiro� Marc
Snir� Matt Snyder� Guy Steele� Richard Swift� Min�You Wu� and Mary Zosel
 Many others
contributed shorter passages and examples and corrected errors

Because public input was encouraged on electronic mailing lists� it is impossible to
identify all who contributed to discussions� the entire mailing list was over ��� names long

Following are some of the active participants in the HPFF process not mentioned above�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

D��� HPFF ACKNOWLEDGMENTS
	�

N
 Arunasalam Werner Assmann Marc Baber
Babak Bagheri Vasanth Bala Jason Behm
Peter Belmont Mike Bernhardt Keith Bierman
Christian Bishof John Bolstad William Camp
Duane Carbon Richard Carpenter Brice Cassenti
Doreen Cheng Mark Christon Fabien Coelho
Robert Corbett Bill Crutch�eld J
 C
 Diaz
James Demmel Alan Egolf Bo Einarsson
Pablo Elustondo Robert Ferrell Rhys Francis
Hans�Hermann Frese Steve Goldhaber Brent Gorda
Rick Gorton Robert Halstead Reinhard von Hanxleden
Hiroki Honda Carol Hoover Steven Huss�Lederman
Ken Jacobsen Elaine Jacobson Behm Jason
Alan Karp Ronan Keryell Anthony Kimball
Ross Knippe Bruce Knobe David Kotz
Ed Krall Tom Lake Peter Lawrence
Bryan Lawver Bruce Leasure Stewart Levin
David Levine Theodore Lewis Woody Lichtenstein
Ruth Lovely Doug MacDonald Raymond Man
Stephen Mark Philippe Marquet Jeanne Martin
Oliver McBryan Charlie McDowell Michael Metcalf
Charles Mosher Len Moss Lenore Mullin
Yoichi Muraoka Bernie Murray Vicki Newton
Dale Nielsen Kayutov Nikolay Steve O Neale
Je� Painter Cherri Pancake Harvey Richardson
Bob Riley Kevin Robert Ron Schmucker
J
L
 Schonfelder Doug Sco�eld David Sera�ni
G
M
 Sigut Anthony Skjellum Niraj Srivastava
Paul St
Pierre Nick Stanford Mia Stephens
Jaspal Subhlok Xiaobai Sun Hanna Szoke
Bernard Tourancheau Anna Tsao Alex Vasilevsky
Stephen Vavasis Arthur Veen Brian Wake
Ji Wang Karen Warren D
C
B
 Watson
Matthijs van Waveren Robert Weaver Fred Webb
Stephen Whitley Michael Wolfe Fujio Yamamoto
Marco Zagha

The following organizations made the language draft available by anonymous FTP
access and�or mail servers� AT�T Bell Laboratories� Cornell Theory Center� GMD�I�
T
�Sankt Augustin�� Oak Ridge National Laboratory� Rice University� Syracuse University�
and Thinking Machines Corporation
 These outlets were instrumental in distributing the
document

The High Performance Fortran Forum also received a great deal of volunteer e�ort in
nontechnical areas
 Theresa Chatman and Ann Redelfs were responsible for most of the
meeting planning and organization� including the �rst HPFF meeting� which drew over �
�
people
 Shaun Bonton� Rachele Harless� Rhonda Perales� Seryu Patel� and Daniel Swint
helped with many logistical details
 Danny Powell spent a great deal of time handling the
�nancial details of the project
 Without these people� it is unlikely that HPF would have
been completed

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	
 ANNEX D� PREVIOUS HPFF ACKNOWLEDGMENTS

HPFF operated on a very tight budget �in reality� it had no budget when the �rst
meeting was announced�
 The �rst meeting in Houston was entirely �nanced from the
conferences budget of the Center for Research on Parallel Computation� an NSF Science
and Technology Center
 DARPA and NSF have supported research at various institutions
that have made a signi�cant contribution towards the development of High Performance
Fortran
 Their sponsored projects at Rice� Syracuse� and Yale Universities were particularly
in�uential in the HPFF process
 Support for several European participants was provided
by ESPRIT through projects P���� �PPPE� and P���� �PREPARE�

D�� HPFF�� Acknowledgments

The HPF �
� version of the document was prepared during the HPFF	� series of meetings
 A
number of people shared technical responsibilities for the activities of the HPFF	� meetings�

� Ken Kennedy� Convener and Meeting Chair�

� Mary Zosel� Executive Director and head of CCI Group
�

� Richard Shapiro� Head of CCI Group ��

� Ian Foster� Head of Tasking Subgroup�

� Alok Choudhary� Head of Parallel I�O Subgroup�

� Chuck Koelbel� Head of Irregular Distributions Subgroup�

� Rob Schreiber� Head of Implementation Subgroup�

� Joel Saltz� Head of Benchmarks Subgroup�

� David Loveman� Editor� assisted by Chuck Koelbel� Rob Schreiber� Guy Steele� and
Mary Zosel� section editors

Attendence at the HPFF	� meetings included the following people from organizations
that were represented two or more times

Don Heller �Ames Laboratory
Jerrold Wagener �Amoco Production Company
John Levesque �Applied Parallel Research
Ian Foster � Argonne National Laboratory
Terry Pratt � CESDIS�NASA Goddard
Jim Cowie �Cooperating Systems
Andy Meltzer� Jon Steidel � Cray Research� Inc

David Loveman � Digital Equipment Corporation
Bruce Olsen � Hewlett Packard
E
 Nunohiro� Satoshi Itoh � Hitachi
Henry Zongaro �IBM
Piyush Mehrotra � � � Institute for Computer Applications in Science � Engineering
Bob Knighten� Roy Touzeau � Intel SSD
Mary Zosel� Bor Chan� Karen Warren � � Lawrence Livermore National Laboratory
Ralph Brickner � Los Alamos National Laboratory
J
 Ramanujam � Louisiana State University

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

D��� HPFF�� ACKNOWLEDGMENTS
	�

Paula Vaughan� Donna Reese � � � � � � � � � Mississippi State University and NSF ERC
Shoichi Sakon� Yoshiki Seo � NEC
P
 Sadayappan� Chua�Huang Huang �Ohio State University
Andrew Johnson � OSF Research Institute
Chip Rodden� Je� Vanderlip �Paci�c Sierra Research
Larry Meadows� Doug Miles � The Portland Group� Inc

Robert Schreiber � � � � � � � � � � � � � �Research Institute for Advanced Computer Science
Ken Kennedy� Charles Koelbel � Rice University
Ira Baxter � Schlumberger
Alok Choudhary � Syracuse University
Guy Steele � � � � � � � � � � � � � � � � � � � Thinking Machines Corporation� Sun Microsystems
Richard Shapiro � � � � � � � � � � � � � � � � � �Thinking Machines Corp
� Silicon Graphics Inc

Scott Baden� Val Donaldson � � � � � � � � � � � � � � � � � � � University of California� San Diego
Robert Babb �University of Denver
Joel Saltz� Paul Havlak �University of Maryland
Nicole Nemer�Preece �University of Missouri�Rolla
Hans Zima� Siegfried Benkner� Thomas Fahringer � � � � � � � � � � � �University of Vienna
An important activity of HPFF	� was the processing of the many items submitted for

comment and interpretation which led to the HPF �
� update of the language document

A special acknowlegement goes to Henry Zongaro� IBM� for many thoughtful questions
exposing dark corners of language design that were previously overlooked� and to Guy
Steele� Thinking Machines�Sun Microsystems for his analysis of� and solutions for some of
the thornier issues discussed
 And general thanks to the people who submitted comments
and interpretation requests� including�

David Loveman� Michael Hennecke� James Cownie� Adam Marshall� Stephen Ehrlich�
Mary Zosel� Matt Snyder� Larry Meadows� Dick Hendrickson� Dave Watson� John Merlin�
Vasanth Bala� Paul
Wesson� Denis
Hugli� Stanly Steinberg� Henk Sips� Henry Zongaro�
Eiji Nunohiro� Jens Bloch Helmers� Rob Schreiber� David B
 Sera�ni� and Allan Knies

Other special mention goes to Chuck Koelbel at Rice University for continued mainte�
nance of the HPFF mailing lists� to Donna Reese and sta� at Mississippi State University
for establishing and maintaining a WWW home�page for HPFF� and to the University of
Maryland for establishing a benchmark FTP site

Theresa Chatman and sta� at Rice University were responsible for meeting planning
and organization and Danny Powell continued to handle �nancial details of the project

