The Fortress Language Specification
Version 1.0«

Eric Allen
David Chase
Joe Hallett
Victor Luchangco
Jan-Willem Maessen
Sukyoung Ryu
Guy L. Steele Jr.
Sam Tobin-Hochstadt

Additional contributors:
Joao Dias
Carl Eastlund
Christine Flood
Yossi Lev
Cheryl McCosh

(© Sun Microsystems, Inc.

September 19, 2006

Contents

| Preliminaries

1.1 FortressinaNutshlell

[1.2 Organizatidn

2.1 The Fortr

Programming Environment e e e e e e e e

2.2 Exports, Imports, and Linking Componénts

[2.3 Automatic Generation of APIS

2.4 _Rendering .

2.5 Some Common Types in Fortdess

2.6 Functionsin FOMrelss v o o

2.7 Some Common Expressions in Forlress o

2.8 ForLoops Are Parallel by Defdult

2. Atomic Expr

IONS . . . o e

2.10 Dimensions and UNiitS o o v i e e e e e e e e e e e

2.11 Aggregate Expressidms ..

2.12 ngprghensidns ...

2.13 Summations and ProductSt

[2.14 Testsand Properties o

Il Fortress for A

3 Programs

lication Programmers

12

13
13
14

16
16
18
21

21
22
23
24
25
25
26
27
28
28
29
29
32

34

35

4 Evaluatio

4.1 Valueb e e

4.2 Normal and Abrupt Completion of Evaluafion

4. Memory and Memor rations e e e e

4.4 Threadsand Parallelism o

45 ENVIFONMENES . . . o o o ot e e e e e e

4.6 Input and Output ACHONS . . . o o e

5 Lexical Structure

5.1 Characters o o e e e e e e e e

5.5 InputElementsand Scanming« oo e

5.6 COMMENIS e e

5.7 Whitespace EIEMENtS . . . o o o o e e

5.8 Special Reserved WORAS . o o o e e e

5.9 Character LIterals o o o e

5.10 String Literals

5.11 Boolean Literals

5.12 The Void LIterdl o o e
5.13 Numerals e e e

5.14 Operator Tokehs

5.15 Identifiefis e e e e e e e e e

[5.16 Special Tokehs

5.17 Rendering of Fortress Progrdams

6 Declarations

6.1 Kindsof DeclarationS v v vt

.2 Top-Level Vari

Declaratidns e e e e e e e e e

6.3 Local Variable Declarations o v o

6.4 Local Function Declarations v v v

6.5 Matrix Unpasting

36
36
37
37
37
39
40

41
41
44
44
45
45
46
46
46
a7
48
49
49
49
50
51
52
52

7__Nameb

(7.1 NamMeSPaCES . . .« o o o o e e

[7.2 Reachand ScopeofaDeclardtion
[7.3 Qualified NAMES o o o

8 Type$
8.1 Relationships between TYPes ottt
8.2 Trait TYPES o o o
8.3 ODJECITraAt TYPES« o o o o e e e e e e e e
8.4 Tuple Typds ..
8.5 Arrow Typels ..
8.6 Bottom Typle ...

9.1 Trait Declarations v oot e e e e
9.2 Method Declarationso v it
9.3 Abstract Field Declarationso v v i e e
9.4 Method Contradtst v vt
9.5 VAUBTIAMS v v e e e e e e

10.1 i Declarations e e e e
10.2 Field Declarations o o e e e e e e e

10.3 Value Qbigg]ts ..

[10.4 ObjectEquivalente o 0

11 Static Parameters
11.1 Type Parameters oo e e e
11.2 Natand IntParameters oottt
11.3 BOOIPArametrs v oo vt i e e e

11.4 Dimension and Unit Parameters i e e e e e e e e

11.5 Operator and Identifier Parameters 0 e e e e e e e e e

11.6 WHere CIAUSES . .« o o v oo o e e e e e e e e

61
61
61
63

64
64
65
65
65
66
67
67
68
68

70
70
72
74
75
75

77
77
78
79
80

12 Functions 85

12.1 Function Declarations oo e 85
[12.2 Function Applications ot e 87
12.3 Abstract Function Declarationso i e e e e 88
[12.4 Function Contragtso v v vttt e 89
13 Expressionis 91
131 Literals e 91
[13.2 Identifier RefErendes oot i 93
13.3 Dotted Field ACCESSES o v v e e e e e e 93
[13.4 Dotted Method INVOCALIONS o v vt e e e e e 93
13.5 Naked Method INVOCALIANS o v o vt e e i e e e 94
[13.6 Function Calls 94
13.7 Function EXpressidns ot v i e e e 95
[13.8 Operator ApplicationS ot e 95
13.9 ObJECLEXPIESSIANS . . o o v o v e e e e e e e e e 96
[13.10ASSIGNMENES o o e e e e e 97
13.11D0 EXPIESSIONS . « . o o v v e e e e e e 97
[13.12Parallel DO EXPreSSIONS o v v v oot e e e e e e e e 98
13.13Labeland EXito e 99
[13.14WhIle LOOES . .+« « v v v e e 100
[LBABFOILOOMS . . - o v oo e e e e e e 100
[DBABRANGES . . . o v o o e e e 101
[(37Generatdrso 102
[13.18 Summations and Other Reduction EXpresSions v v v oo v e oo e e 103
13191 EXDIESSIONS .« o o o v o e e e e e e 104
[13.20Case EXPresSiOns v v vt e e 104
13.21 Extremum Expressidns .. 105
[13.22Typecase EXPressions oo v v v v i e e e 106
13.23At0MIC EXPresSioNS v v v v i e e 106
[13.24Spawn EXPressions oottt e e e 108
13.25Throw EXPreSSIONS o o v v v e e e e e e 108
[13.26Try EXPressions o oo vt e e e e 109
13.27Static EXPressidns o oo e 110

[13.28Aggregate EXPressiOns v o e

13.2900mprehensidns ...

[13.30Type ASCHPHAN . .« . o v o o e e e

13.31T ASSUMPLION e e e e e e e e e e

13.32Expression-like FUNCHANS . . o o o o o e e e e e
14 Exceptions

[14.1 Causes Of EXCEPLONS o o v o o e e e

14.2 Types of Exceptiohs ..
14.3 Information of Exceptiohs

15 Overloading and Multiple Dispatctl

[15.1 Terminology and Notatibn o o

15.2 Applicability to Named Functional CallS .« o o e,

[15.3 Applicability to Dotted Method CallS o e

15.4 Appli ility for Functionals with Varar nd K rameters

15.5 Overloading ResolUtiDN o o

16 Operators
[16.1 Operator NameS o oottt e
16.2 Operator PrecedeNCe oo vt i
16.3 Operator FiXily v vttt e
16.4 Chain nd Multifix 72 10 £ T
16.5 ENCloSiNg OPEIatOrS v o v oo e e e e e e e e e e
16.6 Conditional OPeratars v v v i i e e
16.7 JUXIAPOSItION o oot e e e e

[16.8 Overview of Operators in the Fortress Standard Lib$ari oo v ..

17 Conversions and Coercions

17.1 Principl f FCION . . o e o e e e e e e e e e

17.2 Coercion Declarations o o

17. rcion Invi IONS . . . e e

17.4 Applicability with Coercion e e e e e e

[17.5 Coercion Resolutibn o o

17.6 Restrictions on Coercion Declarations oot o e

118
118
118
119

[17.7 Coercions for Tuple and ArroW TYDES . .« « « v v o v e e e e e e

17.8 Automatic WIdening it e e e e

[18 Dimensions and Units

19 T nd Pr rtiels

19.4 Running TESES o v o e e
19.5 TeStSUILES o o e e e e e

[19.6 Property Declarations o

20 Type Inferencé

[20.1 WhatlsInferrdd

20.2 Type Inference Procedlre o o oo e

20.3 Finding “Cl Expressible T " for Inferr

21 Memory Model

21.1 Principles

[21.2 Programming DisCipline o
21.3 Read and Write AtOMICItY o o o o

21.4 Ordering D ndenci mon rations

[22.4 Testsin Components and APIS o o o
22.5 Type Inference for Compondnts
22.6 Initialization Order for QQmenehts

[22.7 Basic FOrtress Operations v v v v e

22.8 Advanced Features of Fortress Operg}tions

146

149
149
149
150
150
151
151

153
153
153

155

156
156
157
159
159

lll_Fortress APIs and Documentation for Application Progra mmers

23.1 The Trait FQrIress.QQre.leect

[24 Booleans and Boolean Intervals

24.1 The Trait Fortress.Core.BoOIBAN v o o v o e e e e

24.2 The Trait Fortress.Standard.BooleanIntervalo o v v v v o e

[24.3 Top-level BooleanInterval VAIUES v o o v e e e

25 Numbers
25.1 Rational Numbers .

[26 Negated Relational Operators

26.1 Negated Relational Opera}.ors

[27.1 The Trait Fortress.Standard. EXCePtion o o v v o e e

27.2 The Trait Fortress.Standard.CheckedEXception v v v i

27.3 The Trait Fortress.Standard.UncheckedEXceptiono

28 Threads

28.1 The Trait Fortress.Standard.Thiead o v o e e

29 Dimensions and Uni

[29.1 Fortress.SlUnlts . .

29.2 Fortress.EninshUdits ...

29.3 Fortress.InformationUnlitS o

30_Tests

30.1 The Object Fortress.Standard. TestBUIte v o v o e e e

30.2 Test Functiohs . . .

[31_Convenience Functions and Types

31.1 Convenience FUNCHONS o v v v e e e e e

31.2 Convenience Tydes

179

180
180

182
182
185
192

193
193

201
201

204
204
204
205

206
206

207
207
209
210

211
211
211

IV __ Fortress for Library Writers |

32 Parallelism and Localitj

32.6 Early Termination of ThreddS . . . o o o o

32.7 Placing Threals

2. nd Definition of Generators L e e e e e e e

[33_Overloaded Functional Declarations

33.1 Principlesof Overloading 0

[33.2_Subtype Rule .

33.3 Incompatibility ule .. e,

33.4 More Specific Rule e e e e

rcion and Overl ing R lution

[34 Operator Declaration$

34.1 Infix/Multifix Operator Declarations

34.2 Prefix Operator Declaratidns o v o e e e

4.3 Postfix rator DeclaratiOns e e e e e e

34.4 Nofix Operator Declaratidns o v oo e e

4.5 Bracketin

rDeclarations e e e e

34.6 Subscripting Operator Method Declarations

[34.7 Subscripted Assignment Operator Method Declardtions o v v v it

34.8 Conditional Operator Declaratibns v o e e

[34.9 Big Operator Declaratidns o o

35 Dimensions and Units Declaratiods

.1 Dimensions D

[arations e e e e

35.2 Units DeClarationS ot

[35.3 Abbreviating Dimension and Unit Declarations

35.4 Absorbing Units

214

215
215
216
216
217
218
219
220
221

227
227
228
228
229
231

[36_Support for Domain-Specific Languages 241

[36.1 Definitions of Syntax EXpandBrsot e 241
36.2 Declarations of Syntax EXpanderst ioii 242
36.3 Restrictions on Delimitersot e 242
36.4 Processing Syntax Expandjers 242
36.5 EXpanders for FOMI@SS v v v v o o o e e 244

IV Fortress APIs and Documentation for Library Writers | 245
7 Algebrai nstrain 246
7.1 Predi nd Equivalence Relations 246
[37.2 Partial and Total Ord@rS v v oo e e e e e 248
[37.3 Operators and Their Properties oot it e e e e 252
[37.4 Monoids, Groups, Rings, and Fi¢ldscccevinnnn. .. 256
37.5 B0olean Algebras 259

3 bers 262
[38.1 The Trait Fortress.Standard.RationalQuantityo oo i 262
[38.2 The Trait Fortress.Standard.TotalCompalison oo v vt oo e 266
38.3 Top-level Total Comparison Valllesot v e 267
38.4 The Trait Fortress.Standard.Compatison« w vt v v 267
38.5 Top-level ComparisonValue it 268

139 Components and APIis 269

40 Memor n nd Binary Words 271
40.1 The Trait Fortress.Core.LinearSequenceo i 272
40.2 nstructing Linear CBS . o i e e e 276
140.3 The Trait Fortress.Core.HeapSequienCe v o ww e oo e e e e 276
|40.4 Constructing Heap SEQUENCES v v vt e e e e 278
40.5 The Trait Fortress.Core.BinaryWord oo v i oo e 279
40.6 The Trait Fortress.Core.BinaryEndianWord 283
40.7 The Trait Fortress.Core.BasicBinaryOperations 288
40.8 The Trait Fortress.Core.BasicBinaryWordOperationso vvv v vt 292
40.9 The Trait Fortress.Core.BinaryLinearEndianSeg@ienc. o oo v v v i i 294

10

|40.10The Trait Fortress.Core.BinaryEndianLinearEnS@quende

|40.11 The Trait Fortress.Core.BinaryHeapEndianSeglience

40.12The Trait Fortress.Core.BinaryEndianH Endi

40.13The Trait Fortress.Core.BasicBinaryHeapSubsMraﬂods

VI Appendices

A _Fortress Calculi
A.1 Basic Core Fortress

|A.2 Core Fortress with Where Clauses

|A.3 Core Fortress with Overloading

Ad A re Fortr with Fiel

B _Overloaded Functional Declarationk

[B.1 Proof of Coercion Resolution for Functibns

[B.2_Proof of Overloading Resolution for Functibns

C _Components and APl

D Rendering of Fortr Identifier

|E_Support for Unicode Input in ASCII |

[E.1 Word Pasting across Line Brelaks

E.2 Prepr f

ing of Nam ni

F__Operator Precedence, Chaining, and Enclosufe

[F.1 Bracket Pairs for Enclosing Operators

[F.2_ Vertical-Line Operators

E. Arithmeti

F.4 Relational

E.5 Boolean Operatdrs
E.6 Other Operatdrs

H Generated Concrete Syntglx

11

haracterso o

337
337
338

340

342

346
346
. 347

351
351
352
353
356
363
364

375

383

Part |

Preliminaries

12

Chapter 1

Introduction

The Fortress Programming Language is a general-purpasieadty typed, component-based programming language
designed for producing robust high-performance softwatie wgh programmability.

In many ways, Fortress is intended to be a “growable language, a language that can be gracefully extended
and applied in new and unanticipated contexts. Fortresgostgpstate-of-the-art compiler optimization techniques
scaling to unprecedented levels of parallelism and of additde memory. Fortress has an extensible component
system, allowing separate program components to be indepélg developed, deployed, and linked in a modular and
robust fashion. Fortress also supports modular and ekiensarsing, allowing new notations and static analyses to
be added to the language.

The name “Fortress” is derived from the intent to produceextise Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety omjth modern programming language principles. Despite
this etymology, the language is a new language with littlatien to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward atinilly with existing versions of Fortran; indeed,
many new language features were invented during the desifortress. Many aspects of Fortress were inspired
by other object-oriented and functional programming lauges, including The Jal4 Programming Languagg|[5],
NextGen|[[6], Scala [21], Eiffe[[16], Self[1], Standard ML§], Objective Caml[14], Haskell[23], and Scherhe|[13].
The result is a language that employs cutting-edge feaftmesthe programming-language research community to
achieve an unprecedented combination of performance aguigmmability.

1.1 Fortress in a Nutshell

Two basic concepts in Fortress are thabbfectand oftrait. An object consists diieldsandmethods The fields of
an object are specified in its definition. An object definitioay also include method definitions.

Traits are named program constructs that declare sets dfoaieet They were introduced in the Self programming
language, and their semantic properties (and advantages@wentional class inheritance) were analyzed byagich
Ducasse, Nierstrasz, and Black [8]. In Fortress, a methatho by a trait may be eithebstractor concrete
abstract methods have orfigadersconcrete methods also hagefinitions A trait mayextendother traits: itinherits

the methods provided by the traits it extends. A trait pregithe methods that it inherits as well as those explicitly
declared in its declaration.

Every object extends a set of traits (its “supertraits”). @¢bject inherits the concrete methods of its supertraits and
must include a definition for every method declared but néindd by its supertraits.

object SolarSystem extends { StarSystem, OrbitingObject }

13

sun = Sol

planets = { Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto }
position = Polar(25000 light Years, 0 radians)

w:R64 AngularVelocity = 27 radians / 226 million years in seconds

variation(wa) =
W +=wa
end

In this example, the objectolarSystem extends the trait$StarSystem and OrbitingObject. The fieldsw and
position are defined with appropriate quantities. The fielch is defined to be another object namedl, and the
field planets is defined to be a set of objects. The methadiation is defined to take a single parametet, and
update thev field of the object. As this example illustrates, Fortressvfates static checking of physical units and
dimensions on quantities.

Note that the identifiers used in this example are not rasttito ASCII character sequences. Fortress allows the use
of Unicode characters in program identifiers, as well asaijiits and superscripts. (See Apperidix E for a discussion
of Unicode and support for entering programs in ASCII.) Fess also allows multiplication to be expressed by simple
juxtaposition, as can be seen in the definitionsyaind position. Fortress also allows for operator overloading, as
well as a facility for extending the syntax with domain-sifiedanguages.

Although Fortress is statically and nominally typed, typesnot specified for all fields, nor for all method parameters
and return values. Instead, wherever possilyiee inferencés used to reconstruct types. In the examples throughout
this specification, we often omit the types when they arerdieen context. Additionally, types can be parametric
with respect to other types and values (most notably natunabers).

These design decisions are motivated in part by our goal &fmgdhe scientist/programmer’s life as easy as possible
without compromising good software engineering. In paitig they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the paogner to define top-level functions. Functions are firsssla
values: They can be passed to and returned from functiodsassigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloadingadestresolved by multiple dynamic dispatch similarly to
the manner described in [17]. Keyword parameters and Vargbe argument lists are also supported.

Fortress programs are organized iotumponentswhich export and import APIs and can be linked together. sAPI
describe the “shape” of a component, specifying the typéraits, objects and functions provided by a component.
All external references within a component (i.e., refeemnto traits, objects and functions implemented by other
components) are to APIs imported by the component. We dismusponents and APIs in detail in Chapter 22.

To address the needs of modern high-performance computdtatress also supports a rich set of operations for
defining parallel execution and distribution of large ddtactures. This support is built into the core of the langriag
For example for loops in Fortress are parallel by default.

1.2 Organization

This language specification is organized as follows. In[Pattie Fortress language features for application program
mers are explained, including objects, types, and funstiételevant parts of the concrete syntax are provided with
many examples. The full concrete syntax of Fortress is destin AppendiX G. In Paft1ll, APIs and documenta-
tion of some of the Fortress standard libraries for appbogprogrammers are presented. Patt IV describes advanced
Fortress language features for library writers and Partas@nts APIs and documentation for some of the Fortress
standard libraries for library writers. Finally, in Part]\the Fortress calculi, support for Unicode characters,thad
Fortress grammars are described.

14

A note on the presented libraries in Pdrts Il V: The Fest standard libraries presented in this draft specifiaatio
should not be construed as exhaustive or complete. Prasmmte# additional libraries is planned for future draftssa
are modifications to the libraries included here.

15

Chapter 2

Overview

In this chapter, we provide a high-level overview of the enfortress language. We present most features in this
chapter through the use of examples, which should be abbessiprogrammers of other languages. In this chapter,
unlike the rest of the specification, no attempt is made twigeocomplete descriptions of the various language feature
presented. Instead, we intend this overview to provideulseitext for reading other sections of this specification,
which provide rigorous definitions for what is merely intcmeéd here.

2.1 The Fortress Programming Environment

Although Fortress is independent of the properties of aiqdar platform on which it is implemented, it is helpful
to describe a programming model for it that we intend to mevon modern operating systems. In this programming
model, Fortress source code is stored in files and organizdula@ctories, and there is a text-based shell from which
we can store environment variables and issue commands ¢atexand compile programs.

There are two ways in which to run a Fortress program:

e As ascript The Fortress program is stored in a file with the suffisx' ” and executed directly from an
underlying operating system shell by calling the commandréss script " on it. For example, suppose
we write the following “Hello, world! " program to a file Helloworld.fsx ™

export Executable
run(args) = print “Hello, world!

The first line is arexport statementve ignore it for the moment. The second line defines a functio:, which
takes a parameter namedys and prints the string Mello, world! ". Note that the parameterrgs does
not include a declaration of its type. In many cases, typaseselided in Fortress and inferred from context.
(In this case, the type afrgs is inferred based on the program’s export statement, enguicin Sectioh 212.)

We can execute this program by issuing the following comntaritle shell:
fortress script HelloWorld.fsx

e As acompiledfile. In this case, the Fortress program is stored in a file thighsuffix “fss " and compiled into
one or morecomponentswhich are stored in a persistent database calliedteess Typically, a single fortress
holds all the components of a user, or group of users sharogygms and libraries. In our examples, we often
refer to the fortress we are issuing commands tthasesident fortress

For example, we could have written ourd&llo, world! " program in a compiled fileHelloWorld.fss

16

component HelloWorld

export Executable

run(args) = print “Hello, world!
end

We can compile this program, by issuing the commafodréss compile "onit:
fortress compile HelloWorld.fss

As a result of this command, a component namBdlfoWorld” is stored in the resident fortress. The name
of this component is provided by the enclosing componentadation surrounding the code. If there is no
enclosing component declaration, then the contents of fihare understood to belong to a single component
whose name is that of the file it is stored in, minus its suffixor Example, suppose we write the following
program in a source file name#iélioworld2.fss "

export Executable
run(args) = print “Hi, i's me again!

When we compile this file:
fortress compile HellowWorld2.fss

the result is that a new component with the naleloWorld2 is stored in the resident fortress. Once this
component is compiled, we can execute it by issuing theviaig command:

fortress run HelloWorld2

In a script file, there must be at most one component dedbaralih a compiled file, multiple component declarations
may be included. For example, we could write the following fiklloworld3.fss

component HelloWorld

export Executable

run(args) = print “Hello, world!
end

component HelloWorld2

export Executable

run(args) = print “Hi, it's me again!
end

When we compile this file, the result is that both the comptsélelloWorld and HelloWorld2 are stored in the
resident fortress.

If a fortress already contains a component with the same rean@enewly installed component, the new component
shadows the old one. For example, if we first compile the sofileHelloworld3.fss above and then compile the
following file Helloworld4.fss

component HelloWorld
export Executable
run(args) = print “1 didn't expect that! "
end
then executing the componeHelloWorld on our fortress will result in printing of the following text

| didn’'t expect that!

17

We can also “remove” a component from a fortress. For example
fortress remove HellowWorld

After issuing this command, we can no longer refeHgloworld component when issuing commands to the
fortress. (However, a removed component might still exésaaonstituent of othetinked, components; see Sec-
tion[2.2.)

2.2 Exports, Imports, and Linking Components

When a component is defined, it can incluedgort statementd-or example, all of the components we have defined
thus far have included the export statemesakport Executable”. Export statements list variousPlIsthat a com-
ponent implements. Unlike in other languages, APIs in Esdrare themselves program constructs; programmers
can rely on standard APIs, and declare new ones. API deidasadre sequences of declarations of variables, func-
tions, and other program constructs, along with their tygebother supporting declarations. For example, here is the
definition of APl Executable:

api Executable
run: String . .. — ()
end

This API contains the declaration of a single functiom , whose type isString . .. — () . This type is ararrow type

it declares the type of a function’s parameter, and its retype. The function-un includes a single parameter; the
notion String . .. indicates that it is &arargsparameter; the functionun can be called with an arbitrary number of
string arguments. For example, here are valid calls to thistfon:

" ow

run(“a simple ", “ example ")
run(“run(...) ")
run(“Nobody”, “expects ”, “that ")

The return type ofrun is (), pronounced “void”. Type() may be used in Fortress as a return type for functions
that have no meaningful return value. There is a single vafditle type () : the value (), also pronounced “void”.
References to valu€) as opposed to typé) are resolved by context.

As with components, APIs can be defined in files and compildélsAnust be defined in files with the suffixi
An fsi file contains source code for one or more APIs. If there arexpbicit “ api " headers, the file is understood
to define a single API, whose name is the name of the contafitdingninus its suffix.

An API is compiled with the shell commandottress compile ". When an APl is compiled, it is installed in the
resident fortress.

For example, if we store the following APl in a file nameldrf.fsi

api Zeepf

foo: String — ()

baz: String — String
end

then we can compile this API with the following shell command
fortress compile Blarf.fsi

This command compiles the ARkepf and installs it in the resident fortress. If we omit the esilg API declaration,
so that the fileBlarf.fsi consists solely of the following code:

18

foo: String — ()
baz: String — String

then the file is assumed to consist of the declaration of desingl namedBlarf.

Unlike component compilation, APl compilation does notdiha existing elements of a fortress. If we attempt to
compile an API with the same name as an API already definedeimgsident fortress, an error is signaled and the
fortress is left unchanged. To remove an API, we must firsbrenall components referring to the API, and then issue
the shell command:

fortress removeApi nane

A component that exports an APl must provide a definition fegrg program construct declared in the API. For
example, because our componéhiloWorld:

component HelloWorld
export Executable
run(args) = print “Hello, world!

end

exports the AP[Executable, it must include a definition for the functiorun . The definition ofrun in HelloWorld
need not include declarations of the parameter type orrréyye of run, as these can be inferred from the definition
of AP| Executable.

Components are also alloweditoport APls. A component that imports an APl is allowed to use anyefgrogram
constructs declared in that API. For example, the followdoghponent imports APZeepf and calls the functiorfoo
declared inZeepf:

component Blargh

import Zeepf

export Executable

run(args) = Zeepf.foo(*whatever ")
end

ComponentBlargh imports the APIZeepf and exports the APExecutable. Its run function is defined by calling
function foo, defined inZeepf. Note thatfoo must be referred to by thgualified nameZeepf.foo , to distinguish it
from other declarations gfoo that are imported by or defined Blargh. To call foo as an unqualified name, we can
write the following form of import statement:

component Blargh

import {foo} from Zeepf
export Executable

run(args) = Zeepf.foo(*whatever ")
end

In an import statement of the form:
import S from A
all names in the set of names are imported from APIA, and can be referred to as unqualified names within the
importing component. In the example above, the set of nanedsawe imported consists of a single naryiei. If we
had instead written:

import {foo, baz} from Zeepf

19

then we would have been able to refer to bfith and baz as unqualified names iBlargh.

Note that no component refers directly to another compgmend constructs defined in another component. Instead,
all external references go through APIEhis level of indirection provides us with significant pawas we will see, it

is possible to link together arbitrary components, so lanthair APIs match. Programmers are able to link together
components from separate programming teams, swap in des@seponents into deployed applications, and even test
components that rely on expensive libraries by wiring thgntauspeciainock componenthat provide just enough
functionality to allow for testing.

Components that contain no import statements and expoARhdixecutable are referred to asxecutable compo-
nents They can be compiled and executed directly as stand-almm@anents. All of ourHelloWorld components

are executable components. However, if a component impog®r more APIs, it cannot be executed as a stand-alone
program. Instead, the component must be compiled and thieediwith other components that export all of the APIs

it imports, to form a newcompoundcomponent. For example, we define the following component fie hamed
Ralph.fss

export Zeepf

foo(s) = ()

baz(s) = s

We can now issue the following shell commands:

fortress compile Ralph.fss
fortress compile Blargh.fss
fortress link Gary from Ralph with Blargh

The first two commands compile filéglph.fss andBlargh.fss , respectively, and install them in the resident
fortress. The third command tells the resident fortresénfodomponentsRalph and Blargh together into a com-
pound component, nameeglary. Gary is an executable component; we can execute it directly \Wwgtcommand:

fortress run Gary
All references to APFZeepf in Gary are resolved to the declarations providedialph.

Note that forming the compound compondréry has no effect on the componerBalph and Blargh. These
components remain in the resident fortress, and they caimkedl together with other components to form yet more
compound components. ConverselyBfargh or Ralph is recompiled, deleted, or otherwise updated, there is no
effect on Gary. Conceptually,Gary contains its own copies of the componemirgh and Ralph, and these
copies are not corrupted by actions on other componentsthifreason, we say that components in Fortress are
encapsulated(Of course, there are optimization tricks that a fortrems ese to maintain the illusion of encapsulation
without actually copying. But these tricks are beyond thapgcof this specification.)

Compound components avpgradable They can be upgraded with new components that export sorttediPIs
used by their constituents. For example, if a new versioRaiph is compiled and installed in the resident fortress,
we can manuallypgradeGary with the new version by performing the following shell commda

fortress upgrade NewGary from Gary with Ralph

This command produces a new component, naN®dGary, resulting from an upgrade @ary with Ralph . The
components referred to &ary andRalph are unaffected. An important property of fortress compdsmés that
they arestatelessonce constructed, they are never modified. Even if a compdaéremoved” from a fortress, the
components it is a constituent of are unaffected.

However, we can rebinthe nameGary in the resident fortress to our new component with the falhgacommand:
fortress upgrade Gary from Gary with Ralph

or simply:

20

fortress upgrade Gary with Ralph

Now, the original component referred to Gwry is shadowed; it cannot be referred to directly from the sh&dwever,

it might still exist in the fortress as a constituent of otikemponents, which are unmodified by the upgrade. To
upgrade all components in a fortress at once with a new vemsidralph (rebinding all names to the resulting
upgrades), we can issue the command:

fortress upgradeAll Ralph

2.3 Automatic Generation of APIs

Note that the component namé&depf exports the APlZeepf. Components and APIs exist in separate namespaces,
and therefore it is allowed for a component to have the sanmerzs an API. In fact, if we hadn’t already defined and
compiled API1Zeepf, we could generate it automatically from the definition ofmonentZeepf with the following

shell command:

fortress api Zeepf.fss

This command generates a new source figpf.fsi , in the same directory &eepf.fss , which includes decla-
rations for all program constructs definedzeepf.fss

In general, if a componen@ exports an APIA with the same name &, it is possible to automatically generate a
source file for the APU from C' by issuing the shell commatriertress api on the file containing the definition of
C. This API contains declarations for all definitions@hthat are not declared in other APIs exportedyand that
do not include the modifieprivate . If a source file with the name of already exists in the same directory as the
source file ofC, an error is signaled, and no file is created.

If there is more than one component defined in a file, APIs anegg¢ed for all components defined in the file that
export APIs with the same name as the respective componanh generated APl is placed in a separate source file
whose name corresponds to the name of the APl it defines.

Note that the API corresponding to an automatically gemeeraburce file is not automatically added to the resident
fortress; the source file must still be compiled via a sepaaation. Often, programmers may want to edit the auto-
generated file before compiling it to the fortress.

It is not always desirable for a component to export an APheftame name. Many components will export only
publicly defined standard APIs. However, automatic geraraif APIs from components may be useful, particu-
larly for components defined internally by a developmenirtebarge projects may contain many internally defined
components that are never released externally, excepnhasitoents of compound components.

2.4 Rendering

One aspect of Fortress that is quite different from otheglages is that various program constructs are rendered in
particular fonts, so as to emulate mathematical notatiothé examples above, this was evident by the use of italics
when rendering variable names. Many other program coristhave their own rendering rules. For example, the
operator” indicates superscripting in Fortress. A function defimtamnsisting of the following ASCII characters:

f(x) = X2 + sin x - cos 2 x

is rendered as follows:

f(x) = 2% +sinx — cos 2z

21

Array indexing, written with brackets:

ali]

is rendered as follows:

Q;

There are many other examples of special rendering commrenti

Fortress also supports the use of Unicode characters itifiden In order to make it easy to enter such characters
with today’s input devices, Fortress defines a conventiorkéyboard entry: ASCIlI names (and abbreviations) of
Unicode characters can be written in a program in all capth(sypaces replaced by underscores). Such identifiers are

converted to Unicode characters. For example, the idemtifie

GREEK_CAPITAL_LETTER_LAMBDA

is automatically converted into the identifier:

A

There are also ASCII abbreviations for writing down comnyamded Fortress characters. For example, ASCII iden-
tifiers for all Greek letters are converted to Greek charadig., fambda ” becomes)\ and ‘LAMBDA becomesA).

Here are some other common ASCI| shorthands:

BY
DOT
cuP

BOTTOM
SUM
INTEGRAL
SUBSET
SUBSETEQ
EQUIV
IN
LT
GT
EQ
AND
NOT
INF

A comprehensive description of ASCII conversion is prodide AppendiX E.

becomes x
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes o

I >0 vAMIiNnN—MEC -

TIMES
CROSS

CAP

TOP
PRODUCT
EMPTYSET
NOTSUBSET

NOTSUBSETEQ becomes

NOTEQUIV
NOTIN
LE

GE

NE

OR

XOR

SQRT

becomes
becomes
becomes
becomes
becomes
becomes
becomes

becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes ./

O <HIVIANRHERN S 4D X X

2.5 Some Common Types in Fortress

Fortress provides a wide variety of standard types, inolgiditring, Boolean, and various numeric types. The
floating-point typeR (written in ASCIl asRR denotes 64-bit precision floating-point numbers. For exaimthe

following function takes a 64-bit float and returns a 64-loaft

halve(x:R):R = x/2

The typeR is also writtenR64 . The following definition ofhalve is semantically equivalent to the one above:

22

halve(x : R64) : R64 = 2/2

Predictably, 32-bit precision floats are writt@&32 .

64-bit integers are denoted by the ty@é4 . 32-bit integers by the typ&32, and infinite precision integers by the
type Z.

2.6 Functions in Fortress

Fortress allows recursive, and mutually recursive fumctefinitions. Here is a simple definition of factorial
function in Fortress:

factorial(n) =
if n=0then1
else n factorial(n — 1) end

Note the juxtaposition of parameterwith the recursive calfactorial(n — 1) . In Fortress, as in mathematics, multi-
plication is represented through juxtaposition. By defaulo expressions of numeric type that are juxtaposed fepre
sent a multiplication. On the other hand, juxtapositionmeapression with a function type with another expression
to its right represents function application, as in thedwlihg example:

sinx

2.6.1 Keyword Parameters

Functions in Fortress can be defined to take keyword argusisnproviding default values for parameters. In the
following example:

makeColor(red : 264 = 0, green : Z64 = 0, blue : Z64 = 0) =
if 0 < red <255A0 < green < 255 A0 < blue < 255
then Color(red, green, blue)
else throw Error end

the functionmakeColor takes three keyword arguments, all of which defaulotdf we call it as follows:
makeColor(green = 255)

the argumentsed and blue are both given the value.

There are some other aspects of this example worth mengioRor example, the body of this function consists of an
if expression. The test of thief expression checks that all three parameters have valuesdre® and 255. The
boolean operatox is chained An expression of the form: < y < z is equivalent to the expressian< y Ay < z,
just as in mathematical notation. Th@en clause provides an example of a constructor call in Forteabtheelse
clause shows us an example ofarow expression in Fortress.

2.6.2 Varargs Parameters

It is also possible to define functions that take a variablalper of arguments. We have already seen such a function:
Executable.run . Here is another:

23

printFirst(zs:R...) =
if |zs| > 0 then print zso
else throw Error end

This function takes an arbitrary number of floats and prih&sfirst one (unless it is given zero arguments; then it
throws an exception).

2.6.3 Function Overloading

Functions can be overloaded in Fortress by the types of tlaeameters. Calls to overloaded functions are resolved
based on the runtime types of the arguments. For examplégltbeiing function is overloaded based on parameter

type:

size(x : Tree) = 1 + size(leftBranch(x)) + size(rightBranch(x))
size(x : List) = 1 + size(rest(x))

Suppose we callize on an object with runtime typg&ist, the second definition ofize will be invokedregardless of
the static type of the argumer®f course, function applications are statically checkedrnisure thasomedefinition
will be applicable at run time, and that the definition to gpplll be unambiguous.

2.6.4 Function Contracts

Fortress allowsontractsto be included in function declarations. Among other thjrgmtracts allow us toequire
that the argument to a function satisfies a given set of caingsr and toensurethat the resulting value satisfies
some constraints. They provide essential documentatiothéoclients of a function, enabling us to express semantic
properties that cannot be expressed through the staticstygtem.

Contracts are placed at the end of a function header, béfertuhction body. For example, we can place a contract
on our factorial function requiring that its argument be nonnegative ag¥ait

factorial(n) requires n >0
=if n=0thenl
else n factorial(n — 1) end

We can also ensure that the resultfettorial is itself nonnegative:

factorial(n)
requiresn >0
ensures result > 0
=ifn=0thenl
else n factorial(n — 1) end

The variableresult is bound in theensures clause to the return value of the function.

2.7 Some Common Expressions in Fortress

We have already seen arf expression in Fortress. Here’s an example @hale expression:

24

while z < 10 do
print x
z+=1

end

Blocks in Fortress are delimited by the special reservedis/dnp and end. Here is an example of a function that
prints three words:

print ThreeWords() = do
print “print "
print “three
print “words ”
end

”

A tupleexpression contains a sequence of elements delimited byth@ses and separated by commas:

(nthls ”,“iS ” “a”,“tuple ”7“Of ”,“mOSﬂy ’,7“Strings 11’0)

)

When a tuple expression is evaluated, the various subesipnssare evaluated parallel. For example, the following
tuple expression denotes a parallel computation:

(factorial(100), factorial(500), factorial(1000))

The elements in this expression may be evaluated in parallel

2.8 For Loops Are Parallel by Default

Here is an example of a simplgr loop in Fortress:

fort+«1:10do
print(i“ ")
end

This for loop iterates over all elementsbetweenl and 10 and prints the value of. Expressions such ak: 10
are referred to asnge expressiondhey can be used in any context where we wish to denote alitbgers between
a given pair of integers.

A significant difference between Fortress and most othegnaraming languages is thér loops are parallel by
default Thus, printing in the various iterations of this loop cacwrcin an arbitrary order, such as:

54637291018

2.9 Atomic Expressions

In order to control interactions of parallel executionsytfess includes the notion @ftomic expressionss in the
following example:

atomic do
rz+=1
y+=1
end

25

An atomic expression is executed in such a manner that adlr diiveads observe either that the computation has
completed, or that it has not yet begun; no other thread ebsan atomic expression to have only partially completed.
For example, in the following parallel computation:

do
z=0
y=20
z2Z:=0
(atomic do
z+=1
y+=1
end,
z:=x+Yy)
z
end

the second subexpression in the tuple expression eithenassthat both: and y have been updated, or that neither
has. Thus, possible values of the expression are 0 and 2, but not 1.

2.10 Dimensions and Units

Numeric types in Fortress can be annotated with physica$ amd dimensions. For example, the following function
declares that its parameter is a tuple represented in tie kiniand m /s, respectively:

kineticEnergy(m:R kg, v:Rm/s): R kg m?/s? = (m v?)/2

A value of typeR kg is a 64-bit float representing a measurement in kilogramsethe functionkineticEnergy is
called, two values in its tuple argument are statically &kddo ensure that they are in the right units.

All commonly used dimensions and units are provided in theréss standard libraries. Unit symbols are encoded
with trailing underscores; such identifiers are renderemiman font. For example the unih is represented as_.

For each unit, both longhand and shorthand names are ptb{gdg., m, meter, and meters). The various names
of a given unit can be used interchangeably. Also, some (aitd dimensions) are defined to be synonymous with
algebraic combinations of other units (and dimensionsy.eample, the unifN is defined to be synonymous with
the unit kg m/s?> and the dimensiorForce is defined to be synonymous withlass Acceleration. Likewise, the
dimensionAcceleration is defined to be synonymous wittielocity /Time .

Measurements in the same unit can be compared, added,ctabnaultiplied and divided. Measurements in different
units can be multiplied and divided. For example, we canenthie following variable declaration:

v : Rm/s = (3meters + 4 meters) /5 seconds
However, the following variable declaration is a statioerr
v : Rm/s = (3meters + 4 seconds) /5 seconds

In addition, the following variable declaration is a staicor because the unit of the left hand side of this declamati
is m/s whereas the unit of the right hand side is simply(or meters):

v :Rm/s = (3meters + 4 meters) /5

26

It is also possible to convert a measurement in one unit toasarement of another unit of the same dimension, as in
the following example:

kineticEnergy(3.14kg,32{/s in m/s)

The second argument tkineticEnergy is a measurement in feet per second, converted to metersqard

2.11 Aggregate Expressions

As with mathematical notation, Fortress includes spegiatactic support for writing down many common kinds of
collections, such as tuples, arrays, matrices, vectorgsns&ts, and lists simply by enumerating all of the cokecsi
elements. We refer to an expression formed by enumerategléments of a collection as aggregate expression
The elements of an aggregate expression are computed ifepara

For example, we can define an arrayin Fortress by explicitly writing down its elements, enadsn brackets and
separated by whitespaces, as follows:

a=1[01234]

Two-dimensional arrays can be written down by separatimg oy newlines (or by semicolons). For example, we
can bindb to a two-dimensional array as follows:

b=[34
5 6]

There is also support for writing down arrays of dimensiae¢hand higher. We bind to a three-dimensional array
as follows:

c=[12
34;;56
785910
11 12

Various slices of the array along the third dimension aresstpd by pairs of semicolons. (Higher dimensional arrays
are also supported. When writing a four-dimensional astiges along the fourth dimension are separating by triples
of semicolons, and so on.)

Vectors are written down just like one-dimensional arr&imilarly, matrices are written down just like two-dimemsal
arrays. Whether an array aggregate expression reducestoagna vector, or a matrix is inferred from context (e.g.,
the static type of a variable that such an expression is bm)n®f course, all elements of vectors and matrices must
be numbers.

A set can be written down by enclosing its elements in brandssaparating its elements by commas. Here we bind
s to the set of integer$ through4:

s=1{0,1,2,3,4}
The elements of a list are enclosed in angle brackets (wiittdSCIl as<| and|>):
1=40,1,2,3,4)

The elements of a map are enclosed in curly braces, with &yg\pairs joined by the arrow- (written in ASCII as

[->):

27

m={da 0/t —1/c — 2}

2.12 Comprehensions

Another way in which Fortress mimics mathematical notaisoim its support focomprehensionsComprehensions
describe the elements of a collection by providing a rul¢ iadds for all of the collection’s elements. The elements
of the collection are computed in parallel by default. Foaraple, we define a set that consists of all elements of
another set divided by 2, as follows:

s={x/2 |z —t}

The expression to the left of the vertical bar explains thatents ofs consist of every value:/2 for every valid
value of z (determined by the right hand side). The expression to ¢ af the vertical bar explains how the elements
x are to begeneratedin this case, from the sgf). The right hand side of a comprehension can consist of phelti
generators. For example, the following set consists ofyegkament resulting from the sum of an elementsofvith

an element of:

u={z+ylz—sy—t}

The right hand side of a comprehension can also coffifg@ning expressionso constrain the elements provided by
other clauses. For example, we can stipulate thabnsists of all nonnegative elementstods follows:

v=A{z|z—t,xz>0}

There is a comprehension expression for every form of agéeegxpression except tuple expressions. For example,
here is a list comprehension in Fortress:

(2x|z — v)
The elements of this list consist of all elements of thewsetultiplied by 2.

In the case of an array comprehension, the expression teftiaf the bar consists of a tuple indexing the elements of
the array. For example, the following comprehension dbssra3 x 3 array, all of whose elements are zero.

[(z,y) =0z« {0,1,2},y — {0,1,2}]
The collection of element8 through2 can also be expressed via a range expression, as follows:
[(,y) =0z« 0:2,y «— 0:2]

An array comprehension can consist of multiple clauses.cldugses are run in the order provided, with declarations
from later clauses shadowing declarations from earliars#a. For example, the following comprehension describes
a 3 x 3 identity matrix:

[(z,y)=0|z—0:2,y —0:2
(x,z)=1]| 2« 0:2]

2.13 Summations and Products

As with mathematical notation, Fortress provides syntastipport for summations and productions (and other big
operations) over the elements of a collection. For exangpi@|ternative definition ofactorial is as follows:

28

factorial(n) =] i

1<—1:n
This function definition can be written in ASCII as follows:
factorial(n) = PRODUCT[i <- 1:n] i

The character[] is written PRODUCT Likewise, Y is written SUM As with comprehensions, the values in the
iteration are generated from specified collections.

2.14 Tests and Properties

Fortress includes support for automated program testingw Msts in a component can be defined usingtéise
modifier. For example, here is a test that calls to filag@orial function result in values greater than or equal to what
was provided:

test factorialResultLarger|[x «— 0:100] = = < factorial(x)

The values forz are generated from the provided ran@el00 .

Programs are also allowed to inclugeperty declarations, documenting boolean conditions that a prags ex-
pected to obey. Property declarations are similar sym@btito test declarations. Unlike test declarations, prop
declarations do not specify explicit finite collections pwdich the property is expected to hold. Instead, the param-
eters in a property declaration are declared to have typeshe property is expected to hold over all values of those
types. For example, here is a property declaring fhatorial is greater than or equal to every argument of type

property factorialResultAlwaysLarger =V(x : Z) (z < factorial(x))

When a property declaration includes a name, the propesgtytifier is bound to a function whose parameter and body
are that of the property, and whose return typBislean. A function bound in this manner is referred to geaperty
function A property function can be called from within tests to emstian a property holds at least for all values in
some finite set of values.

2.15 Objects and Traits

A great deal of programming can be done simply through thefienctions, top-level variables, and standard types.
However, Fortress also includes a trait and object systerddéining new types, as well as objects that belong to
them. Traits in Fortress exist in a multiple inheritance&iehy rooted at traiDbject. A trait declaration includes a
set of method declarations, some of which may be abstracexammple, here is a declaration of a simple trait named
Moving:

trait Moving extends { Tangible, Object }
position(): (R Length)?
velocity(): (R Velocity)?

end

The set of traits extended by traifoving are listed in braces after the special reserved wortlends . Trait Moving
inherits all methods declared by each trait it extends. Woemhethodsposition andwvelocity declared in traiMoving
areabstract they contain no body. Their return types are vectors oftle8gwhose elements are of typ&sLength
and R Velocity respectively. As in mathematical notation, a vector of tangwith element typd is written 7™ .