HPFF	� received direct support for research and administrative activities from grants
from ARPA� DOE� and NSF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� ANNEX D� PREVIOUS HPFF ACKNOWLEDGMENTS

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Bibliography

!�" American National Standards Institute� Inc
� ���� Broadway� New York� NY
 American
National Standard Programming Language FORTRAN� ANSI X�
	��	��� approved April
�� �	��

!
" American National Standards Institute� Inc
� ���� Broadway� New York� NY
 Ameri�
can National Standard for Information Systems Programming Language FORTRAN� S�
�X�
	��	�x� Revision of X�
	��	��� Draft S�� Version ���� April �	��

!�" High Performance Fortran Forum
 High Performance Fortran Language Speci�cation
Scienti�c Programming�
��� �		�
 Also published as� CRPC�TR	

�� Center for Re�
search on Parallel Computation� Rice University� Houston� TX� �		
 �revised May

�		��
 Also published as� Fortran Forum� �
��� Dec
 �		� and ���
� June �		�

!�" High Performance Fortran Forum
 High Performance Fortran Language Speci�cation�
version ��� CRPC�TR	

�� Center for Research on Parallel Computation� Rice Uni�
versity� Houston� TX� �		
 �revised May
 �		��

!�" US Department of Defense
 Military Standard� MIL�STD������ FORTRAN� DoD Sup�
plement to American National Standard X��������� November 	� �	��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�

	� BIBLIOGRAPHY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex E

Policy and Mechanism for
Recognized Extrinsic Interfaces

HPF de�nes certain extrinsics such as HPF LOCAL� and HPF SERIAL as interfaces that HPFF
believes are useful to the HPF community
 But there are many more such extrinsic interfaces
beyond those maintained by HPFF
 HPFF has a adopted a policy of formally recognizing
certain extrinsic interface de�nitions� where the interface� and its addition to the HPF
document is considered to be a service to the HPF community
 Examples are language
bindings to HPF or library packages

E�� Extrinsic Policy

To be considered for HPFF recognition� a proposed extrinsic must demonstrate the follow�
ing things
 It should be noted� however� that meeting these criteria does not guarentee
acceptance of a proposed interface by HPFF

� conformance to HPF rules for calling extrinsics�

� signi�cant new functionality�

� existing practice such as users� implementations� etc
�

� institutional backing with evidence of ongoing support�

� coherent documentation�

� non�proprietary interface de�nition� and

� copyright goes to HPFF for interface� with permission to use �royalty free�

If a proposed extrinsic is accepted by HPFF� then�

� HPFF will recogize the interface and reference it in documentation� but HPFF does
not assume responsibility for the extrinsic or its interface

� The sponsor of the extrinsic must continue to conform to the HPF interface rules for
extrinsics
 The interface HPFF approves must not change without HPFF approval

� The sponsor must assume responsibility for any CCI requests concernting the extrinsic

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�

	� ANNEX E� POLICY FOR RECOGNIZED EXTRINSIC INTERFACES

A list of recognized extrinsic interfaces will be included in HPF documentation� with
the following guidelines�

� There should be a single page introduction to the extrinsic which contains�

� the name of the extrinsic�

� a brief abstract of functionality�

� a brief and informal description of the interface�

� information about platform and system availability� and

� reference and contacts for formal documentation� continued responsibility� and
additional information �e
g
 compiler availability�

� There should be about two pages with short examples of usage

� A short paper with the formal de�nition of the interface and an informal description
of the functionality of the extrinsic

E�� Extrinsic Interface Mechanism

The HPF www�home page will have instructions for submission of an extrinsic interface

For HPFF consideration� the sponsor prepares a proposal that includes�

� a statement of what signi�cant new functionality is provided�

� a description of existing practice�

� a statement of institutional backing with evidence of ongoing support�

� a copy of the complete documentation or a reference to an online version of the
documentation�

� a draft of the text �described above� that would be included in the HPFF documen�
tation� and

� a statement justifying the claim that the interface follows HPF conventions for calling
extrinsics

If the proposed extrinsic interface is approved by HPFF� the sponsor then submits�

� a formal statement for HPFF records that the interface de�nition is non�proprietary
and that the copyright of the interface belongs HPFF�

� the formal contact for CCI and continued maintenance of the interface� and

� a copy of the interface documentation formatted for HPFF use� including a copy in
the current document and web mark�up languages

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex F

HPF CRAFT

HPF CRAFT is a hybrid language� combining an SPMD execution model with high per�
forming HPF features
 The model combines the multi�threaded execution of HPF LOCAL
and the HPF syntax
 The goal of HPF CRAFT is to attain the potential performance of
an SPMD programming model with access to HPF features and a well�de�ned extrinsic
interface to HPF

F�� Introduction

HPF CRAFT is a hybrid language� combining an SPMD execution model with high per�
forming and portable HPF features
 The model combines the multi�threaded execution of
HPF LOCAL and the HPF syntax and features
 The goal of HPF CRAFT is to attain the
potential performance of an SPMD programming model with access to HPF features and
a well�de�ned extrinsic interface to HPF
 It is built on top of the HPF LOCAL extrinsic
environment

SPMD features and a multi�threaded model allow the user to take advantage of the
performance and opportunity for low level access of a more general purpose programming
model
 Including HPF data distribution features gives the programmer access to high
performing aspects of both models� but with the added responsibility of working with a
more low�level execution model
 HPF CRAFT is best suited for platforms that support one
way communication features� but is consistent with HPF and easily targeted for platforms
that have HPF and can support SPMD programming styles

The HPF features included in HPF CRAFT are a subset of the full HPF language
chosen for their performance and their broad portability and ease of use
 HPF CRAFT
contains additional features to support SPMD programming styles
 There are some di�er�
ences from HPF� however
 For example� I�O causes di�erences� in HPF CRAFT di�erent
processors are allowed to read from di�erent �les at the same time� in HPF the processors
must all read from the same �le
 The di�erences in the models are principally caused by
the multi�threaded execution model and the introduction of HPF LOCAL data rules

HPF CRAFT allows for the notion of private data
 Data defaults to a mapping in
which data items are allocated so that each processor has a unique copy
 The values of
the individual data items and the �ow of control may vary from processor to processor
within HPF CRAFT
 This behavior is consistent with the behavior of HPF LOCAL
 In
HPF CRAFT a processor may be individually named and code executed based upon which
processor it is executing on
 HPF CRAFT also allows for the notion of private loops
 A

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

		

��� ANNEX F� HPF CRAFT

private loop is executed in entirety by each processor

The rules governing the interface to HPF CRAFT subprograms are similar to those for

the HPF LOCAL interface
 Dummy arguments use a hybrid of the interfaces between HPF
and itself and that of HPF and HPF LOCAL
 Explicitly mapped dummy arguments behave
just as they do in HPF� while default �private� dummy arguments use the HPF LOCAL
calling convention

HPF CRAFT will be initially made available on Cray MPP systems and may also be
available on Cray vector architectures
 Future versions of HPF CRAFT are possible on
other vendor s architectures as well

HPF CRAFT is being implemented for Cray Research by The Portland Group� Inc
 For
Cray systems� HPF CRAFT may be obtained through the Cray Research Inc
 Orderdesk�

Cray Research Inc

orderdsk'cray
com
���
� �����	��

Additional formal documentation� requests� and suggestions can be made to

The Portland Group
	��� SW Pioneer Ct
� Suite H
Wilsonville� OR 	����
����� ��
�
���
trs'pgroup
com

F�� Examples of Use

HPF CRAFT is intended for use in circumstances where greater control and performance
are desired for MIMD style architectures
 Since data may be declared to be private� local
control is made more available and since processor information is available message passing
and direct memory access programming styles can be seamlessly integrated with explicitly
mapped data

The following examples show some of the capabilities of HPF CRAFT that are dif�
ferent from those of HPF
 Others� such as integrated message passing and synchronization
primitives are not shown
 Much of HPF can also be used within HPF CRAFT

Example � illustrates the di�erence between the default distribution for data and the
distribution of mapped data

 Example �

INTEGER PRIVATE A����� ��	� PRIVATE B���� ���	� PRIVATE C

INTEGER MAPPED A����� ��	� MAPPED B���� ���	� MAPPED C

HPF� DISTRIBUTE MAPPED A�BLOCK� BLOCK	� MAPPED B�BLOCK� �	� MAPPED C

In the above example� given � processors� there would be � $ ��� $
� �or ������� elements
in the array PRIVATE A
 Each processor contains an entire array named PRIVATE A
 The
elements of PRIVATE A on processor � cannot be referenced using implicit syntax by any