29

Traits can also declare concrete methods, as in the folppexample:

trait Fast extends Moving
velocity() = [0 0 (299 792 458 m/s)]
end

Trait Fast extends a single traifyloving. (Because it extends only one trait, we can elide the brac#s extends
clause.) It inherits both abstract methods definelllisving, and it provides a concrete body for methadocity .

Trait declarations can be extended by other trait dectarafias well as bpbject declarationsThere are two kinds
of object definitions. Asingleton object declaratiodefines a sole, stand-alone object. For example:

object Sol extends { Moving, Stellar }
spectralClass = Go
position() =00 0]
velocity() = [0 0 0]

end

The objectSol extends two traitsMoving and Stellar, and provides definitions for the abstract methods it itberi
Objects must provide concrete definitions for all abstraethods they inheritSol also defines a fieldpectralClass.

For every field included in an object definition, an implio#ttgr is defined for that field. Calls to the getter of the field
of an object consist of an expression denoting the objetvield by a dot and the name of the field. For example,
here is a call to the getteipeciralClass of objectSol:

Sol.spectralClass

If a field includes modifiersettable, an implicit setter is defined for the field. Calls to settexsd like assignments.
Here is an assignment to fielghectralClass of objectSol:

Sol.spectralClass := G5

In fact, all accesses to a field from outside the object to vttie field belongs must go through the getter of the field,
and all assignments to it must go through the setter. (Tlsesriply no other way syntactically to refer to the field.)

If a field includes modifiethidden, no implicit getter is defined for the object.

Every method declared in an object or trait includes an ioitpsielf parameter, denoting the receiver of the method
call. If desired, this parameter can be made explicit, byuiiag it before the name of the method, along with a
trailing dot. For example, the following definition 6bl is equivalent to the one above:

object Sol extends {Moving, Stellar}
spectralClass = G
self.position() = [0 0 0]
velocity() = [0 0 0]

end

In this definition, the self parameter pbsition is provided explicitly.

In fact, the self parameter of a method can even be given égosither than the default position. For example, here
is a definition of a type where the self parameters appearnstaadard positions:

trait List
cons(x: Object, self): List
append(zs: List, self) : List
end

30

In both methodscons and append, the self parameter occurs as the second parameter. Cétlese methods look
more like function calls than method calls. For examplehifollowing call toappend , the receiver of the call is; :

append(ly,l2)

In contrast to singleton object definitionsgdgnamically parametric object definitidncludes aconstructor declara-
tionin its header, as in the following example:

object Particle(position : (R Length)?,
velocity : (R Velocity)?)
extends Moving
end

Every call to the constructor of dynamically parametricembjParticle yields a new object. For example:
p1 = Particle([3m 2m 5m], [(1m/s) 0 0])

The parameters to the constructor of a dynamically paracrabject implicitly define fields of the object, along with
their getters (by default). These parameters can includd #iile modifiers that an ordinary field can. For example, a
parameter can include the modifietdden , in which case a getter is not implicitly defined for the field.

In the definition ofParticle, it is the implicitly defined getters of fieldgosition and velocity that provide concrete
definitions for the inherited abstract methods from thdiiving .

In both singleton and dynamically parametric objects, ioifty defined getters and setters can be overridden by
defining explicit getters and setters, using the modifggster and setter . For example, we alter the definition of
Particle to include an explicit getter for fieldelocity as follows:

object Particle(position : (R Length)3,
velocity : (R Velocity)?)
extends Moving
getter velocity() = do
print “velocity getter accessed
velocity
end
end

The explicitly defined getter first prints a message and teaurms the value of the fieldelocity . Note that the final
variable reference in this getter refers directly to thedieklocity, not to the getterOnly within an object definition
can fields be accessed directly. In fact, even in an objeatitlefi, fields are only accessed directly when they are
referred to as simple variables. In the following definitimhParticle, the gettervelocity is recursively accessed
through the special variablge1f (bound to the receiver of the method call):

object Particle(position : (R Length)3,
velocity : (R Velocity)?)
extends Moving
getter velocity() = do
print “velocity getter accessed
self.velocity
end
end

Now, the result of a call to getterelocity is an infinite loop (along with a lot of output).

31

2.15.1 Traits, Getters, and Setters

Although traits do not include field declarations, they caclude getter and setter declarations, as in the following
alternative definition of traiMoving:

trait Moving extends { Tangible, Object }
getter position(): (R Length)?
getter velocity(): (R Velocity)?

end

Now, an object with traiMloving must provide the definitions getters(as opposed to ordinary methods) farsition
and velocity . The advantage of this definition is that we can use gettatiooton a variable of static typgeloving:

v : Moving = . ..
v.position

In fact, getters can be declared in a trait definition usinig fileclaration syntax, as in the following example (which
is equivalent to the definition dfloving above):

trait Moving extends { Tangible, Object }
position: (R Length)3
velocity: (R Velocity)?

end

Getter declarations in trait definitions must not includelies. A getter definition can include the various modifiers
allowed on a field declaration, with similar results. Formyéde, if the modifiersettable is used, then a setter is
implicitly declared, in addition to a getter.

2.16 Features for Library Development

The language features introduced above are sufficient &waist majority of applications programming. However,
Fortress has also be designed to be a good languadjbrimy programming. In fact, much of the Fortress language
as viewed by applications programmers actually consistedé defined in libraries, written in a small core language.
By defining as much of the language as possible in librariasaom is to allow the language to evolve gracefully
as new demands are placed on it. In this section, we briefltiomresome of the features that make Fortress a good
language for library development.

2.16.1 Generic Types and Static Parameters

As in other languages, Fortress allows types to be parameitin respect to other types, as well as other “static”
parameters, including integers, booleans, dimensiorits, wperators, and identifiers. We have already seen some
standard parametric types, suchfasay and Vector. Programmers can also define new traits, objects, and @unscti
that include static parameters.

2.16.2 Specification of Locality and Data Distribution

Fortress includes a facility for expressing programmegrihtconcerning the distribution of large data structures at
run time. This intent is expressed through special datatstres calleddistributions In fact, all arrays and ma-
trices include distributions. These distributions are raefiin the Fortress standard libraries. In most cases, the

32

default distributions will provide programmers with gooerformance over a variety of machines. However, in some
circumstances, performance can be improved by overridisgdefault selection of distributions. Moreover, some
programmers might wish to define these distributions, taildor particular platforms and programs.

2.16.3 Operator Overloading

Operators in Fortress can be overloaded with new definitiblese is an alternative definition of thfectorial func-
tion, defined as a postfix operator:

opr (n)!=] i

i«—1l:n

As with mathematical notation, Fortress allows operatorbe defined as prefix, postfix, and infix. More exotic
operators can even be defined as subscripting (i.e., apphsaf the operators look like subscripts), and as branget
(i.e., applications of the operators look like the operamage been simply enclosed in brackets).

2.16.4 Definition of New Syntax

Fortress provides a facility for the definition of new syniatibraries. This facility is useful for defining librarider
domain-specific languages, such as SQL, XML, etc. It is afsalio encode some of the language constructs seen by
applications programmers.

33

Part Il

Fortress for Application Programmers

34

Chapter 3

Programs

A programconsists of a finite sequence of Unicode 5.0 abstract clesacfFortress does not distinguish between
different code-point encodings of the same character.)rdieroto more closely approximate mathematical notation,
certain sequences of characters are rendered as subscpigerscripts, italicized or boldface text, or text incpk
fonts, according to the rules in Appendik E. For the purpagesntering program text, ASCIl encodings of Unicode
characters are also provided in Apperldix E. Although mucthefprogram text in this specification is rendered as
formatted Unicode, some text is presented unformattedh it ASCII encoding, to aid in exposition.

A program isvalid if it satisfies allstatic constraintstipulated in this specification. Failure to satisfy a statinstraint
is astatic error. Only valid programs can bexecutedthe validity of a program must be checked before it is exetdut

Executing a valid Fortress program consisteeéluating expression€valuation of an expression may modify the
program stateyielding aresult A result is either aalug or anabrupt completion

The characters of a valid program determine a sequencof elementsin turn, the input elements of a program
determine a sequence pfogram constructssuch adrait declarations object declarationsfunction declarations
andvariable declarationsPrograms are developed, compiled, and deployesheapsulated upgradable components
as described in Chapter]22. We explain the structure of iejgments, and of each program construct, in turn, along
with accompanying static constraints. We also explain Hoevautcome of a program execution is determined from
the sequence of constructs in the program.

Fortress is a block-structured language: A Fortress progransists of nesteblocksof code. The entire program

is a single block. Each component is a block. Any top-levalalation is a block, as is any function declaration.

Several expressions are also blocks, or have blocks asqiahie expression, or both (e.g.,while expression is

a block, and its body is a different block). See Chaptér 1&fdiscussion of expressions in Fortress. In addition, a
local declaration begins a block that continues to the erti@tEmallest enclosing block unless it is a local function
declaration and is immediately preceded by another localtfon declaration. (This exception allows overloaded and
mutually recursive local function declarations.) Becalisdress is block structured, and because the entire progra
is a block, the smallest block that syntactically contaipsagram construct is always well defined.

Fortress is an expression-oriented language: In Fortstgements are just expressions with type They do not
evaluate to an interesting value. Typically, they are eata@d solely for their effects.

Fortress is a whitespace-sensitive language: Fortresditiasent contexts influencing the whitespace-sensitioit
expressions as described in Appendix G.

35

Chapter 4

Evaluation

The state of an executing Fortress program consists of d #ektads and anemory Communication with the outside
world is accomplished throughput and output actiondn this chapter, we give a general overview of the evaluatio
process and introduce terminology used throughout thisifsgetion to describe the behavior of Fortress constructs.

Executing a Fortress program consistsewéluatingthe expressions in each of its threads. Threads evaluatesxp
sions by takingsteps We say evaluation of an expressibeginswhen the first step is taken; each step yields a new
expression. A step masompletehe evaluation, in which case no more steps are possibleabexpression, or it may
result in anntermediate expressiowhich requires further evaluation. Intermediate expogssare generalizations of
ordinary Fortress expressions: some intermediate eXxprsssannot be written in programs. We say that one expres-
sion isdynamically containedvithin a second expression if all steps taken in evaluatiegfitst expression are taken
between the beginning and completion of the second. A stgpatsa have effects on the program state beyond the
thread taking the step, for example, by modifying one or nlacations in memory, creating new threads to evaluate
other expressions, or performing an input or output acfidweads are discussed further in Seclion 4.4. The memory
consists of a set dbcations which can beead andwritten. New locations may also kellocated The memory is
discussed further in Sectibn #.3. Finallyput actionsandoutput actionsare described in Sectidn 4.6.

4.1 Values

A valueis the result of normal completion of the evaluation of anrezpion. (See Sectidn 4.2 for a discussion of
completion of evaluation.) A value hagype anenvironmen{see Sectioh 415), and a finite seffields Every value

is an object (see Chapter]10); it may beadue objectareference objec¢or afunction See Chaptén 8 for a description
of the types corresponding to these different values. The tf a value specifies the names and types of its fields,
and which names must be bound in its environment (and thes typtine locations they are bound to). The type also
specifies the methods (including their bodies) of the objéxtly trait types have methods other than those inherited
from the typeObject.

In a value object, each field is a value. In a reference obgaath field is a location. Every field has a name, which
may be an identifier or an index. Only values of typmearSequence (defined in Sectioh 40.1) difeapSequence
(defined in Sectioh 40.3) have fields named by indices. Fomstand the valug) have no fields. Every field in a
value object ismmutable Reference objects may have batiutableandimmutablefields. No two distinct values
share any mutable field.

Values are constructed by top-level function declarati(m@® Sectioh 12.1) and singleton object declarations (see
Section 10.11), and by evaluating an object expression (seg80B[13.9), a function expression (see Sedtion]13.7),
a local function declaration (see Section]6.4), a call to laject constructor (declared by an object declaration; see

36

Chaptef 1D), a literal (see Section 13.1)spawn expression (see Sectibn 13.24), an aggregate expressmIB€s-
tion[13.28), or a comprehension (see Sedtion 13.29). Irathericase, the constructed value is the result of the normal
completion of such an evaluation.

4.2 Normal and Abrupt Completion of Evaluation

Conceptually, an expression is evaluated untiédmpletes Evaluation of an expression mapmplete normally
resulting in a value, or it magomplete abruptly Each abrupt completion has an associated value which ddlse
abrupt completion: the value is either an exception vala¢ ihthrown and uncaught or the exit value of exit
expression (described in Sectfon 13.13). In addition tgmmmer-defined exceptions thrown explicitly bytarow
expression (described in Sectlon 13.25), there are predkéixceptions thrown by the Fortress standard libraries. Fo
example, dividing an integer by zero (using theperator) causesRBivideByZeroException to be thrown.

When an expression completes abruptly, control passe®tdythamically immediately enclosing expression. This
continues until the abrupt completion is handled either byra expression (described in Section 13.26) if an ex-
ception is being thrown or by an appropriately taggetbel expression (described in Section 13.13) if anit
expression was executed. If abrupt completion is not handlehin a thread and its outermost expression completes
abruptly, the thread itself completes abruptly. If the mhiread of a program completes abruptly, the program as a
whole also completes abruptly.

4.3 Memory and Memory Operations

In this specification, the terrmemoryrefers to a set of abstraldcations the memory is used to model sharing and
mutation. A location has an associated type, and a valueabfythe (i.e., the type of the value is a subtype of the type
of the location); we say that the locaticontainsits associated value. Unlike values, locations can haveofject
trait types.

There are three kinds of operations that can be performedeonary: allocation, reads andwrites Reads and writes
are collectively calleanemory accesseituitively, a read operation takes a location and rettinesvalue contained

in that location, and a write operation takes a location axdlae of the location’s type and changes the contents of
the location so the location contains the given value. Asegsieed not take place in the order in which they occur in
the program text; a detailed account of memory behaviorasga Chaptdr 21.

Allocation creates a new location of a given type. Allocataxcurs when a mutable variable is declared, or when a
reference object is constructed. In the latter case, a neatitm is allocated for each field of the object. Abstractly,
locations are never reclaimed; in practice, memory reclamés handled by garbage collection.

A freshly allocated location igninitialized The type system and memory model in Fortress guarantearihatializ-

ing write is performed to every location, and that this write occuffeteeany read of the location. Any location whose
value can be written after initialization rmutable Any location whose value cannot be written after initiation

is immutable Mutable locations include mutable variables asgktable fields of a reference object. Immutable
locations include nortransient , non-settable fields of a reference object.

4.4 Threads and Parallelism

There are two kinds of threads in Fortregsplicit threads andgpawnedor explicit) threads. Spawned threads are
objects created by thepawn construct, described in Sectibn 13.24.

37

A thread may be in one of five stata®t started executingsuspendechormally complete@ndabruptly completed

We say a thread inot startedafter it is created but before it has taken a step; it has aresgn that it needs to
evaluate. This is only important for purposes of deterngnirhether two threads are executing simultaneously; see
Section 32.4. A thread isxecutingor suspendedf it has taken a step, but has not completed; see below for the
distinction between executing and suspended threads.eAdhscompletdf its expression has completed evaluation.
If the expression completes normally, its value is the tesfithe thread.

Every thread has body and anexecution environmentThe body is an intermediate expression, which the thread
evaluates in the context of the execution environment; tetbody and the execution environment may change when
the thread takes a step. This environment is used to look oe&@n scope but bound in a block that encloses the
construct that created the thread. The execution envirohai@ newly created thread is the environment of the thread
that created the new thread.

In Fortress, a number of constructs arglicitly parallel. An implicitly parallel construct createsgroup of one or
more implicit threads. The implicitly parallel construets:

e Tuple expressions:Each element expression of the tuple expression is evalimat separate implicit thread
(see Sectioh 13.28).

e also do blocks: each sub-block separated by abso clause is evaluated in a separate implicit thread (see
Sectior 13.1P).

e Method invocations and function calls: The receiver or the function and each of the arguments isiated in
a separate implicit thread (see Secfion 113.4, Selction 48dbSectioh 13]6).

e for loops, comprehensions, sums, generated expressions, ang dperators: Parallelism in looping con-
structs is specified by the generators used (see Séctiof)18rbgrammers should assume that generators other
than thesequential generator can execute each iteration of the body expressidrseparate implicit thread.
Reduction variables irfor loops, and results returned from comprehensions and bigatwe correspond to
reductions (see Sectibn 13.155.1).

e Extremum expressions:Each guarding expression of the extremum expression isi&edl in a separate im-
plicit thread (see Sectidn 13]21).

e Tests:Each test is evaluated in a separate implicit thread (sept€h&9).

Implicit threads run fork-join style: all threads in a groage created together, and they all must complete before the
group as a whole completes. There is ho way for a programma&ngpe out an implicit thread and operate upon it
in any way; they are managed purely by the compiler, runtane, libraries of the Fortress implementation. Implicit
threads need not be scheduled fairly; indeed, a Fortredsiingmtation may choose to serialize portions of any group
of implicit threads, interleaving their operations in angwit likes. For example, the following code fragment may
loop forever:

r: 264 :=0
(r:=1,whiler =0do end)

If any implicit thread in a group completes abruptly, theugras a whole will complete abruptly as well. Every thread
in the group will either not run at all, complete (normally atsruptly), or may be terminated early as described in
Sectiorf 32.6. The result of the abrupt completion of the giisithe result of one of the constituent threads that com-
pletes abruptly. After abrupt completion of a group of inajilthreads, each reduction variable (see Seétion 13.15.1)
may reflect an arbitrary subset of updates performed by tieads in the group. This means in general that reduction
variables should not be accessed after abrupt completiba.eXact behavior of reduction variables depends on the
supporting generator structure and is described in Se88dh

Spawned thread objects are reference objects with fouradsthal, wait, ready, and stop (described in Sec-
tion[32.8). None of these methods take arguments (otherttieathread). Theval method waits until the thread is
complete; if the thread completes normally, the resultialye is returned. A spawned thread is not permitted to exit

38

(discussed in Sectidn 13]13) to a surrounding label (the! ialzonsidered to be out of scope), but may fail to catch an
exception and thus complete abruptly. When this happeagxteption isleferred Any invocation of theval method

on the spawned thread throws the deferred exception. Ifghesed thread object is discarded, the exception will be
silently ignored. In particular, if the result of épawn expression is dropped, it is impossible to detect compiatio
the spawned thread or to recover from any deferred excegption

The wait method waits until the thread is complete and then retumsaid value. Theready method does not wait,
but instead returns a boolean value indicating whetherhteat is complete. Invocations of these methods do not
cause deferred exceptions to be thrown.

We say a spawned thread has bebserved to completdter invoking theval or wait methods, or when an invocation
of the ready method returngrue.

There are three ways in which a thread can be suspended. &Hilsead that begins evaluating an implicitly parallel
construct is suspended until the thread group has compl8tszbnd, a thread that invokes! or wait is suspended
until the spawned thread is complete. Finally, invoking titert function from within anatomic expression may
cause a thread to suspend; see Seftiord 32.3.

Threads in a Fortress program can perform operations simeously on shared objects. In order to synchronize data
accesses, Fortress providesomic expressions (see Section 13.23). Chdptér 21 describeseiimemy model which
is obeyed by Fortress programs.

Different implicit threads (even different iterations diet same loop body) may execute in very different amounts
of time. A naively parallelized loop will cause processarsdie until every iteration finishes. The simplest way to
mitigate this delay is to expose substantially more pdraitek than the number of underlying processors available to
run them. Load balancing can move the resulting (smalleit} wf work onto idle processors to balance load.

The ratio between available work and number of threads iedglarallel slack[3] [4]. With support for very
lightweight threading and load balancing, slack in hundredthousands (or more) proves beneficial; very slack
computations easily adapt to differences in the number ailadle processors. Slack is a desirable property, and the
Fortress programmer should endeavor to expose parallelisne possible.

4.5 Environments

An environmentmapsnamesto values or locations. Environments are immutable, andemoronments that map
exactly the same names to the same values or locations ateale

A program starts executing with an empty environment. Emrnents are extended with new mappings by variable,
function, and object declarations, and functional call(iding calls to object constructors). After initialigirall
top-level variables and singleton objects as describe@ i@ 22.6, theop-level environmerfor each component is
constructed.

The environment of a value is determined by how @aesstructed For all but object expressions, function expressions
and local function declarations, the environment of thestrmicted value is the top-level environment of the compbnen
in which the expression or declaration occurs. For objedtfanction expressions and local function declaratiores, th
environment of the constructed value is the lexical envitent in which the expression or declaration was evaluated.

We carefully distinguish a spawned thread from its assediapawned thread object. In particular, note that the

execution environment of a spawned thread, in which the leagyession is evaluated, is distinct from the environment
of the associated thread object, in which calls to the thmeathods are evaluated.

39

4.6 Input and Output Actions

Certain functionals in Fortress perform primitive inputijout (I/O) actions. These actions have an externally ldsib
effect. Any functional which may perform an 1/O action—eittbecause it is a primitive action or because it invokes
other functionals which perform 1/0 actions—must be desdlawrith the io modifier.

Any primitive I/O action may take many internal steps; eapsnay read or write any memory locations referred to
either directly or transitively by object references passearguments to the action. Each I/O action is free to cample
either normally or abnormally. 1/0O actions may block and bevpnted from taking a step until any necessary external
conditions are fulfilled (input is available, data has beeitten to disk, and so forth).

Each I/O action taken by an expression is considered panadEkpression’s effects. The steps taken by an I/O action
are considered part of the context in which an expressiocLggs, in much the same way as effects of simultaneously-
executing threads must be considered when describing trevtoe of an expression. For example, we cannot consider
two functionals to be equivalent unless the possible I/@astthey take are the same, given identical internal steps
by each I/0 action.

40

Chapter 5

Lexical Structure

A Fortress program consists of a finite sequence of Unicddl@lastract characters. Every character in a program is
part of an input element. The partitioning of the characegjuence into input elements is uniquely determined by
the characters themselves. In this chapter, we explain hewe&quence of input elements of a program is determined
from a program’s character sequence.

This chapter also describes standard waysmadler(that is,display) individual input elements in order to approximate
conventional mathematical notation more closely. Othésiupresented in later chapters, govern the rendering of
certainsequencesf input elements; for example, the sequence of three idputents1, /, and2 may be rendered
as%, and the sequence of three input element$, andb may be rendered’ . The rules of rendering are “merely”

a convenience intended to make programs more readablenatiteely, the reader may prefer to think of the rendered
presentation of a program as its “true form” and to think eftimderlying sequence of Unicode characters as “merely”
a convenient way of encoding mathematical notation for keyling purposes.

Most of the program text in this specification is shown in renedl presentation form. However, sometimes, particu-
larly in this chapter, unformatted code is presented toraiekiposition. In may cases the unformatted form is shown
alongside the rendered form in a table, or following the exad form in parentheses; as an example, consider the
operator¢ (OPLUS.

5.1 Characters

A Unicode 5.0 abstract character is the smallest elemerfoftaess prografi Many characters have standatgiphs
which are how these characters are most commonly depictedeter, more than one character may be represented
by the same glyph. Thus, Unicode 5.0 specifies a represemfati each character as a sequenceoafe pointsEach
character used in this specification maps to a single codd,pbésignated by a hexadecimal numeral preceded by
“U+". Unicode also specifies a name for each charagtenen introducing a character, we specify its code point and
name, and sometimes the glyph we use to represent it in te@figgation. In some cases, we use such glyphs without
explicitly introducing the characters (as, for examplethvihe simple upper- and lowercase letters of the Latin and
Greek alphabets). When the character represented by a iglypitlear and the distinction is important, we specify
the code point or the name (or both). The Unicode Standamdfmseageneral categoryor each character, which we
use to describe sets of characters below.

INote that a single Unicode abstract character may havepteubincodings. Fortress does not distinguish betweerreiiffeencodings of the
same character that may be used in representing sourceazwli tfreats canonically equivalent characters as ideint®ee the Unicode Standard
for a full discussion of encoding and canonical equivalence

2There are sixty-five “control characters”, which do not haveper names. However, many of them hakrécode 1.0 namesr other standard
names specified in the Unicode Character Database, whiclsevstead.

41

We partition the Unicode 5.0 character set into the follaydisjoint) classes:

e special non-operator characterg/hich are:

U+0026 AMPERSAND & U+0027 APOSTROPHE

U+0028 LEFT PARENTHESIS (U+0029 RIGHT PARENTHESIS)

U+002C COMMA , U+002E FULL STOP .

U+0038 SEMICOLON ; U+005C REVERSE SOLIDUS \

U+2026 HORIZONTAL ELLIPSIS ... U+21A6 RIGHTWARDS ARROW FROM BAR
U+2200 FOR ALL v U+2203 THERE EXISTS 3

U+27E6 MATHEMATICAL LEFT WHITE SQUARE BRACKET
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE BRACKHT

e special operator characteysvhich are

U+003A COLON : U+003D EQUALS SIGN =
U+005B LEFT SQUARE BRACKET| U+005D RIGHT SQUARE BRACKET]
U+005E CIRCUMFLEX ACCENT ~ U+007B LEFT CURLY BRACKET {
U+007C VERTICAL LINE | U+007D RIGHT CURLY BRACKET }
U+2192 RIGHTWARDS ARROW — U+21D2 RIGHTWARDS DOUBLE ARROW:

e letters which are characters with Unicode general category Lult.ll.m or Lo—those with Unicode general
category Lu areippercase letters-and the followingspecial letters

U+221E INFINITY 00 U+22A4 DOWN TACK T U+22A5 UP TACK L
e connecting punctuatiofiUnicode general category Pc);
e digits (Unicode general category Nd);
e prime characterswhich are:

U+2032 PRIME U+2033 DOUBLE PRIME
U+2034 TRIPLE PRIME U+2035 REVERSED PRIME
U+2036 REVERSED DOUBLE PRIME U+2037 REVERSED TRIPLE PRIME

e whitespace charactersvhich arespacegUnicode general category Zs) and the following characters

U+0009 CHARACTER TABULATION U+000A LINE FEED

U+000C LINE TABULATION U+000C FORM FEED

U+000D CARRIAGE RETURN

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE
U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE
U+2028 LINE SEPARATOR U+2029 PARAGRAPH SEPARATOR

e character literal delimiterswhich are:

U+0060 GRAVE ACCENT)
U+2018 LEFT SINGLE QUOTATION MARK
U+2019 RIGHT SINGLE QUOTATION MARK’

e string literal delimiters which are:

U+0022 QUOTATION MARK "
U+201C LEFT DOUBLE QUOTATION MARK *“
U+201D RIGHT DOUBLE QUOTATION MARK

e ordinary operator charactersenumerated (along with the special operator character&ppendixF, which
include the following characters with code points less tha007F:

42

U+0021 EXCLAMATION MARK! U+0023 NUMBER SIGN #

U+0024 DOLLAR SIGN $ U+0025 PERCENT SIGN %
U+002B PLUS SIGN + U+002D HYPHEN-MINUS —
U+003F QUESTION MARK ? U+0040 COMMERCIAL AT @
U+002A ASTERISK * U+002F SOLIDUS /

U+003C LESS-THAN SIGN < U+003E GREATER-THAN SIGN >

U+007E TILDE

and most (but not all) Unicode characters specified tonla¢ghematical operator§.e., characters with code
points in the range 2200-22FF) are operators in Fortress.

e other characters

Some other classes of characters, which overlap with the albeve, are useful to distinguish:
e control charactersare those with Unicode general category Cc;
e ASCII charactersre those with code points U+007F and below;

e printable ASCII charactersire ASCII characters that are not control characters (uigh, code points from
U+0020 to U+007E);

e word charactersare letters, digits, connecting punctuation, prime characand apostrophe;

e restricted-word characterare ASCII letters, ASCII digits, and the underscore chamfite., ASCIlI word
characters other than apostrophe);

e hexadecimal digitare the digits and the lettefs B, C, D, E andF;
e operator charactersre special operator characters and ordinary operatoactess;
e special characterare special non-operator characters and special opeteitaaters;

e enclosing characterare the enclosing operator characters enumerated in 8&€fipleft and right parenthesis
characters, and mathematical left and right white squarekets;

e operator combining charactersvhich combine to form multicharacter enclosing operatdens, are the fol-

lowing:

U+0028 LEFT PARENTHESIS (U+0029 RIGHT PARENTHESIS)

U+002A ASTERISK * U+002E FULL STOP .

U+002F SOLIDUS / U+003C LESS-THAN SIGN <

U+003E GREATER-THAN SIGN > U+005B LEFT SQUARE BRACKET |

U+005C REVERSE SOLIDUS \ U+005D RIGHT SQUARE BRACKET]
|

U+007B LEFT CURLY BRACKET { U+007C VERTICAL LINE
U+007D RIGHT CURLY BRACKET }

Forbidden Characters

It is a static error for a Fortress program to contain any mdrtharacter other than the above-listed whitespace
characters, except that the chara’eBSTITUTE(U+001A, also known as “control-Z”) is allowed and ignoréak i
is the last character of the program.

It is a static error for the following characters to occursidé a comment:

U+0009 CHARACTER TABULATION U+000C LINE TABULATION
U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE
U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE

43

Thus, LINE FEED, FORM FEERndCARRIAGE RETURHMTre the only control characters—and the only whitespace
characters other than spacés\\E SEPARATOR and PARAGRAPH SEPARATGRutside of comments in a valid
Fortress program.

It is a static error fOREVERSE SOLIDUSi.e., U+005C), any connecting punctuation other thawv LINE(i.e., ‘_;
U+005F, also known aS8PACING UNDERSCORRnNy character in the “other characters” class above sofaffowing
whitespace characters to appear outside of comments amgl atrd character literals:

U+2000 EN QUAD U+2003 EM SPACE U+2006 SIX-PER-EM SPACE
U+2001 EM QUAD U+2004 THREE-PER-EM SPACE U+2007 FIGURE SPACE
U+2002 EN SPACE U+2005 FOUR-PER-EM SPACE U+2008 PUNCTUATION SPACE
5.2 Words

A word of a Fortress program is a maximal contiguous nonempty sulesee of word characters; that is, a word is
one or more consecutive word characters delimited by ctensaother than word characters (or the beginning or end
of the program). Recall that a word character is a letteif,dignnecting punctuation, prime character or apostrophe
Note that words partition the word characters in a prograraryeword character belongs to exactly one word; words
do not overlap.

A restricted wordis a maximal contiguous fragment of a word that has only ietsti-word characters (i.e., ASCII
letters, ASCII digits and underscore characters). Noté dahastricted word might not be a word (i.e., if it is not
delimited by non-word characters) and that the restrictedtig/partition the restricted-word characters of a program

5.3 Lines, Pages and Position

The sequence of characters in a Fortress program is paetitiotolines and pages which are delimited byine
terminatorsandpage terminatorgsespectively. Apage terminatoiis an occurrence of the characl@dDRM_FEEDA
line terminatoris an occurrence of any of the following:

e aCARRIAGE RETURNMnmediately followed by &INE FEED,

e aCARRIAGE RETURNot immediately followed by.INE FEED,
e aLINE FEED notimmediately preceded WYARRIAGE RETURN
e aLINE SEPARATORoOr

e aPARAGRAPH SEPARATOR

A character in a program is on page(respectively linen) if there aren — 1 page terminators (respectively line
terminators) preceding that character in the program. Aathaer is on ling: of pagen if it is on pagen and there are

k — 1 line terminators preceding the character after the lastquiég page terminator (or from the beginning of the
program, if the character is on page 1).

A character is at line positioh if there arek — 1 characters preceding it and after the last preceding limeitator
(or from the beginning of the program, if the character isina IL). Note that a page terminator doex terminate a
line, and hence the character immediately following a pagainator need not be at line position 1.

As discussed in Sectidn 5.4, before any other processingrteeBs program undergoes a process c#lleé!l conver-

sion, which may replace sequences of ASCII characters withsifigin-ASCII) characters. We expect that IDEs will
typically display a program by rendering the converted sege of characters rather than the actual input sequence.
Thus, a program may appear to have fewer characters thamé#ligaloes. Nonetheless, the page, line and position of
a character is based on the program before conversion.

44

If a character (or any other syntactic entityprecedes another charactein the program, we say thatis to the left

of y and thaty is to the right of z, regardless of how they may appear in a typical renderedagigy the program.
Thus, it is always meaningful to speak, for example, of tiiieHand and right-hand operands of a binary operator, or
the left-hand side of an assignment expression.

5.4 ASCII Conversion

To facilitate interaction with legacy tools and particlyao aid in program entry, Fortress specifies an ASCII enagdi
for programs. For every valid Fortress program, there iscuivalent program that contains only ASCI|I char;cu@rs.
To support this encoding, a Fortress program underd@isSIl conversionwhich produces an equivalent Fortress
program. ASCII conversion is idempotent: converting a paogthat resulted from conversion results in the same
program. Unless otherwise specified, all constraints aopeties of Fortress programs stipulated in this specidinat
apply to the programs after they have been converted. Thimaeajives a high-level overview of ASCII conversion.

ASCII conversion consists of two steps. The first step cemsi“pasting” words across line breaks, so that long
identifiers and numerals can be split across lines. Idergtifigay be very long in ASCIl because many Unicode
characters are encoded with long sequences of ASCII cleasg(the actual conversion to Unicode characters is done
in the next step). Roughly speaking, in this step, two combex lines are pasted together if the first ends with
an ampersand that is immediately preceded by a word chgracig the second begins with an ampersand that is
immediately followed by a word character.

The second step replaces certain restricted words, aneéseggiof operator and special characters, with single Uni-
code characters. Roughly speaking, if a restricted wordtherethe official Unicode 5.0 name with underscores in
place of spaces and hyphens, or a specified alternative méusmne character that is not a printable ASCII character,
then the restricted word is replaced by that character. inescases, even a fragment of a restricted name may be
replaced by a single character (most commonly a Greek)efeme multicharacter sequences of ASCII operator and
special characters are also replaced by non-ASCII opevagpecial characters; we call such a sequ&®€lIl short-
hand However, this replacement it generally done within string literals, which instead pde#&scape sequences

to get non-ASCII characters (see Secfion 5.10).

Precise descriptions of both these steps are given in App@&hdncluding the rules for replacing fragments of re-
stricted words and the specification of alternative namesdo-operator characters. Alternative names for operator
characters are given in Appendik F.

5.5 Input Elements and Scanning

After ASCII conversion, a Fortress program is broken up infiut elementdy a process calleslcanninﬂ That is,
scanning transforms a Fortress program from a sequenceioddincharacters to a sequence of input elements. The
characters that comprise an input element always appetigaously in the input sequence. Every input element is
awhitespace elemerjtommentsre whitespace elements) otaken Every token is aeserved wordalliteral, an
identifier, anoperator tokenor aspecial token There are five kinds of literals: boolean literals, chagatiterals,
string literals, the void literal, and numerals (i.e., nuiméterals).

Conceptually, we can think of scanning as follows: Firsg tomments, character literals and string literals are
identified. Then the remaining characters are divided wtwds (i.e., contiguous sequences of word characters:
letters, digits, connecting punctuation, primes and appkes), whitespace characters, and other charactersmia s
cases, words separated by a singledr whitespace character (and no other characters) areddim form a single

3See AppendikE for the precise notion of equivalence guaeahby ASCII conversion.
4Fortress has a facility for defining new syntax, discusse@haptef35. However, except for that chapter, this spetidicgenerally ignores
this facility, and describes the Fortress language onlpfograms that use the standard Fortress syntax.

45

numeral (see Sectidn 5]13). Words that are not so joinedlassified as reserved words, boolean literals, numerals,
identifiers, or operator tokens, as described in later@egiin this chapter. It is a static error if any word in a Fagre
program cannot be classified as one of these. All remainirigegface characters, together with the comments, form
whitespace elements, which maylbee-breaking Finally, contiguous sequences of symbols (and a few ottexial
cases) are checked to see whether they form multichargoéeator tokens, as described in Seclion5.14, or the void
literal (see Section 5.12). Every other character is a tdkeitself, either a special token (if it is a special chargcte
or an operator token.

5.6 Comments

The character sequenceé«” and “x) " are referred to asomment delimitersin a valid program, every occurrence
of (x (outside of string literals) is balanced by a subsequenirence ofx) ; it is a static error if comment delimiters
are not properly balanced. All the characters between abathpair of comment delimiters, including the comment
delimiters themselves, comprise a single input elemefieccacomment Because comment delimiters are required
to be balanced, comments may be nested: only comments dbfirmdermost balanced pairs of comment delimiters
are considered input elements.

5.7 Whitespace Elements

Whitespace elements consist of comments, whitespaceatbes@nd ampersands. However, some whitespace char-
acters and ampersands might not be part of whitespace denheparticular, whitespace characters may occur within
string literals, character literals and numerals, and asgwels may occur within string literals and characterditer

We need to distinguistine-breaking whitespactrom non-line-breaking whitespacéVe adopt the following termi-
nology:

¢ A line-terminating commeris a comment that encloses one or more line terminators. tAlracomments are
calledspacing comments

e Spacingrefers to any nonempty contiguous sequence of spacesyl FEERharacters and spacing comments.

¢ A line breakis a line terminator or line-terminating comment that is inoediately preceded by an ampersand
(U+0026), possibly with intervening spacing.

e Whitespaceaefers to any nonempty sequence of spacing, ampersandggeliminators, and line-terminating
comments.

¢ Line-breaking whitespads whitespace that contains at least one line break.

It is a static error if an ampersand occurs in a program (&8Il conversion) unless it is within a character or string
literal or a comment, or it is immediately followed by a lirerminator or line-terminating comment (possibly with
intervening spacing).

5.8 Special Reserved Words

The following tokens arspecial reserved words

46

BIG SI_unit absorbs abstract also api as

asif at atomic bool case catch coerces
coercion component comprises default dim do elif
else end ensures except excludes exit export
extends finally fn for forbid from getter
hidden ident idiom if import in int
invariant io juxtaposition label largest nat object
of or opr private property provided requires
self settable setter smallest spawn syntax test
then throw throws trait transient try tryatomic
type typecase unit value var where while
widening widens with wrapped

The operators on units, namedybed, cubic, inverse, per, square, andsquared, are also special reserved words.
To avoid confusion, Fortress reserves the following tokens
goto idiom public pure reciprocal static

They do not have any special meanings but they cannot be ssddrdifiers.

5.9 Character Literals

A character literal consists of a sequence of charactetssgatin single quotation marks. The character that begins
a character literal is called the literabpening markthe character that ends it is itbosing mark For convenience,

the marks may be true typographical “curly” single quotatinarks (U+2018 and U+2019), a pair of apostrophe
characters (U+0027), or a “backquote” character (U+0066)am apostrophe character. As discussed in Sdctioh 13.1,
a character literal evaluates to a value of typkaracter (see Sectioh 817), which represents an abstract Unicode
character.

A left single quotation mark (U+2018) or a backquote beginkaracter literal unless it is within a comment, another
character literal, or a string literal. An apostrophe (U32Dbegins a character literal unless it is within a comment,
another character literal, or a string literal, or it is indiaely preceded by a word character (i.e.., a letter, digit
connecting punctuation, prime, or apostrophe). In eithsecthe character literal ends with the nearest apostaphe
right single quotation marhfter the first character following the opening mark. In particusan apostrophe or right
single quotation mark immediately following the openingrknaf a character literal isot a closing mark. Thus, for
example, the sequente is a single character literal with one enclosed character

It is a static error if any of the enclosed characters of aatter literal is a line feed, form feed, carriage return, or

any character forbidden outside comments in a Fortressqmoésee Sectidn 5.1), or if there is exactly one enclosed
character and it is a backslash (U+005C). It is also a static & any of the enclosed characters is a string literal de-

limiter that is not immediately preceded by a backslash, @eunescapedtring literal delimiter). This last restriction

is necessary to prevent ASCII conversion from changing thanfaries of string literals (see Appendix E).

The sequence of enclosed characters may be a single chigeagtea’, '$’ , ‘o', * @'), a sequence of four or more
hexadecimal digits identifying the code point of a Unicotlamacter (e.g.001C’, ‘FBAB’ , ‘1D11E’), the official Uni-
code 5.0 name or an alternative name of a Unicode charadtespaces and hyphens intact (e.gLUS-MINUS SIGN),
or acharacter-literal escape sequencknhe character-literal escape sequences, and the charagth character liter-
als evaluate to, are:

47

\b U+0008 BACKSPACE

\t U+0009 CHARACTER TABULATION

\n U+00OA LINE FEED

\f U+000C FORM FEED

\r U+000D CARRIAGE RETURN

\" U+0022 QUOTATION MARK

\\ U+005C REVERSE SOLIDUS

* U+201C LEFT DOUBLE QUOTATION MARK
\" U+201D RIGHT DOUBLE QUOTATION MARK

It is a static error if the sequence of enclosed characterstisne of the kinds listed above. In particular, it is a stati
error if the hexadecimal digits enclosed do not corresporiig code point of a Unicode 5.0 abstract character.

Note that ASCII conversion is performed within charactirhls. Thus a character literal written as
'"GREEK.CAPITAL_LETTERLAMBDA'’

is equivalent to a character literal written as
A

Note also that names for control charactersraeconverted during ASCII conversion, but thage permitted within
character literals. Both the standard form of such names (ith spaces and hyphens) and the form with spaces and
hyphens replaced by underscore characters are permitted.

5.10 String Literals

A string literal is a sequence of characters enclosed inléayumtation marks (for examples t 2” or "Hello, world!").
The character that begins a string literal is the literapening markthe character that ends it is ithosing mark For
convenience, the opening and closing marks of a stringaliteay be either true typographical “curly” double quo-
tation marks (U+201C and U+201D) or a pair of “neutral” dasgluote characters. It is a static error if the opening
and closing marks of a string literal do not “match”, thatiigine is “curly” and the other “neutral”. As discussed in
Sectior] 13.11, a string literal evaluates to a value of tgpeéng (see Sectioh 817), which represents a finite sequence
of abstract Unicode characters.

A left double quotation mark (U+201C) or “neutral” quotationark (U+0022) begins a string literal unless it is
within a comment, a character literal, or another stringréit. It ends with the nearest following unescaped (i.e.,
not immediately preceded by backslash) right double gigstahark or “neutral” quotation mark. Therefore, it is
not possible for a string literal to include an unescapeltritpuble quotation mark or “neutral” quotation mark as
an enclosed character. In addition, it is a static error fouaescaped left double quotation mark to be an enclosed
character of a string literal.

Within a string literal, a backslash introducesemtape sequengcenless it is immediately preceded by an odd number
of backslashes, in which case the backslash is itself edcafieere are three kinds of escape sequences recognized
within a string literal: the character-literal escape sames (see Sectibn b.9¢stricted-word escape sequencasd
quoted-character escape sequences

A restricted-word escape sequence consists of an unesbagk&dlash immediately followed by a restricted word
not beginning with a lowercase letter. After ASCII conversiit is a static error for a string literal to contain any
restricted-word escape sequence other thBACKSPACE, “\TAB ", “\NEWLINE", “\FORMFEED, or “\RETURN.

A quoted-character escape sequence consists of an undsmgelash immediately followed by an apostrophe and
the sequence of characters immediately following the appke up to and including the next apostrophe. Note that
this kind of escape sequence looks just like a backslasbmietl by a character literal. It is a static error if such a

sequence with the initial backslash removed would not bdid gharacter literal (see Sectibn 5.9). Quoted-character

48

escape sequences are useful for ASCII “shorthands” thah lveth a lowercase letter or are not restricted words,
and when the escape sequence is immediately followed intting $y a letter, digit, or underscore. For example,
"\beta" evaluates to a string containing a backspace charactecdted by\b) followed by the letterg, t , anda,
but"\'beta™ evaluates to a string containing the single Ie,ﬁ‘rAs another exampléx\ANDV'NOT'y" becomes

"x A—y", but"x\AND\NOTy" is a static error, because the nanN®©Ty’ does not correspond to a Unicode character.
Also, the string’Foo\V'[V T\\]™ becomesFoo [T]".

It is a static error if an unescaped backslash is immedidtdiywed by a character other than another backslash, an
apostrophe, a string literal delimiter, or a restricted-dvcharacter. In addition, it is also a static error if an waged

backslash within a string literal is followed by any lowesedetter other tharb’, ‘t’, ‘n’, ‘f’ or ‘r’. This rule
preserves a certain level of compatibility with the C andaJarogramming languages.

Unlike elsewhere in a program, the enclosed characters tirm diteral arenot generally subject to the second
phase of ASCII conversion (word pasting across line tertonsastill occurs within string literals). However, ASCII
conversion may affect (and often replace) restricted-vaord quoted-character escape sequences. Specifically, the
restricted word of a restricted-word escape sequence andetjuence of characters between the apostrophes of a
guoted-character escape sequence are subject to ASCHBrsamv. If that sequence of characters would be replaced
by a single Unicode character, then the entire escape segjigeneplaced by that character, unless the replacement
character is a string literal delimiter, in which case theage sequence is replaced by a backslash followed by the
replacement character. For example, the string lit&¥§aMMA"is unchanged by ASCII conversion, BMGAMMA" and
"WGAMMA™ are both changed ta™ . The string literal\GAMMA" is also unchanged by ASCII conversion, because
the sequence is an escaped backslash; this string literal evaluates tiang ¥alue consisting of the six characters:

\, G A M M andA. See Appendik E for a detailed discussion of the ASCII caosieerprocess.

The formatting of identifiers and numerals described ini8ef.17 is not performed within string literals.

5.11 Boolean Literals

The boolean literals argulse and true.

5.12 The Void Literal

The void literal is() (pronounced “void”).

5.13 Numerals

Numeric literals in Fortress are referred toragnerals Numerals may be eithaimpleor compound
A numeral may consist of several words separated by spa@es bcharacter. We adopt the following terminology:
e A simple numeral fragmens a word that begins with a digit. and consists of only lettend digits.

e A compound numeral fragmeista simple numeral fragment immediately followed by. acharacter immedi-
ately followed by a word that consists of only letters andtdig

e Asequence of characters imameral prefixf it is either a numeral fragment (simple or compound) or metal
prefix immediately followed by a space immediately followsda numeral fragment (simple or compound).

5Actually, the escape sequendeeta’ is replaced bys during ASCII conversion.

49

A radix specifierconsists of an underscore immediately followed either bgquence of one or more digits or
by the English name in all uppercase ASCII letters of an ietégpm 2 to 16.

e A simple numeral basie a word that consists only of letters and digits immedief@lowed by a radix specifier.
The radix of a simple numeral base is the value corresponding to theeseg of digits in radix specifier
interpreted in base ten, or the value of the integer whosdigbngame is spelled out by the radix specifier. It is
a static error if the radix is 0 or 1.

e A compound numeral base a word that consists only of letters and digits immedjafellowed by a *.’
character immediately followed by a simple numeral base.

e A numeralin a Fortress program is a maximal contiguous subsequentesthither a numeral base (simple or
compound), a numeral prefix or a numeral prefix immediatelpieed by a space immediately followed by a
numeral base (simple or compound).

A numeral issimpleif it does not contain a ‘. character; otherwise, the numbe&ompound It is a static error if a
numeral contains more than one ‘.’ character.

Here are some examples of numerals, shown in unformatted for

17 7fff_16 Offf SIXTEEN 1fab 10101101 2 3.14159265
0.a FF_EIGHT Kk12.52_24 P 50 DEAD.BEEF 16 PI_FIFTEEN

5.14 Operator Tokens

In this section, we describe how to determine the operal@m® of a program. Because operator tokens do not occur
within comments, string literals and character literals, wenceforth in this section consider only characters tteat a
outside these constructs.

An operator wordof a program is a word that is not reserved, consists only peugase letters and underscores (no
digits or non-uppercase letters), does not begin or endamthnderscore, and has at least two different letters.

A base operatois an ordinary operator charadfithe two-character sequence ”, an operator word, a (contiguous)
sequence of two or more vertical-line characters (U+000€)x multicharacter enclosing operator, as defined in
Sectior] 5.14]1. A base operatomiximalof a program if it is not contained within any other base opmeraf that
program. It is a static error if two maximal base operatomsriap (which is only possible if both are multicharacter
enclosing operators). Aimple operatoiis a maximal base operator that is an operator charactetwtieharacter
sequences* ", or an operator word.

A maximal base operator is an operator token unless it is plsioperator other than an enclosing or vertical-line
operator character, and it is immediately preceded by “inumediately followed by ='. Such an operator is an
enclosing operatoif it is an enclosing operator character (see Sedtioh F.B) multicharacter enclosing operator; it
is avertical-line operatorif it has only vertical-line operator characters (see $&¢E.2); otherwise, it is aardinary
operator.

If a simple operator is immediately preceded by ' then thddllowed by the simple operator is an operator token;
such an operator token is calledsaperscripted postfix operatotn addition, “* 7" is also a superscripted postfix
operator provided that it is not immediately followed by ard/oharacter. It is a static error for a superscripted postfix
operator to be immediately followed by a word character othan apostrophe.

Finally, if a simple operator is not immediately preceded’bgnd is immediately followed by=' then the simple
operator followed by the=" is an operator token; such an operator token is calledrapound assignment operator

6The operator characters are enumerated in Appéndix F Hesspecial operator characters listed in Se¢fioh 5.1.

50

5.14.1 Multicharacter Enclosing Operators

The following multicharacter sequences (in which there thesno other characters, and particularly no whitespace)
can be used as brackets as described below:

1. Any contiguous nonempty sequence of vertical-line attara is a vertical-line operator. Such an operator can
be used in an enclosing pair matching itself.

2. Anyof ‘C or [or * {" may be immediately followed by any number @f ‘characters or by any number df*
characters. Such a token is a left bracket, and it is matchdkdebmulticharacter token consisting of the same
number and kind of/*’ or ‘\ ' characters followed immediately by a matching ‘)’ or ‘]’ 6}, as appropriate.
Thus, for example, (f//// " and “////) " are matching left and right brackets respectively. (In theire,
we may allow tokens with mixtures of * and ‘\ ’, in which case the left and right brackets should match from
outside in. But for now, such tokens are simply illegal.)

3. One or more<’ characters may be followed immediately by one or m¢recharacters. Such a token is a left
bracket, and it is matched by the multicharacter token stingj of the same number df* characters followed
by as many>’ characters as there are’‘characters in the left bracket.

4. One or more<’ characters, or one or mor¢ " characters may be followed immediately by one or mdre *
characters or by one or more’ ‘characters. Such a token is a left bracket, and it is matblgelde multicharacter
token consisting of the same number aypositekind of ‘/ ’ or ‘\ ’ characters followed immediately by as
many matching>’ or ‘| ’ characters as appropriate. Thus, for exampte/f " matches f\>> ', and “\\\ "~
matches f//| . (Asin casd 2 above, we may allow tokens with mixtures/ofdnd ‘\ * in the future.)

5. Finally, any number of*’ (U+002A) or ‘.’ (U+002E) characters may be placed within any of the above
multicharacter sequences, except those that contain ‘[, @s long as o+’ or ‘. ' is the first or last character
in the sequence, and ne’*or ‘. ' characters are adjacent. The rule for matching is as alept that in
addition, the positions of the ' and the . ’ characters must match from the outside in.

Note that some of the character sequences described abmvet eeccur in programs after ASCII conversion. For
example, f| " is converted to [|’ (U+2016). Note also that \] (which are converted th]) are not operators;
they play a special role in the syntax of Fortress, and tregiialsior cannot be redefined by a library.

5.14.2 Special Operators

Note that in the preceding discussion, a single operatoacker can be an operator token only if it is an ordinary oper-
ator character. In some cases, some of the special opehati@aters (and even some special non-operator characters)
form part of an operator token. However, most of the spegalator characters cannot be determined to be operators
before parsing the program because they are also used fousgrarts of Fortress syntax. The one exception is "

if an occurence of this character is not part of a supersdipostfix operator, then it is an operator token by itself:
the speciabuperscripting operatorThis operator is always an infix operator, and it is a statioref it appears in a
context in which a prefix or postfix operator is expected.

Every other special operator character, when not part ofpanador token, is a special token that may be used as an
operator. There is also a specialxtaposition operator (described in Sectibn 16.7), which is also alwafjs,ibut

this operator is a special reserved word rather than an mpaoken. Occurrences of this operator are determined by
the Fortress grammar. The special reserved watdscubed, cubic, inverse, per, square, andsquared, are used

as operators on units.

5.15 Identifiers

A word is an identifier if it begins with a letter and is not agesed word, an operator, or all or part of a numeral.

51

5.16 Special Tokens

Every special character (operator or non-operator) thattipart of a token (or within a comment) as described above
is aspecial tokerby itself. The special operator characters may be operatdng appropriate context.

5.17 Rendering of Fortress Programs

In order to more closely approximate mathematical notafiamtress mandates standard rendering for various input
elements, particularly for numerals and identifiers, aifipd in this section. In the remainder of this specification
programs are presented formatted unless stated otherwise.

5.17.1 Fonts
Throughout this section, we refer to different fonts or esyin which certain characters are rendered, with names
suggestive of their appearance.
e roman
e italic
e math (often identical to italic)
e script
o fraktur
e sans-serif
e italic sans-serif
e monospace
e double-struck
Additionally, the following fonts may be specified to be botfdman, italic, script, fraktur, sans-serif, italic segesif.

However, a particular environment may substitute diffefents either because of local practice or because theadkesir
fonts are not available.

5.17.2 Numerals

A numeral is rendered in roman type, with the radix, if présas a subscript.

27 isrendered as 27
7FFF_16 isrendered as 7FFFRg

10101101 TWO isrendered as 101011011wo

37X8E2_.12 isrendered as 37X8E2,

deadbeef _SIXTEEN isrendered as deadbeef|xTeeNn
dead.beef _16 isrendered as dead.begf
3.143159265 is rendered as 3.143159265
3.11037552 8 isrendered as 3.1137552g
3.243f6b _16 isrendered as 3.243f6hg
11.001001000011111101101010 2 isrenderedas 11.001001000011111101101010,

52

Note: the elegant way to write Avogadro’s numbe6i®2 TIMES 10723 , which is not a single token but is a
constant expression; its rendered forn6ig2 x 1023 .

5.17.3 Identifiers

Fortress has rather complicated rules for rendering artifd@nas in other parts of Fortress, the rules are comgitat
so that the simple cases will be very simple, but also so fiffatudt cases of interest will be possible.

It is conventional in mathematical notation to make use oifaldes, particularly single-letter variables, in a numbe
of different fonts or styles, with italic being the most comm then boldface, and roman; b, c¢. Frequently such
variables are also decorated with accents and subscriptsy’, #, Tmax, U, Vx, w17, Z,. FoOrtress provides
conventions for typing such variables using plain ASClIrelaters: for example, the unformatted presentations of
these same variables aee, b, c_, p_bar , 9 or g_prime , r_hat , T_max, _u vec, Vv x, wl7,

and z17_bar . The rules are also intended to accommodate the typical fuseilticharacter variable names for
computer programming, such asunt, isUpperCase, andBoolean.

The most important rules of thumb are that simple variabtesuaually italicz (z), a leading underscore usually
means boldface font (_z), a trailing underscore usually means roman fentz_), and a doubled capital letter
means double-struck (or “blackboard bold”) fofit (ZZ). However, mixed-case variable names that begin with
a capital letter, which are usually used as names of typesregrdered in roman font even if there is no trailing
underscore.

The detailed rules are described in Apperidix D.

5.17.4 Other Formatting Rules

Special reserved words are rendered in monospace, exegphéhspecial reserved words that are used as operators
on units, namelycubed, cubic, inverse, per, square, andsquared, are rendered in roman type. Operator words
are rendered in monospace. Comments are rendered in romarAfoy character within a character literal or string
literal is rendered in monospace if possible. Delimitersyftax expanders (described in Section B6.1) are rendered
in monospace.

53

Chapter 6

Declarations

Declarationsintroducenamed entitieswe say that a declaratiateclaresan entity and a name by which that entity
can be referred to, and that the declared nasfers tothe declared entity. As discussed later, there is not a oee-o
correspondence between declarations and named entitiese declarations declare multiple named entities, some
declare multiple names, and some named entities are dédgmultiple declarations.

Some declarations contain other declarations. For exaraptait declaration may contain method declarations, and a
function declaration may contain parameter declarations.

Syntactically, the positions in which a declaration mayalggappear is determined by the nontermibadcl in the
Fortress grammar, defined in Appendik G.

6.1 Kinds of Declarations

Syntax:
Decl := TraitDecl
| ObjectDecl
| FnDecl
| VarDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl

There are two kinds of declaratiortsp-level declarationandlocal declarations

Top-level declarations occur at the top level of a prograncémnponent), not within any other declaration or expres-
sion. A top-level declaration is one of the followiHg:

e trait declarations (see Chapfér 9)
e object declarations (see Chaptet 10), which may be parasimedeor nonparameterized

¢ top-level function declarations (see Chapter 12), inelgdbp-level operator declarations (see Chdptér 16)

1The Fortress component system, defined in Chapler 22, issldeclarations afomponentandAPIs Because component names are not used
in a Fortress program and APl names are used only in qualiietes and declarations ahport and export, we do not discuss them in this
chapter.

54

top-level variable declarations (see Section 6.2)

dimension declarations (see Chapter 18)

unit declarations (see Chapter 18)

top-level type aliases (see Section 8.9)
test declarations (see Chagtef 19)

top-level property declarations (see Chaptér 19)
Local declarations occur in another declaration or in sormeession (or both). These may be one of the following:
e method declarations (see Section 9.2): these occur iramdibbject declarations and object expressions

o field declarations (see Section 10.2): these occur in odrlarations and object expressions, and include field
declarations in the parameter list of an object declaration

e local function declarations (see Section|6.4): these oicchliock expressions

e local variable declarations (see Secfion 6.3): these dndulock expressions

e local property declarations (see Chaptdr 19): these onduait and object declarations and object expressions
e labeled blocks (see Sectibn 13.13)

e static-parameter declarations, which may declare typarpeters,nat parameters,int parameterspbool
parametersdim parametersynit parametersppr parameters, otdent parameters (see Chaptet 11): these
occur in static-parameter lists of trait and parameteriaejgct declarations, top-level type aliases, top-level
function declarations, and method declarations

e hidden-type-variable declarations: these occustiere clauses of trait and object declarations, top-level func-
tion declarations, and method declarations

e type aliases invhere clauses: these occur ithere clauses of trait and object declarations, top-level fuomcti
declarations, and method declarations

e (value) parameter declarations, which may be keywordpater declarations: these occur in parameter lists of
parameterized object declarations, top-level functiotiatations, method declarations, local function declara-
tions, and function expressions (but do not include nosteart parameter declarations in the parameter list of
an object declaration, which are field declarations)

Some declarations are syntactic sugar for other declasatibhroughout this chapter, we consider declarations afte

they have been desugared. Thus, apparent field declaratitnagt declarations are actually method declarations (as

described in Section 9.2), and a dimension and unit de@aratay desugar into several separate declarations (as
described in Sectidn 38.3). After desugaring, the kindseafarations listed above are disjoint.

In addition to these explicit declarations, there are twsesan which names are declared implicitly: The special name
self is implicitly declared as a parameter by some method deasa See Sectidn 9.2 for details about whes £

is implicitly declared. The nameesuit is implicitly declared by the ensures clause of a contraee Sectioh 12]4
for a discussion of contracts.

Trait declarations, object declarations, top-level typasaes, type-parameter declarations, and hidden-typahla
declarations are collectively callégpe declarationsthey declare names that refetypes(see Chaptén 8). Dimension
declarations andiim -parameter declarations adlenension declaration@nd unit declarations andnit -parameter
declarations aranit declarations Parameterized object declarations, top-level functieciatations, method declara-
tions, and local function declarations are collectiveljezbfunctional declarationsNonparameterized object declara-
tions, top-level variable declarations, field declaragidocal variable declarations, and (value) parameterdaiibns
(including implicit declarations ofself) are collectively calledrariable declarations Nonparameterized object

55

declarations are also callsthgleton object declaration$tatic-parameter declarations and hidden-type-varidét-
larations are collectively callestatic-variable declarationsNote that static-variable declarations are disjoint from
variable declarations.

The groups of declarations defined in the previous parageepheither disjoint nor exhaustive. For example, labeled
blocks are not included in any of these groups, and an obgataration is both a type declaration and either a function
or variable declaration, depending on whether it is paranzsd.

Most declarations declare a single name given explicitithandeclaration (though, as discussed in Se¢tioh 7.1, they
may declare this name in multiple namespaces). There is xeepton: wrapped field declarations (described in
Section 10.R) in object declarations and object expressienlare both the field name and names for methods provided
by the declared type of the field.

Method declarations in a trait may be eitladrstractor concrete Abstract declarations do not have bodies; concrete
declarations, sometimes callddfinitions do.

6.2 Top-Level Variable Declarations

Syntax:
VarDecl = Vars(=|:=) Expr
| VarWTypes
| VarWoTypes TypeRef.. [(=]|:=) Expr]
| VarWoTypes SimpleTupleTypf = |:=) Expr]
Vars = \Var
| (Var(, Van™)
Var = VarMod* Id [IsTypé
VarWTypes = VarWType
| (VarWTypg(, VarWTypg™)
VarWType ;= VarMod* Id IsType
VarWoTypes = VarWoType
| (VarWoTypd, VarWoTypg")
VarWoType = VarMod* Id
SimpleTupleType ::= (TypeRef TypeRefLis})
TypeRefList = TypeRef(, TypeRef*
VarMod := var | UniversalMod
IsType = : TypeRef

A variablés name can be any valid Fortress identifier. There are faum$mf variable declarations. The first form:
id : Type = expr

declaresid to be an immutable variable with static typléype whose value is computed to be the value of the
expressiorezpr. The static type okzpr must be a subtype dfype.

The second (and most convenient) form:
id = expr

declaresid to be an immutable variable whose value is computed to beahmof the expressionzpr; the static
type of the variable is the static type afpr.

The third form:

var id : Type = expr

56

declaresid to be a mutable variable of typEype whose initial value is computed to be the value of the exjwass
expr. As before, the static type aftpr must be a subtype dfype. The modifiervar is optional when {="is used
instead of =" as follows:

[var] id : Type := expr

The first three forms are referred toawiable definitions The fourth form:
[var] id : Type

declares a variable without giving it an initial value (whenutability is determined by the presence of ther
modifier). It is a static error if a variable is referred to dwef it has been given a value; an immutable variable is
initialized by another variable declaration and a mutalaleable is initialized by assignment. It is also a statioerr

if an immutable variable is initialized more than once. WinaT a variable bound in this manner is assigned a value,
the type of that value must be a subtype of its declared tyjh¥s form allows declaration of the types of variables
to be separated from definitions, and it allows programnedetay assigning to a variable before a sensible value is
known.

In short, immutable variables are declared and initializgt="and mutable variables are declared and initialized by
‘.=’ except when they are declared as the third form above wehribdifier var .

All forms can be used withuple notationto declare multiple variables together. Variables to dectae enclosed in
parentheses and separated by commas, as are the typesdiéatahem:

(id[, id]*) : (Type[, Type] ")

Alternatively, the types can be included alongside thegetye variables, optionally eliding types that can berirgé
from context (see Chapter]20 for a discussion of type infezén Fortress):

(id[: Type][, id[: Type]]™)
Alternatively, a single type followed by." .’ can be declared for all of the variables:
(id[, 1d]"): Type. ..
This notation is especially helpful when a function apgimareturns a tuple of values.
Here are some simple examples of variable declarations:
m = 3.141592653589793238462643383279502884197169399375108209749445923078
declares the variable to be an approximate representation of the mathematicatbhj. It is also legal to write:
m:R64 = 3.141592653589793238462643383279502884197169399375108209749445923078
This definition enforces that has static typeR64 .
In the following example, the declaration of the type of aafle and its definition are separated:

7 : Float
7 = 3.141592653589793238462643383279502884197169399375108209749445923078

The following example declares multiple variables usingeuwotation:
var (z,y):7Z64... = (5,6)
The following three declarations are equivalent:

(x,y,2) : (264,764,764) = (0,1,2)
(x: 764, y: 764, 2: 764) = (0,1,2)
(x,y,2) 1 Z64...=(0,1,2)

Special syntax is provided for declaring variables to béspaira matrix, as described in Sectlonl6.5.

57

6.3 Local Variable Declarations

Syntax:
LocalVarDecl = LocalVars(=|:=) Expr
| LocalVarWTypes
| LocalVarWoTypes TypeRef.. [(=|:=) Expi]
| LocalVarWoTypes SimpleTupleTypl = | :=) Expr]
LocalVars == LocalVar
| (LocalVar(, Localvant)
LocalVar == LocalVarWType
| LocalVarWoType
LocalVarWTypes := LocalVarWType
| (LocalVarWTypd , LocalVarwWTypg")
LocalVarWType := [var]IdIsType
LocalVarWoTypes ::= LocalVarWoType
| (LocalVarWoTypé, LocalVarWoTypg")
LocalVarWoType := [var]ld
| Unpasting

Variables can be declared within block expressions (desdrin Sectioh 13.11) via the same syntax as is used for
top-level variable declarations (described in Sedtio).6%local variable declaration must not appear as the last of
the block expression.

6.4 Local Function Declarations

Syntax:
LocalVarFnDecl := Id ValParam[IsTypg[Throwg = Expr

Functions can be declared within block expressions (destiin Sectioh 13.11) via the same syntax as is used for top-
level function declarations (described in Chaptér 12) pxtieat locally declared functions must not include modifjer
contracts, static parameters, ahere clauses (described in Chapted 11). As with top-level funrctieclarations,
locally declared functions in a single scope are allowedeamberloaded and mutually recursive. A local function
declaration must not appear as the last of the block exjressi

6.5 Matrix Unpasting

Syntax:

Unpasting = [L-Elt (Paste L-Ely*]
L-Elt = Id[[L-ArraySizg]

| Unpasting
L-ArraySize := L-Extent(xL-Exten)*
L-Extent = Expr

| Expr: Expr

\ Expr# Expr
Paste = (Whitespace ;)"

Matrix unpasting is an extension of variable declarationtay as a shorthand for breaking a matrix into parts. On
the left-hand side of a declaration, what looks like a magbasting of unbound variables is actually a declaration of

58

several new variables. This syntax serves to break the-highdl side into pieces and bind the pieces to the variables.
Matrix unpastings are concise, eliminate several oppditsnfor fencepost errors, guarantee unaliased parts, and
avoid overspecification of how the matrix should be takentapa

The motivating example for matrix unpasting is cache-ablig matrix multiplication. The general plan in a cache
oblivious algorithm is to break the input apart on its latghsiension, and recursively attack the resulting smalter a
more compact problems.

mm[nat m,nat n,nat p](left : R™*" right : R"*P result : R™>*P): () = do
case largest of
L = resulty o += (lefty oright)
m = [lefttop
leftbottom | = left
[resulttop
resultbottom | = result
t; = spawn do mm(lefttop, right, resulttop) end
mm(leftbottom, right, resultbottom)
t1.wait()
p = [rightleft rightright | = right
[resultleft resultright | = result
t; = spawn do mm(left, rightleft, resultleft) end
mm(left, rightright, resultright)
t1.wait()
n = [leftleft leftright] = left
[righttop
rightbottom | = right
mm(leftleft, righttop, result)
mm(leftright, rightbottom, result)
end
end

In unpasting, the element syntax is slightly enhanced bmihermit some specification of the split location and to
receive information about the split that was performed. é&s@mple, perhaps only the upper left square of a matrix is
interesting. The programmer can annotate bounds to theesqnpasted element:

foo[nat m,nat n](A:R™*"):() =do
if m < n then
[square,,, ., rest] = A

elif m > n then
rest] = A

else (x A already square)
square = A

end
end

The types of the elements of the newly declared matrix viegabn the left-hand side of an unpasting are inferred
(trivially) to be the type of the elements on the right-haitbks

If an unpasting into explicitly sized pieces does not exaatlver the right-hand-side matrix, dmpastingException
is thrown.

59

Each element of the left-hand-side of unpasting includesional extent specificatian An extent specification
low # num describes the indexing and the size of the given part of thexndhe lower extent must be bound, either
before the unpasting, or earlier (left-or-above) in theastimg. For example, suppose that an algorithm chooses to
break a matrix into 4 pieces, but retain the original indicesach piece:

bar[nat p,nat ¢ (X : R’"O#WCO#‘I) () =do
[A
C

To#m Xco#n Bm#m ><c0+n#q—n

=X

ro+m#p—m X co#n Drg-i—m#p—m X co +n#q—n

end

Unpasting does not directly support non-uniform decontpmsiand does not provide any sort of constraint satisfac-
tion between the extents of the parts. For example, thewollp decomposition is not legal because it constrains the
split sizes to be equal with respect to unbourxt parameters:

(+ Not allowed!x)
fubar[nat m,nat n](X :R™*™):() =do
(+ p and g unbouné)
[Apxq Bpxg
Cpxq Dpxql =X

end

To get this effect, the programmer should compute the caingtd values:

fubar[nat m,nat n](X : R?™*27): () = do

[Amxn Brixn
Cm.xn Dmxn] =X

end
Some non-uniform unpastings can be obtained with compositvhich can be expressed either by repeated unpasting:

unequalRows[nat m,nat n](X : R*™*?") = do

[Cl4m><n 624m><n] =X
[Amxn

C3m><n] =cl
[B3m><n

Dinxn] =2

end
or simply by nesting matrices in the unpasting:

unequalRows[nat m,nat n](X : R*™*4") = do
HAanBmxdn]
[me?mDan] } =X

end

60

Chapter 7

Names

Names are used to refer to certain kinds of entities in a &sstprogram. Names may be simple or qualified. A simple
name is either an identifier or an operator. An operator magrbeperator token, a special token corresponding to
a special operator character. A qualified name consists éffimame followed by “”, followed by an identifier,
where an APl name consists of a sequence of identifiers deddg “.” tokens. Note that operators may not be
gualified. Except in Sectidn 4.3, we consider only simple esin this chapter.

Simple names are typically introduced by declarationsctvhind the name to an entity. In some cases, the declaration
is implicit. Every declaration has a scope, in which the dezrl name can be used to refer to the declared entity.

7.1 Namespaces

Fortress supports three namespaces, one for types, onalf@sy and one for labels. (If we consider the Fortress
component system, there is another namespace for APIs.3eTieEmespaces are logically disjoint: names in one
namespace do not conflict with names in another.

Type declarations, of course, declare names in the type sane. Function and variable declarations declare names
in the value namespace. (This implies that object namesemiargd in both the type and value namespaces.) Labeled
blocks declare names in the label namespace. Although tteeya all type declarations, all the static-variable
declarations declare names in the type namespace, as dositimeleclarations. In additiomnit parametersnat
parametersint parameters anébool parameters are also declared in the value namespace.

A reference to a name is resolved to the entity that the nafeesréo the namespace appropriate to the context in
which the reference occurs. For example, a name refers toehifeand only if it occurs immediately following the
special reserved wordxit . It refers to a type if and only if it appears in a type contadagcribed in Chaptén 8).
Otherwise, it refers to a value.

7.2 Reach and Scope of a Declaration

In this section, we define tireachandscopeof a declaration, which determine where a declared name maxséd

to refer to the entity declared by the declaration. It is éic&ror for a reference to a name to occur at any point in
a program at which the name is not in scope in the approprateespace (as defined below) unless the context is a
value context and the name is the name of a field or method @iiteotr object whose name is in scope in the type
namespace.

61

We first define a declarationteach The reach of a labeled block is the block itself. A methodla®@tion not in

an object expression or declaration must be in the dedterati some traitl’, and its reach is the declaration 6f

and any trait or object declarations or object expressioatdxtendl”; that is, if the declaration of traif’ contains a
method declaration, and tret extends traifl", then the reach of that method declaration includes theadsan of
trait S. The reach of any other declaration is the smallest blodktlsticontaining that declaration (i.e., not just the
declaration itself). For example, the reach of a top-leeallaration is the component containing that declaratioa, t
reach of a field declaration is the enclosing object dedtarair expression, the reach of a parameter declaration is
the functional declaration or function expression in whpaeameter list it occurs, and the reach of a local variable
declaration is the smallest block in which that declaratioours. We say that a declaratiggachesany point within

its reach.

It is a static error for two declarations with overlappingehes to declare the same name other thart (even if the
name is declared in different namespaces) unless one abltbeiing conditions holds:

e both declarations are functional declarations with theeseaach,
e both declarations are method declarations that occurferdift trait declarations,

e one declaration is a field or keyword-parameter declaratioose reach is strictly contained in the reach of the
other declaration, or

e one declaration is a method declaration that is provided.by 6ccurs in or is inherited by) some trait or object
declaration or object expression that is strictly contdiimethe reach of the other declaration.

If either of the first two conditions holds, or if one declaoatis a field or method declaration that occurs in an object
declaration or expression that inherits the other dedtargtvhich therefore must be a method declaration), then the
two declarations areverloadedand subject to the restrictions on overloading (see Chi&gle

If two declarations with overlapping reaches declare timeesaame in the same namespace, and the declarations are
not overloaded, then at any point that their reaches oveola@ declaratioshadowshe other for that name in that
namespace; we may omit the name and namespace when it i$rol@azontext. Shadowing is permitted only in the
following cases:

e In a trait or object declaration, any declaration in a blonklesing the declaration is shadowed if it declares a
name of a field or method provided (declared or inheritedhisyttait or object being declared.

¢ In a method declaration that does not give an explicit narherdhanself for the self parameter, any declara-
tion of self (including implicit declarations) in a block enclosing tfield or method declaration is shadowed.

e In the ensures clause of a contract, any declaration ®fsuit in a block enclosing theensures clause is
shadowed.

¢ In a function or method declaration with keyword parametany declaration in a block enclosing the declara-
tion is shadowed if it declares the name of any of the keywardimeters.

We say that a name is scopein a namespace at any point in the program within the reachdwcéaration that
declares that name in that namespace unless one of theift@enditions holds:

e the declaration is shadowed for the name in that namespace,

e the declaration is a variable declaration, the namespatteisalue namespace, and the program point is in
the initial-value expression of the declaration or an @titialue expression of another declaration that is in the
smallest lexical block enclosing the declaration and lkjgprecedes the declaration in that block.

Note that the last condition applies to the method namesdetby a wrapped field declaration.

We say that thecopeof a declaration for a name in a namespace consists of thass powhich the name is in scope
for the namespace and the declaration is not shadowed tardhee and that namespace. Again, when itis clear from
context, we may omit the name and namespace.

62

7.3 Qualified Names

Fortress provides a component system in which the entigetaced in a component are described by an API. A
component maymport APIs, allowing it to refer to these entities declared by thparted APIs. In some cases,
references to these entities mustdpmlifiedby the APl name. These qualified hames can be used in any plaica t
simple name would be used had the entity been declaredlgire¢he component rather than being imported. Note

that qualified names are distinguished from simple name&éyntlusion of a “ ” token, so they never shadow, nor
are they shadowed by, simple names. For further discussiéPts and the component system, see Chéapter 22.

63

Chapter 8

Types

Fortress provides several kinds of types: trait typesgttygbes, arrow typeBottomType, and other types provided

in the Fortress standard libraries. Some types have nanwse §pes may be parameterized by types and values;
we call these typegeneric types Two types are identical if and only if they are the same kind their names and
arguments (if any) are identical. Types are related by sévelationships as described in Secfion 8.1.

Syntactically, the positions in which a type may legally epptype contextis determined by the nontermingfpeRef
in the Fortress grammar, defined in Apperidix G.

8.1 Relationships between Types

Types in Fortress may be related by a subtyping relationxalugion relation, or a coercion.

A subtypingrelation is reflexive, transitive, and antisymmetric, asdiéfined by theextends clause of trait decla-
rations. Every expression hasstatic type Every value has auntime type(dynamic type). Fortress programs are
checked before they are executed to ensure that if an expnesevaluates to a value, the runtime type ob is a
subtype of the static type ef Sometimes we abuse terminology by saying that an exprehsi®the runtime type of
the value it evaluates to (see Secfion 4.2 for a discussiontavaluation of expressions). Thus, in the execution of a
valid Fortress program, an expression’s runtime type ispdna subtype of its static type. We say that a valuenis
instance ofits runtime type and of every supertype of its runtime typeery type is a subtype dDbject. For types

T andU, we writeT =< U whenT'is a subtype o/, andT' < U whenT < U andT # U.

Fortress defines axclusiorrelation between types, which relates two disjoint typesvalue can have a type that is

a subtype of two types that exclude each other. The excluslation is irreflexive and symmetric, and is defined by
the excludes and comprises clauses of trait declarations, and what is implied from ¢h®sthe subtyping relation
(including the fact that object trait types have no striditgpes, and so exclude all types other than its supertypes).
For example, suppose the following:

trait S comprises {U,V} end
trait T comprises {V,W} end
object U extends S end
object V extends {5,7T} end
object W extends T end

Because of thecomprises clauses ofS andT" and the fact that/, V, andW are objectsS andT exclude each
other. We writeT" { U if T excludesU. If a type excludes another type, it excludes all its subdypse well:
TOU —= VI"'<T:T' O U.

64

Fortress also allowsoercionbetween types (see Chadtetf 17). A coercion fiBmo U is defined in the declaration of
U. We writeT — U if U defines a coercion frofi. We say thafl” can be coerced t&/, and writeT ~ U, if U defines
a coercion fronil” or any supertype df: T~~U < IT": T <T' ANT' —U.

The Fortress type hierarchy is acyclic with respect to batityping and coercion relations except for the following:
e The traitObject is a single root of the type hierarchy and it forms a cycle azdeed in Chapter 23.

e There exists a bidirectional coercion between two tuplesyipand only if they have the same sorted form.

8.2 Trait Types

Syntax:
TypeRef := TraitType

Traits are declared by trait declarations (described irp@ha). A trait has #rait typeof the same name. A significant
portion of Fortress types are trait types.

8.3 Object Trait Types

Named objects are declared by object declarations (destiibChapter 10) and anonymous objects are described
by object expressions (described in Section13.9). A nanbgetbhas arbject trait typeof the same name and an
anonymous object has an anonymous object trait type. Arcobpt type is a special kind of trait type. An object
trait type extends all of the declared supertraits of theabjNo other objects can have the object trait type and no
trait type can extend an object trait type (i.e., an objegt type implicitly has an emptyomprises clause).

8.4 Tuple Types

Syntax:
TypeRef ::= TupleType
TupleType = (TypeRef, TypeReft)
| ([TypeRef, TypeRef* ,] TypeRet..)
| ([TypeRef, TypeRef* |1 [TypeRef.. ;] Id = TypeRef(, Id = TypeRef*)

A tuple is an ordered sequence of keyword-value pairs. Seo8&L3.28 for a discussion of tuple expressions. A
tuple type consists of a parenthesized, comma-separateaf Blement types where each element type is one of the
following kinds:

e Aplaintype “T"
e Avarargstype T ...”"
e A keyword-type pair “identifier =T"

The following restrictions apply: No two keyword-type mamay have the same keyword. No keyword-type pair may
precede a plain type. No varargs type may follow a keywoptyair or precede a plain type. There must be at least
one element type. If there is exactly one element type, it foeis varargs type or a keyword-type pair (because)”
is simply a type in parentheses, not a tuple type). Alsogtisan be at most one element type with varargs type.

An element type in tuple typ& correspondgo one in tuple typeY if and only if:

65

e both are plain types in the same position,
¢ both are varargs types, or
e both are keyword-type pairs with the same keyword.

Every tuple type is a subtype d@bject, and no other nontuple type. There is no other type that epasses all
tuples. Tuple types are covariant; a tuple types a subtype of tuple typ&” if and only if:

¢ the correspondence between their element types is bgectiv

o for each element type iX, the type in the element type is a subtype of the type in theesponding element
type in Y'; and

e the keyword-type pairs itk and Y appear in the same order.

Note that, unlike record types in some other programminguages, the tuple typéfoo = P, bar = Q, baz = R)
is not a subtype of(foo = P, bar = Q), nor is (P,Q, R) a subtype of(P,Q). While (Z,Z) is not a subtype of
(Z...), there exists a coercion from the former to the latter (asritged in Sectioh 1717).

For every tuple typeX there is a tuple typeX’ that is the “sorted form” of the type, created by simply rewndg the
keyword-type pairs so that their keywords are in lexicopreqlly ascending orderX’ may be the same a¥ (as,
for example, if X contains fewer than two keyword-type pairs). There is aaoarfrom tuple typeX to tuple type
Y ifand only if X and Y have the same sorted form.

A tuple type excludes any nontuple type other tlé#nject . Two tuple types exclude each other unless the correspon-
dence between their element types is bijective. Two tugdesywith a bijective correspondence between their element
types exclude each other if either any type in an elementitypae excludes the type in the corresponding element
type in the other, or their keyword-type pairs do not appediné same order.

Intersection of nonexclusive tuple types are defined eléwise; the intersection of nonexclusive tuple tyfeand

Y is a tuple type with exactly corresponding elements, whiegetpe in each element type is the intersection of the
types in the corresponding element typestfand Y . Note that intersection of any exclusive typedisttomType

as described in Sectidn 8.6.

8.5 Arrow Types

Syntax:
TypeRef = ArrowType
ArrowType = ArrowTypeRef— ArrowTypeRe{ Throwg
ArrowTypeRef ::= TypeRef(x TypeRef*

| TypeRef Number

Functions can be passed as arguments and returned as &#egShaptdr 12 for a discussion of functions. The types
of function values are callegrrow types Every arrow type is a subtype @ibject. Arrow types are not trait types.
They cannot be extended by other trait types. Syntacticafiyarrow type consists of the type of a parameter to the
function followed by the token— , followed by the type of a return value, and optionallytirows clause which
specifies thrown checked exceptions. Here are some examples

(R64, R64) — R64
N — (N,N) throws IOException
(String,N...,p = Printer) — N

Fortress supports alternative mathematical notationarimw types whose parameter types or return types are tuple
types:

66

e elementtypes of a tuple type can be separated by the tekarstead of by commas, with enclosing parentheses
elided and

e element types of a tuple type that have the same type can bevédtied using superscripts.
Here are some examples:

R64 x R64 — R64

N — N x N throws IOException
(N,N) = Nx N

AR/

Parameter types are contravariant but return types areianotjaarrow type “A — B throws C'” is a subtype of
arrow type “D — E throws F'”if and only if:

e D is asubtype ofd and

e Bis a subtype oy and

e forall X in C, there exist§” in F' such thatX is a subtype of".
Coercion between arrow types are described in Selction 17.7.

An arrow type excludes any nonarrow type other thasject . However, arrow types do not exclude other arrow types
because of overloading as described in Chapter 33.

8.6 Bottom Type

Syntax:
TypeRef := BottomType

Fortress provides a speciabttom type BottomType, which is an uninhabited type. No value in Fortress has the
bottom type; throw and exit expressions have the bottom type. The bottom type is a saehifgvery type.
Intersection of any exclusive types is the bottom type.

8.7 Types in the Fortress Standard Libraries

The Fortress standard libraries define simple standard figpditerals such a8BooleanLiteral[b], () (pronounced
“void”), Character, String, and Numeral[n, m,r,v] for appropriate values df, n, m, r, andv (See Section 13 1

for a discussion of Fortress literals). Moreover, theresaeeral simple standard numeric types. These types are
mutually exclusive; no value has more than one of them. \datii¢hese types are immutable.

The numeric types share the common superfyjpenber. Fortress includes types for arbitrary-precision integef
type Z), their unsigned equivalents (of typ8, rational numbers (of typ®), fixed-size representations for integers
including the type¥.8, Z16, 732, 764, 7128, their unsigned equivalerni¥8, N16, N32, N64, N128, floating-point
numbers (described below), intervals (of tyheterval[X] , abbreviated ag X)) , where X can be instantiated with
any number type), and imaginary and complex numbers of fixasl (n rectangular form with type€n for n =

16, 32, 64, 128, 256 and polar form with typePolar[X] where X can be instantiated with any real number type).

For floating-point numbers, Fortress supports tyR82 andR64 to be 32 and 64-bit IEEE 754 floating-point numbers
respectively, and defines two functions on typ&wuble[F] is a floating-point type twice the size of the floating-
point type F', and Extended[F] _is a floating-point type sufficiently larger than the floatipgint type F' to perform
summations of “reasonable” size.

1 This formulation of floating-point types follows a proposaider consideration by the IEEE 754 committee.

67

The Fortress standard libraries also define other simplelatd types such a@bject, Exception, Boolean, and
BooleanInterval as well as low-level binary data types sucHasearSequence, HeapSequence, andBinaryWord.
See Partis [l and V for discussions of the Fortress standaaties.

8.8 Intersection and Union Types

For every finite set of types, there is a type denoting a unigigesectionof those types. The intersection of a set of
typessS is a subtype of every typ€ € S and of the intersection of every subset®fThere is also a type denoting a
uniqueunionof those types. The union of a set of tygess a supertype of every tyge € S and of the union of every
subset ofS. Neither intersection types nor union types are first-dggss; they are used solely for type inference (as
described in Chaptér 20) and they cannot be expressedidimeptograms.

The intersection of a set of typesis equal to a named typé when any subtype of every type € S and of the
intersection of every subset §fis a subtype ot/. Similarly, the union of a set of typesis equal to a named tyeé
when any supertype of every tyfiec S and of the union of every subset 8fis a supertype of/. For example:

trait S comprises {U,V} end
trait T comprises {V,W} end
trait U extends S excludes W end
trait V extends {S,T} end

trait W extends T end

because of theomprises clauses of5 andT and theexcludes clause ofU/, any subtype of botly and7T must be
a subtype of/. Thus,vV =SnNT.

Intersection types (denoted by possess the following properties:

e Commutativity:TNU =UNT.

Associativity: SN (T'NU)=(SNT)NU.

Subsumption: IfS < T'thenSNT = S.
e Preservation of shared subtypes71f< S andT < U thenT < SNU.
e Preservation of supertype: $f < T'thenvU. SNU < T.
e Distribution over union typesSN (T UU) = (SNT)uU (SNU).
Union types (denoted by) possess the following properties:

e Commutativity: TUU =UUT.

Associativity: SU (TUU) = (SUT)uU U.

Subsumption: IfS < T'thenSUT =T.
e Preservation of shared supertypesSI& 7'andU < T'thenSuUU < T.
e Preservation of subtype: ff < SthenvU. T X SUU.

Distribution over intersection type$iU (TNU) = (SUT)N(SUU).

8.9 Type Aliases

Syntax:

68

TypeAlias := type Id [StaticParamp = TypeRef

Fortress allows names to serve as aliases for more comexrgtantiations. Aype aliasbegins with the special
reserved wordtype followed by the name of the alias type, followed by optiortatis parameters, followed by,
followed by the type it stands for. Parameterized type aeliage allowed but recursively defined type aliases are not.
Here are some examples:

type IntList = List[Z64]
type BinOp = Float x Float — Float
type SimpleFloat[nat e,nat s] = DetailedFloat[Unity, e, s, false, false, false, false, true]

All uses of type aliases are expanded before type checkipe dliases do not define new types nor nominal equiva-
lence relations among types.

69

Chapter 9

Traits

Traits are declared by trait declarations. Traits define new namgelst A trait specifies a collection ofiethods
(described in Sectidn 9.2). One trait can extend others;iwmieans that it inherits the methods from those traits, and
that the type defined by that trait is a subtype of the typesaitktit extends.

9.1 Trait Declarations

Syntax:
TraitDecl := TraitHeader(MdDecl| AbsFldDecl| PropertyDec)* end
TraitHeader = TraitMod* trait Id [StaticParamp[Extend$[Exclude$[Comprises[Wherd
Extends = extends TraitTypes
Excludes = excludes TraitTypes
Comprises ‘= comprises MayTraitTypes
TraitTypes = TraitType
| { TraitTypeList}
TraitTypelList = TraitType(, TraitType*
MayTraitTypes := {}
| TraitTypes
TraitType = Dottedld[[StaticArgList]]
| { TypeRef— TypeRef}
| (TypeRef)
| TypeRef [ArraySizé]
| TypeRef| MatrixSize]
ArraySize = Extent(, Exten)*
Extent = NatRef
| NatRef# NatRef
MatrixSize = NatRef(x NatRefj™

Syntactically, a trait declaration starts with an optios@fjuence of modifiers followed by the special reserved word
trait, followed by the name of the trait, an optional sequence aticsparameters (described in Chagter 11), an
optional set okextendedraits, an optional set adxcludedraits, an optional set afompriseon the trait, an optional
where clause (described in Sectidbn 111.6), a list of method deiiters, abstract field declarations, and property
declarations (described in Sectlon 19.6), and finally tlezisb reserved woreénd .

Each of extends, excludes, and comprises clauses consist of the special reserved wexdends, excludes,
and comprises respectively followed by a set of trait references sepdrayecommas and enclosed in bracgsnd

70

‘}. If such a clause contains only one trait, the enclosingé&sanay be elided. A trait reference is either a declared
trait identifier or an abbreviated type for aggregate exgioes (discussed in Sectibn 13.28).

Every trait extends the traldbject. A trait with an extends clause extends every trait listed in éstends clause.

If atrait 7' extends traitU, we call T a subtrait of U and U a supertrait ofT'. Extension is transitive; ifl’ extends

U it also extends all supertraits @f . Extension is also reflexiveT extends itself. The extension relation induced
by a program is the smallest relation satisfying these ¢mmdi. This relation must form an acyclic hierarchy rooted
at trait Object.

We say that traitT" strictly extenddrait U if and only if () 7 extendsU and {i) T is not U. We say that traitl’
immediately extendsait U if and only if (i) 7 strictly extendsU and (i) there is no traitlV’ such thatT strictly
extendsV and V strictly extendsU . We call U animmediate supertraibf 7" and 7' animmediate subtraibf U.

A trait with an excludes clause excludes every trait listed in kgcludes clause. If a traitT excludes a traitl/,
the two traits are mutually exclusive. No third trait canesd them both and neither can extend the other. A ait
can optionally have arxcludes clause.

If a trait declaration ofT" includes acomprises clause, the trait must not be extended with immediate sitdtrther
than those that listed in iteomprises clause. If a trait7 has an emptycomprises clause, no other traits can
extendT'.

For example, the following trait declaration:

trait Catalyst extends Object
self.catalyze(reaction: Reaction): ()
end

declares a trai€Catalyst with no modifiers, no static parameters, agcludes clauses, nccomprises clauses, and
no where clauses. TrailCatalyst extends a trait name@®bject. A single method (namedatalyze) is declared,

which has a parameter of tyfeeaction and the return typé). The special nameelf is explicitly declared as a
parameter. See Sectibn .2 for details about whenf is implicitly declared, and to which entity it refers.

The following example trait:

trait Molecule comprises { OrganicMolecule, InorganicMolecule }
mass(): Mass
end

comprises of two traitsOrganicMolecule and InorganicMolecule. Therefore, the following trait declaration is not
allowed:

(+ Not allowed!x)
trait ExclusiveMolecule extends Molecule end

Traits OrganicMolecule and InorganicMolecule may be exclusive:

trait OrganicMolecule extends Molecule excludes InorganicMolecule end

trait InorganicMolecule extends Molecule end

OrganicMolecule andInorganicMolecule exclude each other, even though ofilyganicMolecule has anexcludes
clause. For example, the following trait declaration is altiwed:

(+ Not allowed!x)
trait InclusiveMolecule extends { InorganicMolecule, OrganicMolecule } end

A trait is allowed to have multiple immediate supertraitieTollowing trait has two immediate supertraits:

trait Enzyme extends { OrganicMolecule, Catalyst } end

71

9.2 Method Declarations

Syntax:
MdDecl := AbsMdDecl
| MdDef
AbsMdDecl := [abstract] MdMod* MdHeader
MdDef := MdMod* MdHeader= Expr
| Coercion
MdMod = getter | setter | FNMod
MdHeader := [(Id | self).]ld [StaticParaml [MdParam$) [IsTypd FnClauses
MdParams := MdParan(, MdParan)*
| [MdParan{(, MdParam*,] Id : TypeRef..
| [MdParan(, MdParam* ,][Id : TypeRef.. ,] MdParam= Expr (, MdParam= Expr)*
MdParam ::= Paramld[IsTypé
| self
| TypeRef
Paramld = d
| -
IsType w= : TypeRef
FnClauses := [Throwg[Wherd[Contraci
Throws = throws MayTraitTypes

A trait declaration contains a set of method declaratioystatically, a method declaration begins with an optional
sequence of modifiers followed by the method’s name optippaéfixed by aself parameter, optional static param-
eters (described in Chapfer]11), the value parameter vgitfojitionally) declared type, an optional type of a return
value, an optional declaration of thrown checked except{discussed in Chapfer]14), an optionakre clause (dis-
cussed in Sectidn 11.6), an optional contract for the meftztussed in Sectidn 9.4), and finally an optional body
expression preceded by the token A throws clause does not include naked type variables. Every element
throws clause is a subtype @heckedException. A trait declaration may contairperciongdiscussed in Chapterl7.