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� EXAMPLES OF USE ���

other processor
 There are only ��� $
� �or
���� elements of array MAPPED A� however�
and these elements are distributed about the machine in a �BLOCK� BLOCK	 fashion

The di�erence between the PRIVATE A declaration in HPF CRAFT and that in HPF
is the most instructive
 In HPF CRAFT each processor contains one copy of the array�
and the values of the elements of the array may vary from processor to processor
 HPF
implementations are permitted to make one copy of the array per processor the default� but
the values of these copies must remain coherent across all processors
 In HPF there is no
way to write a conforming program in which di�erent processors have di�erent values for
the same array

Example
 shows the usefulness of the ON clause for the INDEPENDENT loop as well as
giving an example of how private data may be used

 Example �

PRIVATE C � �

HPF� INDEPENDENT �I� J	 ON MAPPED B�I� J	

DO J������

DO I�����

MAPPED B�I� J	 � MAPPED B�I� J	 � �

PRIVATE C � PRIVATE C � MAPPED B�I� J	

ENDDO

ENDDO

In this example� each iteration is executed on the processor containing the data that is
mapped to it
 The user was allowed to specify this

In addition� the private variable PRIVATE C is used to compute a total for each processor

At the end of execution of the loop� the values of PRIVATE C may be di�erent on each
processor depending upon the values in the elements of the array on each processor
 This
data may be used as is� or it can be quickly summed using a barrier or an ATOMIC UPDATE

Example � shows the �nal total value being combined into the variable MAPPED C whose
value is available to all processors

 Example �

MAPPED C � �

HPF� ATOMIC UPDATE

MAPPED C � MAPPED C � PRIVATE C

Example � shows how the language allows private data to vary from processor to
processor

 Example �

IF �MY PE�	 �EQ� �	 THEN

PRIVATE C � some�big�expression
ENDIF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 ANNEX F� HPF CRAFT

In this example� PRIVATE C on processor � will have the result of some�big�expression
 Each
processor can do distinctly di�erent work and communicate through mapped data

The code fragment in Example � is from an application and shows a few features of
the language

 Example �

HPF� GEOMETRY G��� CYCLIC	

REAL FX��������	� FY��������	� FZ��������	

HPF� DISTRIBUTE �G	

 FX�FY�FZ

REAL FXP�����������	� FYP�����������	

HPF� DISTRIBUTE FXP����� BLOCK	 FYP����� BLOCK	

INTEGER CELL� ATOM� MAP�����	� NACELL�����	

HPF� INDEPENDENT �CELL	 ON FX���CELL	

DO CELL������

JCELL� � ����CELL��	

DO NABOR � �� ��

JCELL � MAP�JCELL��NABOR	

DO ATOM��� NACELL�CELL	

FX�ATOM� CELL	 � FX�ATOM� CELL	 � FXP�ATOM� NABOR� JCELL	

FY�ATOM� CELL	 � FY�ATOM� CELL	 � FYP�ATOM� NABOR� JCELL	

ENDDO

ENDDO

ENDDO

The GEOMETRY directive allows the user to generically specify a mapping and use it to
apply to many arrays �they need not have the same extents
�

Example � has a single INDEPENDENT loop which is the outer loop
 It executes ���
iterations total
 Within this loop the private value of JCELL� is set for each processor
�ensuring that it is a local computation everywhere
� Nested inside the INDEPENDENT loop
is a private loop� this loop executes �� times per processor
 Inside this loop JCELL is
computed locally on each processor� minimizing unnecessary communication
 Finally the
innermost loop is also private

F�	 External Interface

This section describes the behavior when an HPF CRAFT routine is called from HPF

The calling convention and argument passing rules for HPF CRAFT are a hybrid of

those for HPF calling HPF LOCAL and HPF calling HPF
 Explicit interfaces are required

Where dummy arguments are private �default� storage� the HPF calling HPF LOCAL con�
ventions are used
 Where dummy arguments are explicitly mapped� the calling convention
matches HPF calling HPF

There are a number of constraints on HPF CRAFT routines that are called from HPF

The following is a list of restrictions placed on HPF CRAFT routines called from HPF�

� Recursive HPF CRAFT routines cannot be called from HPF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� EXECUTION MODEL ���

� HPF CRAFT routines called from HPF may only enter the routine at a single place
�no alternate entries�

� An HPF CRAFT supprogram may not be invoked directly or indirectly from within
the body of a FORALL construct or within the body of an INDEPENDENT DO loop that
is inside an HPF program

� The attributes �type� kind� rank� optional� intent� of the dummy arguments in a
supprogram called by HPF must match the attributes of the corresponding dummy
arguments in the explicit interface

� A dummy argument of an HPF CRAFT supprogram called by HPF

� must not be a procedure name

� must not have the POINTER attribute

� must not be sequential� unless it is also PE PRIVATE

� must have assumed shape even when it is explicit shape in the interface

� if scalar� it must be mapped so that each processor has a copy of the argument

� The default mapping of scalar dummy arguments and of scalar function results when
an HPF program calls an HPF CRAFT routine is that it is replicated on each pro�
cessor

If a dummy argument of an EXTRINSIC��HPF CRAFT�	 routine interface block is an
array and the dummy argument of the HPF CRAFT supprogram has the default private
mapping� then the corresponding dummy argument in the speci�cation of the HPF CRAFT
procedure must be an array of the same rank� type� and type parameters
 When the extrinsic
procedure is invoked� the dummy argument is associated with the local array that consists
of the subgrid of the global array that is stored locally

If the dummy argument of the HPF CRAFT supprogram is explicitly mapped� it must
have the same mapping as the dummy argument of the EXTRINSIC��HPF CRAFT�	 suppro�
gram
 Note that this restriction does not require actual and dummy arguments to match
and is no more stringent than saying that mappings of dummy arguments in interface blocks
must match those in the actual routine

F�� Execution Model

HPF CRAFT is built upon the fundamental execution model of HPF LOCAL� augmented
with data mapping and work distribution features from HPF
 It is also augmented with
explicit low�level control features� many taken from Cray Research s CRAFT language

In HPF CRAFT there is a single task on each processor and all tasks begin executing in
parallel� with data defaulting to a private distribution� the same default distribution used in
HPF LOCAL
 Each processor gets a copy of the data storage unless speci�ed otherwise by
the user
 Consequently I�O works identically to I�O in HPF LOCAL and message passing
libraries are easily integrated

Simply stated� the execution model is that of HPF LOCAL

To provide correct behavior when explicitly mapped data is involved� this model de�nes

implicit barrier points at which the execution model requires that all processors must stop
and wait for the execution of all other processors before continuing
 These barriers add

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX F� HPF CRAFT

additional semantics to the HPF LOCAL behavior
 An implementation may remove any
of these barriers that are deemed unnecessary� but every processor must participate in the
barriers at each one of these points

The points where there are implicit barriers are conceptually after those instances in
which the processors in the HPF CRAFT program are executing cooperatively� as if in an
HPF program �e
g
� after an INDEPENDENT loop�
 An HPF CRAFT program treats oper�
ations on explicitly mapped objects as if they were operations in an HPF program and it
treates operations on private data as if they were executed within the HPF LOCAL frame�
work
 It is occasionally useful for an advanced programmer to indicate to the compilation
system where barriers are not needed� HPF CRAFT has syntax to allow this capability

F�� HPF CRAFT Functional Summary

HPF CRAFT contains a number of features not available in HPF� and restricts the usage
of many of the features currently available
 The following is a concise list of the di�erences

� INDEPENDENT has been extended to better support an ON clause

� There are new rules de�ning the interaction of explicitly mapped and private data

� Parallel inquiry intrinsics IN PARALLEL�	 and IN INDEPENDENT�	 have been added

� Serial regions �MASTER � END MASTER� have been added

� Explicit synchronization primitives are provided

� The ATOMIC UPDATE� SYMMETRIC� and GEOMETRY directives have been added

� Many other compiler information directives have been added to assist the compiler in
producing good quality code

F���� Data Mapping Features

Data mapping features provided are those that have been found useful most often
 When
data is explicitly mapped� only one copy of the data storage is created unless the explicit
mapping directs otherwise
 The value of explicitly mapped replicated data items must be
consistent between processors as is the case in HPF
 Storage and sequence association for
explicitly mapped arrays is not guaranteed in HPF CRAFT
 For private data� storage and
sequence association follows the Fortran 	� rules