Method declarations can include the following special rfiedi:

getter: A method declaration with the modifigretter explicitly declares a getter method for a field, even in the
absence of an actual field. If such a field exists, there is mhiégihgetter for the field. An explicitly declared getter
method must take no arguments and return an appropriatsy yesult. A getter method must not throw any checked
exception. Getter names may not overlap ordinary methoceraA getter method must be invoked with the field
access syntax:

expr.id

whered is the name of the getter method.

setter: A method declaration with the modifiesetter explicitly declares a setter method for a field, even in
the absence of an actual field. If such a field exists, ther® isnplicit setter for the field. An explicitly declared
setter method must take a single argument—the value beirgasel return() . A setter method must not throw any
checked exception. Setter names may not overlap ordinattyati@ames. A setter method must be invoked with the
assignment syntax

expr,.id 1= expry

We say that a method declaratioocursin a trait declaration. A trait declaratiafeclaresa method declaration that
occurs in that trait declaration. A trait declaratioheritsmethod declarations from the declarations of its supéstrai

72

Note that a trait declaration inherits all method declarsideclared by all of its supertraits—there’s no real motib
overriding, just overloading (as discussed in Chalptér ASyait declarationprovidesthe method declarations that it
declares or inherits.

There are two sorts of method declaratiodstted methodieclarations anélinctional methodleclarations. Syntacti-
cally, a dotted method declaration is identical to a functieclaration, except that a special self parameter is gedvi
immediately before the name of the method. When a methodrikkéd, the self parameter is bound to the object
on which it is invoked. If no self parameter is provided egly, it is implicitly a parameter with nameelf. An
explicit self parameter may be an identifier other thar f, in which caseself is not necessarily declared within
that method.

A functional method declaration does not have a self parantetfore the method name. Instead, it has a parameter
namedself at an arbitrary position in its parameter list. This paranét not given a type and implicitly has the
type of the enclosing declaration. Semantically, funalanethod declarations can be viewed as top-level functions
For example, the following overloaded functional methgdseclared within a trait declaratioa:

trait A
f(self, t:T)=¢e;
f(s:85,self) = eq
end

f(a,t)
may be rewritten as top-level functions as follows:

trait A
internalF (t:T) = ey
internalF (s:S) = eg
end

fila: A t:T) = a.internalF (t)
fa(s:S,a:A) = a.internalF (s)

fl ((l, t)

where internalF is a freshly generated name. Functional method declasativay be overloaded with top-level
function declarations. An abstract function declaratidescribed in Sectidn 12.3) can be provided also for oveddad
functional method declarations. See Chaptér 15 for a dismu®f overloaded functionals in Fortress.

Anon-self self parameter can be used within nested object expregsiessribed in Sectidn 13.9) to name the outer
object in methods of the inner:

object
m() = object
notSelf .getOuterSelf () = self(x “self” declared in outer scope)
getInnerSelf () = self(x regular inner “self")
end
end

When a method declaration includes a body expression, élisccamethod definition A method declaration that
does not have its body expression is referred to aabemtract method declarationAn abstract method declaration
may include the modifieabstract . An abstract method declaration may elide parameter nantgmbameter types
cannot be omitted except for the self parameter.

Here is an example traltnzyme which provides methodsiass, catalyze, andreactionSpeed :

trait Enzyme extends { OrganicMolecule, Catalyst }
reactionSpeed(): Speed
catalyze(reaction) = reaction.accelerate(reactionSpeed())

73

end

Enzyme inherits the abstract methoaass from OrganicMolecule, declares the abstract metheelictionSpeed ,
and declares the concrete methadalyze which is inherited as an abstract method from its super@aitlyst.

9.3 Abstract Field Declarations

Syntax:
AbsFldDecl
AbsFldMod
UniversalMod

AbsFldMod Id IsType
hidden | settable | wrapped | UniversalMod
private | test

Traits may also include abstract field declarations thatrapicit declarations of abstract getter methods. Syiact
cally, an abstract field declaration consists of an optiseguence of modifiers followed by the field name, followed
by the token:, and the type of the field.

By default, a field declaration implicitly declares a gettezthod for the field unless there is an explicit getter dedar
in the enclosing trait. An implicit getter method takes nguanents, has the same name as the field, and has a return
type equal to the field type. When called, the implicit geteturns the value of the field when called.

Abstract field declarations can include the following spémiodifiers:

hidden: A field declaration with the modifiehidden has no implicit getter method.

settable: Afield declaration with the modifiesettable has animplicit setter method unless there is an explicit
setter declared in the enclosing trait. An implicit settesthod takes a parameter (with no default expression) whose
type is the type of the field, and returri$. When called, the implicit setter rebinds the correspogdield to its
argument. If a field declaration includes the modifietttable and hidden, only an abstract setter is declared. If a
field declaration includes the modifieiidden without settable, it is a static error.

wrapped: Ifafield declaration off has the modifiewrapped and the type of is trait typeT’, andT is not a naked
type variable, then the enclosing traitimplicitly includes “forwarding methods” for all methods 1" that are also
inherited from any supertrait ¢f. Each of these methods simply calls the corresponding rdethdhe trait referred to
by field f. If the trait declaration enclosing explicitly declares a methoab that conflicts with an implicitly declared
forwarding methodn’, then the enclosing trait contains only methagnotm'. If the trait declaration enclosing
inherits a concrete methad that conflicts with an implicitly declared forwarding metha’, then the enclosing trait
contains only methog:, notm’. Because wrapped fields do not change declarations of methidhange definitions
of methods, they only affect implementations; APIs do notude wrapped fields.

For example, in the following declarations:

trait Dictionary[[T]
put(T): ()
get():T

end

trait WrappedDictionary[T] extends Dictionary[7]
wrapped val: Dictionary [T
get():T

end

74

the parametric traitVrappedDictionary implicitly includes the following forwarding method:
put(x) = val.put(zx)

If get were not explicitly declared ilWrappedDictionary, then WrappedDictionary would also include the for-
warding method:

get() = val.get()

9.4 Method Contracts

Syntax:
Contract ::= [Require$[Ensure}[Invariant]
Requires :i= requires Exprt
Ensures = ensures (EXprt [provided Expr)™*
Invariant = invariant Expr"

Method contracts consist of three optional clausesteguires clause, anensures clause, and annvariant
clause. All three clauses are evaluated in the scope of thigoshdody. See Sectidn 12.4 for a discussion of each
clause.

Method contracts are handled similarly to the manner desdiin [10]. In particular, substitutability under subtygi

is preserved. For a call to a methad with receivere, we use the ternstatic contractof m to refer to a contract
declared in the statically most applicable method dedtargirovided by the static type @fand the terndynamic
contractof m to refer to a contract declared in the dynamically most a@gplie method declaration provided by the
runtime type ofe. Three exceptions may be thrown due to a method contracitioat CallerViolation is thrown
when therequires clause of the static contract failSalleeViolation is thrown when thesnsures or invariant
clause of the dynamic contract fails, aQ@éntractHierarchy Violation is thrown when therequires clause of the
dynamic contract or thensures or invariant clause of the static contract fails.

Evaluation of a call to a methogh with receivere proceeds as follows. First,is evaluated to a valuewith runtime
type U. Let C andC’ be the static and dynamic contractsrof respectively. If therequires clause ofC fails, a
CallerViolation exception is thrown. Otherwise, if theequires clause ofC’ fails, a ContractHierarchy Violation
exception is thrown. Otherwise, theovided subclauses of andC’ are evaluated. For eveprovided subclause
that evaluates tdrue, the correspondingnsures subclause is recorded in a takiefor later comparison. Simi-
larly, the invariant clauses ofC andC’ are evaluated and the results are stored ifor later comparison. Then
the body ofm provided by U is evaluated. After evaluation of the body, @hsures subclauses of the dynamic
contract recorded ity are checked to ensure that they evaluateértee, and all invariant clauses of the dy-
namic contract recorded i are checked to ensure that they evaluate to values equat teathes they evaluated
to before evaluation of the body. If any such check failg;@leeViolation exception is thrown. Otherwise, all
ensures Subclauses andnvariant clauses of the static contract i are checked. If any of these checks fails, a
ContractHierarchy Violation exception is thrown.

9.5 Value Traits

Syntax:
TraitMod := wvalue | UniversalMod

If a trait declaration has the modifiaralue, all subtraits of that trait must also have the modifierlue, and all

objects extending that trait are required to be value obj@lscribed in Sectidn 10.3). If a field declaration of a&alu
trait has the modifiesettable, the return type of its implicit setter method is the valwtttype. If a value trait has

75

an explicit setter method, the setter must be an abstra¢taietnd its return type must be the value trait type. See
Sectiorf 10.B for a discussion of updating fields of value cisje

76

Chapter 10

Objects

An object is avalue objectareference objector afunction object It is a function object if it has an arrow type, a
reference object if it has an object trait type that is notlaled with thevalue modifier (see Sectidn 10.3), and a
value object otherwise (i.e., if it has a tuple type, the tfper an object trait type declared with tkalue modifier).

Value objects cannot have mutable fields, and they are coetpldetermined by their type, environment and their
fields: Value objects with the same type, environment anddiate indistinguishable. Thus, an implementation may
freely copy value objects. Most objects with simple staddgpes, such as booleans, numeric literals, IEEE floating-
point numbers, and integers are value objects. In contefetence objects are thought to “reside in memory”, and are
identified by arobject referenceA new object reference is created whenever a referencetabjeonstructed, so that
reference objects constructed separately are alwaysdlistReference objects include arbitrary-precision nusbe
and aggregates such as arrays, lists and sets. Functiatoaje immutable and have no fields. Identity is not well-
defined for function objects, and attempting to check whetive functions are equivalent returns an approximate
result. Sectioh 1014 describes object equivalence indudietail.

10.1 Object Declarations

Syntax:
ObjectDecl := ObjectHeade(MdDef | FldDef | PropertyDec)* end
ObjectHeader := ObjectMod object Id [StaticParam[([ObjectParamy] [Extend$ FnClauses
ObjectMod = TraitMod
ObjectParams ::= ObjectParan(, ObjectParany*
| [ObjectParani, ObjectParany* ,] ObjectVarargs
| [ObjectParant, ObjectParany* ,] [ObjectVarargs] ObjectKeyword , ObjectKeyworjf
ObjectVarargs = transient Id:TypeRef..
ObjectKeyword ::= ObjectParam= Expr
ObjectParam ;= FldMod* PlainParam
| transient PlainParam
FnClauses ;= [Throwg [Wherg [Contrac{
Throws = throws MayTraitTypes

Object declarations declare both object values and ohjaitttypes. Object declarations extend a set of traits from
which they inherit methods. An object declaration inhetfits concrete methods of its supertraits and must include
a definition for every method declared but not defined by ifsestnaits. Especially, an object declaration must not
include abstract methods (discussed in Section 22.3); it must defineaaBtract methods inherited from its
supertraits. It is also allowed to define overloaded detitara of concrete methods inherited from its supertraits.

77

Syntactically, an object declaration begins with an olsequence of modifiers followed by the special reserved
word object, followed by the identifier of the object, optional static@aeters (described in Chapiet 11), optional
value parameters, optional traits the object extends, darg declaration of thrown checked exceptions (discdisse
in Chaptef 14), an optionathere clause (discussed in Section 11.6), an optional contrathéoobject (discussed in
Sectior] 12.4), a list of method declarations, field declanat and property declarations (described in Se¢tion)19.6
and finally the special reserved worehd . If an object declaration has nextends clause, the object implicitly
extends only traitObject. A throws clause does not include naked type variables. Every elememtthrows
clause is a subtype @fheckedException. If an object declaration has a contract, the contract ikiated as function
contracts (described in Section 12.4) when the object Etede

There are two kinds of object declarations: singleton dhjeclarations and parametric object declarations. A singl
ton object declaration does not have any static or valuepeter; it declares a sole, stand-alone object. There are two
kinds of parametric object declarations: statically pagtiin objects and dynamically parametric objects. StHyica
parametric objects are parameterized by static parameterslynamically parametric objects are parameterized by
value parameters (possibly with static parameters). A ayecally parametric object declaration includes a constnuc
declaration and every call to the constructor of such anablyéh the same argument yields a new object. A statically
parametric object declaration does not include a constraigtclaration and every instantiation of such an objedt wit
the same argument yields the same singleton object. In#t&dn of parametric objects is entirely demand-driven as
described in Sectidn 22.6.

Each value parameter of a parameterized object declanatignbe preceded by a sequence of field modifiers or the
special modifiertransient : A value parameter preceded by the modifteiansient doesn’t correspond to a field
in an instantiation of the objectransient parameters are not in scope of the object’s method deaarati

Fields can be also explicitly defined within a parameteriagjgct declaration as within a singleton object declaratio
All fields of an object are initialized before that object iade available to subsequent computations. Syntactically,
method declarations in object declarations are identicaié¢thod declarations in trait declarations.

For example, the following empty list object extendingttiaist :

object Empty extends { List }
first() = throw Error
rest() = throw Error
cons(x) = Cons(z, self)
append(zs) = xs

end

has no fields and four methods.
Here is an example of a parameterizéans object extending traiList[77] :

object Cons[T|(first: T, rest:List[T])
extends List[T]
cons(x) = Cons(z, self)
append(zs) = Cons(first, rest.append(zs))
end

Note that this declaration implicitly introduces the “fat” function Cons[T](first: T, rest : List[T]) : Cons[T]
which is used in the body of the object declaration to defieectins and append methods. Multiple factory functions
can be defined by overloading a parametric object with fonsti For exampleCons(first : T')) = Cons(first, Empty) .

10.2 Field Declarations

Syntax:

78

FldDef
FldMod

FldMod* Id [IsTypé (=|:=) Expr
var | AbsFldMod

Fields are variables local to an object. They must not bernedeto outside their enclosing object declarations.
Field declarations in an object declaration are syntaltfiddentical to top-level variable declarations (desedbin
Sectiorl 6.P), with the same meanings attached to the forraradble declarations except that they have a different set
of modifiers.

10.3 Value Objects

An object declaration with the modifieralue declares a value object that is called in many languaga#native
value. The object trait type declared by a value object iaifi has the modifiervalue .

The fields of avalue object are immutable; they cannot be changed directly sratstatic error. However, Fortress
allows value objects to have settable fields as an abbreriddr constructing a new value object with a different
value for one field. If a value object has a setter method otagipted assignment operator method (described in
Sectiori 34.7), then the return type of the method must begthrewbject trait type instead ¢j . When such a method

is invoked, the receiver must itself be assignable, andahesweturned by the method is assigned to the receiver.

For example, here is a value objgtdmplex number:

value object Complex(settable real : Double, settable imaginary : Double = 0)
opr +(self, other : Complex) = Complex(real 4+ other.real, imaginary + other.imaginary)
end

When a mutable variable:
var z : Complex = Complex(0)

updates itsimaginary field, the following syntax:
z.amaginary = v

can be used as an abbreviation for:
z := Complex(z.real, v)

So the setter for the fieldnaginary in Complex would do the work of constructing and returnifpmplex(z.real, v) ,
and the assignment:

z.1maginary 1= v
would be construed to mean:
z = z.imaginary(v)
Note that modifying a settable field directly within the valobject is not allowed. For example, the following:
maginary = 3
within the Complex object means:
self.imaginary := 3

and becauseelf is not mutable, the assignment is disallowed.

79

10.4 Object Equivalence

The trait Object defines the object equivalence operater This operator is automatically defined for all objects;
it is a static error for the programmer to override it. TEe operator is used to decide whether its two arguments
refer to “the same object” in the strictest sense possibtbelarguments have different dynamic types—including the
instantiations of all static parameters—the result is gbvalse. If both arguments are value objects with the same
type, then the result isrue if and only if corresponding fields of the objects are thewsekquivalent as defined by
this operator; in particular, two binary words are striettyuivalent if and only if they contain the same bit pattefn. |
both arguments are object references, then the resutidsif and only if the two object references refer to the idertica
reference object (in implementation terms, occupying #traesmemory locations in the heap). If both arguments are
functions, the result isrue only if the functions behave identically for any choice gbéycorrect arguments. Even if
two functions behave identically, the fortress impleméatais free to returryalse when they are compared for object
equivalence.

80

Chapter 11

Static Parameters

Trait, object, and functional declarations may be pararizse with static parameters Static parameters asgatic
variableslisted in white square brackets and | immediately after the name of a trait, object, or functioaat
they are in scope of the entire body of the declaration. Sgatrameters may be instantiated with static expressions
discussed in Sectidn 13127. In this chapter, we describfothes that these static parameters can take.

Syntax:
StaticParams
StaticParamList ::

[StaticParamLigt
StaticParam(, StaticParany*

11.1 Type Parameters

Syntax:
StaticParam ::= Id [Extend}[absorbs unit]

Static parameters may include one or more type parametantacically, a type parameter consists of an identifier fol
lowed by an optionakxtends clause, followed by an optionakbsorbs unit” clause (described in Sectibn 3b.4).
If a type parameter does not have exttends clause, it has an implicitéxtends Object ” clause.

Type parameters are instantiated with types such as tigilg, types, and arrow types (See Chapter 8 for a discussion
of Fortress types). We use the tenaked type variabléo refer to an occurrence of a type variable as a stand-alone
type (rather than as a parameter to another type). Type péeastan appear in any context that an ordinary type can
appeatr, except that a naked type variable must not appda #xtends clause of a trait or object declaration nor as
the type of awrapped field (discussed in Sectign 10.2).

Here is a parameterized trdiist:

trait List[T]
first(): T
rest(): List[T]
cons(T): List[T]
append (List[T]): List[T]

end

81

11.2 Nat and Int Parameters

Syntax:
StaticParam := nat Id

| int Id

Static parameters may include one or mare and int parameters. Syntactically,iat parameter consists of the
special reserved wordat followed by an identifier. Anint parameter consists of the special reserved wird
followed by an identifier. These parameters are instamtiateuntime with numeric values. Aat parameter may
be used to instantiate othent parameters, or to appear in any context that a variable ef iycan appear, except
that it cannot be assigned to. Amt parameter may be used to instantiate othet parameters, or to appear in any
context that a variable of typ& can appear, except that it cannot be assigned to.

For example, the following functioffi:
f[nat n](z : Length®") : Length™ = sqrt(x)

declares anat parametem, which appears in both the parameter type and return tyge of

11.3 Bool Parameters

Syntax:
StaticParam ::= bool Id

Static parameters may include one or mbt®1 parameters. Syntactically,i ol parameter consists of the special
reserved worctbool followed by an identifier. These parameters are instamtiateuntime with boolean values. They
may be used to instantiate othesol parameters, or to appear in any context that a variable & Bgnlean can
appeatr, except that they cannot be assigned to.

For example, the followingoercion declared in the traiBoolean:

trait Boolean
coercion [bool b](x: BooleanLiteral[b])
end

declares @ool parameter, which appears in the parameter type. See Chhpter 24 fordeftlaration ofBoolean.

11.4 Dimension and Unit Parameters

Syntax:
StaticParam ::= dim Id

| unit Id [: DimRef| [absorbs unit]

Static parameters may include one or mdsen and unit parameters. Syntactically, &im parameter begins with
the special reserved wordim followed by an identifier. Aunit parameter begins with the special reserved word
unit followed by an identifier, optionally followed by the tokenand a dimension, and the unit is thereby restricted
to be a unit of the specified dimension. it parameter may include the clausebsorbs unit ”; the meaning of
this is described in Sectidn 35.4. &im parameter is allowed to appear in any context that a dimersio appear. A
unit parameter is allowed to appear in any context that a unit ppaa.

For example, here is a function that is parameterized withita u
sqrt[unit U])(z: R64 U?): R64 U = numericalsqrt(z/U?) U

82

11.5 Operator and Identifier Parameters

Syntax:
StaticParam := opr Op
| ident Id

Static parameters may include one or more operator symhdisdantifiers denoting method names. Syntactically,
an operator parameter begins with the special reserved wprdfollowed by an operator symbol. An identifier
parameter begins with the special reserved widdnt followed by an identifier.

Unlike other static parameters, operator and identifieapaters may be used in both type context and value context.
The following example operator parameter.

trait UnaryOperator[T extends UnaryOperator[T, ®], opr @]
opr O(self): T
end

is declared as a static parameterladfaryOperator, instantiated as a static argument, and declared as antopera
method.

Operator and identifier parameters may be freely intermixi¢tal other static parameters. For example, the following
trait HasLeftZeroes:

trait HasLeftZeroes[T extends HasLeftZeroes[T, ®, isLeftZero], opr ®, ident isLeftZero]
extends { BinaryOperator[T, @] }
isLeftZero(): Boolean
property V(a:T,b:T) a.isLeftZero() —: ((a ©® b) = a)
end

is parameterized with a type parametEr an operator parametey , and an identifier parametésLeftZero. Many
interesting examples are described in Sedtion]37.3.

11.6 Where Clauses

Syntax:
Where = where { WhereClauseLis}
WhereClauselist ::= WhereClausé¢, WhereClausg
WhereClause = |d Extends
TypeAlias

|

| NatConstranint

| IntConstranint

| BoolConstraint

| UnitConstraint

| TypeRefcoerces TypeRef
| TypeRefwidens TypeRef

Static parameters may have constraints placed on thenwiteae clause. Awhere clause begins with the special
reserved wordwhere, followed by a sequence of static parameter constraintbosed in braces{ and }, and
separated by commas.

A where clause may introduce new static variables, i.e., idensifier types and other static entities that may not
be static parameters. We use the tewiere -clause variablego refer to static variables that are not also static
parameters. The&here -clause variables must be bound inkere clause.

A static parameter constraint is one of the following forms:

83

a trait constraint consisting of the identifier of a nakedetyariable, followed by the special reserved word
extends followed by a set of trait references which may include naype variables,

e atype alias (described in Section]8.9),

e an arithmetic constraint,

e aboolean constraint,

e a unit equality constraint,

e a coerces constraint (described in Sectibn 117.2), or
e awidens constraint (described in Sectibn 117.2).

A where clause may include mutually recursive constraints. Altistaariables in a trait, object, or functional
declaration must occur either as a static parameter onagae -clause variable. Appendix A.2 describes a Fortress
core calculus withwhere clauses.

Trait declarations are allowed to extend other instamtitiof themselves. For example, we can write:

trait C[S] extends C[T7]
where {S extends T, T extends Object}
end

In this declaration, for every subtype of 7', C[S] is a subtype ofC[T] . Effectively, we have expressed the fact
that the static parametér of C' is covariant.

Trait declarations need not have any static parameterdier ¢o have awhere clause. For example, the following
trait declaration is legal:

trait C extends D[T7]
where {T extends Object}
end

In this declaration, traiC' is a subtrait oEveryinstantiation of parametric traib . Thus, traitC has all of the methods
of every instantiation ofD . By thinking of the declaration this way, we can see whatri&gins we need to impose
on the traitC' in order for it to be sensible. If traif’ inherits a method declaration that refers’g it really contains
infinitely many methods (one for each instantiationf. However, instantiations of thehere -clause variables are
not explicit from the program text as static parameters lrmust be possible to infer which method is referred to
at the call site. If there is not enough information to inférigh method is called, type checking rejects the program
and requires more type information from the programmergfmmmers always can provide more type information
by using type ascription as described in Sedtion 13.30.

Object or functional declarations may inclugigere clauses. Here is an example declaration oEampty list:

object Empty extends List[7T] where {T extends Object}
first() = throw Error
rest() = throw Error
cons(x) = Cons(z, self)
append(xs) = xs
end

whereCons is declared in Sectidn 10.1.

84

Chapter 12

Functions

Functionsare values that have arrow types described in Selctidn 8c¢h faaction takes exactly one argument, which
may be a tuple, and returns exactly one result, which may pla.t A function may be declared as top level or
local as described in Sectibn B.1. Fortress allows funsttorbeoverloaded(as described in Chapter]15); there may
be multiple function declarations with the same functiomedn a single lexical scope. Functions can be passed as
arguments and returned as values. Single variables mayurelho functions including overloaded functions.

12.1 Function Declarations

Syntax:
FnDecl := AbsFnDecl
| FnDef
FnDef := FnMod* FnHeader= Expr
FnMod = atomic | io | UniversalMod
FnHeader ;= |d [StaticParamkValParam[IsTypé FnClauses
ValParam = Paramld
| ([ValParam$)
Paramld = d
| -
ValParams ::= PlainParan{, PlainParam*
| [PlainParant(, PlainParan)* ,] Id : TypeRef..
\ [PlainParan(, PlainParam)* ,] [Id : TypeRef..] PlainParam= Expr (, PlainParam= Expr)*
PlainParam := Paramld[IsTypé
| TypeRef
FnClauses := [Throwg[Wheré[Contraci
Throws = throws MayTraitTypes

Syntactically, a function declaration consists of an amiGequence of modifiers followed by the name of the fungtion
optional static parameters (described in Chdpter 11) aheparameter with its (optionally) declared type, anayi
type of a return value, an optional declaration of thrownokleel exceptions (discussed in Chapter 14), an optional
where clause (discussed in Section 11.6), an optional contra¢héfunction (discussed in Section 12.4), and finally
an optional body expression preceded by the token A throws clause does not include naked type variables.
Every element in a&hrows clause is a subtype dheckedException. When a function declaration includes a body
expression, it is called fainction definition Function declarations can be mutually recursive.

Function declarations can include the following speciatifiers:

85

atomic: A function with the modifieratomic acts as if its entire body were surrounded insomic expression
discussed in Sectidn 13]23.

io: Functions that perform externally visible input/outputiags are said to beio functions. Anio function
must not be invoked from a note function.

A function takes exactly one argument, which may be a tupldelVa function takes a tuple argument, we abuse
terminology by saying that the function takes multiple angunts. Value parameters cannot be mutated inside the
function body.

A function’s value parameter consists of a parenthesizatinca-separated list of bindings where each binding is one
of:

e A plain binding “identifier” or “ identifier : T'”
e Avarargs binding “identifier : T ..."
e A keyword binding “identifier = e¢” or “ identifier : T = ¢e”

When the parameter is a single plain binding without a dedldype, enclosing parentheses may be elided. The
following restrictions apply: No two bindings may have ttaere identifier. No keyword binding may precede a plain
binding. No varargs binding may follow a keyword binding sepede a plain binding. Note that it is permitted to
have a single plain binding, or to have no bindings. The lat#se, “()”, is considered equivalent to a single plain
binding of the ignored identifier" of type (), that is, “(_: ()) ". Also, there can be at most one varargs binding.

A parameter declared by keyword binding is callddegword parameter keyword parameter must be declared with
a defaultexpression, which is used when no argument is bound to theerEer explicitly. Syntactically, the default
expression is specified after an sign. The default expression of a paramet@f function f is evaluated each time
the function is called without a value provided foat the call site. All parameters occurring to the lefiafre in scope

of its default expression. All parameters followimgmust include default expressions as weliis in scope of their
default expressions and the body of the function. When amaegt is passed explicitly for a keyword parameter, that
argument must be passed dsegword argument(See Sectioh 12.2.) If no type is declared for a keywordpater,

the type is inferred from the static type of its default exgsien.

A parameter declared by varargs binding is calledeargs parameterit is used to pass a variable number of argu-
ments to a function as a single heap sequence. The type ohmyggrarameter i$leapSequence[T] where T is

the type mentioned in (or inferred for) that binding. Seeti®e®0.3 for a discussion dfieapSequence. Note that

the type of a varargs parameter cannot be omitted. If a fomctoes not have a varargs parameter then the number of
arguments is fixed by the function’s type. Note that a varpegameter is not allowed to have a default expression.

For example, here is a simple polymorphic function for dreplists:

List[T extends Object,nat length](rest : T[length]) = do
if length = 0 then Empty
else Cons(resto, List(resty.(jength—1)))
end

end

The following function:
swap(x : Object, y : Object) : (Object, Object) = (y, x)

has no static parameters, throws no checked exception$ieanao contract. It takes a tuple of two elements of type
Object and returns a tuple of two values. Namely, it returns its anguots in reverse order. If the return type is elided,
it is inferred to be the static type of the body. The followtheclaration ofswap has the same return type as the above
declaration:

86

swap(x : Object, y : Object) = (y, x)

Similarly, function parameter type can often be inferregzhirthe body of the function. When a type can be inferred
for a parameter from the body of the function, that parantgfes need not be declared explicitly. Thus, the following
declaration ofswap has the same parameter type and return type as the aboveatieoks

swap(x,y) = (y,x)
See Chaptér 20 for a discussion of type inference in Fortress
The following functionwrap:

wrap(xs, ys = xs) = [zs ys]

returns an array containing its parameters. If a value fby e parameters is given towrap at a call site, the value
of zs is bound toys as well, and an array that contains as both of its indices is returned.

12.2 Function Applications

Fortress provides overloaded functions (as described aptelh 15); there may be multiple function declarations with
the same function name in a single lexical scope. Thus, we toesdetermine which function declaration are applicable
to a function application.

If a function’s argument type i$) , then function declarations with the following forms of aareter lists are consid-
ered to be applicable:

¢ () which means the same thing &s: ())
e (z:()) which is something programmers don't ordinarily write
o (z:T..))

In the last casey is bound to an emptfeapSequence[T] .

If a function’s argument typel is neither () nor a tuple type, then function declarations with the follogvforms of
parameter lists are considered to be applicable:

e (z:T) whereA is a subtype ofT’
e (z:T...) whereA is asubtype ofl’
In the last casey is bound to aHeapSequence[T] of length 1, containing the actual argument value.

If a function’s argument typel is a tuple type, then function declarations with the followrforms of parameter lists
are considered to be applicable:

e (z:T) whereA is a subtype ofT’
e (z:T...) whereA is a subtype ofl’
e a parameter list with no varargs binding, provided that
— type A has exactly as many plain types as the parameter list hashptadings, and

— for every keyword-type pair (described in Secfion 8.4)linthe parameter list has a binding with the same
keyword, and

— for every element type i, the type in the element type is a subtype of the type of theesponding
binding in the parameter list.

87

e a parameter list with a varargs binding, provided that
— type A has at least as many plain types as the parameter list hasphaings, and
— for every keyword-type pair iM, the parameter list has a binding with the same keyword, and

— for every element type i, the type in the element type is a subtype of the type of theesponding
binding in the parameter list—but if there is no correspagdiinding, then the type in the element type
must be a subtype of the type in the varargs binding.

In the latter case, the parameter named by the identifiereivdinargs binding is bound to HeapSequence[T] that
contains, in order, all the values of the tuple that did netespond to plain bindings, followed by all the values in the
varargsHeapSequence of the tuple, if any.

When an argument is passed explicitly for a keyword paramtbia argument must be passed &syavord argument
Syntactically, a keyword argument is a keyword-value paiehtifier = ¢”. Keyword parameters not explicitly
bound are bound to their default values. If a parameter sl default value is not explicitly bound to an argument,
it is a static error. Because a keyword-value pair shares@syith anequality expressignwe provide rules for
disambiguation in Sectidn 13.28.1.

When a function is called (See Section 13.6 for a discussfdarmtion call expressions), explicit arguments are
evaluated in parallel, keyword parameters not explicituid are bound to their default values sequentially, and the
body of the function is evaluated in a new environment, editegnthe environment in which it is defined with all
parameters bound to their arguments.

If the application of a functiorf ends by calling another functiog, tail-call optimization must be applied. Storage
used by the new environments constructed for the applicatig must be reclaimed.

Here are some examples:

sqrt(x)

arctan(y, x)

makeColor(red = 5, green = 3, blue = 43)
processString(s, start = 5, finish = 43)

If the function’s argument is not a tuple, then the argumemicdhnot be parenthesized:
sqrt 2

sinx
loglogn

Here are a few varargs examples:
fa:lyy:2,z: 7.) = (x,y,{q| ¢ = 2))

) returns (1
returns (1
returns (1
(1
(1

)

)

/AN

3,
(3

) Y

4
4..)
4,[56]...) returns
VA, 1T#3 .. returns
]...) declaration not applicable

)
)
)
)

(1
(1
‘(1
‘(1
(1
(1

= e e
oo oN

3
3
4

)

12.3 Abstract Function Declarations

Syntax:
AbsFnDecl := FnMod" FnHeader

| Name: ArrowType

88

A function declaration may be separated from its definitiém abstract function declaratiocan be provided for
overloaded function definitions. When the parameter typanodbstract function declaration includes a type that is
declared with acomprises clause, it is a static error if the corresponding functiofindéons do not cover every
immediate subtype of the type.

Syntactically, an abstract function declaration is a fiorctleclaration without a body. Parameter names may beckelide
but parameter types cannot be omitted. Additionally, whémnation’s type is not parameterized, Fortress provides
an alternative mathematical notation for an abstract fanadeclaration: function name followed by the token
followed by an arrow type.

For example, after the following abstract function dediara
printMolecule(Molecule): ()
where traitMolecule is defined as follows:
trait Molecule comprises {OrganicMolecule, InorganicMolecule} end
the programmer could write:
printMolecule(molecule: Molecule) = . ..
or could write:

printMolecule(molecule: OrganicMolecule) = . ..
printMolecule(molecule: InorganicMolecule) = . ..

For the latter, the programmer must provide a definition fa@rg immediate subtype dflolecule, or it is a static
error.

12.4 Function Contracts

Syntax:
Contract ::= [Require}[Ensure}[Invariant]
Requires := requires Expr’
Ensures = ensures (Exprt [provided Expr)™
Invariant = invariant Exprt

Function contracts consist of three optional clausegequires clause, anensures clause, and annvariant
clause. All three clauses are evaluated in the scope of tiedidun body.

The requires clause consists of a sequence of expressions of Bygggean. The requires clause is evaluated
during a function call before the body of the function. If a®pression in arequires clause does not evaluate to
true, a CallerViolation exception is thrown.

The ensures clause consists of a sequenceafsures subclauses. Each such subclause consists of a sequence
of expressions of typ@oolean, optionally followed by aprovided subclause. Aprovided subclause begins
with the special reserved worprovided followed by an expression of typBoolean. For each subclause in the
ensures clause of a contract, therovided subclause is evaluated immediately after teuires clause during a
function call (before the function body is evaluated). lfeovided subclause evaluates toue, then the expressions
preceding thisprovided subclause are evaluated after the function body is evaludteany expression evaluated
after function evaluation does not evaluatetoe, a CalleeViolation exception is thrown. The expressions preceding
the provided subclause can refer to the return value of the functiomesAlt variable is implicitly bound to a return
value of the function and is in scope of the expressions piirgehe provided subclause. The implicitly declared
result shadows any other declaration with the same name in scope.

89

The invariant clause consists of a sequence of expressioasytype These expressions are evaluated before and
after a function call. For each expressiom this sequence, if the value efwhen evaluated before the function call
is not equal to the value efafter the function call, & alleeViolation exception is thrown.

Here are some examples:

factorial(n:Z64) requires n > 0 =
if n=0thenl
else n factorial(n — 1)
end

mangle(input : List) ensures sorted(result) provided sorted(input) =
if input # Empty
then mangle(first(input))
mangle(rest(input))
end

Overloaded function contracts are handled similarly witbtimod contracts described in Section] 9.4. In particular,
substitutability is preserved: the statically most apgibie function to a call should be substitutable with the dyna
ically most applicable function to the call. For a call of &tion f, we use the terrstatic contractof f to refer to a
contract declared in the statically most applicable fuorctieclaration and the terdynamic contracof f to refer to

a contract declared in the dynamically most applicabletionadeclaration. Three exceptions may be thrown due to
an overloaded function contract violatiofialler Violation is thrown when therequires clause of the static con-
tract fails, CalleeViolation is thrown when theensures or invariant clause of the dynamic contract fails, and
ContractOverloadingViolation is thrown when therequires clause of the dynamic contract or tkasures or
invariant clause of the static contract fails.

Evaluation of a call of functiory proceeds as follows. Le&f and C’ be the static and dynamic contracts fof
respectively. If therequires clause ofC fails, a CallerViolation exception is thrown. Otherwise, if theequires
clause ofC’ fails, a ContractOverloadingViolation exception is thrown. Otherwise, theovided subclauses of’
andC’ are evaluated. For eveprovided subclause that evaluatestia.e, the correspondingnsures subclause is
recorded in a tabl& for later comparison. Similarly, thénvariant clauses o€ andC’ are evaluated and the results
are stored inF for later comparison. Then the body of the dynamically mpgtiiaable function declaration of is
evaluated. After evaluation of the body, athsures subclauses of the dynamic contract recorded iare checked
to ensure that they evaluate toue, and all invariant clauses of the dynamic contract recordedtirare checked
to ensure that they evaluate to values equal to the valugstiaduated to before evaluation of the body. If any such
check fails, aCalleeViolation exception is thrown. Otherwise, adnsures subclauses andnvariant clauses
of the static contract i’ are checked. If any of these checks failSCantractOverloadingViolation exception is
thrown.

90

Chapter 13

EXxpressions

Fortress is an expression-oriented language. Syntdgtitia® positions in which an expression may legally appear
(value contextis determined by the nontermingkpr in the Fortress grammar, defined in Apperidix G.

13.1 Literals

Syntax:
Value := Literal

Fortress provides boolean literalg, literal, character literals, string literals, and numditeerals. Literals are values;
they do not require evaluation.

The literal false has typeBooleanLiteral[false] . The literaltrue has typeBooleanLiteral[true] .

The literal () is the only value with typé). Whether any given occurrence ©f refers to the valug) or to the type
() is determined by context.

A character literal has typ€haracter. Each character literal consists of an abstract charattenicode 5.0[[25],
enclosed in single quotation marks (for exampég, “A’, ‘$’, ‘o, ' @"). For convenience, the single quotes may be
either true typographical “curly” single quotation marksagair of ordinary apostrophe characters (for examgle,

A L$ o, @). See Sectioh 519 for a description of how names of chaatay be used rather than actual
characters within character literals, for exam@eOSTROPHE&Nd ‘GREEKCAPITAL_LETTERGAMMA

A string literal has typé&tring. Each string literal is a sequence of Unicode 5.0 charaeteri®sed in double quotation
marks (for example,Hello, world! " or “z+2"). For convenience, the double quotes may be either truaggph-
ical “curly” double quotation marks or a pair of “neutral” glole-quote characters (for examplegllo, world!"
or"mr2"). Sectior 5.1D also describes how names of characters mageukrather than actual characters within
string literals. One may also use the escape sequéncasd\t and\n and\f and\r as described in [5].

Numeric literals in Fortress are referred torasnerals corresponding to various expressible numbers. Numerays m
be eithersimpleor compoundas described in Sectidbn 5113).

A numeral containing only digits (let be the number of digits) has ty@€aturalNumeral[r, 10, v] wherev is the
value of the numeral interpreted in radix ten. If the numéed no leading zeros, or is the liter@| then it also has
type Literal[v] .

A numeral containing only digits (let be the number of digits) then an underscore, then a radiganati (letr be the
radix) has typeNaturalNumeral WithExplicitRadix[n, r, v] wherev is the value of the:-digit numeral interpreted
in radixr.

91

A numeral containing only digits (let be the total number of digits) and a radix point ¢letoe the number of digits
after the radix point) has typRadixPointNumeral[n, m, 10, v] wherev is the value of the numeral, with the radix
point deleted, interpreted in radix ten.

A numeral containing only digits (let be the total number of digits) and a radix point ¢letoe the number of digits
after the radix point), then an underscore, then a radixcatdr (letr be the radix) has the following type:

RadixPointNumeral WithExplicitRadix[n, m, r, v]
wherew is the value of the:-digit numeral, with the radix point deleted, interpretadadixr.
Every numeral also has ty@8umeral[n, m, r,v] for appropriate values of, m, r, andv.

Numerals are not directly converted to any of the numbergyggeause, as in common mathematical usage, we expect
them to be polymorphic. For example, consider the num&rad15926535897932384 ; converting it immediately to

a floating-point number may lose precision. If that numesalded in an expression involving floating-point intervals,

it would be better to convert it directly to an interval. Tafare, numerals have their own types as described above.
This approach allows library designers to decide how nulmstauld interact with other types of objects by defining
coercion operations (see Section 17.1 for an explanationation in Fortress). The Fortress standard librarieseefi
coercions from numerals to integers (for simple numeraid)rational numbers (for compound numerals).

In Fortress, dividing two integers using thieperator produces mtional number this is true regardless of whether
the integers are of typ# (or ZZ), 764 (or Zz64), N32 (or NN32), or whatever. Addition, subtraction, multiplication,
and division of rationals are always exact; thus values siscly3 are represented exactly in Fortress.

Numerals containing a radix point are actually rationarhts; thus3.125 has the rational valug125/1000. The
quotient of two integer literals is a constant expressi@s¢tibed in Sectidn 13.27) whose value is rational. Sifyilar

a sequence of digits with a radix point followed by the symkohnd an integer literal raised to an integer literal,
such as6.0221415 x 10?3 is a constant expression whose value is rational. If suclkteais are mentioned as part
of a floating-point computation, the compiler performs thganal arithmetic exactly and then converts the result to
a floating-point value, thus incurring at most one floatimgaprounding error. But in general rational computations
may also be performed at run time, not just at compile time.

A rational number can be thought of as a pair of integeasidq that have been reduced to “standard form in lowest
terms”; that isg > 0 and there is no nonzero integesuch that? and{ are integers anf2| + |£| < |p| + |g|. The
typeQ includes all such rational numbers.

The typeQ* relaxes the requirement > 0 to ¢ > 0 and includes two extra valueg,/0 and —1/0 (sometimes
called “the infinite rational” and “the indefinite rationgl"The advantage d@* is that it is closed under the rational
operationst, —, x, and/. If a value of typeQ* is assigned to a variable of tyig a DivideByZeroException is
thrown at run time if the value i¢ /0 or —1/0. The typeQ* includes all of1/0, —1/0, and0/0. In ASCII, Q,
Q*, and Q# are written asQQ QQstar , andQQsplat , respectively. See Sectién 3B.1 for definitions@f Q*,
and Q7 .

13.1.1 Pi
The object namedr (or pi) may be used to represent the ratio of the circumference tle ¢o its diameter rather
than a specific floating-point value or interval value. Intfess, = has typeRationalValueTimesPi[false, 1, 1] .

When used in a floating-point computation, it becomes a figgpioint value of the appropriate precision; when used
in an interval computation, it becomes an interval of therappate precision.

13.1.2 Infinity and Zero
The object namedo has typeExtendedInteger Value[true, 0, true]] . One can negateo to get a negative infinity.

92

Negating the literald produces a special negative-zero object, which refuseant@ipate in compile-time constant
arithmetic (discussed in Sectibn 13.27). It has typezativeZero. The main thing it is good for is coercion to a
floating-point number (discussed in Chapter 17). (Negatimgother zero-valued expression simply produces zero.)

13.2 Identifier References

Syntax:
Expr == DottedNamf]StaticArgList]]
| self
DottedName ::= Dottedld
| opr Op

A name that is not an operator appearing in an expressiomxiistcalled aridentifier referencelt evaluates to the
value of the name in the enclosing scope in the value namesgde type of an identifier reference is the declared
type of the name. See Chatér 7 for a discussion of names.ehtifier reference performs a memory read operation.
Note in particular that if a name is not in scope, it is a statior (as described in Sectibn7.2).

An identifier reference which denotes a polymorphic funttinay include explicit type arguments (described in
Chaptef_1IR) but most identifier references do not includenthtbe type arguments are statically inferred from the
context of the method invocation (as described in Chapleriy example identity[String] is an identifier reference
with an explicit type argument where the functiafentity is defined as follows:

identity[T](x:T):T ==z

The special nameelf is declared as a parameter of a method. When the method saited) its receiver is bound
to the self parameter; the value afelf is the receiver. The type afelf is the type of the trait or object being

declared by the innermost enclosing trait or object detitarar object expression. See Secfion 9.2 for details about
self parameters.

13.3 Dotted Field Accesses

Syntax:
Expr := Expr.Ild

An expression consisting of a single subexpression (c#éfledeceiver expressignfollowed by . ’, followed by a
name, not immediately followed by a parenthesis,field accesslf the receiver expression denotes an object (called
thereceive), the field access is evaluated to a call to a getter mappettfrat name by the receiver. The type of the
field access is the return type of its getter. The static tyfgeeoreceiver indicates whether a getter mapped from that

name is provided by the denoted object. If a getter is notigeal; it is a static error. See Sect[on]9.2 for a discussion
of getters.

13.4 Dotted Method Invocations

Syntax:
Expr = Expr.Id[[StaticArgList]]([ExprList)
| TraitType. coercion[[StaticArgList]](Expr)

93

A dotted method invocatioconsists of a subexpression (called the receiver expmsédlowed by * ’, followed by

an identifier, an optional list of type arguments (descrilme@haptef IR) and a subexpression (calledatgiment
expression Unlike in function calls (described in Section 13.6), tigument expression must be parenthesized, even
if it is not a tuple. There must be no whitespace on either efdéie *. ', and there must be no whitespace on the
left-hand side of the left parenthesis of the argument esgioa. The receiver expression evaluates to the receiver of
the invocation (bound to the self parameter (discusseddtie®$9.2) of the method). Aoercioninvocation (discussed

in Chaptel 1I7) has a similar syntax to a dotted method inimtat

The subexpressions of a method invocation are evaluatpdrallel; evaluation steps of the subexpressions can be
interleaved, and even reordered, to form an evaluationeafitethod invocation. See Sectionl4.4 for a discussion of the
semantics of their concurrent evaluation. A method inviocatnay include explicit instantiations of type parameters
but most method invocations do not include them; the typeraents are statically inferred from the context of the
method invocation (as described in Chaptdr 20). After tihespressions of a dotted method invocation are evaluated
to values, the body of the method is evaluated with the patiemeé the method bound to the value of the argument
expression. The value and the type of a dotted method inercate the value and the type of the method body.

We say that methods or functions (collectively calledwasctionaly may beapplied to(also ‘invoked ofi or “ called
with”) an argument. We use “call”, “invocation”, and “applicati” interchangeably.

Here are some examples:

myString.to Uppercase()

myString.replace(“foo ", “few ")
SolarSystem.variation((n/2 radian) /452 million year)
myNum.add(otherNum) (x NOT myNum.add otherNum)

13.5 Naked Method Invocations

Syntax:
Expr = Id Expr

Method invocations that are not prefixed by receiversraeed method invocation#\ naked method invocation is
either a functional method call (See Sectior 9.2 for a disiomsof functional methods) or a method invocation within
a trait or object that provides the method declaration. &fitally, a naked method invocation is same as a function
call except that the method name is used instead of an agbéx@ression denoting the applied method. Like function
calls, an argument expression need not be parenthesizesklinis a tuple. After the argument expression is evaluated
to a value, the body of the method is evaluated with the paemoé the method bound to the value of the argument
expression. The value and the type of a naked method ineocate the value and the type of the method body.

13.6 Function Calls

Syntax:
Expr = Expr Expr

A function callconsists of two subexpressions: an expression denotingpibleed function and an argument expres-
sion. The argument expression and the expression denbeérgpiplied function are evaluatedparallel: evaluation
steps of the subexpressions can be interleaved, and evetered when forming an evaluation of the function call.
See Sectioh 414 for a description of the semantics of paraliduation. As with languages such as Scheme and the
Java Programming Language, function calls in Fortress afég-value. An argument expression is evaluated to a
value before the function is applied. After the subexpssiof a function call are evaluated to values, the body of

94

the function is evaluated with the parameter of the functionnd to the value of the argument expression. The value
and the type of a function call are the value and the type ofithetion body.

Here are some examples:

sqrt(x)
arctan(y, x)

If the function’s argument is not a tuple, then the argumemdhnot be parenthesized:
sqrt 2

sinx
loglogn

13.7 Function Expressions

Syntax:
Value := fn ValParam[IsTypd [Throwg§ = Expr

Function expressions denote function values; they do rptire evaluation. Syntactically, they start with the spéci
reserved wordfn followed by a parameter, optional return type, optiomakows clause=-, and finally an expres-
sion. The type of a function expression is an arrow type &tingj of the function’s parameter type followed by the
token — , followed by the function’s return type, and the functioofstional throws clause. Unlike declared func-
tions (described in Chapteri12), function expressions araliowed to include static parameters natere clauses
(described in Chaptér11).

Here is a simple example:

fn (x:Double) = if x < 0 then —x else z end

13.8 Operator Applications

Syntax:
Expr = Op Expr
| Expr Op[Expr1]
Value ::= LeftEncloser ExprList RightEncloser

To support a rich mathematical notation, Fortress allowstrbmicode characters that are specified to be mathematical
operators to be used as operators in Fortress expresssows]laas various tokens described in Chapteér 16. Most of
the operators can be used as prefix, infix, postfix, or nofixatpes as described in Sectibn 16.3; the fixity of an
operator is determined syntactically, and the same oparay have definitions for multiple fixities.

Syntactically, an operator application consists of an afperand its argument expressions. If the operator is a prefix
operator, it is followed by its argument expression. If tipe@tor is an infix operator, its two argument expressions
come both sides of the operator. If the operator is a postfxaipr, it comes right after its argument expression. Like
function calls, argument expressions are evaluatquhrallel. After evaluating argument expressions to values, the
body of the operator definition is evaluated with the paramsetf the operator bound to the values of the argument
expressions. The value and the type of an operator applicate the value and the type of the operator body.

Here are some examples:

95

(—=b + sqrt(b? — 4ac))/2a
n™e(=™ sqrt(2mn)
arbn—i

T1Y2 — T2Y1

1/2gt>

n(n+1)/2

G+ 1)/ ()

1/3 3/5 5/7 7/9 9/11
17.3 meter/second
17.3m/s

u- (v X w)

(AU B) INTERSECT C
(AuB)NC
1<j<kAp=<gq
print(“The answers are " (p+¢)“ and " (p—q))
<27 3’ 4’ 5>

13.9 Object Expressions

Syntax:
Val 1= object [Extend}(FldDef | MdDef)* end

Object expressions denote object values; they do not eaualuation. Syntactically, they start with the special
reserved worcbbject , followed by an optionakxtends clause, field declarations, method declarations, andyinall
the special reserved wordnd. The type of an object expression is an anonymous objedttyaé that extends
the traits listed in theextends clause of the object expression. The object trait type doeésnalude the methods
introduced by the object expression (i.e., those methotipmyided by any supertraits of the object expression).
Every evaluation of an object expression has the same ararg/object trait type. Each object trait type is associated
with a program location; any two object expressions withdhmeextends clause have different object trait types.

Unlike object declarations (described in Chapter 10), cttg&pressions are not allowed to include modifiers nor value
parameters nor static parameters maiere clauses (described in Chapterd 11). While object declaratioust not
include any free static variable (i.e., all static variagilean object declaration must occur either as a static peteam
or as awhere -clause variable), object expressions may include fraestariables.

For example, the following object expression:
fIT](z:T) = object f:T =z end
has a static variabld’ that is not its static parameter nor ithere -clause variable.

The following example expression evaluates to a new objdending traitList:

object extends { List }
first() = throw Error

rest() = throw Error

cons(x) = Cons(z, self)
append(zs) = xs

end

96

13.10 Assignments

Syntax:
Expr
AssignOp

Expr AssignOp Expr
= | Op=

An assignment expression consists of a left-hand sideatidigz one or more variables or a subscripted expression (as
described in Sectidn 34.7) to be updated, an assignment,take a right-hand-side expression.

The assignment token may be=", to indicate ordinary assignment; or may be any operattirgjothan .’ or * =’
or ‘<’ or'>") followed by ‘=’ with no intervening whitespace, to indicate compound @tpty) assignment. A
compound assignment is a syntactic sugar; for example,= e is a shorthand forr := x + e. An assignment
expression evaluates its right-hand-side expression iaag kis left-hand side to the value of the right-hand-sidlie.
assignment expression performs a memory write operation.

A left-hand side of an assignment expression may be a sirgiable, a subscripted expressionnovariables using
tuple notation. If tuple notation is used, then the rightidhaide must be an expression which ultimately evaluates to a
tuple of lengthn or a function application that returns a tuplenofalues. Variables updated in assignment expressions
must be already declared. The value of an assignment expmess) .

Here are some examples:

© = f(0)

Cij = Cij + Qikby;

(a,b,c) := (b,c,a) (x Permute a, b, and)
z4+=1

(2,y) += (5x.5,)

myBag = myBag U newltems

myBagU = newltems

13.10.1 Definite Assignment

References to uninitialized variables are statically ffidbn. As with the Java Programming Language, this static
constraint is ensured with a specific conservative flow aiglyin essence, an initialization of a variable must occur
on every possible execution path to each reference to ablari¥ariable initialization is performed in a local scope
analogously to the rules for top-level initialization ofrgile components, defined in Section 22.6.

13.11 Do Expressions

Syntax:
Flow ©= Do
Do = do BlockEleni end
BlockElem := Exprf, GeneratorLis}

| LocalVarFnDecl

A do expression consists of the special reserved wiarda series of expressions, a generated expressions (dskscrib
in Sectior 13.11]1) local variable declarations, or localction declarationsb{ock expression and the special re-
served wordend. The last of the block expression must not be a local dedterath do expression evaluates its
subexpressions and local declarations in order. The valdéygpe of ado expression is the value and type of the last
expression in the block expression. Eath expression introduces a new scope. Some compound expre$sioe
clauses that are implicitly block expressions.

97

Here are examples of function declarations whose bodied@armexpressions:

f(z:R64) = do
(sin(z) + 1)2
end

foo(x:R64) = do

Y=z
z =2z
y+z

end

mySum(i: Z64) : 764 = do
acc: 764 :=0
for j < 0:7¢do
acc = acc +j
end
acc
end

13.11.1 Generated Expressions

If a subexpression of @o expression has typ€), the expression may be followed by &' ‘and a generator list
(described in Sectidn 13.1.7). When a generator list is piexyi generators produce values and bind the values to the
identifiers that are used in the preceding expression. Mastigtors, unlike theequential generator, may execute
each evaluation of the assignment in a separate impligathr

13.11.2 Distinguishing a Local Declaration from an Equaliy Expression

Because a local declaration shares a syntax withogrality expressigrwe provide rules for disambiguation:

¢ If an expression of the formé = e” occurs as a proper subexpression in any non-block expmesgiis an
equality expression.

e If such an expression occurs as an immediate subexpresSmmlock expression, it is a local declaration.
Adding parentheses makes the expression an equality sipmes

13.12 Parallel Do Expressions

Syntax:
Do := do BlockElent also Do

| at Expr Do

A series of blocks may be run in parallel using theso do construct. Any number of contiguous blocks may be
joined together by the special reserved waitko. Each block is run in a separate implicit thread; these dwea
together form a group. A thread can be placed in a partic@gion by using arat expression as described in

Sectior 32.17.

For example:

98

treeSum(t : TreeLeaf) = 0
treeSum(t : TreeNode) = do
var accum =0
do
accum += treeSum(t.left)
also do
accum += treeSum(t.right)
also do
accum += t.datum
end
accum
end

13.13 Label and Exit

Syntax:
Flow := 1label Id Expr" end Id
| exit [Id] [with Expr]

Block expressions may be labeled with an identifier. Syrtalty, a 1abel expression begins with the special re-
served wordlabel followed by an identifier, inner expressiorialfel blocR, the special reserved worehd, and
finally the same identifier. Alabel expression evaluates its inner expressions in order anthany exit expres-
sion can exit the label block. Syntactically, arit expression begins with the special reserved watdt followed

by an optional identifier of théargeted label blockvith an optional valuegxit valug, which consists of the special
reserved wordsith followed by an expression. If aexit expression does not haverath clause, it has an implicit
exit value () . If an exit expression does not exist withinlabel expression, the value of theabel expression

is the value of the last expression of the label block. Ifearit expression exists, the expression completes abruptly
and attempts to transfer control to the end of the targeteel lslock. The targeted label block evaluates to the exit
value of theexit expression. The type of Babel expression is a union of the type of the last expression ddlitsl
block and the types of angxit values. The type of arxit expression iBottomType.

If one or moretry expressions are nested betweeneaiit expression and the targeted label block, theally
clauses of these expressions are run in order, from inneérnmaaitermost. Only when every intervenirfgnally
clause has completed normally does the targeted block eteypbrmally. If anyfinally clause completes abruptly
by throwing an exception, thexit expression fails to exit, thdabel expression completes abruptly, and the
exception is propagated.

Here is a simple example:

label Ig5
if goingTo(Sun)
then exit Igs with 2328
else 324
end
end 195

The expressiorexit Igs with 232B completes abruptly and attempts to transfer control to titead the targeted
label block 1abel Ig5 . The targeted label block completes normally with vahseB .

99

13.14 While Loops

Syntax:
Flow := while Expr Do

A while loop consists of a&ondition expressionf type Boolean followed by the special reserved wordb , a
series of expressions, local variable declarations, @l flamction declarations, and the special reserved wardl. It
evaluates the condition expression and the body expressipeatedly until the value of the condition expression is
false. The value of ahile loop is (). The body expressions form a block expression and has timisagsroperties

of block expressions (described in Secfion 18.11).

13.15 For Loops

Syntax:
Flow := for GeneratorlList Do

A for loop consists of the special reserved warer followed by a generator list (discussed in Section 113.17),
followed by the special reserved wottb , a series of expressions, local variable declarationgaal function decla-
rations, and the special reserved weitith . for loops are implicitly parallel. Parallelism ifior loops is specified by
the generators used (see Section 113.17). Most generatdikg the sequential generator, may execute each iteration
of the loop body expression in a separate implicit thread.eaah iteration, generators produce values and bind the
values to the identifiers that are used in the loop body. Theewaf a for loop is (). The body expressions form a
block expression and have the various properties of blopkemsions (described in Sectlon 13.11).

13.15.1 Reduction Variables

To perform computations as locally as possible, and avaednided to synchronize relatively simpf»r loops,
Fortress gives special treatmentréaluctions We say that an operatap is areduction operatoffor type T with an
identity id if T is a subtype oMonoid[T, ®, id], which implies that® is an associative binary infix operator Bf
(see Sectioh 3714 for details about thienoid trait). A loop body may contain as many of the following assigent
expressions using reduction operators as desired:

l:=1® expr
l:=expr ol
|l ®= expr

Reductions restrict a set of valid executionsfefr loops to get additional benefits such as less synchronizatidth
other threads. We say that a variables areduction variablereduced using the reduction operatofor a particular
for loop if it satisfies the following conditions:

e Every assignment t@ within the loop body uses the same reduction operatoand the value of is not
otherwise read or written.

e The variablel is not a free variable of &n expression or a method in abject expression which occurs in
the loop body.

e The variablel is not an object field.

Other threads which simultaneously reference a reductioialle while a loop is running will see the value of the

variable before the loop begins. At the end of the loop bduy,driginal variable value before the loop and the final
variable values from each execution of the loop body are ¢oacbtogether using the reduction operator, in some
arbitrarily-determined order.

100

Several common mathematical operators are defined to beti@aoperators in the Fortress standard libraries. These
include +, -, A, V,andV. If atypeT extendsGroup[T, +, —, id] (see Sectioh 3714 for details about tBeoup
trait) then reduction expressions of the form:

rT—=y
are transformed into:
r+=uz.id —y

Note that since there are no guarantees on the order of éxectdiioop iterations, there are also no guarantees on the
order of reduction.

The semantics of reductions enables implementation giestsuch as OpenMP_[22]: A reduction variablées as-
signed!.:d at the beginning of each iteration. The original variableiganay be read ahead of time, resulting in the
loss of parallel updates to the variable which occur in othexads while the loop is running. Note that because this
implementation strategy does not read reduction variahléise loop body, the actual implementation of reduction
may vary substantially from the execution.

In the following examplesum is a reduction variable:

arraySum|[nat z](a: R64[z]) : R64 = do
sum :R64 := 0
for 1 « a.indices do
sum = sum + a;
end
sum
end

13.16 Ranges

Syntax:
Range := [Expr]:[Expr[:[Exp]]
| Expr# Expr

A range expressiois used to create a special kind Ginerator for a set of integers, called Bange, useful for
indexing an array or controlling &or loop. Generators in general are discussed further in SEE8dL7.

An explicit rangeis self-contained and completely describes a set of integegsume that, b, andc are expressions
that produce integer values.

e The rangea:b is the set ofn = max(0,b — a + 1) integers{a,a + 1l,a+ 2,...,b— 2,b— 1,b}. Thisis a
nonstridedrange. Ifa and b are both static expressions (described in Se€tion 1312),it is astatic rangeof
type StaticRange[a, n, 1] and therefore alsornge of static siZeof type RangeOfStaticSize[n] .

e Therangea:b:c is the set ofs = max (0, | =< |) integers{a,a + c,a + 2¢,...,a + | =2 c}, unlessc is
zero, in which case it throws an exception. (I a static expression, then it is a static errarig zero.) This is
astridedrange. Ifa, b, and ¢ are all static expressions, then it istatic rangeof type StaticRange[a, n, (]
and therefore alsormnge of static sizeof type RangeOfStaticSize[n] .

e Therangea# n is the setoh integers{a,a+1,a+2,...,a+n—3,a+n—2,a+n—1}, unless is negative,
in which case it throws an exception. lfis a static expression, then it is a static errot if negative.) This is
anonstridedrange. Ifa andn are both static expressions, then it istatic rangeof type StaticRange[a, n, 1]
If b is a static expression, then it isr@ange of static sizef type RangeOfStaticSize[n], even if a is not a
static expression.

101

An implicit rangemay be used only in certain contexts, such as array subsdtigt can supply implicit information.
Suppose an implicit range is used as a subscript for an agisayf for which the lower bound isand the upper bound
is u.

e The implicit range: is treated ag : u..

e The implicit range: : ¢ is treated ad: u: c.

The implicit range: b is treated ag : b.

The implicit range: b: ¢ istreated ag: b: c.

The implicit rangea : is treated asi: u .
e The implicit rangea: : ¢ istreated asi: u: c.

One may test whether an integer is in a range by using the topera
if j € a:b then print “win " end

Ranges may be compared as if they were sets of integers by usilSUBSET) and C (SUBSETEQand = and
D (SUPSETEQand > (SUPSET).

Nonstrided ranges may be intersected using the opefatdNTERSECTION).

The size of a range (the number of integers in the set) may uradfby using the set-cardinality operator.|. For
example, the value of3: 7| is 5 and the value of1:100:2]| is 50.

Note that a range is very different from an interval with ggeendpoints. The randge: 5 contains only the values 3,
4, and 5, whereas the interv@l, 5] contains all real numbers such that3 < z <5.

13.17 Generators

Syntax:
GeneratorList ::= Generator(, Generato}*
Generator = ld« Expr
| (Id, IdList) < Expr
| Expr
IdList s= o 0d(Id)*

Fortress makes extensive use of comma-sepagateerator listdo express parallel iteration. Generator lists occur in
generated expressions (described in Settion 13.140%) loops (described in Sectibn 13]15), sums and big operators
(described in Section 13.18), and comprehensions (destiib Section_13.29). We refer to these collectively as
expressions with generator€very expression with generators containsoaly expressioifor an assignment this
expression is the assignment itself) which is evaluate@éoh combination of values bound in the generator list.

An element of a generator list is eitheganerator bindingor a boolean expression. A generator binding consists of
one or more comma-separated identifiers followed by thenteke followed by a subexpression (called tipenerator
expression A generator expression evaluates to an object whose $y@erierator. For each iteration, a generator
object produces a value or a tuple of values. These valudsoaed to the identifiers to the left of the arrow, which
are in scope of subsequent generator list elements and bbtheof the construct containing the generator list.

A boolean expression in a generator list is interpretedfdien An iteration is performed only if the result of the filter
expression s true. If the filter is false, subsequent exgiwas in the generator list will not be evaluated. Howevitren
than this restriction, there is no implied order of evaloatf the generator expressions or the boolean expressions i
a generator list. Thus, for example, if a boolean expressidtine middle of the list evaluates tioue, then generator
expressions to its right in the list may be evaluated beferegator expressions to its left.

102

The body of each iteration is run in its own implicit threadh€Texpressions in the generator list can each be considered
to run in a separate implicit thread. Together these intgleeads form a thread group.

Some commorGenerators include:

l:u Any range expression
a.indices The index set of an array
{0,1,2,3} The elements of an aggregate expression

sequential(g) A sequential version of generatgr

The generatorsequential(g) forces the iterations using distinct values framto be performed in order. Every
generator has an associatetural orderwhich is the order obtained byequential . For example, a sequentidbr
loop starting atl and going ton can be written as follows:

for i « sequential(1l:n) do

end

Given a multidimensional array, thiavdices generator returns a tuple of values, which can be bound byla tf
variables to the left of the arrow:

(i,7) < my2DArray.indices

The parallelism of a loop on this generator follows the spatistribution (discussed in Sectibn 32.5)mf2DArray
as closely as possible.

The order of nesting of generators need not imply anythirmuathe relative order of nesting of iterations. In most

cases, multiple generators can be considered equivalemiltgple nested loops. However, the compiler will make an

effort to choose the best possible iteration order it caafoultiple-generator loop; there may be no such guarantee fo
nested loops. Thus loops with multiple generators are mabfe in general. Note that the early termination behavior
of nested looping is subtly different from a single multingeator loop; see Sectién 3P.6.

13.18 Summations and Other Reduction Expressions

Syntax:
Flow : Accumulatof{[GeneratorLisf] Expr
Accumulator = > |]]| BIG Op

A reduction expressiohegins with a big operator such §S or [] followed by an optional generator list (described
in Sectior 13.1]7), followed by a subexpression. A complisteof these operators are described in Sedtion 16.8.1.
When a generator list is provided, generators produce salod bind the values to the identifiers that are used in the
subexpression. Most generators, unlike theuential generator, may execute each evaluation of the subexpnessio
in a separate implicit thread. The value of a reduction esgiom is the result of the operation over the values of the
subexpressions. The type of a reduction expression is thergype of the big operator used.

A reduction expression with a generator list:
o1 = g1,v2 < g2, Je
is equivalent to the following code:

do
result = 0
for vy < g1,v3 < ¢g2,...do
result +=e
end

103

result
end

whereresult is a fresh variable. A reduction expression without a getoefest:

2.9

is equivalent to the following:

Ylw —gla

Note that reduction expressions without generator liststm® used to conveniently sum any aggregate expression
(described in Sectidn 13.28), since every aggregate esipreis a generator.

13.19 If Expressions

Syntax:
Flow := if Expr then Exprt (elif Expr then Exprt)* [Elsd end
| (if Expr then Exprt (elif Expr then Exprt)* Else[end])
Else := else Expr"

An if expression consists of the special reserved wotdfollowed by a condition expression of tyd&oolean,
followed by the special reserved worthen , a sequence of expressions, an optional sequenegidf clauses (each
consisting of the special reserved wosdlif followed by a condition expression, the special reservertiwden ,

and a sequence of expressions), an optieiale clause (consisting of the special reserved welde followed by a
sequence of expressions), and finally the special reseromtiend . Each clause forms a block expression and has the
various properties of block expressions (described ini®@ed3.11). Anif expression first evaluates its condition
expression. If the condition expression evaluates to thethen clause is evaluated. Otherwise, the next to the
then clause is evaluated. Arlif clause evaluates its condition expression first and pracsiedlarly to anif
expression. The type of abf expression is the union of the types of all right-hand sidebeclauses. If there is no
else clause in anif expression, then the last expression in every clause maktage to() . The special reserved

word end may be elided if theif expression is immediately enclosed by parentheses. Inscabe, arelse clause
is required.

For example,

if x € {0,1,2} then 0
elif z € {3,4,5} then 3
else 6 end

13.20 Case Expressions

Syntax:
Flow := case Expr[Op] of (Expr = Exprt)* [Elsd end

A case expression begins with the special reserved wedde followed by a condition expression, followed by an
optional operator, the special reserved wolfd, a sequence of case clauses (each consistingohaling expression
followed by the token=, followed by a sequence of expressions), an optiaiale clause (consisting of the special
reserved wordelse followed by a sequence of expressions), and finally the apezserved wordnd .

A case expression evaluates its condition expression and cheuits ease clause to determine which case clause
matches. To find a matched case clause, the guarding expregsiach case clause is evaluated in order and compared

104

to the value of the condition expression. The two values amepared according to an optional operator specified.
If the operator is omitted, it defaults te- or €. If the condition expression has type Generator or if therdjog
expression does not, then the default operatet jotherwise, it is=. It is a static error if the specified operator is not
defined for these types or if the operator’s return type isBwilean.

The right-hand side of the first matched clause (and onlydlzatse) is evaluated. If no matched clause is found, a
MatchFailure exception is thrown. The right-hand side of each clause $aarblock expression and has the various
properties of block expressions (described in Se¢tion1)3.The optionalelse clause always matches. The value
of a case expression is the value of the right-hand side of the matcladse. The type of aase expression is the
union type of the types of all right-hand sides of the casesga.

For example, the followingase expression specifies the operator

case planet € of
{ Mercury, Venus, Earth, Mars } = “inner
{ Jupiter, Saturn, Uranus, Neptune, Pluto } = “outer
else = “remote ”

end

but the following does not:

case 2+ 2 of

4= "it really is 4 "

5:7= "we were wrong again "
end

13.21 Extremum Expressions

Syntax:
Flow := case (largest | smallest)[Op] of (Expr = Exprt)™ end

An extremum expression uses the same syntax assa expression (described in Section 13.20) except that the
special reserved wordargest or smallest is used where aase expression would have a condition expression
and an extremum expression does not have an optiersd clause.

All guarding expressions of an extremum expression is etaflin parallel. See Sectioh 414 for a discussion of
parallel evaluation. To find the largest (or smallest) gitgrthe values of the guarding expressions are compared in
parallel according to an optional operator specified. Ifdberator is omitted, it defaults toMP. The union of the
types of all the candidate expressions must be a subtyffeflOrderOperators|T, <, <, >, >, CMP] for someT’,

<, <, >, and >, if a default operator is used (see Secfion B7.2 for dethibmithe TotalOrderOperators trait).

If an explicit operator is used, the explicit operator repCMP in TotalOrderOperators[T, <, <,>, >, CMP] .

The right-hand side of the clause with the largest (smaltpstrding expression (and only that clause) is evaluated.
If more than one guarding expressions are tied for largesal{sst), the leftmost clause is evaluated. The right-
hand side of each clause forms a block expression and haatioeisy properties of block expressions (described in
Sectior 13.111). The value of an extremum expression is the v the right-hand side of the matched clause. The
type of an extremum expression is the union type of the typa#i dght-hand sides of the clauses.

For example, the following code:

case largest of
1mile = “miles are larger
1kilometer = “we were wrong again
end

105

evaluates to rhiles are larger . A more interesting example is described in Seclion 6.5.

13.22 Typecase Expressions

Syntax:
d Flow = typecase TypecaseBindingsn (TypecaseTypeRefs Exprt)* [Elsd end
TypecaseBindings ::= Id
| Binding
| (BindingList)
Binding = Id = Expr
BindingList = Binding(, Binding)*
TypecaseTypeRefs::= TypeRef

| (TypeRefLis})

A typecase expression begins with the special reserved woygecase followed by a sequence of bindings (either
an identifier or a sequence of an identifier followed by thestok=, followed by an expression), followed by the

special reserved wordn , a sequence of typecase clauses (each consisting of a seqfguarding typedollowed

by the token=-, followed by a sequence of expressions), an optiaiale clause (consisting of the special reserved
word else followed by a sequence of expressions), and finally the apezserved wordcend .

A typecase expression evaluates its bindings and checks each typelzase to determine which typecase clause
matches. A single identifiez (where z is a valid local identifier) as the binding of Biypecase expression is a
shorthand forz = 2. Each subexpression in the bindings is evaluated and iteevalbound to the corresponding
identifier. To find a matched typecase clause, the guardpestpf each typecase clause are compared to the types of
the identifiers bound in the bindings in order. The rightdhaite of the first matched clause (and only that clause) is
evaluated. If no matched clause is foundyiatchFailure exception is thrown. The right-hand side of each clause
forms a block expression and has the various propertie@oklgxpressions (described in Secfion 1B.11). The optional
else clause always matches. The value of gpecase expression is the value of the right-hand side of the matched
clause. The type of aypecase expression is the union type of the types of all right-hart®siof the typecase
clauses.

For example:

typecase x = myLoser.myField in
String = x.append(“foo)
Number = z + 3
Object = yogiBerraAutograph
end

Note that “z” has a different type in each clause.

13.23 Atomic Expressions

Syntax:
Flow := atomic Expr
| tryatomic Expr

As Fortress is a parallel language, an executing Fortrexggm consists of a set of threads (See Settionh 4.4 for a

discussion of parallelism in Fortress). In multithreadealgpams, it is often convenient for a thread to evaluate some
expressionatomically. For this purpose, Fortress providesomic expressions.

106

An atomic expression consists of the special reserved watdmic followed by abody expressianEvaluating
an atomic expression is simply evaluating the body expression. Adtieeand all writes which occur as part of this
evaluation will appear to occur simultaneously in a singtavdc step with respect tany action performed by any
thread which is dynamically outside. This is specified inadéh Chaptef 2lL. The value and type of amomic
expression are the value and type of its body expression.

A tryatomic expression consists of the special reserved woargatomic followed by an expression. See Sec-
tion[32.3 for a discussion ofryatomic expressions.

A function or method with the modifiestomic acts as if its entire body were surrounded insromic expression.
However, it is a static error if an API declares a functiofialith the modifieratomic but a componentimplementing
the API defines whose body is aratomic expression without the modifier. Input and output (inclgdianctionals
with the modifier io) cannot be performed within aatomic expression. Thus, a functional must not have both
atomic and io modifiers.

When the body of aratomic expression completes abruptly, theomic expression completes abruptly in the same
way. If it completes abruptly by exiting to an enclosingbel expression, writes within the block are retained
and become visible to other threads. If it completes abyuptithrowing an uncaught exception, all writes to objects
allocated before thatomic expression began evaluation are discarded. Writes to redlelyated objects are retained.
Any variable reverts to the value it held before evaluatibthe atomic expression began. Thus, the only values
retained from the abruptly completettomic expression will be reachable from the exception objectuhoa chain

of newly allocated objects.

Atomic expressions may be nested arbitrarily; the aboveaséios imply that an inneatomic expression is atomic
with respect to evaluations which occur dynamically owgdite inneratomic expression but dynamically inside an
enclosingatomic.

Implicit threads may be created dynamically within anomic expression. These implicit threads will complete
before theatomic expression itself does so. The implicit threads may run ialp, and will see one another’s
writes; they may synchronize with one another using nesteshic expressions.

A spawned thread created in aromic expression conceptually begins execution afterdhemic expression, so
long as an exception is not thrown by theomic expression. Thus the body of the spawned thread is dyndynical
outside theatomic expression in which it was created. It is legal to either spawhread (discussed in Section 13.24)
or to synchronize with it using theal or wait methods during the course of atomic expression, but it is illegal
to do both to the same thread. Doing so will cause the methbdocthrow the AtomicSpawnSynchronization
exception.

Note thatatomic expressions may be evaluated in parallel with other exjmess An atomic expression expe-
riencesconflictwhen another thread attempts to read or write a memory totathich is accessed by thetomic
expression. The evaluation of such an expression must hialfyaserialized with the conflicting memory operation
(which might be anotherntomic expression). The exact mechanism by which this occurs wiy;vthe necessary
serialization is provided by the implementation. In gehetee evaluation of a conflictingitomic expression may
be abandoned, forcing the effects of execution to be dischathd execution to be retried. The longer stromic
expression evaluates and the more memory it touches thieegtha chance of conflict and the larger the bottleneck a
conflict may impose.

For example, the following code uses a shared counter asdignic

arraySum|[N extends Additive,nat z](a: Nx]): N = do
sum:N =0
for i < a.indices do
atomic sum += a;
end
sum
end

107

The loop body reads:; and sum, then adds them and writes the result backstmn; this will appear to occur
atomically with respect to all other threads (including titleer iterations of the loop body). Note in particular the t
atomic expression will appear atomic with respect to reads anegw/ribt inatomic expressions ofi; and sum.

13.24 Spawn Expressions

Syntax:
Flow := spawn Expr

A thread can be created byspawn expression. Aspawn expression consists of the special reserved wgsavn
followed by an expression. Apawn expression spawns a thread which evaluates its subexgmaagparallel with
any succeeding evaluation. The value ofgawn expression is the spawned thread and the type of the expnéssi
the Thread trait.

The Thread trait has the following methods:

e The val method returns the value computed by the subexpressioreafithwn expression. If the thread has
not yet completed execution, the invocatiomaf blocks until it has done so.

e The wait method waits for a thread to complete, but does not returrtueeva
e The ready method returnsrue if a thread has completed, and retuyiage otherwise.
e The stop method attempts to terminate a thread as described in 882i6.

In the absence of sufficient parallel resources, an attesnpiade to run the subexpression of #ygawn expression
before continuing succeeding evaluation (so long as we hatepecified a region for evaluation as described in
Section 32.I7, and we are not currently evaluatingaammic expression as described in Section 1B.23). We can
imagine that it is actually theest of the evaluatiorafter the parallel block which is spawned off in parallel. This is
a subtle technical point, but makes the sequential exatofiparallel code simpler to understand, and avoids subtle
problems with the asymptotic stack usage of parallel cofleT1].

13.25 Throw Expressions

Syntax:
Flow := throw Expr

A throw expression consists of the special reserved wdrdow followed by a subexpression. The subexpression
must have the typ&xception (see Chaptdr 14). Ahrow expression evaluates its subexpression to an exception
value and throws the exception value; the expression caegpébruptly and haBottomType.

The typeException has exactly two direct mutually exclusive subtyp@ageckedException andUncheckedException.
Every CheckedException that is thrown must be caught or forbidden by an enclosimg expression (see Sec-
tion[13.26), or it must be declared in ththrows clause of an enclosing functional declaration (see Seldtib).
Similarly, every CheckedException declared to be thrown in the static type of a functional chHieust be either
caught or forbidden by an enclosingy expression, or declared in thehrows clause of an enclosing functional
declaration.

108

13.26 Try Expressions

Syntax:
Flow := +try Exprt[catch Id (TraitType = Exprt)*][forbid TraitType}[finally Exprt] end

A try expression starts with the special reserved warg followed by a sequence of expressions (e block),
followed by an optionalcatch clause, an optionaforbid clause, an optionatinally clause, and finally the
special reserved wordnd . A catch clause consists of the special reserved wostich followed by an identifier,
followed by a sequence of subclauses (each consisting ok@pton type followed by the token> followed by
a sequence of expressions). #drbid clause consists of the special reserved wosdbid followed by a set of
exception types. Afinally clause consists of the special reserved wetchally followed by a sequence of
expressions. Note that thery block and the clauses form block expressions and have timigaproperties of block
expressions (described in Section 13.11).

The expressions in thery block are first evaluated in order until they have all congdetormally, or until one of
them completes abruptly. If thery block completes normally, therovisionalvalue of thetry expression is the
value of the last expression in thery block. In this case, and in case of exiting to an enclosiagel expression,
the catch and forbid clauses are ignored.

If an expression in thery block completes abruptly by throwing an exception, the pkoe value is bound to the
identifier specified in theatch clause, and the type of the exception is matched againstibesises of theatch
clause in turn, exactly as in aypecase expression (Sectidn_ 1322). The right-hand-side sequehegpressions
of the first matching subclause is evaluated. If it complesnally, its value is the provisional value of they
expression. If thecatch clause completes abruptly, thery expression completes abruptly. If a thrown exception
is not matched by theatch clause (or this clause is omitted), but it is a subtype of tkeeption type listed in a
forbid clause, a newForbiddenException is created with the thrown exception as its argument andmirdrhe
exception thrown by thery block ischainedto the ForbiddenException as described in Sectién 14.3.

If an exception thrown from ary block is matched by botlzatch and forbid clauses, the exception is caught by
the catch clause. If an exception thrown from+ary block is not matched by angatch or forbid clause, the
try expression completes abruptly.

The finally clause is evaluated after completion of they block and anycatch or forbid clause. The ex-
pressions in thefinally clause are evaluated in order until they have all completethally, or until one of them
completes abruptly. In the latter case, they expression completes abruptly exactly as the subexpregsithe
finally clause does.

If the finally clause completes normally, and they block or the catch clause completes normally, then the
try expression completes normally with the provisional valiie try expression. Otherwise, thery expression
completes abruptly as specified above.

For example, the followingry expression:

try
inp = read(file)
write(inp, newFile)
forbid IOException
end

is equivalent to:

try
inp = read(file)
write(inp, newFile)
catche

109

IOException = throw ForbiddenException(e)
end

The following example ensures thfte is closed properly even if an 10 error occurs:

try
open(file)
inp = read(file)
write(inp, newFile)
catche
IOException = throw ForbiddenException(e)
finally
close(file)
end

13.27 Static Expressions

Static expressiondenotestatic values Given instantiations of all static parameters (descrilme@haptef 1) in
scope of a static expression, the value of the static expresan be determined statically. Static expressions can be
used as instantiations of static parameters. We define thef static expressions by first defining the types of static
expressions, and distinguishing static values from theetforelated literal values. We then describe the exprassio
that evaluate to the various kinds of static values.

13.27.1 Types of Static Expressions

There are three groups of traits that describe literals tatit £xpressions:

1. Theliteral traits, which describe boolean, character, string, andanats. For example, the literatue has trait
BooleanLiteral[true] and a character literal has tréiharacter. See Section 13.1 for a discussion of Fortress
literals.

2. Theconstantraits, which describe values denoted by expressions cseafoom literals and operators; the type
of a constant expression encodes the value of the expredsmrexample, the type of a constant expression
3+ 5, IntegerConstant[false, 3 + 5] , encodes the value of the expression.

3. Thestatictraits, which describe values denoted by expressions csetpfvom literals, operators, angbol ,
nat, and int parameters; here the type does not encode the value of tmessigm, but the value of the
expression can nevertheless be known statically if spedfites are specified for the static parameters. Also,
in situations where the type of an expression composedysitah literals and operators nevertheless cannot
be described by a constant trait, then a static trait may bd tes describe it instead. For example, a static
expressior2(3 + m) wherem is anat parameter has tralfaturalStatic.

The only operation on literals that produces a new literabf@posed to a constant) is concatenation by using the opera-
tor || . One may concatenate mixed string and character litenadpping a string literal. For exampleipb ” || "bar ”
yields “foobar ". One may also concatenate two natural numerals of the sadne producing a new natural numeral

of that radix. For exampledeadci¢||0de s Yields deadcOde;g .

Every literal trait extends an appropriate constant teait] every constant trait extends an appropriate static 8ai
every literal is also a constant expression, and every aohekpression is a static expression.

110

13.27.2 Static Expressions and Values

Static parameters are static expressionaa® parameter denotes a value that has typeuralStatic (which extends
IntegerStatic). An int parameter denotes a value that has tifegerStatic. A bool parameter denotes a value
that has typdBooleanStatic.

Boolean static expressions may be combined using the apserat v, &, =, <, NAND, NOR, =, #, and —
(See AppendikF for a discussion of Fortress operators.yddyte other static expressions denoting boolean static
expressions. If both operands are boolean constant exgmesthen the result is also a boolean constant expression.

Character static expressions may be compared using thatoper. , <, >, >, =, and# to produce boolean static
expressions. If both operands are character constantssipns, then the result is a boolean constant expression.

Numeric static expressions may be compared using the aperat, <, >, >, =, and # to produce boolean static
expressions. If both operands are numeric constant expnssshen the result is a boolean constant expression.

Numeric static expressions may be combined using the apsrahd functions+, —, x, -, /, !, MIN, MAX,

V/» floor, ceiling, hyperfloor, hyperceiling, ged, lem, sin, cos, tan, arcsin, arccos, and arctan to produce
new numeric static expressions. If the result is indeed aamignstatic expression, and both operands are numeric
constant expressions, then the result is also a numeritcazarexpression (except under certain circumstances—for
example,sqrt 5 denotes a numeric constant expression, and so (ogssqrt 5)/2, but sqrt((1 + sqrt 5)/2) does

not, because it is too complicated).

Where things get too complicated, a static expression atialubacks off, widest-need processing steps in at a later
stage and chooses an appropriate precision of floating-pothmetic.

13.28 Aggregate Expressions

Syntax:
Value := Aggregate

Aggregate expressiorevaluate to values that are themselves homogeneous anilkedf values. Evaluation of the
subexpressions of an aggregate expression is perfoimearallel. Evaluation steps of the subexpressions can be
interleaved and even reordered to form an evaluation ofdgljesgates expression. See Sedtioh 4.4 for a discussion of
parallel evaluation.

Syntax for aggregate expressions are provided in the Bsrgtandard libraries for sets, maps, lists, tuples, nestric
vectors, and arrays.

Set Expressions:

Syntax:
Aggregate { [ExprLisf }
ExprList = Expr(, Expn*

Set element expressions are enclosed in braces and sepayatemmas. The type of a set expressiorsis[77],
where T' is the union type of the types of all element expressionsett expression.

Set containment is checked with the operatoand the subset relationship is checked with the operator For
example:

3¢€{0,1,2,3,4,5}

evaluates tarue and

111

{0,1,2} € {0,3,2}

evaluates tgfalse.

Map Expressions:

Syntax:
Aggregate = {[EntryLisf }
EntryList = Entry(, Entry)*
Entry = Expr— Expr

Map entries are enclosed in curly braces, separated by cepand matching pairs are separated-by The type of

a map expression idlap[.S, T] where S is the union type of the types of all left-hand-side expmssiof the map
entries, andT' is the union type of the types of all right-hand-side expmssof the map entries. This type can be
abbreviated a§S — T} .

A map m is indexed by placing an element in the domaimefenclosed in brackets immediately after an expression
evaluating tom . Thus, the index is rendered as a subscript. For example, if:
m={a —0,b —1°c 2}

thenmy evaluatestal . In contrast,m'y’ throws aNotFound exception, asx’ is not an index ofm.

List Expressions:

Syntax:
Aggregate = ([ExprLis{)

List element expressions are enclosed in angle bracketsl) and are separated by commas. The type of a list
expression id.ist[7] where T is the union type of the types of all element expressionss Hiie can be abbreviated
as(T).

A list [is indexed by placing an index enclosed in square bracketeiliately after an expression evaluatingl to
Thus, the index is rendered as a subscript. Lists are alwalgxéed from0 . For example:

<37 27 17 0)2

evaluates tol .

Array Expressions

Syntax:
Aggregate = [(Expr|;)*]

Array element expressions are enclosed in brackets. Elegpressions along a row are separated only by whites-
pace. Two dimensional array expressions are written byragpg rows with newlines or semicolons. If a semicolon
appears, whitespace before and after the semicolon isegndihe parts of higher-dimensional array expressions are
separated by repeated-semicolons, where the dimensjoabthe result is equal to one plus the number of repeated
semicolons. The type of/adimensional array expression fsrray [T [no, - - - , nix—1] , Wwhere T is the union type of

the types of the element expressions agg..., n;_; are the sizes of the array in each dimension. This type can be
abbreviated ag'[ng, - -+ , ng—_1] -

A k-dimensional array is indexed by placing a sequencekdhdices enclosed in brackets, and separated by commas,
after an expression evaluating #to. Thus, the index is rendered as a subscript. By default suiaes indexed from O.
The horizontal dimension of an array is the last dimensiontiored in the array index. For example:

112

A=123;456;7809
then 4, o evaluates tol.

An array of two dimensions whose elements are a subtypswfiber can be coerced to a matrix. Matrix types
are written Matrix[T][no x ... X nix_1], wherek > 1. A type of this form can be abbreviated g&o> > -1
Matrices are indexed in the same manner as arrays.

A one-dimensional array whose elements are a subtypeiafber can be coerced to a vector. Vector types are written
Vector[T][n]. A type of this form can be abbreviated %', unlessT is declared in the enclosing scope to be a
physical dimension or unit.

The element expressions in an array expression may be sahlars or array expressions themselves. If an element is
an array expression, it is “flattened” (pasted) into the @siolg expression. This pasting works because arrays never
contain other arrays as elements. The elements along a roeolfann) must have the same number of columns
(or rows), though two elements in different rows (columnsgad not have the same number of columns (rows). See
Sectiorl 6.5 for a discussion of matrix unpasting.

The following four examples are all equivalent:

3 4 34 [34
5 6] 56]

Here is a3 x 3 x 3 x 2 matrix example:

; 56]

[100
010
001;;010
101
010; ;101
010
101
100
010
001;;010
101
010;:;101
010
101]
Tuple Expressions:
Syntax:
Aggregate = (Expr(,Expn™)

| ([Expr(, Expr)*,] Expr...)
| ([Expr(, Expn*,]1[Expr... ,] Id =Expr(, |d = Expn*)

Tuple element expressions are enclosed in parenthesespaiéited by commas. Each element is one of:
e A plain expression ¢”
e A varargs expressioné. ..”"

o A keyword-value pair identifier = e”

113

The following restrictions apply: No two keyword-value mamay have the same keyword. No keyword-value pair
may precede a plain expression. No varargs expression rhawy fBokeyword-value pair or precede a plain expression.
There must be at least one item. If there is exactly one itemust be a varargs expression or a keyword-value pair
(because an expressioli¢) ” is simply a parenthesized expression, not a tuple.) Alsere can be at most one item
with a varargs expression. In a varargs expression, theeegjon ‘e ” must be of typeOrderedGenerator[T7] for
someT.

The type of a tuple expression is a tuple type (as discuss&eaadtion 8.4), which may be described by taking the
tuple expression and replacing each element expressitnitwitype, except that a varargs expression having type
OrderedGenerator[T7] is replaced byT ... (for the most specificI’ possible). The element expressions are all
evaluated before the tuple is constructed, and if there &rargs expression then the generator is used to construct a
HeapSequence (described in Sectidn 40.3) containing all the generatéabgathisHeapSequence then becomes an
element of the tuple. Tuples are value objects. There argpi@i deconstructors for tuples except multiple varabl
declarations as discussed in Section 6.3.

13.28.1 Distinguishing a Keyword-Value Pair from an Equaliy Expression

Because a keyword-value pair shares a syntax witkbcarality expressigrwe provide rules for disambiguation:

e If an expression identifier = ¢” has no parentheses around it, then it is an equality exipressless it is part
of a tuple expression with more than one element expression.

e If the expression is in immediately surrounding parenthegigh no other expression in the parentheses, then
it is an equality expression unless the parenthesized ssipreis part of a juxtaposition sequence and is to be
used as an argument to a function, in which case the parérgde=xpression is a tuple expression.

e Adding parentheses makes the expression an equality aiqmes

e In the rare situations where(fdentifier = ¢)” is treated as an equality expression and it must be a tuple
expression, tuple(identifier = e)” makes it a tuple expression wheréuple” is an identity function defined
in the Fortress standard libraries (as described in SE88P.4).

13.29 Comprehensions

Syntax:
Comprehension = { Expr| GeneratorList}

| { Expr— Expr| GeneratorList}

| (Expr| GeneratorList)

| [(ArrayComprehensionLeft GeneratorLisy |
ArrayComprehensionLeft ::= Id — Expr

| (Id, IdList) — Expr

Fortress providesomprehensiosyntax for several aggregate expressions (described #in8&3.28). Generators
(described in Sectidn 13.1.7) produce values and bind thesgdb the identifiers that are used in the left-hand side of
the token| (left-hand body. Most generators, unlike theequential generator, may execute each evaluation of the
left-hand body in a separate implicit thread. Compreherssivaluate to aggregate values and have corresponding
aggregate types.