A new directive is included for completeness� PE PRIVATE� which speci�es that the
data should conform to the default behavior
 The values of private varaibles may vary on
di�erent processors

F���� Subprogram Interfaces

The behavior and requirements of an HPF CRAFT program at subprogram interfaces may
be divided into three cases
 Each case is also available using some combination of HPF and
HPF LOCAL
 For dummy arguments that are explicitly mapped� the behavior is identical
to that of HPF
 All processors must cooperate in a subprogram invocation that remaps or
explicitly maps data
 In other words� if an explicit interface is required �by the HPF rules�
or the subprogram declares explicitly mapped data� the subprogram must be called on all

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� HPF CRAFT FUNCTIONAL SUMMARY ���

processors
 Processors need not cooperate if there are only reads to non�local data
 The
INHERIT attribute may only be applied to explicitly mapped data

Data that has the default private mapping �case two� the behavior of an HPF CRAFT
subprogram at subprogram interfaces is identical to that of HPF LOCAL
 Data is passed
individually on every processor and the processors need not interact in any way

When a subprogram is passed actual arguments that are a combination of both explic�
itly mapped data and private data� the explicitly mapped data follows the HPF rules and
the private data follows the HPF LOCAL rules

In case three� the user has the option of passing data with explicitly mapped actual
arguments to dummy arguments that are not explicitly mapped �i
e
� private
� The mapping
rules for this data are identical to the mapping rules when HPF calls an HPF LOCAL
subprogram
 The data remains �in�place
� All HPF arrays are logically carved up into
pieces� the HPF CRAFT procedure executing on a particular physical processor sees an
array containing just those elements of the global array that are mapped to that physical
processor
 There is implicit barrier synchronization after an INDEPENDENT loop
 Transfer
of control into or out of an INDEPENDENT loop is prohibited

Finally� it is unde�ned behavior when an actual argument is private and the dummy
argument is explicitly mapped
 A de�nition could be supplied for this interaction� but
it is the same solution that one might propose for a calling sequence when HPF LOCAL
subprograms call HPF subprograms

F���	 The INDEPENDENT Directive

The INDEPENDENT directive is part of HPF CRAFT with the same semantics as in HPF

However� within INDEPENDENT loops the values of private data may vary from processor to
processor
 INDEPENDENT applied to FORALL has identical syntax and semantics as in HPF

An HPF independent loop optionally may have a NEW clause
 The NEW clause is not
required by HPF CRAFT for default �not explicitly mapped� data
 In HPF CRAFT data
defaults to private so values may di�er from processor to processor

Private data has slightly di�erent behavior than data speci�ed in the NEW clause
 The
value of a private datum on each processor can be used beyond a single iteration of the
loop
 Private data may be used to compute local sums� for example
 The values of data
items named in a NEW clause may not be used beyond a single iteration
 The NEW clause
asserts that the INDEPENDENT directive would be valid if new objects were created for the
variables named in the clause for each iteration of the loop
 The semantics of the NEW clause
are identical in HPF CRAFT and HPF

The semantics of an INDEPENDENT applied to loops containing private data references
changes with respect to the private data
 The change can be summarized to say that instead
of indicating that iterations have no dependencies upon one�another� with respect to the
private data� iterations on di�erent processors have no dependencies upon one�another

F���� The ON Clause

In addition to the version of INDEPENDENT available from HPF� a new version of INDEPENDENT
is included that incorporates the ON clause
 There are a number of di�erences between the
versions of INDEPENDENT with and without the ON clause

The new version of the INDEPENDENT directive may be applied to the �rst of a group of
tightly nested loops and may apply to more than one of them
 This more easily facilitates

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX F� HPF CRAFT

the use of the ON clause
 The current INDEPENDENT directive applies only to a single loop
nest
 The INDEPENDENT directive is extended so that multiple loop nests can be named

The general syntax for these new independent loops is as follows�

HPF� INDEPENDENT �I��I��

 �In� ON array�name�h��I���h��I���

 �hn�In��
DO I� � L�� U�� S�

DO I� � L�� U�� S�

DO In � Ln� Un� Sn

END DO

END DO

END DO

The syntax and semantics of INDEPENDENT with the ON clause are di�erent from its
syntax and semantics without the ON clause
 With the ON clause the directive states that
there are no cross�processor dependencies� but there may be dependencies between iterations
on a processor
 There is an implicit barrier synchronization after an INDEPENDENT loop

Transfer of control into or out of an INDEPENDENT loop is prohibited

The iteration space of an INDEPENDENT nest must be rectangular
 That is� the lower
loop bound� the upper loop bound� and the step expression for each loop indicated by the
INDEPENDENT induction list must be invariant with regard to the INDEPENDENT nest
 Each
index expression of array�name in the ON clause �the functions hi above�� must be one of
the following two forms�

� a � loop control variable � � b
� a � loop control variable � � b

where a and b must be integer values� they can be expressions� constants� or variables
 The
values of a and b must be invariant with regard to the INDEPENDENT loop nest
 For example�
specifying A�I�J�K	 is valid
 Specifying A���I�J�K	 is not valid
 Specifying A�I�I�K	 is
not valid because I appears twice
 Division is prohibited in any index expression of the ON

clause

F���� Array Syntax

Array syntax is treated identically in HPF CRAFT as in HPF for explicitly mapped objects

For private objects the behavior is identical to that of HPF LOCAL
 When private objects
and explicitly mapped objects are combined the rules are as follows�

result � rhs� op� rhs� op�

 opm rhsn

� If result is explicitly mapped and all rhs arrays are explicitly mapped� the work is
distributed as in HPF

� If result is private and all rhs arrays are private the computation is done on all pro�
cessors as an HPF LOCAL program would do it

� If result is private and all rhs arrays are explicitly mapped� the work is distributed as
in HPF and the values of the results are broadcast to the result on each processor

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� HPF CRAFT FUNCTIONAL SUMMARY ���

� If result is explicitly mapped and not all rhs arrays are explicitly mapped� the results
of the operation are unde�ned� unless all corresponding elements of all private rhs
arrays have the same values

� If result is private and some� but not all rhs arrays are explicitly mapped� the value
is computed on each processor and saved to the local result

All processors must participate in any array syntax statement in which the value of an
explicitly mapped array is modi�ed� and there is implicit barrier synchronization after the
statement executes

F���
 Treatment of FORALL and WHERE Statements

The FORALL and WHERE statements are treated exactly as in HPF when data is explicitly
mapped
 When private data is modi�ed� the statement is executed separately on each pro�
cessor
 Finally� when data in a FORALL or WHERE are mixed� the rules for array syntax apply

If any explicitly mapped data item is modi�ed in a forall�stmt or where�stmt then arrays in
the forall�header or where�header must be explicitly mapped
 In a FORALL construct� if any
explicitly mapped array is modi�ed� all modi�ed arrays must be explicitly mapped
 There
is an implicit barrier synchronization after FORALL and WHERE statements if any arrays in
the forall�header or where�header are explicitly mapped

F���� Synchronization Primitives

A number of synchronization primitives are provided
 These primitives include�

Barriers �test� set� wait�
Locks � test� set� clear�
Critical Sections
Events �test� set� wait� clear�

Barriers provides an explicit mechanism for a task to indicate its arrival at a program
point and to wait there until all other tasks arrive
 A task may test and optionally wait
at an explicit barrier point
 In the following example� a barrier is used to make sure that
block� is not entered by any task until all tasks have completed execution of block�

block�
CALL SET BARRIER�	

block

CALL WAIT BARRIER�	

block�

The following example performs a similar function as above
 However� while waiting for all
tasks to arrive at the barrier� the early tasks perform work within a loop

block�
CALL SET BARRIER�	

DO WHILE ��NOT� TEST BARRIER�		

block

END DO

block�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX F� HPF CRAFT

Locks are used to prevent the simultaneous access of data by multiple tasks

The SET LOCK�lock	 intrinsic sets the mapped integer variable lock atomically
 If the
lock is already set� the task that called SET LOCK is suspended until the lock is cleared by
another task and then sets it
 Individual locks may be tested or cleared using result �
TEST LOCK�lock	 and CLEAR LOCK�lock	 respectively