A set comprehension is enclosed in braces, with a left-hadg Beparated by the tokdnfrom a generator list. For
example, the comprehension:

{22 |z« {0,1,2,3,4,5}, zMOD2 =0}

114

evaluates to the set
{0,4,16}

Map comprehensions are like set comprehensions, excaghtheft-hand body must be of the forey — e;. An

exception is thrown ife; produces the same value hut a different value on more than one iteration of the generator
list. For example:

{2? — 23 |2 <~ {0,1,2,3,4,5}, xMOD2 =0}
evaluates to the map
{0—0,4— 8,16 — 64}

List comprehensions are like set comprehensions, excapthhy are syntactically enclosed in angle brackets. For
example:

(x? | 2« {0,1,2,3,4,5}, 2 MOD 2 = 0)
evaluates to the list
(0,4,16)

Array comprehensions are like set comprehensions, exbapthiey are syntactically enclosed in brackets, and the
left-hand body must be of the formndex:, indezs, ..., index,) +— e. Moreover an array comprehension may
have multiple clauses separated by semicolons or line brézdch clause conceptually corresponds to an independent
loop. Clauses are run in order. The result isiragimensional array. For example:

=[(x,y,1) — 0.0 | x — 1:zSize,y — 1:ySize
(1,y,2) — 0.0 | y — 1:ySize,z — 2: 2Size
(a:, ,2) 0.0 |z — 2:xSize,z — 2: zSize
(z,y,2) —x+y-z|x—2:aSize,y — 2:ySize,z — 2: zSize |

13.30 Type Ascription

Syntax:
Expr = EXpras TypeRef

An expression consisting of a single subexpression, fatbly the special reserved woeg , followed by a type, is
atype ascription The value of the expression is the value of the subexpnes3ibe static type of the expression is
the ascripted type. The type of the subexpression must betgpsiof the ascripted type. A type ascription does not
affect the dynamic type of the value the expression evaditat@inlike a type assumption described in Sedtion 13.31).
It is usually for type inference discussed in Chaptdr 20; minés impossible to infer a type for an expression, the
programmer can provide type information for the expresaging a type ascription.

13.31 Type Assumption

Syntax:
Expr := Expr asif TypeRef

An expression consisting of a single subexpression, fatbly the special reserved wosdif , followed by a type,
is atype assumptianThe value of the expression is the value of the subexpms3ioe static type of the expression
is the given type. The type of the subexpression must be geilnf the given type. A type assumption converts

115

the dynamic type of the value the expression evaluates likéua type ascription described in Sectlon 13.30). It is
usually for accessing methods provided by supertraits. Wheltiple supertraits provide different methods with the
same name, a subtrait may access a particular method fromwf dine supertraits using a type assumption. The static
type of the supertrait indicates whether a definition of tiethad is provided by the supertrait. If the concrete method
is not provided exist, it is a static error. The keywauper in the Java Programming Language is an example of a
type assumption.

13.32 Expression-like Functions

For convenience, the Fortress standard libraries prouidetions such asast andinstance Of that are often provided
by other programming languages.

13.32.1 Casting

Although there is no “casting” operator (equivalent to sastthe Java Programming Language) built into Fortress,
the effect of a cast can be provided by the following function

cast[T)(z): T =
typecase z in
T==x
else = throw CastException
end

The function converts the type of its argument to a given typéhe static type of the argument is not a subtype of
the given type, &astException is thrown. For convenience, the functienst is included in the Fortress standard
libraries.

13.32.2 Instanceof Testing

Although there is no “instanceof” operator (equivalentrtstanceof testing in the Java Programming Language) built
into Fortress, the effect of an instanceof testing can beiged by the following function:

instanceOf [T](x) : Boolean =
typecase z in
T = true
else = false
end

The function tests whether its argument has a given type etadns a boolean value. For convenience, the function
instanceOf is included in the Fortress standard libraries.

13.32.3 Ignoring Values

For convenience, the functioignore (equivalent to thegnore function in the Objective Caml programming lan-
guage) is included in the Fortress standard libraries:

ignore(z) = ()

The function discards the value of its argument and retging-or example, the following:

116

ignore(f x)
is equivalent to:

f ()

13.32.4 Enforcing Tuples

An identity function tuple is defined in the Fortress standard libraries to maki@éntifier = e)” a tuple expression
(as discussed in Sectibn 13.28.1):

tuple(z) = x

The function returns its argument as a tuple expression.

117

Chapter 14

Exceptions

Exceptions are values that can be thrown and caught;vi@aw expressions (described in Section 13.25) aadch
clauses oftry expressions (described in Section 18.26). Whethaow expression throw e¢” is evaluated, the
subexpressionr is evaluated to an exception. The static type:ahust be a subtype dixception. Then thethrow
expression tries to transfer control to dgnamically containing blockdescribed in Chaptér 4), from the innermost
outward, until eitherif an enclosingtry expression is reached, withatch clause matching a type of the thrown
exception, ori{) the outermost dynamically containing block is reached.

If a matchingcatch clause is reached, the right-hand side of the first matchibglause is evaluated. If no matching
catch clause is found before the outermost dynamically contgifilock is reached, the outermost dynamically
containing block completes abruptly whose cause is theviexception.

If an enclosingtry expression of &hrow expression includes iinally clause, and thery expression completes
abruptly, thefinally clause is evaluated before control is transferred to theuhyrally containing block.

14.1 Causes of Exceptions

Every exception is thrown for one of the following reasons:
1. A throw expression is evaluated.

2. An implementation resource is exceeded (e.g., an attesnmpade to allocate beyond the set of available loca-
tions).

14.2 Types of Exceptions

All exceptions have typ&xception declared as follows:

trait Exception comprises { CheckedException, UncheckedException }
settable message: Maybe[String]
settable chain: Maybe[Exception]
printStackTrace(): ()

end

Every exception has either tygéhecked Exception or UncheckedException:

118

trait CheckedException

extends { Exception }

excludes { UncheckedException }
end

trait UncheckedException
extends { Exception }
excludes { CheckedException }
end

A functional declaration (described in Section]9.2 and i8aft2.1) includes an optionathrows clause in its header
listing the CheckedExceptions (also writterchecked exceptiopthat can be thrown by invocation of the functional.
If a throws clause is not explicitly provided, thehrows clause of the functional declaration is empty. The body
of a functional is statically checked to ensure that no cedadxceptions are thrown by any subexpression of the
functional body other than those listed in therows clause. This static check is performed by examining edatow
expression and functional invocatidnhdetermining the static type of the functioryalnvoked in/, and determining
the throws clause off. (If f is polymorphic, or occurs in a polymorphic context, insiatidns of type variables
free in the throws clause off are substituted for formal type variables). For each chet&xeeption thrown in,

the enclosing expressions bfaire checked for a matchingatch clause. The sed of all checked exceptions thrown
by all invocations without a matchingatch clause in the functional body is accumulated and comparaihsigthe
throws clause of the enclosing functional declaration. If an exoepthat is not a subtype of an exception listed in
the throws clause occurs idl, it is a static error.

A similar analysis is performed on top-level variable deafimns. If it is determined that their initialization exgssions
can throw a checked exception, it is a static error.

14.3 Information of Exceptions

Every exception has optional fields: a message and a chakuegpteon. These fields are default Mothing as
follows:

trait Exception comprises { CheckedException, UncheckedException }
getter message(): Maybe[String] = Nothing
setter message(String) : ()
getter chain(): Maybe[Exception] = Nothing
setter chain(Exception): ()
printStackTrace(): ()
end

where an optional value is eitherNothing or Just(v) as declared in Sectidn 31.2. Th&ain field can be set at
most once. If it is set more than once, hrvalidChainException is thrown. It is generally set when the exception is
created.

When an exception is created, the execution stack of itathat the time of the exception creation is captured in the
exception. The invocation girintStackTrace prints the captured stack trace. There is no way to updatesipteired
stack trace. If a programmer wants to catch a thrown exaepiial rethrow it, and capture the stack trace at the time
of the second throwing of the exception, the programmer basdate a new exception (perhaps with the original
exception as its:hain field).

When an exception is thrown, itsiessage and chain fields may be set. For example, if a checked exception is
caughtin acatch clause, and theatch clause in turn throws an unchecked exception, the unchesteption can

be chained so that an examination of the unchecked excegteals information about the original exception. For
example:

119

read(fileName) =
try
readFile(fileName)
catche
IOException = throw Error(“This code can't handle |OExceptions "e)
end

where themessage and chain fields of Error are setto This code can't handle IOExceptions " and
IOException respectively.

By default, aforbid clause in atry expression throws a neworbiddenException by chainingthe exception
thrown by thetry block in the try expression that is a subtype of the exception type listedeénfbrbid clause.
For example, the followingead function:

read(fileName) =
try
readFile(fileName)
forbid IOException
end

is equivalent to:

read(fileName) =
try
readFile(fileName)
catche
IOException =throw ForbiddenException(e)
end

where thechain of ForbiddenException is set tolOException.

120

Chapter 15

Overloading and Multiple Dispatch

Fortress allows functions and methods (collectively chbsfunctional3 to be overloaded that is, there may be
multiple declarations for the same functional name visihla single scope (which may include inherited method
declarations), and several of them may be applicable to articplar functional call.

Calls to overloaded functionals are checked via a prelimissatic dispatch on the static type of the argument, fol-
lowed by dynamic dispatch on the runtime type of the argumenttress imposes restrictions (described in Chap-
ter[33) on overloaded functional declarations that enshegetexists a unique most specific declaration for every call
Thus, it is unambiguous at run time which declaration shbel@pplied at run time.

In this chapter, we describe how to determine which decdtaratareapplicableto a particular functional call, and
when several are applicable, how to select among them.d®éEh.1 introduces some terminology and notation. In
Section 15.2, we show how to determine which declaratiorsapplicable to anamed functional cal(a function

call described in Sectidn 13.6 or a naked method invocatastiibed in Sectioh 13.5) when all declarations have
only ordinary parameters (without varargs or keyword patans). We discuss how to handle dotted method calls
(described in Section 13.4) in Section 15.3, and declaratmith varargs and keyword parameters in Sedtion] 15.4.
Determining which declaration is applied, if several arplaable, is discussed in Sectibn 15.5.

15.1 Terminology and Notation

When there are two or more function declarations of the saameenwithin a single lexical scope, we say that the
function name i®verloadedwithin that lexical scope; we also say that each of the famatieclarations is overloaded,
and that any pair of the function declarations emgtually overloadedTop-level function declarations in a component
are permitted to be overloaded with function declaratiomgdrted from APIs (usingmport functionNames from
apiName). Likewise, it is permitted to have two or more method deatians (declared or inherited) of the same
method name within a single trait or object declaration; axethat the method nameadserloadedwithin that trait or
object declaration, and we also say that each of the methddrdéons is overloaded, and that any pair of the method
declarations aremutually overloaded

We assume throughout this chapter that all static varidides been instantiated or inferred. Although there may
be multiple declarations with the same functional names & Btatic error for their static parameters to differ (up to
a-equivalence), or for one declaration to have static patars@nd another to not have them. Hence, static parameters
do not enter into the determination of which declaratiomsagplicable, so we ignore them for most of this chapter.

Recall from Chaptér|8 that we wrif€ < U whenT is a subtype ot/, andT < U whenT < U andT # U.

121

15.2 Applicability to Named Functional Calls

In this section, we show how to determine which declaratiaresapplicable to a named functional call when all
declarations have only ordinary parameters (i.e., neithgargs nor keyword parameters).

For the purpose of defining applicability, a named functiaadl can be characterized by the name of the functional
and its argument type. Recall that a functional has a singiarpeter, which may be a tuple (a dotted method has a
receiver as well). We abuse notation by usstatic call f(A) to refer to a named functional call with nanfieand
whose argument has static tyde anddynamic callf (X) to refer to a named functional call with nari@and whose
argument, when evaluated, has dynamic typgNote that if the type system is sound—and we certainly hbpeit
isl—then X < A for any call tof.) We use the termall f () to refer to static and dynamic calls collectively.

We also uséunction declaratiorf (P) : U to refer to a function declaration with function naghand whose parameter
type is P and return type id/.

For method declarations, we must take into account the aedimpeter, which we do as follows:

A dotted method declaratio®,.f (P) : U is a dotted method declaration with narfiewhere P, is the trait or
object type in which the declaration appeaPsis the parameter type, arid is the return type. (Note that despite the
suggestive notation, a dotted method declaration needkpticitly list its self parameter.)

A functional method declaratiofi(P) : U with self parameter at is a functional method declaration with naryie
with a parameter that hase1f in theith position, parameter typE, and return type/. Note that the static type of
the self parameter is the trait or object trait type in which teclaratiorf (P) : U occurs. In the following, we will
useP; to refer to theith element ofP.

We elide the return type of a declaration, writifigP) and Py.f(P), when the return type is not relevant to the
discussion.

A declarationf (P) is applicableto a callf (C) if the call is in the scope of the declaration afid< P. (See Chaptén 7
for the definition of scope.)

Note that a named functional cgl{ C') may invoke a dotted method declaration if the declaratiqerasided by the
trait or object enclosing the call. To account for this we niteva named functional cafi(C) to Cy.f(C) where
the type Cy is declared by the trait or object declaration immediatelglesing the call if there are no declarations
applicable tof(C). We then use the rule for applicability to dotted methodscédlescribed in Sectidn 15.3) to
determine which declarations are applicable&tof (C).

15.3 Applicability to Dotted Method Calls

Dotted method applications can be characterized simitarhamed functional applications, except that, analogousl
to dotted method declarations, we u$gto denote the static type of the receiver object, and, asdorad functional
calls, A to denote the static type of the argument of a static dottetiadecall; we useYy and X similarly for dynamic
dotted method calls. We writd,.f(A) and X,.f(X) to refer to the static and dynamic calls respectively. Aetbtt
method callCy.f (C) refers to static and dynamic calls collectively.

A dotted method declaratioR,.f (P) is applicableto a dotted method cally.f (C) if Cy < Py andC =< P.

15.4 Applicability for Functionals with Varargs and Keywor d Parameters

The basic idea for handling varargs and keyword paramesetisat we can think of a functional declaration that
has such parameters as though it were (possibly infiniteBnyndeclarations, one for each set of arguments it may

122

be called with. In other words, we expand these declarasonthat there exists a declaration for each number of
arguments that can be passed to it.

A declaration withi keyword parameters correspond&taleclarations which cannot be called with elided arguments,
one for each subset of the keyword parameters. For exarhpléltowing declaration:

fle=5,y=6,2=17):Z

would be expanded into:

flx=5,y=6,2=7):7Z
flx=5,y=6):Z
flx=5,2="7):Z
fly=6,2=17):Z
flx=5):Z
fly=6):Z
fz=1):2
fO:Z

Note that even though expanded declarations still have &ewarameters, they cannot be called with elided argu-
ments any more. A declaration with keyword parameters iicape to a call if any one of the expanded declarations
is applicable.

A declaration with a varargs parameter corresponds to amtmfiiumber of declarations, one for every number of
arguments that may be passed to the varargs parameter. diicprave can bound that number by the maximum
number of arguments that the functional is called with argrehin the program (in other words, a given program
will contain only a finite number of calls with different numis of arguments). The expansion described here is a
conceptual one to simplify the description of the semantigs do not expect any real implementation to actually
expand these declarations at compile time. For exampldotioeving declaration:

fle:2,y:2,2:7Z..):Z
would be expanded into:

fle:2,y:2,2:7...):Z
(x:Z,y:2):Z
fle:Zyy 72,2 :7):Z

fle:Zyy 221 :Zy20:7): L
fle:Zyy 2,21 : ZLyzo:ZLy23:7): 7

Notice that the expansion includes the original declamafithis declaration is retained to account for the case when a
tuple expression with a varargs expression is passed agjiamant to a call; even though this declaration still has a
varargs parameter, it's called with a fixed number of argumeh declaration with a varargs parameter is applicable
to a call if any one of the expanded declarations is appleabl

15.5 Overloading Resolution

Several declarations may be applicable to a given fundtioath Therefore, it is necessary to determine which
declaration is dispatched to. The basic principle is tloatafy functional call, we wish to identify a unique declaat
that is the most specific among all declarations applicabtbe call at run time. If there is no such declaration, then
the call isundefinedwhich is a static error. If there are two or more such detitana, no one of which is more specific
than all the others, the call is said to &mbiguouswhich is also a static error. As discussed in Chaptér 33, at i
static error for overloaded declarations to admit ambiguzalls at run time, whether such calls actually appear in the
program or not.

123

If several declarations are applicable to a particular, @adl determine which is most specific by using the subtype
relation to compare parameter types. Formally, a dectar@tiP) is more specific than a declaratifQ) if P < Q.
Similarly, a declaratiorP,.f (P) is more specific than a declaratidhy.f (Q) if (Po, P) < (Qo, Q).

124

Chapter 16

Operators

Operators are like functions or methods; operator dedtarsiare described in Chapterl 34 and operator applications
are described in Section 18.8. Just as functions or methagshe overloaded (see Chagtet 15 for a discussion of
overloading), so operators may have overloaded declastaf the same or differing fixities. Calls to overloaded
operators are resolved first via the fixity of the operatosedaon the context of the calls. Then, among the applicable
declarations with that fixity, the most specific declarai®nhosen.

Most operators can be used as prefix, infix, postfix, or nofixatpes as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same opena&y have declarations for multiple fixities. A simple
example is that -’ may be either infix or prefix, as is conventional. As anothesreple, the Fortress standard
libraries define !’ to be a postfix operator that computes factorial when agpghentegers. These operators may not
be used as enclosing operators.

Several pairs of operators can be used as enclosing operétoy number of |’ (vertical line) can be used as both
infix operators and enclosing operators.

Some operators are always postfix: “a followed by any ordinary operator (with no intervening wdspace) is
considered to be a superscripted postfix operator. For eeamip’and ‘~ +'and ‘" 7’ are available for use as part
of the syntax of extended regular expressions. As a veryiapease, " T’ is also considered to be a superscripted
postfix operator, typically used to signify matrix transitios.

Finally, there are special operators such as juxtaposiinthoperators on dimensions and units. Juxtaposition may be
a function application, a numeral concatenation, or an imbrator in Fortress. When the left-hand-side expression i
a function, juxtaposition performs function applicatievhen the left-hand-side expression is a hnumber, juxtapasit
conventionally performs multiplication; when the leftdthside expression is a string, juxtaposition conventigna
performs string concatenation. Fortress provides segpeahtors on dimensions and units as described in Chagter 18

16.1 Operator Names

To support a rich mathematical notation, Fortress allowstradmicode characters that are specified to be mathematical
operators to be used as operators in Fortress expresssons|las these characters and character combinations:

I @ # $ % =* + - = | : < > [/ 2 °~ -
> > => ==> <= >= =/= *k 1 ” |||
<< <<< >> >>> <-> <-/- -[-> <=> ===

In addition, a token that is made up of a mixture of uppercaiers and underscores (but no digits), does not begin or
end with an underscore, and contains at least two diffeettark is also considered to be an operator:

125

MAX MIN SQRT TIMES

The above operators are rendered &X MIN ./ x. Some of these uppercase tokens are considered to be
equivalent to single Unicode characters, but even thogatkanot can still be used as operators. (See Appéndix F for
a detailed description of operator names in Fortress.)

16.2 Operator Precedence

Fortress specifies that certain operators have higher gigace than certain other operators, so that one need not use
parentheses in all cases where operators are mixed in aassigm. (See AppendiX F for a detailed description of
operator precedence in Fortress.) However, Fortress didsllow the practice of other programming languages in
simply assigning an integer to each operator and then sétyatghe precedence of any two operators can be compared
by comparing their assigned integers. Instead, Fortrdéies k@ defining traditional groups of operators based oin the
meaning and shape, and specifies specific precedence meldfis between some of these groups. If there is no
specific precedence relationship between two operatag, jarentheses must be used. For example, Fortress does
not accept the expressian+ b U ¢; one must write eithefa + b) Uc or a + (bUc). (Whether or not the result
then makes any sense depends on what definitions have beerfon#ite + and U operators—see Chapter|34.)

Here are the basic principles of operator precedence imgssrt

e Member selection.() and method invocation.fame(...)) are not operators. They have higher precedence
than any operator listed below.

e Subscripting []), superscripting”(), and postfix operators have higher precedence than angtopdisted
below; within this group, these operations are left-assto@ (performed left-to-right).

e Tight juxtapositionthat is, juxtaposition without intervening whitespacas migher precedence than any oper-
ator listed below. The associativity of tight juxtapositis type-dependent; see Section 16.7.

e Next, tight fractions that is, the use of the operatof * with no whitespace on either side, have higher prece-
dence than any operator listed below. The tight-fractioaragr has no precedence compared with itself, so it
is not permitted to be used more than once in a tight fractibinout use of parentheses.

e Loose juxtapositiothat is, juxtaposition with intervening whitespace, heghbr precedence than any operator
listed below. The associativity of loose juxtaposition ypd-dependent and is different from that for tight
juxtaposition; see Sectidn 16.7. Note thapsided juxtapositiorfhaving whitespace on one side but not the
other) is a static error as described in Sedtion]16.3.

e Prefix operators have higher precedence than any operstea bhelow.

e The infix operators are partitioned into certain traditiggraups, as explained below. They have higher prece-
dence than any operator listed below.

e The equal symbol=" in binding context, the assignment operates", and compound assignment operators
(+=, —=, A=,V =,Nn=, U=, andso on as described in Secfion 13.8) have lower precedeac any
operator listed above. Note that compound assignment mpethemselves are not operator names.

The infix binary operators are divided into four general gates: arithmetic, relational, boolean, and other. Tlitb-ar
metic operators are further categorized as multiplicadiiorsion/intersection, addition/subtraction/uniomdaother.
The relational operators are further categorized as elgmva, inequivalence, chaining, and other. The boolean ope
ators are further categorized as conjunctive, disjunctine other.

The arithmetic and relational operators are further ditisho groups based on shape:

126

e “ordinary” operatorsi+ — - x /£ F® 0 0 Q@ 0 HH IR <<>><K>>£LFF etc.

The arithmetic operations in this group are further sulof#idi into “plain” (+ — - x / £ F etc.), “circled”
(pe 6o ete.), "boxed” B EX etc.), and so on; any of these groups may be used with therplaiional
operators K<>>< < >3>>>£ ¢ ## etc.), but the groups may not be mixed.

e “rounded horseshoe” or “set” operators:m U W W CCODEDZE PP etc.
e “square horseshoe” operatorst) CCIOZZ etc.
e “curly” operators: AY <=X>=>=AL %~ etc.
e “triangular” relations: < < >> AL¥K etc.
e “chickenfoot” relations: <= etc.
The principles of precedence for binary operators are tedalmws:

e A multiplication or division or intersection operator haglier precedence than any addition or subtraction or
union operator that is in the same shape group.

e Certain addition and subtraction operators come in paic) as+ and —, or & and &, which are considered
to have the same precedence and so may be mixed within ansekpreand are grouped left-associatively.
These addition-subtraction pairs are th@dy cases where two different operators are considered to have t
same precedence.

e An arithmetic operator has higher precedence than any &guige or inequivalence operator.

e An arithmetic operator has higher precedence than anyoedtoperator that is in the same shape group.
e A relational operator has higher precedence than any boolgerator.

e A conjunctive boolean operator has higher precedence tadigjunctive boolean operator.

While the rules of precedence are complicated, they aredete to be both unsurprising and conservative. Note
that operator precedence in Fortress is not always tre@sifor example, while+ has higher precedence than
< (so you can writea + b < c¢ without parentheses), ang has higher precedence than (so you can write

a < bV ¢ < d without parentheses), itimttrue that+ has higher precedence than—the expressiom VvV b + ¢

is not permitted, and one must instead write vV b) + cora VvV (b + c).

Another point is that the various multiplication and divisioperators doot have “the same precedence”; they may
not be mixed freely with each other. For example, one canmibéw - v x w; one must write(u - v) X w or
(more likely) u - (v x w). Similarly, one cannot writez - b/ ¢ - d; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, saallowed to writea b / ¢ d, and this means the same
as (a b)/(cd). On the other hand, loose juxtaposition binds less tiglitynta tight division slash, so thatb/c d
means the same as(b/c) d. On the other other hand, tight juxtaposition binds morhkttjgthan tight division, so
that (n 4+ 1)/(n + 2)(n + 3) means the same ds + 1)/((n +2)(n+ 3)).

There are two additional rules intended to catch misleadoug: it is a static error for an operand of a tight infix or
prefix operator to be a loose juxtaposition, and it is a sttior if the rules of precedence determine that a use of
infix operatora has higher precedence than a use of infix operafdout that particular use of is loose and that
particular use ob is tight. Thus, for example, the expressign « + y is permitted, busin = + y is not permitted.
Similarly, the expressiom - b + ¢ is permitted, as are-b + ¢ and a-b+c, but a - b+c is not permitted. (The
rule detects only the presence or absence of whitespacthenamount of whitespace, so - b + c¢ is permitted.
You have to draw the line somewhere.)

When in doubt, just use parentheses. If there’s a problezrcdampiler will (probably) let you know.

127

16.3 Operator Fixity

Most operators in Fortress can be used variously as preftfipdnfix, nofix, or multifix operators. (See Section 16.4
for a discussion of how infix operators may be chained ordibas multifix operators.) Some operators can be used in
pairs as enclosing (bracketing) operators—see Selctidh The Fortress language dictates only the rules of syntax;
whether an operator has a meaning when used in a particwedeygends only on whether there is a definition in the
program for that operator when used in that particular wag Ghaptdr 34).

The fixity of a non-enclosing operator is determined by cxintdo the left of such an operator we may find (1) a
primary expression (described below), (2) another operator, aa (@mma, semicolon, or left encloser. To the right
we may find (1) a primary expression, (2) another operatgra(@mma, semicolon, or right encloser, or (4) a line
break. A primary expression is an identifier, a literal, apression enclosed by matching enclosers, a field selection,
or an expression followed by a postfix operator. Considemegllicombinations, this makes twelve possibilities. In
some cases one must also consider whether or not whitespaamges the operator from what lies on either side. The
rules of operator fixity are specified by Figlire 16.1, wheeedénter column indicates the fixity that results from the
left and right context specified by the other columns.

left context whitespace| operator fixity | whitespace right context
yes infix yes
primary yes error (|r_1f|x) no primary
no postfix yes
no infix no
yes infix yes
primary yes error (infix) no operator
no postfix yes
no infix no
primary yes error (pqstﬁx) , ; right encloser
no postfix
primary yes |nf|x_ line break
no postfix
operator prefix primary
operator prefix operator
operator error (nofix) , ; rightencloser
operator error (nofix) line break
, ; leftencloser prefix primary
, ;. left encloser prefix operator
, ; leftencloser nofix , ; rightencloser
, ;. left encloser error (prefix) line break

Figure 16.1: Operator Fixity (1)

A case described in the center column of the table asreor is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the opéwsatbe purpose of attempting to continuing the parse in
search of other errors.

The table may seem complicated, but it all boils down to a toappractical rules of thumb:
1. Anyoperator can be prefix, postfix, infix, or nofix.

2. An infix operator can bwose(having whitespace on both sides)tmyht (having whitespace on neither side),
but it mustn’t belopsided(having whitespace on one side but not the other).

3. A postfix operator should have no whitespace before it aodld be followed (possibly after some whitespace)
by a comma, semicolon, right encloser, or line break.

128

left context whitespace operator fixity whitespace right context
yes infix yes
primary yes _Ieft encloser no primary
no right encloser yes
no infix no
yes infix yes
primary yes !eft encloser no operator
no right encloser yes
no infix no
primary yes error (right encloser) , right encloser
no right encloser
primary yes _ infix line break
no right encloser
error (left encloser es .
operator () y primary
left encloser no
error (left encloser es
operator () y operator
left encloser no
operator error (nofix) , ; rightencloser
operator error (nofix) line break
., ; left encloser left encloser primary
, ;. leftencloser left encloser operator
, ;. left encloser nofix , ; rightencloser
, ; leftencloser error (left encloser) line break

Figure 16.2: Operator Fixity (II)
16.4 Chained and Multifix Operators

Certain infix mathematical operators that are traditignadigarded aselational operators, delivering boolean re-
sults, may bechained For example, an expression such 4sC B ¢ C' C D s treated as being equivalent to
(AC B)A(BCC)A(C C D) exceptthat the expressiofisand C' are evaluated only once (which matters only if
they have side effects such as writes or input/output ag}idfortress restricts such chaining to operators of theesam
kind and having the same sense of monotonicity; for exarm@#gher A C B < C nor A C B D C is permitted.
Equivalence operators may be mixed into a chain; for exajople may writeA C B = C C D . This transformation

is done before type checking. In particular, it is done eveugh these operators do not return boolean values, and
the resulting expression is checked for type correctn@ee Gectioh F4 for a detailed description of which opesator
may be chained.)

Any infix operator that does not chain may be treatechattifix. If n — 1 occurrences of the same operator separate
n operands where > 3, then the compiler first checks to see whether there is a tiefirfor that operator that will
acceptr arguments. If so, that definition is used; if not, then therafme is treated as left-associative and the compiler
looks for a two-argument definition for the operator to ugesiach occurrence. As an example, the cartesian product
S1 x Sg x --- x S, of n sets may usefully be defined as a multifix operator, but orgiadditionp + g+ r + s is
normally treated ag(p + q) +7) + s.

16.5 Enclosing Operators

These operators are always used in pairs as enclosing operat
() N Y

129

[] v 1 [*]
{ } { i ANEY; { * *}
</ /> <\ \>
<</ [>> <<\ \>>

(ASCII encodings are shown here; they all correspond toqueiar single Unicode characters.) There are other pairs
aswell, suchas |and[7. Notethatthepairs) and] \] (alsoknown ag]) are not operators; they play
special roles in the syntax of Fortress, and their behawonot be redefined by a library. The bracket pairs that may
be used as enclosing operators are described in Séction F.1.

Any number of | * (vertical line) may also be used in pairs as enclosing dpesaut there is a trick to it, because on
the face of it you can't tell whether any given occurrence lisfeencloser or a right encloser. Again, context is used
to decide, this time according to Figure 16.2.

This is very similar to Figure 16.1 in Sectibn 16.3; a rougte rof thumb is that if an ordinary operator would be
considered a prefix operator, then one of these will be censitla left encloser; and if an ordinary operator would be
considered a postfix operator, then one of these will be densd a right encloser.

In this manner, one may us$e. .| for absolute values ang ...|| for matrix norms.

16.6 Conditional Operators

If a binary operator other than " is immediately followed by a:*’ then it is conditional evaluation of the right-
hand operand cannot begin until evaluation of the left-hapetand has completed, and whether or not the right-hand
operand is evaluated may depend on the value of the left-bpekhnd. If the left-hand operand throws an exception,
then the right-hand operand is not evaluated.

The Fortress standard libraries define two conditional apes on boolean values,: and Vv : (see Sectioh 16.8.15).

See Sectioh 3418 for a discussion of how conditional opesate implemented.

16.7 Juxtaposition

Fortress provides several kinds of juxtaposition: jux&fion may be a function call, a numeral concatenation, or a
special infix operator. See Section 25.1 for an example deta of a juxtaposition operator.

When two expressions are juxtaposed, the juxtapositiantéspreted as follows: if the left-hand-side expressiom is
function, juxtaposition performs function applicatiofithie left-hand-side expression is a number and the righttha
side expression is also a number, juxtaposition performsanal concatenation; otherwise, juxtaposition perfornes t
juxtaposition operator application.

The manner in which a juxtaposition of three or more itemsuhbe associated requires type information and aware-
ness of whitespace. (This is an inherent property of custpmathematical notation, which Fortress is designed to
emulate where feasible.) Therefore a Fortress compilet praduce a provisional parse in which such multi-element
juxtapositions are held in abeyance, then perform a typlysisaon each element and use that information to rewrite
the n-ary juxtaposition into a tree of binary juxtaposigon

All we need to know is whether the static type of each elemé&atjoxtaposition is an arrow type. There are actually
three legitimate possibilities for each element of a jugkition: (a) it has an arrow type, in which case it is consder
to be a function element; (b) it has a type that is not an arypa,tin which case it is considered to be a non-function
element; (c) it is an identifier that has no visible declamtin which case it is considered to be a function element
(and everything will work out okay if it turns out to be the nauof an appropriate functional method).

130

The rules below are designed to forbid certain forms of martat ambiguity that can arise if the name of a functional
method happens to be used also as the name of a variable. dfoplex suppose that trait has a functional method
of one parameter named; then in the code

do
a:T=t
n:Z =14
Z=na
end

it might not be clear whether the intended meaning was tokentbe functional method on « or to multiply o by
14.. The rules specify that such a situation is a static error.

The rules for reassociating a loose juxtaposition are @it

e First the loose juxtaposition is broken into nonempty ctaymkherever there is a non-function element followed
by a function element, the latter begins a new chunk. Thusialchonsists of some number (possibly zero) of
functions followed by some number (possibly zero) of nonetions.

e Itis a static error if any non-function element in a chunkrisumparenthesized identifigrand is followed by
another non-function element whose type is such thaan be applied to that latter element as a functional
method.

e The non-functions in each chunk, if any, are replaced bygsiglement consisting of the non-functions grouped
left-associatively into binary juxtapositions.

e What remains in each chunk is then grouped right-assoelgtiv

e Itis a static error if an element of the original juxtapasitivas the last element in its chunk before reassociation,
the chunk was not the last chunk (and therefore the elementdation is a non-function element), the element
was an unparenthesized identifigrand the type of the following chunk after reassociatioruishsthatf can
be applied to that following chunk as a functional method.

¢ Finally, the sequence of rewritten chunks is grouped Isfaiatively.
(Notice that no analysis of the types of newly constructash&s is needed during this process.)

Here is an examplen (n 4+ 1) sin 3 n z log log . Assuming thatsin and log name functions in the usual man-
ner and thatn, (n+ 1), andz are not functions, this loose juxtaposition splits intce#hichunks:n (n 4+ 1) and
sin 3n x and log log x. The first chunk has only two elements and needs no furthesoeation. In the sec-
ond chunk, the non-function8 n =z are replaced by((3 n) x) . In the third chunk, there is only one non-function,
so that remains unchanged; the chunk is the right-assddiatéorm (log (log x)). Finally, the three chunks are
left-associated, to produce the final interpretation (n + 1)) (sin ((3n) x))) (log (log)) . Now the original jux-
taposition has been reduced to binary juxtaposition espras.

The rules for reassociating a tight juxtaposition followitkedent strategy:

o If the tight juxtaposition contains no function element,ifoonly the last element is a function, go on to the
next step. Otherwise, consider the leftmost function elgraed examine the element that follows it. If that
latter element is not parenthesized, it is a static errtiemtise, replace the two elements with a single element
consisting of a new juxtaposition of the two elements (inghme order), and perform a type analysis on this new
juxtaposition. (At this point, it is a static error if this wguxtaposition is preceded in the overall juxtaposition
by a non-function element that is an unparenthesized iiilemfi, and the type of the new juxtaposition is such
that f can be applied to it as a functional method.) Then repeasthjson the original juxtaposition (which is
now one element shorter).

e The overall juxtaposition now either is a single elementamsists entirely of non-function elements. It is a
static error the overall juxtaposition now contains a nonetion element that is an unparenthesized identifier
f, and the type of the following element is such tliatan be applied to it as a functional method.

131

¢ Left-associate the remaining elements of the juxtapasitio
(Note that this process requires type analysis of newlyteteehunks along the way.)

Here is an (admittedly contrived) exampleeduce(f)(a)(z + 1)sqgrt(x + 2) . Suppose thateduce is a curried func-
tion that accepts a functiofi and returns a function that can be applied to an atrgthe idea is to use the function
f, which ought to take two arguments, to combine the elemdrtgearray to produce an accumulated result).

The leftmost function iseduce, and the following elemerttf) is parenthesized, so the two elements are replaced with
one: (reduce(f))(a)(xz + 1)sqrt(z + 2) . Now type analysis determines that the elememtiuce(f)) is a function.

The leftmost function is(reduce(f)), and the following elementa) is parenthesized, so the two elements are re-
placed with one:((reduce(f))(a))(z + 1)sqrt(x + 2) . Now type analysis determines that the elem@ntduce(f))(a))
is not a function.

The leftmost function igs¢rt) , and the following elementz + 2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(z + 1)(sqrt(x + 2)). Now type analysis determines that the elemént-t(z + 2)) is
not a function.

There are no functions remaining in the juxtaposition, sortmaining elements are left-associated:

(((reduce(f))(a))(x + 1)) (sqrt(z + 2))

Now the original juxtaposition has been reduced to binaxygposition expressions.

16.8 Overview of Operators in the Fortress Standard Libraries

This section provides a high-level overview of the opemtonrithe Fortress standard libraries. See Appelntix F for the
detailed rules for the operators provided by the Fortremsdstrd libraries.

16.8.1 Prefix Operators

For all standard numeric types, the prefix operatosimply returns its argument and the prefix operatorreturns
the negative of its argument.

The operator- is the logicalNOT operator on boolean values and boolean intervals.
The operator= computes the bitwissoT of an integer.

Big operators such a3~ begin areduction expressiofSectior 13.18). The big operators inclu§é (summation)
and] (product), alongwith), U, A. V. V. @, ®. ¥, B, X, MAX, MIN, and so on.

16.8.2 Postfix Operators

The operator computes factorial; the operattir computes double factorials. They may be applied to a valaapf
integral type and produces a result of the same type.

When applied to a floating-point value, ! computesl'(1 +), whereT is the Euler gamma function.

132

16.8.3 Enclosing Operators

When used as left and right enclosing operatprg,computes the absolute value or magnitude of any numbersand i
also used to compute the number of elements in an aggregatxdmple the cardinality of a set or the length of a
list. Similarly, || || is used to compute the norm of a vector or matrix.

The floor operatof | and ceiling operatof | may be applied to any standard integer, rational, or realevétheir
behavior is trivial when applied to integers, of course)e Bperators hyperflodrz | = 219822 hyperceiling[z] =
2Mogz =1 hyperhyperfloot] z || = 2L°%2 %1, and hyperhyperceiling z]] = 2T°e: =1 are also available.

16.8.4 Exponentiation

Given two expressions and ¢/ denoting numeric quantities and v’ that are not vectors or matrices, the expression
e denotes the quantity obtained by raisingo the powery’ . This operation is defined in the usual way on numerals.

Given an expression denoting a vector and an expressigndenoting a value of typ& , the expressior® denotes
repeated vector multiplication af by itself ¢’ times.

Given an expression denoting a square matrix and an expressibmenoting a value of typ& , the expressior®’
denotes repeated matrix multiplication ety itself ¢’ times.

16.8.5 Superscript Operators

The superscript operatdrT transposes a matrix. It also converts a column vector to avemtor or a row vector to
a column vector.

16.8.6 Subscript Operators

Subscripting of arrays and other aggregates is writtergusijuare brackets:

a[i] is displayed as a; ith element of one-dimensional array

mli,j] is displayed as m;; 1, jth element of two-dimensional matrix

spaceli,j,k] is displayed as space,;, i, j, kth element of three-dimensional arrayace

a3] = 4 is displayed as a3 :=4 assign4 to the third element of mutable array

m["foo"] is displayed as ms«qq » fetch the entry associated with stringpb ” from map m

16.8.7 Multiplication, Division, Modulo, and Remainder Operators

For most integer, rational, floating-point, complex, artéival expressions, multiplication can be expressed wsiyg

of “-’" or* x’ or simply juxtaposition. There are, however, two subtlenp®to watch out for. First, juxtaposition

of numerals is treated as literal concatenation rather thaltiplication; in this way one can use spaces to separate
groups of digits, for exampld 234 567.890 12 rather than123457.89012. Second, thex operator is used to
express the shape of matrices, so if expressions usingphicdtion are used in expressing the shape of a matrix, it
may be necessary to avoid the use gf”’to express multiplication, or to use parentheses.

For integer, rational, floating-point, complex, and int@rexpressions, division is expressed py When the oper-
ator / is used to divide one integer by another, the result is ratioffthe operator~ performs truncating integer
division: m < n = signum () ||Z||. The operatorREM gives the remainder from such a truncating division:
mREMn = m — n(m <+ n). The operatoMiD gives the remainder from a floor divisionn MOD n = m —n |2 |;

133

whenn > 0 this is the usual modulus computation that evaluates intege an integerk such thatd < k < n and
n evenly dividesm — k.

The special operatorBIVREM and DIVMOD each return a pair of values, the quotient and the remaind@JVREM n
returns (m =< n, m REMn) while m DIVMOD n returns(| 2| ,m MOD n).

Multiplication of a vector or matrix by a scalar is done withxfaposition, as is multiplication of a vector by a matrix
(on either side). Vector dot product is expressed byand vector cross product byX’. Division of a matrix or
vector by a scalar may be expressed using *

The syntactic interaction of juxtaposition, x, and / is subtle. See Sectidn 16.2 for a discussion of the relative
precedence of these operations and how precedence mayddapére use of whitespace.

The handling of overflow depends on the type of the numberymed. For integer results, overflow throws an
IntegerOverflowException. Rational computations do not overflow. For floating-poesuits, overflow produces
400 or —oo according to the rules of IEEE 754. For intervals, overfloaduces an appropriate containing interval.

Underflow is relevant only to floating-point computationslamhandled according to the rules of IEEE 754.

The handling of division by zero depends on the type of thetmemproduced. For integer results, division by zero
throws aDivideByZeroException. For rational results, division by zero producef). For floating-point results,
division by zero produces HaN value according to the rules of IEEE 754. For intervals,sion by zero produces
an appropriate containing interval (which under many eitstances will be the interval of all possible real values and
infinities).

Wraparound multiplication on fixed-size integers is expeglby x . Saturating multiplication on fixed-size integers
is expressed bya or X. These operations do not overflow.

Ordinary multiplication and division of floating-point nurers always use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using thetopera (or ©®) and @ . Multiplication and division

in “round toward zero” mode may be expressed wih(or =) and 1. Multiplication and division in “round toward
positive infinity” mode may be expressed Wit&.\ (or A) and A Multiplication and division in “round toward
negative infinity” mode may be expressed qum (or V) and v .

16.8.8 Addition and Subtraction Operators

Addition and subtraction are expressed withand — on all numeric quantities, including intervals, as well astors
and matrices.

The handling of overflow depends on the type of the numberymed. For integer results, overflow throws an
IntegerOverflowException. Rational computations do not overflow. For floating-poidults, overflow produces
400 or —oo according to the rules of IEEE 754. For intervals, overfloaduces an appropriate containing interval.

Underflow is relevant only to floating-point computationslé&handled according to the rules of IEEE 754.

Wraparound addition and subtraction on fixed-size integegsexpressed by and —. Saturating addition and
subtraction on fixed-size integers are expressetibgnd BH. These operations do not overflow.

Ordinary addition and subtraction of floating-point nunsbalways use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using thetopgera and & . Addition and subtraction in “round
toward zero” mode may be expressed withand H. Addition and subtraction in “round toward positive infirit
mode may be expressed Wié and A . Addition and subtraction in “round toward negative infifiimode may be
expressed witlﬁ and V .

The constructionr & y produces the intervaa — y, x + y) .

134

16.8.9 Intersection, Union, and Set Difference Operators

Sets support the operations of intersectionpunion U, disjoint unionw, set difference\ , and symmetric set differ-
ence© . Disjoint union throwsDisjointUnionException if the arguments are in fact not disjoint.

Intervals support the operations of intersectionunion U, and interior hullU. The operationm returns a pair of
intervals; if the intersection of the arguments is a singletiguous span of real numbers, then the first result is an
interval representing that span and the second result imatyenterval, but if the intersection is two spans, then two
(disjoint) intervals are returned. The operatignreturns a pair of intervals; if the arguments overlap, thenfirst
result is the union of the two intervals and the second résalh empty interval, but if the arguments are disjoint, they
are simply returned as is.

16.8.10 Minimum and Maximum Operators

The operatoMAX returns the larger of its two operands, amtN returns the smaller of its two operands.

For floating-point numbers, if either argument i&NaN thenNaN is returned. The floating-point operatioM&XNUM
and MINNUM behave similarly except that if one argumeniNsN and the other is a number, the number is returned.
For all four of these operators, when applied to floatingapealues,—0 is considered to be smaller thar0 .

16.8.11 GCD, LCM, and CHOOSE Operators

The infix operatorGCD computes the greatest common divisor of its integer opetaatd LCM computes the least

common multiple. The operat@H00SE computes binomial coefficients: CHOOSE k = (}j) = ﬁlk)' .

16.8.12 Equivalence and Inequivalence Operators

The = operator denotes strict equivalence testing. If the twoesgions tested denote object references, the equiva-
lence test evaluates toue if and only if the object references are identical; otheayisevaluates tgalse. If the two
expressions tested denote value objects, the test evalioateue if and only if the value objects have the identical
type, environment, and fields. Otherwise, it evaluatefitee. If the two expressions tested denote function objects,
the test throws &unctionEquivalenceTest exception.

The expressiore # ¢’ is semantically equivalent to the expressiofe = ¢’) .

16.8.13 Comparisons Operators

Unless otherwise noted, the operators described in thiegmoduce booleantfue/ false) results.

The operators:, <, >, and> are used for numerical comparisons and are supported lgemntational, and floating-
point types. Comparison of rational values throRsstional ComparisonException if either argument is the rational
infinity 1/0 or the rational indefinite) /0 . Comparison of floating-point values throW®atingComparisonException
if either argument is &aN.

The operatorsc, <, >, and > may also be used to compare characters (according to thericamalue of their
Unicode codepoint values) and strings (lexicographic obdsed on the character ordering). They also use lexico-
graphic order when used to compare lists whose element®duppse same comparison operators.

When<, <, >, and > are used to compare numerical intervals, the result is aeboadterval. The functions
possibly and certainly are useful for converting boolean intervals to booleanegfor testing. Thugossibly(x > y)

135

is true if and only if there is some value in the intervalthat is greater than some value in the interyalwhile
certainly(x > y) is true if and only ifx andy are nonempty and every value inis greater than every value in.

The operatorsZ, €, D, and D may be used to compare sets or intervals regarded as sets.

The operatore may be used to test whether a value is a member of a set, t@y, arterval, or range.

16.8.14 Logical Operators

The following binary operators may be used on boolean values

A AND
V inclusiveor
vor@or# exclusiveor
=or— or= equivalence (if and only if)
— IMPLIES
A NAND
V NOR
These same operators may also be applied to boolean irt¢ovatoduce boolean interval results.
The following operators may be used on integers to perforitavie” operations:

M bitwise AND
W bitwise inclusiveor
W bitwise exclusiveorR

The prefix operatorr computes the bitwisoT of an integer.

16.8.15 Conditional Operators

If p(xz) and¢(x) are expressions that produce boolean results, the expmesiai) A: g() computes the logicalND

of those two results by first evaluatingx) . If the result of p(z) is true, then ¢(z) is also evaluated, and its result
becomes the result of the entire expression; but if the redub(z) is false, then ¢(z) is not evaluated, and the
result of the entire expressionfsise without further ado. (Similarly, evaluating the expressjgx)V: g(x) does not
evaluateg(x) if the result of p(z) is true.) Contrast this with the expressian(z) A ¢(x) (with no colon), which
evaluates bottp(x) and ¢(x), in no specified order and possibly in parallel.

136

Chapter 17

Conversions and Coercions

Fortress provides a mechanism, calleércion to allow a value of one type to be automatically converteal\talue of
another type. Programmers can define coercions (descril@atiion 17.2) and coercions may change the set of appli-
cable declarations for a call as described in Se¢tion 17multiple coercions can be applied to a particular funciion
call then the most appropriate coercion is chosen staticBistrictions on coercion declarations (described in Sec
tion[17.6) guarantee that the static resolution of coer@@scribed in Sectidn 17.5) is well-defined. Fortress plesi
implicit coercions for tuple types and arrow types (desadilin Sectiom 1717). Fortress also provides an additional
feature of coercion that allows “widest-need” evaluatibnaemerical expressions (described in Section]17.8).

17.1 Principles of Coercion

In certain situations it is convenient to be able to use aevafuone typeT as if it were a value of another typ&
even thoughT is not a subtype ofU. For example, it is convenient to be able to use the integkred expression

2 in a floating-point expression even though its type is nottayge of any floating-point type. Fortress supports the
automatic conversion of integer values to floating-poittiga (the technical term for this kind of automatic convamnsi

is coercion). In this way one can writer + 1)/2 rather than(z + 1.0)/2.0, for example. Such coercion applies
generally to function and method (collectively called asdtional) calls as well as to operators; one can wtit@
rather thanin 2.0, or arctan(1, 1) rather thanarctan(1.0,1.0), for example.

One way to think about coercion is that if ty#® can be coerced to typ&, then a value of typel’ can be used to
“stand in” for a value of typeU in a functional call. This is different from actualheingof type U ; it means only
that, given any value of typ&, an appropriate value of typ& can be computed to substitute for it. Also, coercion
occurs only when the declared type of the correspondingmetex in the functional declaration is exactly the tyige
being coerced to (in whose declaration the coercion is définet if it is a supertype ofU. Note, however, that if
type T' can be coerced to typ& then any subtype of" can also be coerced to tyfdé.

Coercion fromT to U may also occur in variable definitions and assignment egjmes when the declared type of
the left-hand side ig/ and the type of the expression on the right-hand side is ggeluf 7.

Coercion isnot automatically chained in Fortress, unlike some other @wgning languages: even if tygg can be
coerced to typel/ and type U can be coerced to typ&, it is not necessarily the case that tyffecan be coerced
to type V. Type T can be coerced to typ& only if trait V' itself contains an appropriate coercion declaration to
handle that particular type coercion.

Example 1: For any floating-point parameter, a decimal itditeral argument may be used.

Example 2: For any floating-point parameter, a floating-paigument of a shorter format may be used.

137

Example 3: For any floating-point interval parameter, a imerval floating-point argument (of the same or shorter
floating-point format) may be used.

17.2 Coercion Declarations

Syntax:
Coercion := coercion[StaticParamK Id IsTypg CoercionClauses= Expr
CoercionClauses .= [Throwg [CoercionWherE] Contrac]
CoercionWhere .. where { CoercionWhereClauseLi$t
CoercionWhereClauseList :: CoercionWhereClausg CoercionWhereClaugé
CoercionWhereClause WhereClause
| TypeRefwidens or coerces TypeRef

To declare that trait/ allows a coercion from typd’, the declaration of trail/’ must provide a coercion declaration
whose parameter type 5. Coercion declarations are like functional declarati@xsgept thatcoercion is actually

a special reserved word, a coercion declaration may hawéedpaere -clause constraints (described below), and itis
not permitted to specify a return type, because the retyra tyust be the very trait in whose declaration the coercion
declaration appears. The coercion body is required; tisame such thing as an abstract coercion declaration.

Coercions may have static parameters (described in Chff@nd awhere clause (described in Sectibn 111.6), just
like functionals. Thewhere clause may contain one of the following special constraints

Type; coerces Type,
Type, widens Type,
Type; widens or coerces Type,

The firstis true if traitType, has a coercion fronType, . The second is true if trail'ype,; has a widening coercion
(described in Section 17.8) frofitype, . The third may be used only in a coercion with theiening” special
reserved word; it is true iflype; has a coercion fronType, , and furthermore the coercion declaration to which the
where clause belongs is widening only Fype; has a widening coercion frofitype, . For example:

trait Vector[T extends Number]
widening coercion [U extends Number](z : Vector[U])
where { T widens or coercesU} =...
end

Coercions, unlike methods, are not inherited. If triitextends traitU, and trait U has a coercion from typé&’, then
V' doesnot thereby have a coercion from tygB. (It may, however, have its own coercion from tyfie separately
defined within the body ofi".) For example, given the following declarations,

trait A
coercion (b:B) =...
end
object B end
trait C extends A end

fle:C)=5
acallto f(B) is considered a static error because taitloes not inherit a coercion from type.

138

17.3 Coercion Invocations

One may invoke a coercion explicitly with the syntaXrait. coercion (expr). Overloading resolution (described
in Section 15.b) applies in the usual way if the specified trtas more than one coercion that applies to the actual
argument.

One way to think about coercion is that explicit calls to @i@m declarations are automatically inserted into the
arguments of functional calls and the right-hand sides sigasnent expressions and variable definitions. If tiit
has a coercion from typé&', then whenever a functiongl,, is declared with a parameter of tyi@é, a call f(¢t) where

t has typeT can be rewritten tof (U. coercion (t)) making the declaration gf applicable to the call. However, this
rewriting does not occur if there exists a declaration thafdplicable to the call before the rewriting (see Se¢tiaBl 17
for further discussion).

If coercion is possible for more than one element of a tugement, a cross-product effect is obtained. For example,
in this code:

object X
coercion (kiki:Y) =
coercion (tutu: Q) =
hack(other : X) =1
end
object Y end
object () end
foo(dodo:X) =2
bar(hyar: X, yon:X) =3
bar(hyar:Q,yon: Q) =4

the following method invocations are valid:

X.hack(Y)
X.hack(Q)

Because there is no declaration/afck applicable toY and @, these invocations are rewritten to:

X.hack(X. coercion (Y))
X.hack(X. coercion (Q))

Similarly, the function calls in the left-hand side of théléaving are valid and rewritten to the right-hand side:

foo(Y) isrewrittento foo(X. coercion (Y))

foo(Q) isrewrittento foo(X. coercion (Q))

bar(Y,X) isrewrittento bar(X coercion (Y), X)

bar(Q,X) isrewrittento bar(X. coercion (@), X)

bar(X,Y) isrewrittento bar(X,X. coercion (Y))

bar(X,Q) isrewrittento bar(X,X. coercion (Q))

bar(Y,Y) isrewrittento bar(X. coercion (YV), X. coercion (Y))
bar(Q,Q) isrewrittento bar(Q, Q)

bar(Q,Y) is rewritten to r(X coercion (@), X. coercion (Y))
bar(Y,Q) isrewrittento bar(X. coercion (Y), X. coercion (Q))

Note that the callbar(Q, Q) remains unchanged because there exists a declaratién:fdhat is applicable without
coercion.

To continue the example, let us illustrate a point about pgrameters. If we add the following definitions:

139

trait Frobboz

frob(item: X) =5

coercion (m:Matrix) = ... (x irrelevant!x)
end

object Bozo[T extends Frobboz](¢:T)... end

then this says nothing about whether the type paramEBtef Bozo has coercions, because coercions are not inher-
ited. (In fact, we can make a stronger statement: types ndayéghe parameterdo not have coercioms But it is
guaranteed that the following method invocations are \ifititey occur within the declaration d8ozo:

t.frob(X)
t.frob(Y)
t.frob(Q)

becauseT inherits the method declaratioftob(item : X) from Frobboz and X contains coercions fronY” and Q.

17.4 Applicability with Coercion

As discussed in the previous section, coercion in Fortréessahe set of applicable declarations for a particular
functional call. In this section we formally define the apphility of declarations with coercion. (This level of
formality is necessary to discuss the interaction of owatiog and coercion.) We build on the terminology and
notation defined in Chapteriis.

We writeT' — U if U defines a coercion fromi. We say thafl’ can be coerced t&/, and we writel'~ U, if U defines
a coercion fronil” or any supertype df’; that is,7~U <= 3IT": T T ANT'—U.

Because of automatic coercion, a declaration may be apdieren if its parameter type is not a supertype of the
argument type of the call. We define a new relatsurystitutability that takes coercion into account.

We say that a typé&" is substitutabldor type U, and we writeél’ C U, if T is a subtype ot/ or T' can be coerced to
U; that is,
TCU <= TUVT~U.

Note that_ need not be transitive. This is a result of the fact that doamoes not chain. However,If is substitutable
for U then so ard"'s subtypes; thatisd < TATCU = ALCU.

A declarationf (P) is applicable with coerciorto a callf (C) if the call is in the scope of the declaration afid— P.
(See Chaptérl7 for the definition of scope.)

Recall that Section 15.2 describes a rewriting of namedtional calls into dotted method calls when no declarations
are applicable to the named functional call. This rewritagounts for the applicability with coercion of dotted
method declarations to named functional calls.

Similarly, a dotted method declaratiad®y.f (P) is applicable with coerciorio a dotted method call’y.f (C) if it

Cy X PpandC C P. Notice that the self parameter and receiver are compaiied tige subtype relation instead
of the substitutable relation. This reflects the restrictivat self parameters of dotted methods cannot be coerced.
However,self parameters of functional methods can be coerced. Thisidiigtn is consistent with the intuition that
functional methods are rewritten into top-level functions

Note that the only difference between applicability andligppility with coercion is that substitutability is used
instead of subtyping to compare the parameter types of ttlamd¢ions.

Also note that the definition of applicability with coercidnes not take keyword parameters or varargs parameters into
account. Such declarations are conceptually rewrittemnoimerous declarations which cannot be called with elided

140

arguments nor with variable number of arguments (as desttiibSectioh 15J4). If one of the expanded declarations
is applicable with coercion to a call, then the original éeation (with keyword or varargs parameters) is applicable
with coercion to the call.

17.5 Coercion Resolution

For a given functional call, we first determine whether thexists a declaration that is applicable without coercion.
If so, the most specific declaration is selected; if not, theercions are explicitly added to the functional call. If
more than one coercion is possible then the coercion thitsythe most specific type is chosen. Section]17.6 and
Chaptel 3B describe restrictions on the declarations otames and overloaded functionals that guarantee thestsexi
always a most specific coercion when two or more are possible.

We first define a notion of more specific types in the presenceefion. Recall from Sectidn 8.1 that Fortress defines
anexclusiorrelation between types which is denotedday

For typesT” andU, we say thaf" rejectsU, and writeT'-) U, if for all coercions tdl’, the type coerced from excludes
U:
THU <= VA: A—-T = AQU.

Note thatT'- U impliesU ~4 T.

We say thatl" is no less specifithanU, and writeT" < U, if T'is a subtype of/ or T" excludes, can be coerced to,
and rejectd/:
TAU <= TUVTOQUAT~UANTSU).

The < relation is reflexive and antisymmetric but not necess#dgsitive. It is possible, for example, for three types,
T, U andV, each excluding the other two, to have coercions ffdto U and fromU to V. In this case] < U and
U<SVbutT 4V.

Notice that if two tuple types have a bijective correspormdebetween their element types then theelationship
between the tuple types is equivalent to applyingtheelation elementwise.

We say thafl" is more specifithanU, and writeT' <« U, if T < U AT # U.

We extend the definitions of no less specific and more speoififetlarations. We say that a declaratfd®) is no
less specifithan a declaratiofi(Q) if P < Q. Similarly, we say that a declaratidfy.f (P) is no less specifithan
a declaration)y.f (@) if (Po, P) < (Qo, Q). A declarationf(P) is more specifithan a declaratiofi(Q) if P < Q.
Similarly, a declaratiorP,.f (P) is more specifithan a declaratiof)y.f (@) if (Po, P) < (Qo, Q).

Now we describe how to determine which coercion is applieadiven call in terms of rewriting functional calls. The
rewriting is for pedagogical purposes; implementatiomitggues may vary.

Consider a static caji(A) or Aq.f(A). Let X be the set of parameter types of functional declarationstoft are
applicable to the call. LeE’ be the set of parameter types of functional declarations thiat are applicable with
coercion to the call. I£ is not empty then we use the overloading resolution desttiib&ectior 15.5 to determine
which element ot is called. IfY is empty but’ is not, then we rewrite the call as follows. Define:

c={Tex|S—TAA=<S).

Let T € ¢ be the most specific element gf In other words, there does not exiBt € ¢ such thatl” <« T. The
restrictions given in Sectidn 17.6 and Chaptdr 33 guarahttesuch & exists and that it is unique. The cgllA) or
Ag.f(A) is rewritten to f(T. coercion (A)) or Ay.f(T. coercion (A)) and the declaration with parameter type
T is applied to the call.

As an example, consider the following definitions:

141

trait Z32 end
trait Z64
coercion (2:7Z32) = ...
end
trait Z128
coercion (2:Z32) = ...
coercion (z:Z64) = ...
end
f(z:Z64) =1
f(z:2128) = 2

Then the callf(Z32) resolves statically to the declaratigf{z : Z64) becausé.64 < Z128, which follows from the
fact thatZ64 coerces toZ128. The statically chosen declaration will be called at ruretim

Notice that coercion is resolved statically. Once a coergastatically chosen for a call, this coercion is concelptua
inserted into the call. This means that the statically chasercion is applied at run time.

For example, in the following program:

trait A
coercion (¢:C) =...
end
trait B excludes A end
trait C end
object D extends {B,C} end
fla:A)=3
f(b:B)=4
c:C=D
f(c)

the call f(c) resolves to the declaratiofi(A) despite the fact that the declaratigiB) is applicable to the dynamic
call f(D).

17.6 Restrictions on Coercion Declarations

We place two restrictions on coercion declarations to enthat it is always possible to resolve coercions.

It is a static error for a type to define a coercion from any sfsiibtypes. For example, the following program is
statically rejected:

trait Number
coercion (z:Z) = ...
end

trait Z extends Number end
It is also a static error for cycles to exist in the type hiengrproduced by extension and coercion declarations. Such
cycles may be composed of solely subtype relationshipsletyscoercion or a mixture of the two. In all cases the
cycles are statically rejected. An example showing a cylwde is a mixture of subtype and coercion relationships
follows:

trait A end

142

trait B extends A end

trait C extends B
coercion (a:A) = ...
end

17.7 Coercions for Tuple and Arrow Types

Unlike other types, tuple types (described in Sedtioh 8m) arrow types (described in Section]8.5) are not defined
explicitly. Therefore coercions to these types are alsalabhed explicitly. Instead, the following rules describieem
these coercions are implicitly defined.

There is a coercion from a tuple typéto a tuple typeY if all the following conditions hold:

1. X is not a subtype ot’;

2. for every plain typ€el’ in Y, there is a corresponding plain typeinhwhose type is substitutable far;
3. if neitherX nor Y has a varargs type, then they have the same number of plas;typ
4

. if X has a varargs type, theri has a varargs type, the typeof the varargs type... in X is substitutable for
the typeT of the varargs typd'... in Y, andX and Y have the same number of plain types;

5. if X has no varargs type and has a varargs typ#'..., then every plain type itX' that has no corresponding
plain type inY is substitutable fofl’; and

6. the correspondence between keyword-type pai’s and Y is bijective, and the type of each such paitins
substitutable for the type in the corresponding pait’in

Tuple type coercions are invoked by distributing the casra@lementwise. However, if an element type of the tuple
type being coerced from is a subtype of the correspondingexétype of the tuple type being coerced to, the coercion
is ignored. For example, the following coercions:

(A, B). coercion (z,y)
(kwd = A). coercion (kwd = x)

are rewritten to:

(A. coercion (), B. coercion (y))

(kwd = A. coercion (x))

However, if the type ofy were a subtype oB then the first coercion would instead be rewritten to:
(A. coercion (z),y)

Coercions to varargs types such as the following:
(A...). coercion (z,y)

are invoked by applying the coercion to the type in the vardypge, A in this example, to each of the elements of the
tuple. Additionally, there is a coercion from any tyfieto a tuple type solely with varargs typd'. . .) .

There is a coercion from arrow typed' — B throws C " to arrow type “D — FE throws F'” if all of the following
conditions hold:

1. “A — B throws C'"is not a subtype of ‘D — FE throws F'”;

2. D is substitutable fo#;

143

3. B is substitutable fo#; and
4, forall X in C, there existy in I such thatX is substitutable fol".

Arrow type coercions are invoked by wrapping the argumenttion of the coercion in a function expression that
applies the appropriate coercions to the argument andtrestie function. For example, assuming thatis a
function from typeA to type B the following coercion:

(C — D). coercion (f)
is rewritten to:

fn x = D. coercion (f(A. coercion (x)))

17.8 Automatic Widening

Syntax:
Coercion := widening coercion[StaticParamK Id IsTyp§ CoercionClauses= Expr

Fortress supports what is sometimes called “widest-neealuation of numerical expressions. To see the problem,
suppose that and b are 32-bit floating-point numbers ards a 64-bit floating-point number. Itis easy, and tempting,
to write an expression such as

c=c+a-b

but if you stop to think about it, if interpreted naively it Weompute the product - b as a 32-bit floating-point
number, and the impression that the sum may be accurate poabision of a 64-bit floating-point number is only an
illusion. Widest-need processing takes context into astand “widens” (or “upgrades”) the operandsand b to
64-bit floating-point numbers before the product is comguse that the product will be computed as a 64-bit result.

Before widening is considered, a Fortress compiler, indtsral course of operation, analyzes an expression bottom-
up. For every functional invocation, it needs to staticalgntify a specific declaration to be invoked. Once this is
done, then for every functional invocation, one of two cdiodis holds: (a) The type of the argument expression is
a subtype of the type of the parameter in the identified datitar. (b) The type of the argument expression can be
coerced to the type of the parameter in the identified detodara

This process has to be done bottom-up because in order &t sedpecific declaration for a functional invocation,
it is necessary to know the types of the argument expresséntsif an argument expression is itself a functional
invocation, it is necessary to select the specific declamdtr that invocation in order to find out the return type & th
invocation.

Once an expression has been fully analyzed in this way, thidanng is performed as a top-down process. For
each functional invocation that appears as an argument tm&idnal invocation, or on the right-hand side of a
variable definition or an assignment expression, ask wh#tbargument expression (which, remember, is a functional
invocation) falls under case (a) or case (b) above. If casedercion of the functional result is required; if the kelet
coercion declaration is a “widening” coercion, then thiadtional invocation is a candidate for widening. Call the
type of the functional invocatiorf’, and call the type of the corresponding functional parameteof the left-hand
side of the variable definition or assignment expression,

When the functional call was considered during the bottgnawalysis, in general many overloaded declarations may
have been considered; of all those that were applicable eg#rcion to the static call, the most specific one was
chosen. When considering widening, we consider the sanuad detlarations, but first discard all declarations whose
return types are not subtypes &f. Then if any remain, and there is a unique most specific onengrtheem, then that
declaration is attached to the functional call instead.hla way a coercion step is eliminated (coercion is no longer
needed to convert the result of the functional invocatiomftype 7" to type U), possibly at the expense of requiring

144

a new coercion in a subexpression—nbut this is exactly thatksffect. Once this is done, then the subexpressions
of the functional call are processed recursively.

This process is general enough not only to provide for widgriloating-point precision, but to handle two other
cases of interest as well: widening point computationst@riml computations, and widening computations involving
aggregate data structures whose components are widefablexample, ind(v x w) suppose thatl is of typeR64
andv andw are 3-vectors with components of tyR&2; this strategy is capable of promotingand w to 3-vectors
with components of typ®&64 and then performing all computations wit64 precision.

Let's go through the example af+ « - b in detail. The relevant declarations might look somethikg this:
trait R32
end
trait R64
widening coercion (z:R32) =...

end

opr - (I:R32,7:R32):R32 = ... (x 1 %)
opr - (I:R64,7:R64): R64 = ... (% 2 %)
opr +(I: R32,7:R32):R32 = ... (* 3 %)

opr +(1: R64,7:R64): R64 = ... (* 4 %)

The bottom-up analysis observes thatind b are both of typeR32, and discovers that declarationsand 2 are
both applicable to the product, but declaratibrwould be chosen because it requires no coercion and dectarat
2 would require coercion of both arguments to tyRé4 . The analysis then observes thahas typeR64 and the
product expression has tyf®32, so declaratior8 is not applicable but declaratiof is applicable (though requiring
a coercion fromR32 to R64 for its second argument).

Now the top-down widening analysis is performed. The prodsi@ functional call that is an argument to another
functional call, and its result requires coercion, and ttercion is a widening coercion. Therefore the compiler
reconsiders the applicable declarations, which were dt@gdas 1 and 2. The result type of declaratioh is not

a subtype ofR64, but the result type of declaratio is a subtype ofR64 (in fact, itis R64). Declaration2 is

the most specific among the applicable declarations withgraperty (in fact, in this example it's the only one), so
declaration2 replaces declaration for the product invocation. This in turn requiresand b to be coerced from
type R32 to R64 before the product is performed.

Widening is a tricky business, best left to expert librargigaers. When used judiciously, it can greatly improve the
precision of numerical computations without requiring aagrdeal of thought on the part of the application program-
mer and without cluttering up code with explicit conversion

Future versions of this specification will include tablesoércions and widening coercions supported by the Fortress
standard libraries.

145

Chapter 18

Dimensions and Units

Syntax:
DimType := DimRef
| TypeRef DimRef TypeRef- DimRef
| TypeRef/ DimRef| TypeRefper DimRef
| TypeRef UnitRef TypeRef- UnitRef
| TypeRef/ UnitRef | TypeRefper UnitRef
| TypeRefin DimRef
DimRef = Unity
| Dottedld
| DimRef DimRef DimRef - DimRef
| DimRef / DimRef| DimRef per DimRef
| DimRef” NatRef| 1 /DimRef| (DimRef)
| DUPreOp DimRef| DimRef DUPostOp
DUPreOp = square | cubic | inverse
DUPostOp ::= squared | cubed
UnitExpr = UnitRef
| Expr UnitRef| Expr - UnitRef
| Expr / UnitRef| Expr per UnitRef
| Expr in UnitRef
UnitRef dimensionless
Dottedld

|

| UnitRef UnitRef| UnitRef - UnitRef

| UnitRef / UnitRef | UnitRef per UnitRef

| UnitRef”~ NatRef| 1/ UnitRef| (UnitRef)

| DUPreOp UnitRef| UnitRef DUPostOp

There are special type-like constructs caltishensionghat are separate from other types (described in Chapter 8).
There are also special constructs that modify types anesalalledunitsthat are instances of dimensions. These are
used to describe physical quantities.

The Fortress standard libraries define dimensions andfonifse standard Sl system of measurement based on meters,
kilograms, seconds, amperes, and so on (as described iorg§86t1). The Fortress standard libraries also provide
supplemental units of measurement, such as feet and milefeézribed in Sectidn 29.2). For example, the Fortress
standard libraries provide a dimension naniethgth whose default unit is namesheter and abbreviatedh_. By
rendering convention, this abbreviation is rendered inatype without the underscorei . In contrast, the variable

mis rendered as in standard mathematical notatian: See Sectioh 5.17 for a discussion of formatting convestion

146

for tokens.

For readability, plural forms of the unit names are definedaqsvalent to the corresponding singular forms; thus one
can write meters per second , for example. Standard Sl prefixes may be used on both the aaththe symbol, so

that nanometer and nm are also units of the dimension nameength, related tometer and m by a conversion

factor of 10~7.

Every dimension may have a default unit that is used for sepriing values of quantities of that dimension if no unit
is specified explicitly. The Fortress standard librariendgethese default dimensions and units:

Length meter MagneticFlux weber

Mass kilogram MagneticFluxDensity tesla

Time second Inductance henry

Frequency hertz Velocity meters per second

Force newton Acceleration meters per second squared
Pressure pascal Angle radian

Energy joule SolidAngle steradian

Power watt LuminousIntensity candela

Temperature kelvin LuminousFlux lumen

Area square meter Illuminance lux

Volume cubic meter RadionuclideActivity becquerel

ElectricCurrent ampere AbsorbedDose gray

ElectricCharge coulomb DoseEquivalent stevert

ElectricPotential volt AmountOfSubstance ~ mole

Capacitance farad CatalyticActivity katal

Resistance ohm MassDensity kilograms per cubic meter
Conductance siemens

In addition, the Fortress standard libraries define the dgios Information with units bit andbyte (and the plurals
bits andbytes), a byte being equal to ®its. To avoid confusion, S| prefixes anetprovided for these units; instead,
programmers must use appropriate powers of 2 or 10, for ebeanfibits or 22bits .

Here are some examples of the use of dimensions and units:

x:R64 Length = 1.3 m
t:R64 Time = 55
v: R64 Velocity = z/t

w:R64 Velocity in nm/s = 17nm/s
x:R64 Velocity in furlongs per fortnight = v in furlongs per fortnight

Dimensions and units can be multiplied, divided, and rateadtional powers to produce new dimensions and units.

Both the numerator and the denominator of a rational powardifension or a unit must be a valicht parameter
instantiation (as described in Section 11.2). Multiplisatcan be expressed using juxtaposition pdivision can be
expressed using or per. The syntactic operatorgjuare andcubic may be applied to a dimension or unit in order
to raise it to the second power, third power, respectivdig;dpecial postfix syntactic operatersuared and cubed
may be used for the same purpose. The syntactic opeiatarse may be applied to a dimension or unit to divide it
into 1. All of these syntactic operators are merely syntastigar, expanded before type checking.

grams per cubic centimeter
meter per second squared
inverse ohms

One can also writd /X as a synonym forX ! if X is either a dimension or a unit.

Most numerical values in Fortress are dimensionless qyaraiues. Multiplying or dividing a dimensionless value
by a unit produces a dimensioned value; thusis the dimensioned value equal to five seconds, which hasmcahe

147

value 5 andsecond for its unit. A dimensioned value may also be multiplied aridéd by a unit, and the result is to
combine the units; the expressigh7 nm) /s first multiplies 17 by nm to produce the dimensioned value seventeen
nanometers, which is then divided by the ugito produce seventeen nanometers per second.

The unit of a dimensioned value may be changed to anotheobitfie same dimension by using the operator,
which takes a quantity to its left and a unit to its right. Tive operator changes the unit and multiplies or divides
the numerical value by an appropriate conversion constamtssto preserve the overall dimensioned value. Thus
1.3m in nm produces1300000000 nm .

Multiplying or dividing a dimensionless numerical type bymit produces an equivalent dimensioned numerical type
with that unit associated; thuR64 meter is a type that is just likeR64 but whose values are values of dimension
Length measured inmeters. A dimensioned numerical type may be further multiplied aticed by a unit. As a
convenience, if a dimension has a default unit, a numernypa thay also be multiplied or divided by a dimension, in
which case the result is as if the default unit for that dinlem$iad been used. Thien operator may also be used to
change the unit associated with a dimensioned type; in ituation the effect is merely to alter the unit associated
with the type; no numerical operation is performed at ruretim

Certain aggregate types, suchVas:tor, may also have associated units.

There are two reasons for using dimensions and units. Oreighe in operator can supply conversion factors
automatically. The other is that certain programming ermry be detected at compile time. When dimensioned
values are added, subtracted, or compared, it is a staticiethe units do not match. When dimensioned values are
multiplied or divided, their units are multiplied or divide When taking the square root of a dimensioned value, the
unit of the result is the square root of the argument’s unthe®numerical functions, such at and log, require
dimensionless arguments.

A variable whose declared type includes a dimension withautccompanying unit is understood to have the default
unit for that dimension. Thus, in most cases, the runtime efr@in expression can be statically inferred. However,
there are exceptions. For example, consider the followaaastation:

a : Object[3] = [5mg, 3m, 4]
Now suppose we declare a function that takes an array of tsbgec returns one of its elements:
f(zs : Object[3]) = zs1

The value of the callf (a) is 3 m . However, the static type of (a) is simply Object. When the value3 m is placed

in an array of objects, the value is boxed, and the unit aatemtiwith the value must be included as part of the boxed
value. However, unboxed values need not include unit inédion at runtime, as this information is statically evident
in such cases.

There are also special static parameters for units and dimesy see Sectidn 11.4.

148

Chapter 19

Tests and Properties

Fortress supports automated program testing. Componadt#\BIs can declaréests Test declarations specify
explicit finite collections over which the test is run. Compats, APIs, traits, and objects can declareperties
which describe boolean conditions that the enclosing cocisis expected to obey. Tests and properties may modify
the program state.

19.1 The Purpose of Tests and Properties

To help make programs more robust, Fortress programs aneedllto include special constructs callegtsand
properties Tests consist of test data along with code that can be ruhairdata. Properties are documentation used
to describe the behavior of the traits and functions of a anog they can be thought of as comments written in a
formal language. For each property, there is a special fum¢hat can be called by a program’s tests to ensure that
the property holds for specific test data.

A fortress includes hooks to allow programmers to run a fjogeist on an executable component, and to run all tests
on such a component. A particularly useful time to run théste$ an executable component is at component link
time; errors in the behavior of constituent components @cawught before the linked program is run.

19.2 Test Declarations

Syntax:
TestDecl = test |d [GeneratorList = Expr
GeneratorList ::= Generator(, Generato)*
Generator = ld« Expr
| (Id, IdList) < Expr
| Expr
IdList m= o 0d(, Id)*

A test declaration begins with the special reserved wasdt followed by an identifier, a list of zero or more gener-
ators (described in Sectidn 13]17) enclosed in square &tadke token=, and a subexpression. When a testis
(See Sectioh 22.7), the subexpression is evaluated in ed@hséon of the enclosing environment corresponding to
each point in the cross product of bindings determined bygéreerators in the generator list.

For example, the following test:

149

test frLessThanFy[x «— E,y «— F] = assert(f(z) < f(y))

checks that, for each valuesupplied by generatdr, and for each valug supplied by generatdr, f(x) is less than

fy).

19.3 Other Test Constructs

Syntax:
UniversalMod := test

The test modifier can also appear on a function definition, trait dééini object definition, or top-level variable
definition. In these contexts, the modifier indicates that phogram construct it modifies can be referred to by a
test. Functions with modifietest must not be overloaded with functions that do not have madifiest , and traits
with modifier test must not be extended by traits or objects that do not havefiapdiest . The collection of all
constructs in a program that include modifiegst are referred to collectively as the prograngsts Tests can refer

to non-tests but it is a static error for a non-test to refermny test.

For example, we can write the following helper function:

test ensureApplicationFails(g,) = do
applicationSucceeded = false
try
9(x)
applicationSucceeded = true
catche
Exception = ()
end
if applicationSucceeded then
fail “Application succeeded! "
end
end

The library functionfail displays the error message provided and terminates emaaiftthe enclosing test.

19.4 Running Tests

When a program'’s tests aren, the following actions are taken:

1. All top-level definitions, including constructs begingiwith modifier test, are initialized. A test declaration
with namet declares a function namedhat takes a tuple of parameters corresponding to the Vesigound
in the generator list of the test declaration. For each béiain the generator list of, if the type of generator
supplied forv is Generator[a] then the parameter in the function corresponding kas typea . The return
type of the function is() .

Each such function bound in this manner is referred to @s&function Test functions can be called from the
rest of the program’s tests.

2. Each test in a program is run in each extensionts enclosing environment with a point in the cross product
of bindings determined by the generators in the test’s geoelist.

150

19.5 Test Suites

In order to allow programmers to run strict subsets of altstetefined in a program, Fortress allows tests to be
assembled inttest suites

The convenience objedestSuite is defined in the Fortress standard libraries. An instandhisfobject contains a
set of test functions that can all be called by invoking thehroe run :

test object TestSuite(testFunctions = {})
add(f:() — () = testFunctions.insert(f)

run() =
for t « testFunctions do

t()
end
end

Note that all tests in &estSuite are run in parallel.

19.6 Property Declarations

Syntax:
PropertyDecl := property [ld =][V ValParan] Expr
ValParam = Paramld
([ValParam$)

Paramid = d

| -
ValParams = PlainParan(, PlainParam*

| [PlainParan(, PlainParan)* ,] Id : TypeRef..

| [PlainParan(, PlainParam)* ,] [Id : TypeRef.. |] PlainParam= Expr (, PlainParam= Expr)*
PlainParam := Paramld[IsTypg

| TypeRef

Components and APIs may inclugeopertydeclarations, documenting boolean conditions that a progs expected

to obey. Syntactically, a property declaration begins Withspecial reserved worgkoperty followed by an optional
identifier followed by the toker=, an optional value parameter, which may be a tuple, precegdue tokenv, and

a boolean subexpression. In any execution of the prograahdblean subexpression is expected to evaluate to true
at any time for any binding of the property declaration’'sgmaeter to any value of its declared type. When a property
declaration includes an identifier, the property identifdoound to a function whose parameter and body are that of
the property, and whose return typesolean. A function bound in this manner is referred to gsraperty function

Properties can also be declared in trait or object dectaratiSuch properties are expected to hold for all instanices o
the trait or object and for all bindings of the property’s qnaeter. If a property in a trait or object includes a name,
the name is bound to a method whose parameter and body acd thatproperty, and whose return typelsolean.

A method bound in this manner is referred to ge@perty methodA property method of a traif’ can be called, via
dotted method notation, on an instance/ of

Property functions and methods can be referred to in a pnogiasts. If the result of a call to a property function or
method is nottrue, a TestFailure exception is thrown. For example, we can write:

property flsMonotonic = V(2: Z,y:Z) (x < y) — (f(z) < f(y))

151

test s : Set[Z] = {—2000,0, 1,7, 42,59, 100, 1000, 5697}
test fIsMonotonicOverS[z «— s,y «— s| = fIlsMonotonic(x,y)
test flsMonotonicHairy|x < s,y < s] = flsMonotonic(x,z* + y)

The testflsMonotonicOverS tests that functiorf is monotonic over all values in set The testfIsMonotonicHairy

tests thatf is monotonic with respect to the valuesdsrcompared to the set of values corresponding to all the ways in
which we can choose an elementafsquare it, and add it to another elementof

152

Chapter 20

Type Inference

Type inference in Fortress is performed independently ah smple component (described in Chajpter 22). For
separation of concerns, in this chapter, we describe thedssrtype inference as a procedure performed over a whole
Fortress program. We explain how this procedure can be eddptperform type inference over a simple program
component in Sectidn 22.5. Note that type inference canegdrformed on each functional (function or method)
declaration in isolation because it may be declared muytuedlursively or may contain free variables.

20.1 What Is Inferred

Types of functional parameters, functional results, ambiées may be elided in a program where they can be inferred
automatically. Similarly, instantiations of static parters of generic functional invocations may be elided wiiezg

can be inferred automatically. A Fortress compiler musivaellypes and static arguments inferable via the procedure
described in Sectidn 20.2 to be elided, no more and no less sttt requirement is made for the sake of source-code
portability; it is important that a program that compiles @me compiler will compile on all compilers. Of course,
there is nothing preventing a development environment faiing programmers by performing more sophisticated
analyses and filling in additional information, but the tprbdduced is not a valid Fortress program unless all elided
types and static arguments can be inferred via the desqiimegdure.

20.2 Type Inference Procedure

To perform type inference, we first infer any elided paramtee in each functional declaration that can be inferred
from other declaration as follows:

1. If the declaration is a functional declaration and theetgp the declared functional is declared via a separate
declaration, any elided parameter type is inferred to hiagdytpe provided by the separate declaration.

2. Otherwise, if the declaration is a method declaratioh dhrarloads a method declaration provided by a super-
trait, any elided parameter type is inferred to have the ywided (or inferred) by the overloaded method
declaration.

All remaining parameter types are inferred along with instdions of static parameters.

In the following, we adopt the convention of writing “prinestatic variablesTy, ..., 7)., U}, ..., to stand for fresh
static variables. Our procedure will introduce primedistaariables as placeholders that are to be replaced with

153

nonprimed types and static arguments before the termmafitype inference. We abuse notation by usiyygesto
refer to both types and static arguments when it is clear fromext.

First, we annotate every expressiothat is not a functional application with a fresh static aate (written here as a
superscript):

’
€T

and every functional applicatiofyao, ..., a,,) (Wheref is the name of a generic functional) with fresh static vddab
for the instantiation of each of the functional’s staticgraeters as well as a superscript:

f[[T67) T»rlnfl]](ao, ceny a/n)Tr/n
and every functional parametemithout a declared type with fresh static variable as itdated type:
. T

We say that a functional application is antermosfunctional application if and only if it is not a proper sulpegssion
of another functional application.

For each outermost functional application:

/

f[[T(/M "'7T7/n—1:[|(a/07 seey a‘n)Tm

let f[Ro, ..., Rm—1](po: So, ---, pn: Sn): Rm be a declaration of. Some of the types and static parameters appearing
at the declaration might be primed static variables thevesel

Note that there may be several declarationg dfie to overloading. When there are multiple declarationg faype
inference is performed to each declaration. Only the datitars to which type inference succeed are considered for
overload resolution.

We accumulate a table of subtyping constraints as follows:
First, we add the following constraint to our table:
T <:[Ro— T4 o, Rm—1—T0_1]Rm

where we use the notatidiRy +— T, ..., Rm-1 — T,,_,] to denote the safe substitution &%, ..., R,,—1 with
T, ..., T

m—1-

If the functional application occurs as the right-hand sitla declaratiorx:: T = e, we add the constraint:
T <:T

An analogous constraint is added if the application occarha right-hand-side of an assignment to a variable with
type T, or as the body of a functional with return tyfie or as an expression ascripted with typeetc. We refer to
all of these cases collectively by saying that the functiapplication “occurs in the context of tyg’.

Additionally, for every argumemf.]; corresponding to value parametgr we add the following constraint:
Ul <:[Ro— T}y o, Rn1 — T0_11S;

Additionally, we add all “nested constraints” accumulaf@dz;, where nested constraints are accumulated as follows:

1. If a; is not a functional application or sypecase expression, the nested constraints are the union of thedhest
constraints of all subexpressionsafplus the constrainR <: U/, whereR is the type ofa; in the enclosing
context.

2. If a; is a typecase expression, only nested constraints common to all brarenteesccumulated. Furthermore,
static parameter instantiations of generic functiondsoaithin each branch must be inferred independently, in
a separate table extending the constraints of the enclasimigxt with only those constraints available in that
branch.

154

3. If a; is a functional application, the nested constraints arealbktraints accumulated far as if it were an
outermost generic functional application occurring inteshlU .

Once we have accumulated all constraints for each outerfmostional application, the constraints are solved in the
following phases:

1. For every cycle of constraints of naked primed staticaldesT] <: ... <: T, <: Ty, one ofTy,...,T) is
chosen. We call the chosen naked primed static variBbléAll occurrences of 7, ..., T/ in the constraints and
throughout the program are replaced with. Redundant constraints are eliminated. This process eated
until a fixed point is reached.

2. For every naked primed static variatilg consider the set of all subtype constraintsiénT’ <: Uy, ...T" <:
U,. Theunexpandednferred least upper bound fét is the intersection type (described in Secfiod 8/8)"
e NU,.

3. If some primed static variablg’ appears in one of th€; in the unexpanded inferred least upper boundrtor
and R’ does not appear within a type constructBf,is replaced with its own unexpanded inferred type. This
process is repeated until a fixed point is reached.

If T" is expanded to a type with no primed variables, this phaseris dif T’ is expanded to a type containing no
primed variables excefft’, the expansio® of T” is replaced with dixed-point typeuT’.E. Fixed-point types
are needed to express types that would be “infinitely” lafggpanded out into conventional ground types. We
have the following property for fixed-point typegX.F = [X — uX.E|E. OtherwiseI” is inferred to have
type Object.

4. For every naked primed static variafilg consider the set of all supertype constraintg§nl;, <: T7,...V,, <:
T’. The unexpanded inferred greatest lower bound¥ds the union type (described in Section|8i8)...UV,,.
This type is expanded analogously to the procedure usetidantersection of”.

5. The inferred type for a static variallé is the intersection of the expanded inferred least uppendaund the
expanded inferred greatest lower boundfdr For the purposes of type checking, the inferred type is ot i
clausal normal form as a canonical form, eliminating recgumalauses.

20.3 Finding “Closest Expressible Types” for Inferred Types

Once solutions to the primed variables are inferred, we Hindtthe closest expressible tyge each inferred type.
Expressible types are all types that are neither intexm@tyipes nor union types and that syntactically contain only
expressible types. Note that fixed-point types are exptessipes as in the Java type inference.

1. Given an intersection typ&; N ... N S, if there is a unique most general expressible typsuch thatl is
a subtype ofSy, ..., S, thenT is the closest expressible type % N ... N S,,. If there is not a uniqgue most
general expressible type, then the close expressible syfieeiclosest expressible supertype of the multiple
closest expressible types; this process is guaranteednbintte because the type hierarchy is rooted at type
Object.

2. Given aunion typ&; U...US,, if there is a unique most specific expressible typguch thafl" is a supertype of
S1, ..., Sn, thenT is the closest expressible typeSpuU...U.S,. If there is not a uniqgue most general expressible
type, then the close expressible type is the closest exblessipertype of the multiple closest expressible types.

3. Given a generic type instantiati@n[S, ..., S,], where some of thé,, ..., S,, are not expressible, the closest
expressible type iI€'[E(S1), ..., E(S,)] whereE(S;) is the closest expressible typeSa

Each primed type in a program is replaced with the closestessjble type to its solution. Any remaining primed
types that have not yet been inferred are then inferred te hyge Object.

155

Chapter 21

Memory Model

Fortress programs are highly multithreaded by design; ahguage makes it easy to expose parallelism. However,
many Fortress objects are mutable; without judicious ussyothronization constructs—reductions aatiomic
expressions-data raceswill occur and programs will behave in an unpredictable wllge memory model has two
important functions:

1. Define a programming discipline for the use of data andtsymization, and describe the behavior of programs
that obey this discipline. This is the purpose of Sedtio221.

2. Define the behavior of programs that do not obey the progriamdiscipline. This constrains the optimizations
that can be performed on Fortress programs. The remain@tigss of this chapter specify the detailed memory
model that Fortress programs must obey.

21.1 Principles

The Fortress memory model has been written with severalitapbguiding principles in mind. Violations of these
principles should be taken as a flaw in the memory model spatitin rather than an opportunity to be exploited
by the programmer or implementor. The most important ppiecis this: violations of the Fortress memory model
must still respect the underlying data abstractions of thr&ss programming language. All data structures must be
properly initialized before they can be read by anotheratireand a program must not read values that were never
written. When a program fails, it must fail gracefully by dlwing an exception.

The second goal is nearly as important, and much more ditfippésent a memory model which can be understood
thoroughly by programmers and implementors. It should needlifficult to judge whether a particular program be-
havior is permitted by the model. Where possible, it shoelgdssible to check that a program obeys the programming
discipline.

The final goal of the Fortress memory model is to permit aggvesoptimization of Fortress programs. A multi-
processor memory model can rule out optimizations that tdghperformed by a compiler for a uniprocessor. The
Fortress memory model attempts to rule out as few behaveopmossible, but more importantly attempts to make it
easy to judge whether a particular optimization is permitienot. The semantics of Fortress already allows permis-
sive operation reordering in many programs, simply by eirtd the implicitly parallel semantics of tuple evaluation
and looping.

156

21.2 Programming Discipline

If Fortress programmers obey the following discipline ytloan expect sequentially consistent behavior from their
Fortress programs:

e Updates to shared locations should always be performed asiatomic expression. A location is considered
to be shared if and only if that location can be accessed by rii@n one thread at a time. For example,
statically partitioning an array among many threads neddake the array elements shared; only elements
actually accessed by more than one thread are consideredsttabed.

¢ Within a thread or group of implicit threads objects shoubd lne accessed through aliased references; this can
yield unexpected results. Section 2112.3 defines the nofiapparently disjointreferences. An object should
not be written through one reference when it is accessedghranother apparently disjoint reference.

The following stylistic guidelines reduce the possibilaf pathological behavior when a program strays from the
above discipline:

e Where feasible, reduction should be used in favor of updatisingle shared object.
e Immutable fields and variables should be used whereverigahdiVe discuss this further in Section 2112.1.

e A getter or a setter should behave as though it is performsighple field access, even if it internally accesses
many locations. The simplest (but not necessarily mostieffit way to obtain the appropriate behavior is to
make hand-coded accessersomic . Sectiori 21.2]2 expands on this.