A critical section protects access to a section of code rather than to a data object
 The
CRITICAL directive marks the beginning of a code region in which only one task can enter
at a time
 The END CRITICAL directive marks the end of the critical section
 Transfer of
control into or out of a critical section is prohibited

HPF� CRITICAL

GLOBAL SUM � GLOBAL SUM � LOCAL SUM

HPF� END CRITICAL

Events are typically used to record the state of a program s execution and to commu�
nicate that state to another task
 Because they do not set locks� as do the lock routines
described earlier� they cannot easily be used to enforce serial access of data
 They are suited
to work such as signalling other tasks when a certain value has been located in a search
procedure
 There are four routines needed to perform the event functions� and each requires
a mapped argument

The SET EVENT�event	 routine sets or posts an event� it declares that an action has
been accomplished or a certain point in the program has been reached
 A task can post
an event at any time� whether the state of the event is cleared or already posted
 The
CLEAR EVENT�event	 routine clears an event� the WAIT EVENT�event	 routine waits until a
particualr event is posted� and the result � TEST EVENT�event	 function returns a logical
value indicating whether a particular event has been posted

F���� Barrier Removal

You can explicitly remove an implicit barrier after any INDEPENDENT loop� or after any
array syntax statement that modi�es explicitly mapped arrays� by using the NO BARRIER

directive

HPF� NO BARRIER

F���� Serial Regions

It is often useful to enter a region where only one task is executing
 This is particularly
useful for certain types of I�O
 To facilitate this� two directives are provided
 In addition�
one may optionally attach a COPY clause to the END MASTER directive which speci�es the
private data items whose values should be broadcast to all processors
 The syntax of this
directive is�

HPF� MASTER

sequential region

HPF� END MASTER �� COPY� var� �� var�� ���� varn �	�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� HPF CRAFT FUNCTIONAL SUMMARY ��	

where var is SYMMETRIC private data to be copied to the same named private data on other
processors

If a routine is called within a serial region� the routine executes serially� there is no
way to get back to parallel execution within the routine
 All explicitly mapped data is
accessible from within routines called in a serial region� but a routine called from within
a serial region cannot allocate explicitly mapped data or remap data
 All processors must
participate in the invocation of the serial region
 Transfer of control into or out of a serial
region is not permitted

F����
 Libraries

The HPF Local Routine Library is available in HPF CRAFT
 The HPF LOCAL extrinsic
environment contains a number of libraries that are useful for local SPMD programming and
a number of libraries that allow the user to determine global �rather than local� state infor�
mation
 These library procedures take as input the name of a dummy argument and return
information on the corresponding global HPF actual argument
 They may only be invoked
by an HPF CRAFT procedure that was directly invoked by global HPF code
 They may
be called only for private data
 The libraries reside in a module called HPF LOCAL LIBRARY

The HPF Library is available to HPF CRAFT when called with data that is explicitly
mapped and all processors are participating in the call
 In addition� as in HPF LOCAL�
the entire HPF Library is available for use with private data
 Mixing private and explicitly
mapped data in calls to the HPF library produces unde�ned behavior

F����� Parallel Inquiry Intrinsics

These intrinsic functions are provided as an extension to HPF
 They return a logical value
that provides information to the programmer about the state of execution in a program

IN PARALLEL�	

IN INDEPENDENT�	

F����� Task Identity

MY PE�	 may be used to return the local processor number
 The physical processors are
identi�ed by an integer in the range of � to n�� where n is the value returned by the
global HPF LIBRARY function NUMBER OF PROCESSORS
 Processor identi�ers are returned
by ABSTRACT TO PHYSICAL� which establishes the one�to�one correspondence between the
abstract processors of an HPF processors arrangement and the physical processors
 Also�
the local library function MY PROCESSOR returns the identi�er of the task executing the call

F����	 Parallelism Speci�cation Directives

These directives allow a user to assert that a routine will only be called from within a
parallel region� a serial region� or from within both regions
 Without these directives an
implementation might be required to generate two versions of code for each routine� de�
pending upon implementation strategies
 The directives simply make the generated code
size smaller and remove a test

HPF� PARALLEL ONLY

HPF� SERIAL ONLY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX F� HPF CRAFT

HPF� PARALLEL AND SERIAL

The default is PARALLEL ONLY

F����� The SYMMETRIC Directive

SYMMETRIC variables are private data that are guaranteed to be at the same storage location
on every processor
 The feature is bene�cial to implementations that provide one�way com�
munication functionality
 One task can either get or put data into another task s symmetric
data location� without involving the other task
 There is an implicit barrier synchronization
after SYMMETRIC data is allocated

REAL PRIV�����	� PRIV�

HPF� SYMMETRIC PRIV�� PRIV�

F����� The RESIDENT Directive

The RESIDENT directive can be speci�ed at the loop level and at the routine level
 It is
an assertion that the references to particular variables in the routine �or loop� are only
references to data that are local to the task making the assertion
 In the following loop� all
references to arrays A� B� and C are local to the task executing each iteration

REAL A����	� B����	� C����	

INTEGER IX����	

HPF� DISTRIBUTE A�BLOCK	� B�BLOCK	� C�BLOCK	

HPF� RESIDENT A

HPF� INDEPENDENT �I	 ON B�I	 RESIDENT�C	

DO I � �� ���

A�IX�I		 � B�I	 � C�IX�I		

END DO

F����
 The ATOMIC UPDATE Directive

In HPF CRAFT� the ATOMIC UPDATE directive tells the compiler that a particular data item
or the elements of a particular array for a speci�ed operation must be updated atomically

This can be used within loops or in array syntax and applies to both the elements of an
array with an assignment of a permutation and the elements of an array within a loop

In the following example� all references to R�IX�I		 occur atomically� thus eliminating
the possibility that di�erent iterations might try to modify the same element concurently

REAL R����	� S�����	

INTEGER IX�����	

HPF� DISTRIBUTE R�BLOCK	� S�BLOCK	� IX�BLOCK	

HPF� INDEPENDENT �I	 ON S�I	

DO I � �� ����

HPF� ATOMIC UPDATE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

F��� HPF CRAFT FUNCTIONAL SUMMARY ���

R�IX�I		 � R�IX�I		 � S�I	

END DO

F����� The GEOMETRY Directive

The GEOMETRY directive is simliar to a typedef in C� only it is for data mapping
 It allows
the user to conveniently change the mappings of many arrays at the same time
 It is similar
in many ways to the TEMPLATE directive� but since it is bound to no particular extent it is
sometimes easier to apply

HPF� GEOMETRY geom�d� �� d�� ���� dn 	

HPF� DISTRIBUTE � geom 	 �

 var��� var�� � � �� varm

Where di indicates one of the allowable distribution formats

HPF� GEOMETRY GBB�BLOCK� CYCLIC	

REAL A��������	� B��������	

HPF� DISTRIBUTE �GBB	

 A� B

 if GBB changes then both A and B change

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 ANNEX F� HPF CRAFT

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex G

The FORTRAN �� Local Library

The HPF standard now describes an EXTRINSIC�LANGUAGE��F����MODEL��LOCAL�	 inter�
face� or EXTRINSIC�F�� LOCAL	 to use the keyword identi�cation �see Section ��
� for its
description�� similar in characteristics to the EXTRINSIC�LANGUAGE��HPF��MODEL��LOCAL�	
and EXTRINSIC�LANGUAGE��FORTRAN��MODEL��LOCAL�	 interfaces
 This section describes
a set of library routines to make it easier to make use of the F�� LOCAL interface when pass�
ing distributed array data
 These library routines can facilitate� for example� a portable
blend of global data parallel code with preexisting FORTRAN ���based code using explicit
message passing calls for interprocessor communication
 The FORTRAN �� Local Library
interface described in this section was originally developed as part of Thinking Machines
TMHPF and is now supported by Sun Microsystems Inc
 For suggestions� requests� or
corrections concerning this interface� please contact

Sun Microsystems Inc

High Performance Computing
M�S UCHLO�����
� Omni Way
Chelmsford� MA ���
�
f���local�library'sun
com

G�� Introduction

The basic constraints for the local model �Section ��
�� together with the F�� LOCAL�speci�c
argument passing options �Section ��
�� de�ne the nature of the F�� LOCAL interface� how
control is to be transferred from a global HPF procedure to a set of local procedures de�
scribed by an EXTRINSIC�F�� LOCAL	 procedure interface and how data can be passed be�
tween these two types of procedures� by reference or by descriptor� and with or without tem�
porary local reordering of data to satisfy FORTRAN �� provisions for sequential� contiguous
storage of array data in Fortran array element order
 These alternative methods of argument
passing can be obtained by use of the two special�purpose attributes for extrinsic dummy
arguments de�ned for LANGUAGE��F��� routines� LAYOUT��F�� ARRAY�	 �the default� vs

LAYOUT��HPF ARRAY�	� and PASS BY����	 �the default� vs
 PASS BY��HPF HANDLE�	

However� to take advantage of the option allowing one to pass global HPF array �handles�
to local FORTRAN �� procedures and then obtain information locally about how the local
portion of a given parallel array is actually distributed requires special inquiry routines

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���

��� ANNEX G� THE FORTRAN

 LOCAL LIBRARY

comparable to the HPF Local Library of functions
 Since this library is not only described
as a module� but uses many features such as array�valued functions and optional arguments
not available in FORTRAN �� code� it is recommended that a modi�ed FORTRAN ��
interface to this library be provided in the manner described below
 Furthermore� there is
the problem of describing local portions of parallel arrays in the FORTRAN �� code used
in each local routine called from a global HPF one
 Since assumed�shape syntax may not
be used� explicit shape arrays are required
 But it is common for global distribution of
arbitrary sized arrays to result in local portions of arrays that do not have constant shapes
on all processors� and the actual extents in each processor cannot necessarily be predicted
in advance
 In order to allow programmers to obtain axis extent information at run time
from the HPF global caller� a special HPF�callable subgrid inquiry subroutine is provided

A FORTRAN �� callable version of the same routine is also described below� for �exibility
in programming

G�� Summary

� One HPF�callable subgrid inquiry subroutine

HPF SUBGRID INFO

� A set of FORTRAN ���callable inquiry subroutines

F�� SUBGRID INFO

F�� GLOBAL ALIGNMENT

F�� GLOBAL DISTRIBUTION

F�� GLOBAL TEMPLATE

F�� ABSTRACT TO PHYSICAL

F�� PHYSICAL TO ABSTRACT

F�� LOCAL TO GLOBAL

F�� GLOBAL TO LOCAL

F�� LOCAL BLKCNT

F�� LOCAL LINDEX

F�� LOCAL UINDEX

F�� GLOBAL SHAPE

F�� GLOBAL SIZE

F�� SHAPE

F�� SIZE

F�� MY PROCESSOR

G�	 Global HPF Subgrid Inquiry Routine

The F�� LOCAL library interface includes only one global HPF subroutine� HPF SUBGRID INFO�
whose implementation should be added as an extension to the standard HPF Library mod�
ule
 Its purpose is to provide per�processor information about the local subgrids of dis�
tributed arrays
 This information is often critical when passing such arrays to local pro�
cedures written in FORTRAN ��� where array argument shapes must be stated explicitly

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G��� GLOBAL HPF SUBGRID INQUIRY ROUTINE ���

in the local procedure �except in the last dimension� there are �assumed size� but no �as�
sumed shape� arrays� � but may be expressed in terms of arguments passed at run time
��adjustable shape arrays��
 Thus the subgrid parameters obtained from this subgrid in�
quiry routine can be passed as arguments to the local routines and used there to describe
the extents of the locally visible portions of global HPF arrays� as the example in Section
G
� will demonstrates

HPF SUBGRID INFO �ARRAY� IERR� DIM� LB� UB� STRIDE�
LB EMBED� UB EMBED� AXIS MAP�

Description� Gives local information about local subgrid allocation onto each pro�
cessor of a distributed array� callable from a global HPF routine

Class� Inquiry subroutine

Arguments�

ARRAY is a nonsequential array of any type� size� shape� or map�
ping
 It is an INTENT �IN	 argument

IERR is a scalar integer of default kind
 It is an INTENT �OUT	

argument
 Its return value is zero upon successful return
and nonzero otherwise
 Errors result if local subgrids
cannot be expressed as array sections of ARRAY

If any of the optional arguments LB EMBED� UB EMBED� or
AXIS MAP is present� then a nonzero value is also returned
if the compiler does not organize the local data in serial
memory by sequence associating a larger �embedding�
array �see Section G
�
� below for more explanation�

DIM �optional� is a scalar integer of default kind
 It is an INTENT �IN	

argument
 DIM indicates the axis along which return val�
ues are desired
 If DIM is not present� values are returned
for all axes

LB �optional� is an INTENT �OUT	� default integer array
 If this argu�
ment is present� and if the value returned in IERR is zero�
the values returned in array LB are the lower bounds in
global coordinates of each processor s subgrid� along one
�if DIM is present� or each dimension of ARRAY

UB �optional� is an INTENT �OUT	� default integer array
 If this argu�
ment is present� and if the value returned in IERR is zero�
the values returned in array UB are the upper bounds in
global coordinates of each processor s subgrid� along one
�if DIM is present� or each dimension of ARRAY

STRIDE �optional� is an INTENT �OUT	� default integer array
 If this argu�
ment is present� and if the value returned in IERR is zero�
the values returned in array STRIDE are the strides in lo�
cal memory between elements of each processor s subgrid�
along one �if DIM is present� or each dimension of ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX G� THE FORTRAN

 LOCAL LIBRARY

LB EMBED �optional� is an INTENT �OUT	� default integer array
 If this ar�
gument is present� and if the value returned in IERR is
zero� the values returned in array LB EMBED are the lower
bounds in global coordinates of the actual global array
elements allocated on each processor� possibly a superset
of the user�visible subgrid� along one �if DIM is present�
or each dimension of ARRAY

UB EMBED �optional� is an INTENT �OUT	� default integer array
 If this ar�
gument is present� and if the value returned in IERR is
zero� the values returned in array UB EMBED are the upper
bounds in global coordinates of the actual global array el�
ements allocated on each processor� possibly a superset
of the user�visible subgrid� along one �if DIM is present�
or each dimension of ARRAY

AXIS MAP �optional� is a rank
� INTENT �OUT	� default integer array
 If this
argument is present� its shape must be at least �n�r �
where n is the number of processors and r is the rank of
ARRAY

If the value returned in IERR is zero� the values returned
in AXIS MAP�i��
r	 represent the numbers of the axes
of the subgrid on processor i from fastest varying to
slowest varying� and form a permutation of the sequence
��������r

For the last six arguments� LB� UB� STRIDE� LB EMBED� UB EMBED� and AXIS MAP� each
array has a �rst axis of extent at least n� where n is the number of processors� and the �rst
n indices of that axis of each array must be distributed �perhaps via an explicit CYCLIC or
BLOCK distribution� one index per processor
 If a second dimension is needed� it should be
a collapsed axis of extent at least equal to the rank of ARRAY

If HPF SUBGRID INFO is called� and the elements of ARRAY that are local to any par�
ticular processor are not representable as an array section of the global user array� then
a nonzero value is returned for IERR
 Otherwise� if any of the optional arguments LB� UB�
or STRIDE is present� then the lower bounds� upper bounds� or strides� respectively� that
describe the local array sections are returned in terms of one�based� global coordinates

G�	�� Subgrid Inquiries Involving Embedding Arrays

In the common case in which the elements of each local subgrid of the global array argument
are distributed across processors� with no overlap� and allocated in local memory like a local
FORTRAN �� array� as a contiguous sequence of elements in Fortran array element order�
these three last optional arguments would not be required

However� some implementations may choose less common layouts in local memory�
that involve �embedding� these elements in a larger array section of equal rank that is
sequence�associated in serial memory
 For example� alignment of axes of arrays in di�erent
orders may result in a permuting embedding of the subgrid
 Or axes of subgrids map be
padded with ghost cells� either for stencil optimizations or to achieve same�size subgrids on
all nodes

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G��� LOCAL FORTRAN

 INQUIRY ROUTINES ���

In variations such as these� we may still view the subgrid as being �embedded� in a
sequence associated array which may be accessible in F�� LOCAL operations� if the permu�
tation of axes� shape of any embedding array� and o�sets into that array can be obtained
at runtime
 The last three arguments of HPF SUBGRID INFO are provided to allow program�
mers to obtain this information when it is appropriate� with the help of the IERR �ag to
signal when this is not the case

In this mapping� local memory has been allocated for a larger array section� with co�
ordinates �LB EMBED
 UB EMBED
 STRIDE	
 The coordinates of the actual computational
elements are limited to the subset �LB
 UB
 STRIDE	
 The sequence association is gen�
eralized to an arbitrary mapping of axes
 Here� AXIS MAP numbers the axes from fastest
varying to slowest varying
 If LB EMBED� UB EMBED� or AXIS MAP is speci�ed in a call to
HPF SUBGRID INFO but ARRAY does not satisfy the assumptions of this mapping model� then
a nonzero value is returned for IERR

G�� Local FORTRAN �� Inquiry Routines

Here the F���callable inquiry subroutines are described brie�y
 These provide essentially
the same capability as the combination of the HPF intrinsic array inquiry functions such
as SHAPE and SIZE� together with the HPF LOCAL LIBRARY inquiry routines
 The subrou�
tine F�� SUBGRID INFO serves as a local counterpart to the globally callable subroutine
HPF SUBGRID INFO described above
 In all of the following�

� ARRAY is a dummy argument passed in from a global HPF caller using the LAYOUT

��HPF ARRAY�	 attribute and declared within the FORTRAN �� local subroutine as
a scalar integer variable
 It is an INTENT �IN	 argument

� DIM is a scalar integer of default kind
 It is an INTENT �IN	 argument
 This argument
speci�es a particular axis of the global array associated with ARRAY or� if DIM � ���
inquiry is for all axes

� An �inquiry result� is an INTENT �OUT	 argument
 If DIM � ��� it is a rank�one array
of size equal to at least the rank of the global array associated with ARRAY� returning
information associated with all axes
 If DIM is positive� the �inquiry result� is a scalar�
returning information only for the axis indicated by DIM

� The arguments are de�ned in the same way as for the corresponding HPF or HPF LOCAL

routines unless otherwise noted
 See the description of HPF SUBGRID INFO above and
Section ��
�
� for full speci�cations of the similarly�named HPF LOCAL LIBRARY pro�
cedures

F�� SUBGRID INFO �ARRAY� IERR�� IERR�� DIM� LB� UB� STRIDE�
LB EMBED� UB EMBED� AXIS MAP�

Description� This is a FORTRAN ���callable version of the HPF subroutine
HPF SUBGRID INFO

Arguments�

IERR� is a scalar integer of default kind
 It is an INTENT �OUT	

argument
 Its return value is zero if LB� UB� and STRIDE

were determined successfully and nonzero otherwise

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX G� THE FORTRAN

 LOCAL LIBRARY

IERR� is a scalar integer of default kind
 It is an INTENT

�OUT	 argument
 Its return value is zero if LB EMBED

and UB EMBED were determined successfully and nonzero
otherwise

LB� UB� STRIDE� LB EMBED� UB EMBED� AXIS MAP are �inquiry results� of default
integer type
 They are the lower and upper bounds and
strides of the array sections describing the local data �in
terms of global indices�� the lower and upper bounds of
the embedding arrays �again� in terms of global indices��
and the axes of the embedding arrays to which the axes
of ARRAY are mapped

F�� GLOBAL ALIGNMENT �ALIGNEE� LB� UB� STRIDE� AXIS MAP�
IDENTITY MAP� DYNAMIC� NCOPIES�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subrou�
tine GLOBAL ALIGNMENT
 All but the �rst are INTENT �OUT	 arguments whose return
values are as speci�ed by the corresponding HPF routine

Arguments�

ALIGNEE is a dummy argument passed in from global HPF
 It is
an INTENT �IN	 argument

LB� UB� STRIDE� AXIS MAP are integer arrays of rank one
 Their size must be at
least equal to the rank of the global HPF array associated
with ALIGNEE

IDENTITY MAP� DYNAMIC are scalar logicals

NCOPIES is a scalar integer of default kind

F�� GLOBAL DISTRIBUTION �DISTRIBUTEE� AXIS TYPE�
AXIS INFO� PROCESSORS RANK� PROCESSORS SHAPE�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
GLOBAL DISTRIBUTION
 All but the �rst are INTENT �OUT	 arguments whose return
values are as speci�ed by the corresponding HPF routine

Arguments�

DISTRIBUTEE is a dummy argument passed in from global HPF
 It is
an INTENT �IN	 argument

AXIS TYPE is a CHARACTER�� array of rank one
 Its size must be at
least equal to the rank of the global HPF array associated
with DISTRIBUTEE

AXIS INFO is a default integer array of rank one
 Its size must be at
least equal to the rank of the global HPF array associated
with DISTRIBUTEE

PROCESSORS RANK is a scalar of default integer type

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G��� LOCAL FORTRAN

 INQUIRY ROUTINES ��	

PROCESSORS SHAPE is an integer array of rank one
 Its size must be at least
equal to the value returned by PROCESSORS RANK

F�� GLOBAL TEMPLATE �ALIGNEE� TEMPLATE RANK� LB� UB�
AXIS TYPE� AXIS INFO� NUMBER ALIGNED� DYNAMIC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
GLOBAL TEMPLATE
 All but the �rst are INTENT �OUT	 arguments whose return values
are as speci�ed by the corresponding HPF routine

Arguments�

ALIGNEE is a dummy argument passed in from global HPF
 It is
an INTENT �IN	 argument

TEMPLATE RANK is a scalar integer of default kind

LB� UB� AXIS INFO are integer arrays of rank one
 Their size must be at least
equal to the rank of the align�target to which the global
HPF array associated with ALIGNEE is ultimately aligned

AXIS TYPE is a CHARACTER��� array of rank one
 Its size must be at
least equal to the rank of the align�target to which the
global HPF array associated with ALIGNEE is ultimately
aligned

NUMBER ALIGNED is a scalar integer of default kind

DYNAMIC is a scalar logical

F�� ABSTRACT TO PHYSICAL�ARRAY� INDEX� PROC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
ABSTRACT TO PHYSICAL

Arguments�

INDEX is a rank�one� INTENT �IN	� integer array

PROC is a scalar� INTENT �OUT	� integer

F�� PHYSICAL TO ABSTRACT�ARRAY� PROC� INDEX�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
PHYSICAL TO ABSTRACT

Arguments�

PROC is a scalar� INTENT �IN	� integer

INDEX is a rank�one� INTENT �OUT	� integer array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� ANNEX G� THE FORTRAN

 LOCAL LIBRARY

F�� LOCAL TO GLOBAL�ARRAY� L INDEX� G INDEX�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
LOCAL TO GLOBAL

Arguments�

L INDEX is a rank�one� INTENT �IN	� integer array

G INDEX is a rank�one� INTENT �OUT	� integer array

F�� GLOBAL TO LOCAL�ARRAY� G INDEX� L INDEX� LOCAL�
NCOPIES� PROCS�

Description� This is a FORTRAN ���callable version of the HPF LOCAL subroutine
GLOBAL TO LOCAL

Arguments�

G INDEX is a rank�one� INTENT �IN	� integer array

L INDEX is a rank�one� INTENT �OUT	� integer array

LOCAL is a scalar� INTENT �OUT	� logical

NCOPIES is a scalar� INTENT �OUT	� integer

PROCS is a rank�one� integer array whose size is at least the
number of processors that hold copies of the identi�ed
element

F�� LOCAL BLKCNT�L BLKCNT� ARRAY� DIM� PROC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
LOCAL BLKCNT

Arguments�

L BLKCNT is an �inquiry result� of type integer

PROC is a scalar integer of default kind
 It must be a valid
processor number or� if PROC � ��� the value returned
by F�� MY PROCESSOR�	 is implied

F�� LOCAL LINDEX�L LINDEX� ARRAY� DIM� PROC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
LOCAL LINDEX

Arguments�

L LINDEX is a rank�one� integer array of size equal to at least the
value returned by F�� LOCAL BLKCNT

DIM may not be ��

PROC is a scalar integer of default kind
 It must be a valid
processor number or� if PROC � ��� the value returned
by F�� MY PROCESSOR�	 is implied

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G��� LOCAL FORTRAN

 INQUIRY ROUTINES �
�

F�� LOCAL UINDEX�L UINDEX� ARRAY� DIM� PROC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
LOCAL UINDEX

Arguments�

L UINDEX is a rank�one� integer array of size equal to at least the
value returned by F�� LOCAL BLKCNT

DIM may not be ��

PROC is a scalar integer of default kind
 It must be a valid
processor number or� if PROC � ��� the value returned
by F�� MY PROCESSOR�	 is implied

F�� GLOBAL SHAPE�SHAPE� ARRAY�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
GLOBAL SHAPE

Arguments�

SHAPE is a rank�one� integer array of size equal to at least the
rank of the global array associated with ARRAY
 Its return
value is the shape of that global array

F�� GLOBAL SIZE�SIZE� ARRAY� DIM�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
GLOBAL SIZE

Arguments�

SIZE is a scalar integer equal to the extent of axis DIM of the
global array associated with ARRAY or� if DIM � ��� the
total number of elements in that global array

F�� SHAPE�SHAPE� ARRAY�

Description� This is a FORTRAN ���callable version of the HPF intrinsic SHAPE�
as it would behave as called from HPF LOCAL

Arguments�

SHAPE is a rank�one� integer array of size equal to at least the
rank of the subgrid associated with ARRAY
 Its return
value is the shape of that subgrid

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

 ANNEX G� THE FORTRAN

 LOCAL LIBRARY

F�� SIZE�SIZE� ARRAY� DIM�

Description� This is a FORTRAN ���callable version of the HPF intrinsic SIZE�
as it would behave as called from HPF LOCAL

Arguments�

SIZE is a scalar integer equal to the extent of axis DIM of the
subgrid associated with ARRAY or� if DIM � ��� the total
number of elements in that subgrid

F�� MY PROCESSOR�MY PROC�

Description� This is a FORTRAN ���callable version of the HPF LOCAL function
MY PROCESSOR

Arguments�

MY PROC is a scalar� INTENT �OUT	� integer
 Its value is the iden�
tifying number of the physical processor from which this
call is made

G�� Programming Example Using HPF SUBGRID INFO

G���� HPF Caller

PROGRAM EXAMPLE

 Declare the data array and a verification copy

INTEGER� PARAMETER

 NX � ���� NY � ���

REAL� DIMENSION�NX�NY	

 X� Y

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X� Y

 The global sum will be computed

 by forming partial sums on the processors

REAL PARTIAL�SUM�NUMBER�OF�PROCESSORS�		

HPF� DISTRIBUTE PARTIAL�SUM�BLOCK	

 Local subgrid parameters are declared per processor

 for a rank�two array

INTEGER� DIMENSION�NUMBER�OF�PROCESSORS�	��	

� LB� UB� NUMBER

HPF� DISTRIBUTE�BLOCK��	

 LB� UB� NUMBER

 Define interfaces

INTERFACE

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL�

� � LB�� UB�� LB�� UB�� NX� X 	

 Arrays LB�� UB�� LB�� UB�� and X are passed by default

 as LAYOUT��F���ARRAY�	 and PASS�BY����	

INTEGER� DIMENSION�
	

 LB�� UB�� LB�� UB�

INTEGER NX

REAL X�
�
	

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�� UB�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G��� PROGRAMMING EXAMPLE USING HPF SUBGRID INFO �
�

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X

END

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL��N�X�R	

 Arrays N� X� and R are passed by default

 as LAYOUT��F���ARRAY�	 and PASS�BY����	

INTEGER N�
	

REAL X�
�
	� R�
	

HPF� DISTRIBUTE N�BLOCK	

HPF� DISTRIBUTE X�BLOCK�BLOCK	

HPF� DISTRIBUTE R�BLOCK	

END

END INTERFACE

 Determine result using only global HPF

 Initialize values

FORALL �I��
NX�J��
NY	 X�I�J	 � I � �J��	 � NX

 Determine and report global sum

PRINT �� �GLOBAL HPF RESULT
 ��SUM�X	

 Determine result using local subroutines

 Initialize values � assume stride � � 	

CALL HPF�SUBGRID�INFO� Y� IERR� LB�LB� UB�UB 	

IF �IERR�NE��	 STOP �ERROR
�

CALL LOCAL�� LB�
��	� UB�
��	� LB�
��	� UB�
��	� NX� Y 	

 Determine and report global sum

NUMBER � UB � LB � �

CALL LOCAL� � NUMBER�
��	 � NUMBER�
��	 � Y � PARTIAL�SUM 	

PRINT �� �F���LOCAL RESULT %�
 ��SUM�PARTIAL�SUM	

END

G���� FORTRAN �� Callee

SUBROUTINE LOCAL�� LB�� UB�� LB�� UB�� NX� X 	

 The global actual arguments passed to LB�� UB�� LB�� and UB�

 have only one element apiece and so can be treated as scalars

 in the local Fortran �� procedures

INTEGER LB�� UB�� LB�� UB�

 NX contains the global extent of the first dimension

 of the global array associated with local array X

INTEGER NX

 Note that X may have no local elements�

REAL X � LB�
 UB� � LB�
 UB� 	

 Initialize the elements of the array� if any

DO J � LB�� UB�

DO I � LB�� UB�

X�I�J	 � I � �J��	 � NX

END DO

END DO

END

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� ANNEX G� THE FORTRAN

 LOCAL LIBRARY

SUBROUTINE LOCAL��N�X�R	

 Here� the rank of the original array is unimportant

 Only the total number of local elements is needed

 INTEGER N

REAL X�N	� R

 If N is zero� local array X has no elements� but R

 still computes the correct local sum

R � ��

DO I � �� N

R � R � X�I	

END DO

END

G�
 Programming Example Using F���Callable Inquiry Subroutines

This example performs only the initialization of the above example
 It illustrates use of the
F���callable inquiry routines on descriptors passed from HPF� as well as the addressing of
uncompressed local subgrid data in terms of �embedding arrays
�

G�
�� HPF Caller

PROGRAM EXAMPLE

INTEGER� PARAMETER

 NX � ���� NY � ���

REAL� DIMENSION�NX�NY	

 X

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X

 Local subgrid parameters are declared per processor

 for a rank�two array

INTEGER� DIMENSION�NUMBER�OF�PROCESSORS�	��	

� LB� UB� LB�EMBED� UB�EMBED

HPF� DISTRIBUTE�BLOCK��	

 LB� UB� LB�EMBED� UB�EMBED

 Define interfaces

INTERFACE

EXTRINSIC�F���LOCAL	 SUBROUTINE LOCAL��

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�� X� X�DESC 	

INTEGER� DIMENSION�
	

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�

 X is passed twice� both times without local reordering�

 First� it is passed by reference for accessing array elements�

REAL� DIMENSION�
�
	� LAYOUT��HPF�ARRAY�	�

� PASS�BY����	

 X

 It is also passed by descriptor for use in F�� LOCAL

 LIBRARY subroutines only�

REAL� DIMENSION�
�
	� LAYOUT��HPF�ARRAY�	�

� PASS�BY��HPF�HANDLE�	

 X�DESC

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�EMBED�� UB�EMBED�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

G�	� PROGRAMMING EXAMPLE USING F

�CALLABLE INQUIRY SUBROUTINES�
�

HPF� DISTRIBUTE�BLOCK	

 LB�� UB�� LB�EMBED�� UB�EMBED�

HPF� DISTRIBUTE�BLOCK�BLOCK	

 X

END

END INTERFACE

 Initialize values

 � Assume stride � � and no axis permutation 	

CALL HPF�SUBGRID�INFO� X� IERR�

� LB�LB� LB�EMBED�LB�EMBED�

� UB�UB� UB�EMBED�UB�EMBED	

IF �IERR�NE��	 STOP �ERROR
�

CALL LOCAL��

� LB�
��	� UB�
��	� LB�EMBED�
��	� UB�EMBED�
��	�

� LB�
��	� UB�
��	� LB�EMBED�
��	� UB�EMBED�
��	� X� X 	

END

G�
�� FORTRAN �� Callee

SUBROUTINE LOCAL��

� LB�� UB�� LB�EMBED�� UB�EMBED��

� LB�� UB�� LB�EMBED�� UB�EMBED�� X� X�DESC 	

INTEGER LB�� UB�� LB�EMBED�� UB�EMBED�

INTEGER LB�� UB�� LB�EMBED�� UB�EMBED�

 The subgrid has been passed in its �embedded� form

REAL X � LB�EMBED�
 UB�EMBED� � LB�EMBED�
 UB�EMBED� 	

 Locally X�DESC is declared as an INTEGER

INTEGER X�DESC

 Get the global extent of the first axis

 This is an HPF�LOCAL type of inquiry routine with an

 �F���� prefix

CALL F���GLOBAL�SIZE�NX�X��	

 Otherwise� initialize elements of the array

 Loop only over actual array elements

DO J � LB�� UB�

DO I � LB�� UB�

X�I�J	 � I � �J��	 � NX

END DO

END DO

END

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