21.2.1 Immutability

Recall from Sectiof 4]3 that we can distinguish mutable amahitable memory locations. Any thread that reads
an immutable field will obtain the initial value written whéine object was constructed. In this regard it is worth
re-emphasizing the distinction between an object referamcl the object it refers to. A location that does not contain
a value object contains an object reference. If the field mutable, that means the reference is not subject to change;
however, the object referred to may still be modified in adaace with the memory model.

By contrast, recall that all the fields of a value object amnintable; however, a mutable location may have a value type.
Such a location can be written, completely replacing theerabject it contains. Similarly, reading the value corgdin

in such a location conceptually causes the entire valuecbtgebe read; if this isn’t followed by an immediate field
reference, the read must be performed atomically. This rogsnpially be expensive (see Section 21.3).

21.2.2 Providing the Appearance of a Single Object

In practice, most accesses to fields occur through a megligétter or setter method. It should not be possible for the
programmer to tell whether a given getter or setter diremtiyesses a field or if it performs additional computations.
Similarly, any subscripting operation must be indistirgdnaible from accessing a single field. Thus, accessor methods
and subscripting methods should provide the appearanctwwiiGity, as described in Sectibn 211.3. The Fortress
standard libraries are written to preserve this abstracior example, thé\rray type in Fortress makes use of one or
more underlyingHeapSequences, and array subscripting preserves the atomicity guagamtithis underlying object.

21.2.3 Modifying Aliased Objects

In common with Fortran, and unlike most other popular prograng languages, Fortress gives special treatment to
accesses to a location through different aliases. For ttpopas of variable aliasing, it is important to define thearot

157

of apparently disjoint{or simply disjoint) object and field references. If two nefieces are not disjoint, we say they
arecertainly the sameor justthe same By contrast, we say object references identical if they refer to the same
object, andlistinct otherwise. Accesses to fields reached via apparently digphiject references may be reordered
(except an initializing write is never reordered with resige other accesses to the identical location).

Distinct references are always disjoint. Two identicakrefices are apparently disjoint if they are obtained froyn an
of the following locations:

e distinct parameters of a single function call

e distinct fields

e a parameter and a field

¢ identically named fields read from apparently disjoint cbjeferences

e distinct reads of a single location for which there may berd@rposing write

When comparing variables defined in different scopes, thdse will eventually lead to reads of fields or to reads of
parameters in some common containing scope.

We extend this to field references as follows: two field refees are apparently disjoint if they refer to distinct fields
or they refer to identically named fields read from appayediijoint object references.

Consider the following example:

f(z : Z64[2),y : Z64[2]) : Z64 = do

xo = 17
Yo 1= 32
end

Herez andy in f are apparently disjoint; the writes may be reordered, sodlief (a, a) may assign either 17 or 32
to ag .

A similar phenomenon occurs in the following example:

g(x = Z64[2],y : Z64[2]) : Z64 = do
To = 17
Yo

end

Again z and y are apparently distinct ig, so the write toz, and the read ofj, may be reordered. The ca(a, a)
will assign 17 toay but may return either the former value of or 17.

It is safe toread an object through apparently disjoint references:

h(z : Z64[2],y : Z64[2]) : Z64 = do

u : 7264 = xq
v 264 = yo
U+ v

end

A call to h(a,a) will read ao twice without ambiguity. Note, however, that the reads ntéltse reordered, and if
ag is written in parallel by another thread this reordering barobserved.

If necessaryatomic expressions can be used to order disjoint field references:

f(x:7Z64]2],y : Z64]2]) : () = do
atomic xg := 17
atomic yg := 32

end

158

Here the callf(a, a) ends up setting:,, to 32. Note that simply using a singtecomic expression containing one or
both writes is not sufficient; the two writes must be in distintomic expressions to be required to occur in order.

When references occur in distinct calling contexts, theydasambiguated at the point of call:

J(x: Z264[2],y : Z64) : () =xz¢ =y
k(x : Z64[2]): () = do
jlx, 17)
j(x,32)
end
I(x: Z64[2],y : Z64[2]) : () = do
j(17)
i(y,32)

end

Here if we call k(a) the order of the writes performed by the two callsjtdgs unambiguous, and, is 32 in the
end. By contrast{(a, a) callsj with two apparently disjoint references, and the writedigse two calls may thus be
reordered.

21.3 Read and Write Atomicity

Any read or write to a location isdivisible. In practical terms, this means that each read operatidis@glexactly the
data written by a single write operation. Note in particutat indivisibility holds for a mutable location contaigin

a large value object. It is convenient to imagine that eveneas to a mutable location is surrounded byaaamic
expression. However, there are a number of ordering gusgamtrovided byatomic accesses that are not respected
by non-atomic accesses.

21.4 Ordering Dependencies among Operations

The Fortress memory model is specified in terms of two ordsrimlynamic program order and memory orday-
namic program ordefis a partial order between the expressions evaluated intigydar execution of a program. The
actual order of memory operations in a given program execusimemory ordera total order on all memory opera-
tions. Dynamic program order is used to constrain memorgrofdgdowever, memory operations need not be ordered
according to dynamic program order; many memory operatiemsn reads and writes to a single field or array el-
ement, can be reordered. Programmers who adhere to the mdslettion 21.2 can expect sequentially consistent
behavior: there will be a global ordering for all memory cgt@ns that respects dynamic program order.

Here is a summary of the salient aspects of memory order:

e There is a single memory order which is respected in all tsea

Every read obtains the value of the immediately precedintgwa the identical location in memory order.

Memory order onatomic expressions respects dynamic program order.

Memory order respects dynamic program order for operativaiscertainly access the same location.

Initializing writes are ordered before any other memoryessao the same location.

159

21.4.1 Dynamic Program Order

Much of the definition oflynamic program ordeis given in the descriptions of individual expressions ira@ief 13.

Itis important to understand that dynamic program orderaggnts a conceptual, naive view of the order of operations
in an execution; this naive view is used to define the more {@sime memory order permitted by the memory model.
Dynamic program order is a partial order, rather than a miér; in most cases operations in different threads will
not be ordered with respect to one another. There is an imapogkception: there is an ordering dependency among
threads when a thread starts or must be complete.

An expression is ordered in dynamic program order after apgession it dynamically contains, with one exception: a
spawn expression is dynamically ordered before any subexpnessits body. The body of thepawn is dynamically
ordered before any point at which the spawned thread olgetiserved to have completed.

Only expressions whose evaluation completes normally roccdynamic program order, unless the expression is
“directly responsible” for generating abrupt terminati@xamples of the latter case aterow andexit expressions
and division by zero. In particular, when the evaluation cfudbexpression of an expression completes abruptly,
causing the expression itself to complete abruptly, theainimg expression does not occur in dynamic program
order. A label block is ordered after arxit that targets it. The expressions ircatch clause whosecry block
throws a matching exception are ordered after theow and before any expression in tHeénally clause. If the
catch completes normally, thery block as a whole is ordered after the expressions inftheally clause. For

this reason, when we refer to the place of ngsewn expression in dynamic program order, we mean the expression
or any expression it dynamically contains.

For any construct giving rise to implicit threads—tuple leaion, function or method call, or the body of an expres-
sion with generators such &r —there is no ordering in dynamic program order between tipeession executed

in each thread in the group. These subexpressions are dndéterespect to expressions which precede or succeed
the group.

When a function or method is called, the body of the functiomethod occurs dynamically after the arguments and
function or receiver; the call expression is ordered aftertiody of the called function or method.

For conditional expressions such as, case, and typecase, the expression being tested is ordered dynamically
before any chosen branch. This branch is in turn orderedrdigdly before the conditional expression itself.

Iterations of the body of ashile loop are ordered by dynamic program order. Each evaluaticgheoguarding
predicate is ordered after any previous iteration and lkedoy succeeding iteration. Thevile loop as a whole is
ordered after the final evaluation of the guarding predjcatech yields false .

An iteration of the body of &or loop, and each evaluation of the body expression in a corepsabtin or big operator,
is ordered after the generator expressions.

21.4.2 Memory Order

Memory ordergives a total order on all memory accesses in a program égacét read obtains the value of the most
recent prior write to the identical location in memory ordér this section we describe the constraints on memory
order, guided by dynamic program order. We can think of theesestraints as specifying a partial order which must
be respected by memory order. The simplest constraint tsattesses certainly to the same location must respect
dynamic program order. Apparently disjoint accesses net¢daspect dynamic program order, but an initializing
write must be ordered before all other accesses to the @ifdication in program order.

Accesses in distinct (non-nestesljomic expressions respect dynamic program order. Giveataimic expression,
we divide accesses into four classes:

1. Components, dynamically contained within thieomic expression.

160

2. Ancestors, dynamically ordered before theomic expression.
3. Descendants, dynamically ordered beforedhemic expression.
4. Peers, dynamically unordered with respect to operatignamically contained within thatomic expression.

We say anatomic expression igffectiveif it contains an access to a location, there is a peer acodhe tidentical
location, and at least one of these accesses is a write. Feffeative atomic expression, every peer access must
either be goredecessoor asuccessar A predecessor must occur before every component and eesgeddant in
memory order. A successor must occur after every compomehéeery ancestor in memory order. Every ancestor
must occur before every descendant in memory order.

The above conditions guarantee that there is a single, igpothering for the effectiveatomic expressionsin a Fortress
program. This means that for any pair efomic expressionst and B one of the following conditions holds:

e Ais dynamically contained insidB.
e B is dynamically contained insidé.

e Every expression dynamically contained4rprecedes every expression dynamically containdsliimmemory
order. This will always hold wher is dynamically ordered beforB.

e Every expression dynamically containedBrprecedes every expression dynamically containetlimmemory
order. This will always hold whe# is dynamically ordered beforé.

The above rules are also sufficient to guarantee shatic expressions nested inside an enclosingmic behave
with respect to one another just as if they had occurred a@bghéevel in an un-nested context.

Any access precedingspawn in dynamic program order will precede accesses in the sphexgression in memory
order. Any access occurring after a spawned thread has liesenved to complete in dynamic program order will
occur after accesses in the spawned expression in memaey ord

A reduction variable in afor loop does not have a single associated location; insteark th a distinct location for
each loop iteration, initialized by writing the identity tife reduction. These locations are distinct from the locati
associated with the reduction variable in the surroundocaps. In memory order there is a read of each of these
locations each of which succeeds the last access to thablarn the loop iteration, along with a read of the location
in the enclosing scope which succeeds all accesses to tattdo preceding the loop in dynamic program order.
These reads are followed by a write of the location in theasioy scope which in turn precedes all accesses to that
location that succeed the loop in dynamic program order.

Finally, reads and writes in Fortress programs must respygetmic program order for operations that seenantically
related If the readA precedes the writ& in dynamic program order, and the value®ftan be determined in some
fashion without recourse td, then these operations are not semantically related. Alsiexample is ifA is a
reference to variable andB is the assignmeng := = - 0. Here it can be determined that:= 0 without recourse to

x and these variables are not semantically related. By csintiee writey := « is always semantically related to the
read ofz. Note that two operations can only be semantically reldtedriansitive data or control dependency exists
between them.

161

Chapter 22

Components and APIs

Fortress programs are developed, compiled, and deployedcapsulated upgradable componethtst exist not only

as programming language features, but also as self-ceataim-time entities that are managed throughout the life of
the software. The imported and exported references of acpemt are described with explié&Pls With components
and APIs, Fortress provides the stability benefits of statiéng with the sharing and upgrading benefits of dynamic
linking. [In addition to an informal description of the component sgstn this chapter, we also formally specify key
functionality of the system, and illustrate how we can reesoout the correctness of the system in Appehdlix C.

22.1 Overview

Components are the fundamental structure of FortressqmogrThey export and import APIs, which serve as “inter-
faces” of the components. Components do not refer direotbtier components. Rather, all external references are
to APIs imported by the component. These references artveesby linking components together: the references of
a component to an imported API are resolved to a componehexparts that API. Linking components produces
new components, whos®nstituentare the components that were linked together.

Components are similar to modules in other programminguaggs, such as those of ML and Scheme[[18, 14, 13].
But, unlike modules in those languages, components argrissifor use during both development and deployment
of software. In addition to compilation and linking, compoits can be produced by upgrading one component using
another component that exports some of the APIs exportedebfjrst component.

A key aspect of Fortress components is that they are encapdybo that upgrading one component does not affect any
other component, even those produced by linking with thepmmant that was upgraded. Abstractly, each component
has its own copy of its constituents. However, implemeatetiare expected to share common constituents when
possible.

Users do not manipulate components directly. Instead yes@nponent is installed in a persistent database on the
system. We think of this database, which we calbdress as the agent that actually performs operations such as
compilation, linking, upgrading, and execution of compuaise a virtual machine, a compiler, and a library registry
all rolled into one. A fortress also maintains a list of ARiat are installed on it. A fortress also provides a shell by
which the user can issue commands to it. Components and A®lImanutable objects. A fortress maps names to
components installed on the system. The fortress opesmtimmodeled as methods of the fortress that change the

mapping.

1The system described in this chapter is based on that deddriti2].

162

The ways in which fortresses are actually realized on paeiglatforms are beyond the scope of this specification.
An implementor might choose to instantiate a fortress aeag®s, or as a persistent object database stored in a file
system, with fortress operations being implemented aptsdtiat manipulate this database.

We call the source code for a single software compongibgect Typically, when a project written in other pro-
gramming languages is compiled, each file in the projectpaisgely compiled. To ship an application, these files are
linked together to form an application or library. Fortreses a different model: a project is compiled directly into a
single component, which is installed in the compiling fesss.

From the point of view of the compiler, all the source codedfproject is contained in a single file. This approach sim-

plifies the design, and gives a well-defined order for irizgition of static elements of the component. However, this

approach is unworkable for components of substantial dibherefore, the compiler can be instructed to concatenate
several source files together before compiling, while naémiig the original source location information.

After these components are compiled from source files, thaytleen be linked together to form larger components.

22.2 Components

Syntax:
Component = component Dottedld Import Export* Decl* end
Dottedld = Id (. 1d)*
Import := import ImportFrom from Dottedld
| import AliasedDottedlds
ImportFrom = x [except Name}
| AliasedNames
Names = Name
| { NamelList}
Name m=d
| opr Op
NamelList = Name(, Namé§*
AliasedNames == AliasedName
| { AliasedNameLis}
AliasedName = Id[as Dottedld

| opr Op[as Op]

| opr LeftEncloser RightEnclosgras LeftEncloser RightEnclosgr
AliasedNamé , AliasedNamg
AliasedDottedId

| { AliasedDottedIdLis}

Dottedld[as Dottedld
AliasedDottedld, AliasedDottedI{
export Dottedlds

DottedlId

| { DottedIdList}

Dottedld(, Dottedld*

AliasedNamelList
AliasedDottedlds

AliasedDottedId
AliasedDottedlIdList ::
Export

Dottedlds

DottedldList

In this specification, we will refer to components createdbmpiling a file asimple componentsvhile components
created by linking components together will be knowrtasipound components

The source code of a simple component definition begins \ithspecial reserved wordomponent followed by
apossibly qualified namgn identifier or a sequence of identifiers separated by gemdth no intervening whites-
pace), followed by a sequenceiafport statements, and a sequencesrgportstatements, and finally a sequence of
declarations.

163

An import statement either imports an API and allows the giggkcnames (separated by commas) declared in the API
to be referred to with their unqualified names:

import {name™} from apiName
or imports an API as another name:
import apiName as anotherAPIName

For convenience, an import statement can import an API dod alll elements declared in that API to be referred to
with unqualified names:

import * from apiName

or can import an APl and allow all elements except the specif@nes (separated by commas) declared in that API
to be referred to with unqualified names:

import * except {name™} from apiName

If multiple elements with conflicting names are importediireeparate APIs, all references to those elements within
the component definition must be fully qualified. An expoatsiment specifies the APIs that the component exports.

Every component implicitly imports the Fortress core ARtgery fortress has at least one component implementing
all of these APIs. Apreferredcomponent exporting these APIs (configurable by the us@mpéicitly linked to every
component installed in the fortress.

An API (described in Sectidn 22.3) serves as an interfacecofi@ponent. For every APA exported by a component
C, C must provide a definition for every program construct dealan A. These definitions must match the declara-
tions in A exactly; the modifiers on constructs, the types of variglifess headers of functions and methods, and the
headers of traits must be identical. There is one excepfidrait declaration with an emptyomprises clause inA

can be implemented by an object declaratiofwinrHowever, it is permissible for a trait or object definitianihclude
additional methods and fields that are not declared.iAlso, a component is allowed to include top-level defimigo
that do not correspond to declarations in any of its expoftiets. The additional definitions that are not declared in
A are not visible from outside the component.

When a component is compiled, the APIs it refers to must begmtein the fortress. The import statements in a
component are not a way to abbreviate unqualified names e€tsbpr functions. In our system, an import statement
merely allows references to the imported API to appear inctiraponent definition. References to elements of an
imported APl must be fully qualified unless they are impofbgdan import statement with &rom clause. When a
component imports a functiondl (either a top-level function or a functional method) by ampaert statement with a
from clause, the imported may be overloaded with a functiongldeclared by the component. When a component
imports a top-level declaratiofi from an API A, all the relevant types to type check the uses are implicitly
imported fromA. However, these implicitly imported types for type chegkare not expressible by programmers;
programmers must import the types explicitly by importetagénts to use them.

A key design choice we make is to require that componentsrrreter to other components directly; all external
references are to APIs. This requirement allows programnmeextend and test existing components more easily,
swapping new implementations of libraries in and out of paogs at will.

One important restriction on components is that no APl maypdth imported and exported by the same compo-
nent. This restriction is required throughout to ground sbeantics of operations on components, as discussed in

Sectiorl 22.17.

Every component has a unique name, used for the purposempboent linking. This name includes a user-provided
identifier. In the case of a simple component, the identifieldtermined by a component name given at the top of the
source file from which it is compiled. A build script may keetafly on version numbers and append them to the first
line of a component, incrementing its tally on each comjgitat The name of a compound component is specified as
an argument to théink operation (described in Sectibn 22.7) that defines it.

164

Component equivalence is determined nominally to allowually recursive linking of components. By programmer
convention, identifiers associated with components thranat included in the Fortress standard libraries begin with
the reverse of the URL of the development team. A fortress dogallow the installation of distinct components with
the same name. Component names are used diring andupgrade operations to ensure that the restrictions on
upgrades to a component are respected, as explained io$22tir .

Every component also includes a vendor name, the name obttreds it is compiled on, and a timestamp, denoting
the time of compilation. The time of compilation is measubgdhe compiling fortress, and the name of the fortress
is provided by the fortress automatically. Every timestasgued by a fortress must be unique. The vendor name
typically remains the same throughout a significant portibtie life of a user account, and is best provided as a user
environment variable.

In our examples, we use published descriptions of packagbeiJava 6.0 API[26] as examples of APIs expressible
in our component system. We use, as names for these APIsathesnof the corresponding Java packages, with
java replaced withFortress. For example, the following is the beginning of a source filed fictional application
IronCrypto:

component Com.Sun.IronCrypto

import Fortress.1IO
import Fortress.Security

export Fortress.Crypto

end

22.3 APIs
Syntax:
Api = api Dottedld Import AbsDect end
AbsDecl = AbsTraitDecl
| AbsObjectDecl
| AbsFnDecl
| AbsVarDecl
| AbsDimUnitDecl
| AbsTypeAlias
| TestDecl
| PropertyDecl
AbsTraitDecl = TraitHeader(AbsMdDec| AbsCoerciorj ApiFldDecl| PropertyDec)* end
AbsObjectDecl := ObjectHeadefAbsMdDecl| AbsCoercior] ApiFldDecl| PropertyDec)* end
AbsCoercion = [widening] coercion [StaticParamK Id IsTypg CoercionClauses
ApiFldDecl = ApiFldMod* Id IsType
ApiFldMod ;= hidden | settable | UniversalMod
AbsVarDecl = VarWTypes
| VarWoTypes TypeRef..
| VarWoTypes SimpleTupleType
AbsDimUnitDecl ::= dim Id [default Unit]
| (unit | SI_unit)Id* [: DimRef]
\ dim Id (unit | SI_unit)Ild*
AbsTypeAlias = type Id [StaticParamb

APIs are compiled from special API definitions. These arecmfiles which declare the entities declared by the API,
the names of all APIs referred to by those declarations, amsepdocumentation. In short, the source code of an API

165

should specify all the information that is traditionallyopided for the published APIs of libraries in other language
The syntax of an API definition is identical to the syntax ofbanponent definition, except that:

1. An API definition begins with the special reserved weighi rather thancomponent . As with components,
the identifiers associated with APIs that are not includetthénFortress standard libraries are prefixed with the
reverse of the URL of the development team.

2. An API does not includeexport declarations. (However, it does includeport declarations, which name
the other APIs used in the API definition.)

3. Only declarations (but not definitions!) are includednn?@®| definition except test and property declarations. A
method or field declaration may include the modifigrstract . (Whether a declaration includes the modifier
abstract has a significant effect on its meaning, as discussed below).

For the sake of simplicity, every identifier reference in dnl Alefinition must refer either to a declaration in a used
API (i.e., an API named in an import declaration, or the Fem$rcore APIs, which are implicitly imported), or to a
declaration in the API itself. In this way, APIs differ fronggaatures in most module systems: they are not parametric
in their external dependencies.

Every API has a unique name that consists of a user-providietifier. As with components, APl equivalence is
determined nominally. Every API also includes a vendor natine name of the fortress it is compiled on, and a
timestamp.

Component and API names exist in separate namespaces. Mma@n@nce, a compiler can also produce an API
directly from a project with the same name as the componestderived from. Such an API includesatching
declarations of the component. All declarations in the congmt appear in the APL.

A component must include, for every ARIit exports, matching definitions for all the declarationsiinA matching
definition of a declaration is a definitiond’ with the same name akthat includes definitions for all declarations
other than the methods or fields declargsstract in d. The header and type df must be the same as the header
and type ofd. d’ may include additional definitions not declarediin

For example, consider the APIBortress.IO, Fortress.Security, and Fortress.Crypto, with declarations simi-
lar to those in their respective Java packages. These ABlgrdependent. For example, bdtublicKey in
Fortress.Security andSecretKey in Fortress.Crypto extend the traiFortress.10.Serializable and the traitCipherSpi
in Fortress.Crypto has methods that return values of typisorithmParameters in Fortress.Security. So the API
Fortress.Crypto must importFortress.I0 and Fortress.Security as follows:

api Fortress.Crypto

import Fortress.IO
import Fortress.Security

end

22.4 Tests in Components and APls

A component may include definitions of tests, as describe@haptei IP. These definitions are allowed to refer to
both test and non-test code defined in the same componentlaretin APIs imported by the component.

An API may also include definitions of tests. These defingiomay refer to all declarations in the APl as well as in
any APIs it imports. Tests defined in APIs should be thouglasdfexecutable documentation” that partially specifies
the required behavior of the declared entities.

See Sectioh 2217 for an explanation of how tests defined ipoaents and APIs are executed.

166

22.5 Type Inference for Components

Type inference for Fortress has been described as a praceddiormed over a whole Fortress program in Chap-
ter[20. In this section, we explain how this procedure candag@ted to perform type inference over a simple program
component. For a compound component, concatenate allrdgalss of all constituents in the order specified by the
constructindink operation. Constituent compound component declaratieeeaursively concatenated.

Type inference over a simple componéhts performed by first expanding into a self-contained Fortress program,
as follows:

1. All program constructs corresponding to declaration&is exported by are expanded so that they include
all types and static parameters included in the exported API

2. Alltypes provided by all declarations in the APIs impaitsy C are prepended t0. Note that these declarations
must include types for all variables, functions, fields, ar&thods; otherwise the APIs that declare them are not
well-formed.

3. In order for the resulting expanded program to be weltaied, we assume that all declarations in these APls are
expanded into special definitions that inclietapty bodiesThe empty body of such a definition is a conceptual
body which cannot be expressed directly in Fortress progrddecause declarations in APIs do not have any
elided type, type inference ignores empty bodies.

Once(C is expanded, type inference is performed over all progranstrocts that still include elided types. Empty
bodies are ignored.

22.6 Initialization Order for Components

To ensure that all objects and all variables are initializefbre their use, execution of program components proceeds
according to the procedure defined in this section. Thisgatore assumes that the program'’s type hierarchy is already
checked to be acyclic.

If a component is a compound component, all constituent corapts are initialized nondeterministically, but before
first use. If a simple component has imports, take the triaesitosure of all imported APIs. Collect all declarations
in this transitive closure, in any order, and prepend thetheaomponent definition. Finally, for a simple component
without imports, initialize all top-level variables anchgleton object fields in what we cademand-driven textual
order: Initialization is done in textual order except when theiglization of one object involves evaluating a refer-
ence to another object that is not yet initialized. In suckesainitialization of the object referred to occurs before
initialization of the referring object is completed. Noket cyclic references can diverge. Initialization of pasatic
objects is entirely demand-driven.

22.7 Basic Fortress Operations

We now describe the operations that can be performed on @derby developers and end-users for developing,
installing, testing, and maintaining components. We carktbf these operations as commands to an interactive shell
provided by the fortress.

In this section, we discuss operations on a fortress in thest basic form, postponing the discussion of more advanced
options, including additional optional parameters, tot®ad22.8. Although these more advanced options are dritica
to performing some real-world tasks with components, itaisier to describe their behavior after the basic forms of
operations have been discussed.

167

Fortress.IO Fortress.Crypto

A f

Ironl0 / IronCrypto /

Fortress.IO
Fortress.Security
Figure 22.1: Simple components in box notation: A compoigergpresented by a box, with the name of the compo-
nent at the top of the box. The arrow protruding from the upiggnt corner of a box is labeled with the APIs exported
by the component. The arrow pointing into the bottom of a tsbabeled with APIs imported by the component. If
no APIs are imported, we elide the arrow.

Compile This operation takes the source code for a simple compomeniRl) definition and produces a new
component object (or API object) that is installed on theéréss. Its type is as follows:

compile(file:String):()

For example, supposeonCrypto.fss contains the source code for the aforementiohewCrypto application,
which importsFortress.IO andFortress.Security, and export¥ortress.Crypto. Suppose we also have source code,
IronlO.fss , for another applicationlronlO, which imports nothing and export&rtress.10. We generate these
components by compiling the source files:

compile("lronlO.fss")
compile("lronCrypto.fss")

The results are depicted diagrammatically in Figure]22.1.

Link A collection of one or more components exporting differeRig\may be combined to form a new, compound,
component by calling théink operation, passing the names of the components to link alétigthe name of the
resulting compound component. Syntacticalliimk operation is written as follows:

link(result:String, constituents:String...):()

The components being linked are calt@mhstituentof the resulting component, which exports all the APIs eigubr
by any of its constituents, and imports the APIs importedtdgast one of its constituents but not exported by any of
them.

For example, we can link theonIO andIronCrypto libraries compiled above:
link(IronLink, IronlO, IronCrypto)

The resulting component, illustrated in Figire 22.2, intpdortress.Security and exportortress. IO andFortress.Crypto.

link does not distinguish between simple and compound comparemtve can get arbitrarily nested components.
For example, we can construct an applicatitsolCryptoApp by compiling another source codmnSecurity.fss ,
for the libraryIronSecurity that importsFortress.IO and exportdortress.Security, and then linking the result with
IronLink.

2We present only the basic form bhk here.link has additional optional arguments that we discuss in thecd®¢22.8.

168

Fortress.1IO
Fortress.Crypto

f

IronLink /
Fortress.IO Fortress. CI‘yptO
TronIO / TronCrypto /

Fortress.1IO
Fortress.Security

?

Fortress.Security
Figure 22.2: A compound component: A component inside aratbmponent is a constituent of the component that
immediately encloses it.

compile(IronSecurity.fss)
link(CoolCryptoApp, IronSecurity, IronLink)

The resulting components are illustrated in Figure[22.3.

Two components cannot be linked if they export the sam@&Ais restriction is made for the sake of simplicity; it al-
lows programmers to link a set of components without havingpeecify explicitly which constituent exporting an API

A provides the implementation exported by the linked comptgrand which constituent connects to the constituents
that importA: only one component exports, so there is only one choice. Although we lose expressigewéh this
design, the user interface to link is vastly simplified, ahis irare that including multiple components that export a
given APl in a set of linked components is even desirable. 8uds how even such rare cases can be supported in

Sectiorf 22.B.

For a compound component, in addition to the exported anaitad APIs, we want to know what its constituents
are. ltis an invariant of the system that for any compoundpmamentC, any APl imported by any of its constituents
is either imported by”' or exported by one of its constituents. This property is i@uor executing components, as
we discuss below. A simple component (i.e., one producexttljrby compilation) has no constituents.

Execute Components provide implementations of the APIs they exgodomponent ixecutablef it imports no
APIs and it exports the special APlxecutable, defined as follows:

api Executable
run(args : String) : ()
end

An executable component may beecutedy calling theexecute operation, resulting in a call to the component’s
implementation of the-un function in a new process. Arguments to then function are passed to the shell:

SThere is one exception to this rule: the special ARlgradable, which is used during upgrades discussed below.

169

Fortress.10
Fortress.Crypto

Fortress.Security

f

CoolCryptoApp /

Fortress.1IO
Fortress.Crypto

f

IronLink /
Fortress.Security Fortress.Security Fortress.IO Fortress.Crypto
IronSecurity / IronSecurity / TronlO / IronCrypto /
Fortress.1I0 Fortress.10 Fortress.1IO
Fortress.Security

Fortress.Security

Figure 22.3: Repeated linking

170

execute(componentName:String, args:String...):()

We say that a component is being executed whenute has been called on that component and has not yet returned,
or if it is the constituent component of a component beingeted. During an execution, references may be made to
APIs exported by a component being executed, which may mrhake references to APIs that it imports.

For references to an AR1 exported by the component, if the component is simple, theonitains the code necessary
to evaluate any reference to an API it exports, possibly ntakéferences to APIs that it imports to do so. If the com-
ponent is compound, then it contains a unique constituattetkports4; the reference is resolved to that constituent
component.

For external references within a constituent componegglir¢hat all such references in a component must be to
APIs that the component imports. A component being exeaeitbdr does not import any API (and thus there are no
external references to resolve), or else is a constituesmather component that is being executed. In the latter, case
the constituent defers the reference to its enclosing coento

For example, suppos€oolCryptoApp above is the constituent of some executable component, hed that com-
ponent is executed, it generates a referenétoetKey in Fortress.Crypto, which it resolves tdCoolCryptoApp.
CoolCryptoApp resolves this reference foonLink, which resolves it tdronCrypto, which is a simple component.
Suppose that in evaluating this referenbenCrypto generates a referencelmblicKey in Fortress.Security . Be-
causelronCrypto importsFortress.Security, it resolves this reference to its enclosing componkboiLink, which
in turn resolves it tadCoolCryptoApp, which resolves it tdronSecurity, which is a simple component.

Not all projects are compiled to components that exfarécutable. For example, a library component does not
usually exportExecutable.

Upgrade Compound components may be upgraded with new constituempaoents by calling anpgrade op-
eration, passing the name of the component to upgradddtbet), the name of a component to upgrade with (the
replacemen)t and a name for the resulting component (which we caltéisalf). The type of thaipgrade operation

is as follows:

upgrade(target:String, replacement:String, result = tar get):()
If no result name is provided, the result is bound to the nahtieeotarget, and the target is uninstalled (see below).

For example, we can upgradéolCryptoApp with a componentCoolSecurity, which exportsFortress.Security
and imports nothing t@oolCryptoApp.2.0.

upgrade(CoolCryptoApp, CoolSecurity, CoolCryptoApp.2. 0)

The resulting component is illustrated in Figlre 22.4. bothat the constituentronSecurity, exporting
Fortress.Security has been replaced.

A component can be upgraded only if it exports the special BPdradable, defined as follows:

api Upgradable
import Component from Components

isValidUpgrade(that : Component) : Boolean
upgrade(that : Component) : Component requires isValidUpgrade(that)

end

The Upgradable API imports a special APComponents that provides handles oGomponent and Api objects.
The Components API is described in Chapter B9.

An upgrade operation on a component invokes thd/alid Upgrade function, as declared in the ARIpgradable.
This function must take a component and rettre if and only if it is legal to upgrade with respect to that comepnt.

171

Fortress.10
Fortress.Crypto

Fortress.Security

A

CoolCryptoApp.2.0 /

Fortress.IO
Fortress.Crypto

f

IronLink /
Fortress.Security Fortress.IO Fortress.Crypto
CoolSecurity / IronIO / IronCrypto /

Fortress.IO
Fortress.Security

Fortress.Security

Figure 22.4: An upgraded component

Developers can define their own versions of this componerggtict how their components can be upgraded. For
example, they can prevent upgrades with older versions aingonent, or with a matching component from an
untrusted vendor.

The Upgradable API presents a problem for our model. Its implementationi@narious constituent components in
a compound component must be accessed duringgmade operation. However, because the exported APIs of the
constituent components must be disjoint, they cannot abexXUpgradable after linking.

We solve this problem by introducing an additional step mytinking. In alink operation, a special component,
called arestriction componenis constructed automatically, based on the provided @aasts. This component ex-
ports theUpgradable API; its implementation is a function of all the constitugptovided to théink operation. The
provided constituents are then used to construct a new senefituents that are identical to the provided constituien
except that they do not expotipgradable. These new constituents are then combined, along with steation
component, to form the constituents of a new compound coeon

In addition to the constraints imposed by a componeistiéilid Upgrade function, there are several other conditions
that must be met in order for an upgrade to be valid. Theseitons are necessary to ensure that the resulting
component is well-formed and imports and exports the sanie a¥the targeﬂ

1. Every APl imported by the replacement must be either itgabor exported by the target.
2. The APIs exported by the replacement must be a subsets# thgorted by the target.

4 These conditions are sufficient provided there are no hiddeonstrained APIs, which are discussed in Se¢tion] 22.8.

172

3. If the replacement does not export all the APIs that a domesit exports then either the replacement and con-
stituent do not export any APIs in common or the constituantlee upgraded with the replacement.

The rationale for the first two conditions is straightfordialf an API is imported by the replacement but not imported
or exported by the target, then references to that API camgsolved in the result (unless we also import that APl in
the result). If an API is exported by the replacement but hettarget, then the result will export an API not exported
by the target.

The third condition says that the constituents of the targetbe partitioned into three sets: those that are subsumed b
the replacement, those that are unaffected by the upgnade]lahe rest, which can be upgraded with the replacement.
This condition enables recursive propagation of upgradést is, an upgrade not only replaces constituents at the
top level of the component, but is also propagated into angtitnents with which it exports some APIs in common.
Thus, in the example above, we could have upgraded CryptoApp with a component that expori®ortress.1O.
However, we could not have upgrad€dolCryptoApp with a component that exports boHortress.Security and
Fortress. IO becausdronLink exportsFortress.IO but notFortress.Security. In Sectiorh 22.8, we show how hiding
and constraining APIs can help us get around many of thedtroits that this condition imposes.

Recall that in our system, unlike with dynamic linking, comngnts are encapsulated so that an upgrade to one com-
ponent does not affect any other component on the system.aweragine that all operations on components copy
the components that they operate on rather than share thesauBe components are immutable, these two inter-
pretations are semantically indistinguishable. Conwergeoperations that support mass upgrades are provided on
fortresses (e.g., alpgradeAll operation that takes a component and upgrades all cominehe fortress that can

be upgraded with its argument).

Extract and Install A component installed on a fortress mayéedractedby calling anextract ~ operation on the
fortress, passing the name of the component as an argurterg,with an argumerreregs , denoting the names of
all APIs that must be installed on any fortress before thimponent can be installed.

extract(componentName:String, prereqgs:Set[\String\] = 31:0

Furthermore, the destination fortress must have a compdhanhexports these APIs and is a valid upgrade of the
extracted component. Intuitively,pgereqs argument allows a component to be serialized without hatdngclude
all of its libraries; new libraries can be provided when tbenponent is installed at a destination fortress.

Theprereqgs argument is optional; if omitted, the extracted componait loe installed on any fortress. Any com-
ponent can be extracted; however only compound componeantbe extracted with prereqs argument: because
extracted components must be upgradable with respect tmpareent exporting thejrereqs , nopreregqs argu-
ment makes sense for a simple component.

The APIs included in @rereqs argument must be the APIs exported by some subset of theceedraomponent’s
constituents (or a subset of the constituents of one of itstitoents, and so on, due to recursive updating).

The extracted component is serialized to a file, includirigred APIs it refers to (and, transitively, all APIs they
refer to) and all constituent components, except thoseetkyart theprereqs . This operation does not remove the
extracted component from the fortress; there is a sepanatstall operation for that.

When the component is extracted, if peereqs were passed to thextract operation, then the contents of the
file can be deserialized by any fortress into the extractedpoment, which can be installed on the fortress. How-
ever, ifprereqs were passed textract , then the file must be deserialized into a component thatrexpaly the
Installable API:

api Installable

import Component from Components
reconstitute(candidate : Component) : Component
end

173

The deserialized component is immediately linked with @nefd implementations of all of its imported APIs. (Pre-
ferred implementations of APIs are maintained in a table Byrtaess, which maps each API to a list of components
that implements it, in order of preference). Because therifdized and linked component exports thatallable
API, it has areconstitute function that takes aandidate component, which exports thpeereqs APIs, and checks
whether the given component satisfies th&alid Upgrade condition of the extracted component. If so, it returns the
extracted component upgraded with the given component. rétwstitute function is called by the fortress with

a new component, formed by linking the preferred componfemtsach API in the extracted componentgireqs
argument.

Note that an extracted component witlereqs APIs isnotthe same as an extracted component that imports the same
APIs but has n@rereqs APIs. The latter can always be installed on a fortress, aad tlan be subsequently linked
with any component that exports the imported APIs. In catithe fortress has no access to an extracted component
with preregs APIs unless it has a component that exports these APIs aisfiesitheis Valid Upgrade function of

the extracted component. This difference provides a meansohtrolling access to the extracted component, for
security, legal, or other reasons.

Syntactically, arinstall operation takes the name of a file constraining an extraaetbonent. Thenstall
operation is overloaded with another operation that takesame of a component to mataiereqs . If this optional
argument is provided, and the deserialized component exgi@Installable API, then thereconstitute function is
called with the component denoted by the optional argumeitsall , rather than the fortress’ preferred imple-
mentation of therereqs APIs. Install operations are written as follows:

install(file:String):()
install(file:String, preregs:Set[\String\]):()

By default, a fortress adds a newly installed component ¢ohikad of the “preferred” list for every API it exports.
However, this default may be overridden by the end-usernahuser may modify the table or even map some APIs
differently during a particular installation. If one or neoof the APIs required by an extracted component is not
mapped to an API on the destination fortress, an exceptithmasvn.

There is a corresponding operation for ARibstallAPI |, that takes a serialization of a set of APIs and installs them
into a fortress.

installAPI(file:String):()

This set of APIs must be closed under imports. If an API thatdtalled in this way is already installed on the fortress,
the definitions must match exactly, or an exception is thrown

Uninstall Anuninstall operation takes the name of a component as an argument aodagthe top-level bind-

ing of that component from a fortress. Note that the unitelalomponent may have been linked to other components,
or used as a replacement in an upgrade, and the result mdyestilstalled; anuninstall operation will not affect
these other components.

uninstall(file:String):()
There is a corresponding operation for ARIsinstallAPlI , that removes an API from a fortress.
uninstallAPI(file:String):()

Typically, this operation is used only to remove APIs thatéhbeen corrupted in some fashion.

Testing A component can be tested by calling the methad Tests on it:

runTests(inclusive = true): ()

174

This method runs all test functions defined in the componglhtest functions are run in parallel; each test function

is run for each combination of test cases (bound in its gémeliat as described in Sectign 1P.2) in parallel. In the
case of a compound component, the set of defined test fusatmsists of all test functions defined by all constituent
components and by all exported APIs. The set of test funstion can be limited by first hiding the tested component
in a more restrictive APl. The set of test functions can alscekpanded by linking with a component defining

additional test functions.

The runTests method includes a keyword parametetiusive that defaults torrue. If this parameter is set tfnise,
only test functions defined in the APIs exported by the corepbare run.

22.8 Advanced Features of Fortress Operations

The system we have described thus far provides much of theeddanctionality of a component system. However it
has a few significant weaknesses:

1. It exposes to everyone all the APIs used in the developofenproject.
2. By allowing access to these APIs, it inhibits significamtss-component optimization.

3. It prevents components that use two different implentanta of the same API from being linked, even if they
never actually pass references to that APl between each othe

4. It restricts the upgradability of compound componerggjescribed earlier.

We can mitigate all these shortcomings by providing two $ngperationshide andconstrain . Informally, hide
makes APIs no longer visible from outside the component abttiey cannot be upgraded, aswhstrain ~ merely
prevents them from being exported. An API that is constichimat not hidden can still be upgraded. There are other
subtle consequences of this distinction, which we discadbey arise.

Some of the properties about the APIs exported by a compatigrissed in Sectidn 22.7 are actually properties of
APIs that are visible or provided by a component. For exanfids visible in a component cannot be imported by
that component, even if they are not exported. Other prigseare really properties only of the exported APIs. Most
importantly, components that do not export any common ARitsbe linked, as can components that share only visible
APIs.

Constrain A constrain operation takes a component name of an installed compoae®w component name,
and a set of APIs, and produces a new component that does part @xy of the APIs specified. Syntactically, we
write:

constrain(source:String, destination = source, apis:Set [\String\]):()
If no destination name is provided, the name of theurce is used.

The set of APIs provided must be a subset of the APIs exposteddbcomponent. Also, recall that every APl used
by an API exported by a component must be imported or expdagettiat component. Thus, if we constrain an API
that is used by any other API exported by the component, treemust also constrain that other API.

If the component is a simple component, we first link it bylftsend then applygonstrain to the result.

Hide A hide operation is like aonstrain operation, except that the given set of APIs is subtractenh fihe
visible and provided APls, along with the exported APIs he tesulting component.

hide(source:String, destination = source, apis:Set[\Str ing\]):()

175

The requirement of APIs being imported or exported whenaweAPI using them is exported also applies to visible
APIs. Thus, if we hide an API used by another exported API, wetrhide that other API as well.

Link With constrained APIs, there is a new restriction on link:yA&P1 visible in one constituent and imported by
another must be exported by some constituent. This raetricd necessary because an API visible in a component
cannot be imported by that component. Thus, if one of the corapt’s constituents imports that API, then the API
must be provided by some other constituent. Other than thatink operation is largely unchanged: the visible
APIs are just all the APIs visible in any constituent, andphavided APIs are just those exported by any constituent.
There is a subtle additional restriction on how linked comgats can be upgraded, which we discuss below.

Rather than requiring users and developers toctalétrain ~ andhide directly, we provide optional parameters to
thelink operation to do these operations immediately. e operation has the following type:

link(result:String, constituents:String..., exports = { }, hide = {}):0

If the exports clause is present, only those APIs listed in the set follgvexrports are exported; the others are
constrained. If thénide clause is present, those APIs listed in the set followirlg are hidden. An exception is
thrown if theexports clause contains any APl not exported by any constituent, tieihide clause contains any
API not visible in any constituent.

Hiding enables us to handle the rare case in which programwent to link multiple components that implement the
same API without upgrading them to use the same implementaiefore linking, the programmer simply hides (or
constrains) the API in every component that exports it ekttepone that should provide the implementation for the
new compound component.

For example, suppose we wish to link the following two comgrus:
e A componentNetApp that importsFortress.IO and exports théortress.Net API.
e A componentEditApp that importsFortress. IO and exports th&ortress.Swing. Textrf API.

We want to link these two components to use in building aniegibn for editing messages and sending them over
a network. But we want to use different implementationsoftress.IO (e.g.,IOAppl and IOApp2 for the two
components). We simply perform the following operations:

link(templ, NetApp, I0Appl, exports = {Fortress.Net }, hide = {Fortress.lIO })
link(temp2, EditApp,|IOApp2, exports = {Fortress.Swing.Textrf }, hide = {Fortress.IO })
link(NetEdit, templ, temp2)

In this case, thé&NetEdit component does not export, or even make visibletress. IO at all.

Upgrade For theupgrade operation, there is no change at all in the semantics. Hawéesause hiding and
constraining APIs allow us to change the APIs exported byrapmment, it is possible to do some upgrades that are
not possible without these operations.

For example, suppose we have a compor€ifiecurity that exportsFortress.IO and Fortress.Security, and we
want to upgradé€oolCryptoApp with IOSecurity . As discussed above, we cannot i€Security directly because
IronLink exportsFortress.IO but notFortress.Security. We can get around this restriction by doing two upgrades,
one with Fortress.Security hidden and the other witRortress.IO hidden.

hide(I0Security, NewlO, Fortress.Security)
hide(IOSecurity, NewSecurity, Fortress.|O)
upgrade(CoolCryptoApp, NewSecurity, templ)
upgrade(CoolCryptoApp.3.0, templ, NewlO)

The resulting component is shown in Figlre 22.5.

176

Fortress.1O
Fortress.Crypto

Fortress.Security

f

CoolCryptoApp.3.0

/

Fortress.Security

f

Fortress.10
Fortress.Crypto

4

IronLink — upgrade

/

Fortress.IO

/

NewSecurity

)

NewlO

Fortress.Crypto

f

—FortressFO

Fortress.Security

h

[0Security

Fortress.1IO
—FortrestSeetriy

f

10Security /

IronCrypto /

Fortress.Security

Fortress.IO

Fortress.Security

Figure 22.5: Upgrading with hidden APIs: Crossed out APéshadden.

177

The interplay between imported, exported, visible and ol APIs introduces subtleties that not present in our
discussion above. In particular, the last of the three dardi imposed for well-formedness of upgrades is modified
to state that for any constituent that is not subsumed by lacement component, either it can be upgraded with
the replacement, or itgisible APIs are disjoint from the APIs exported by the replacemeaet, (it is unaffected by
the upgrade). To maintain the invariant that no two constitsl export the same API, we need another condition,
which was implied by the previous condition when no APIs warastrained or hidden: if the replacement subsumes
any constituents of the target, then its exported APIs mxattty match the exported APIs of some subset of the
constituents of the target. In practice, this restrictiomarely a problem; in most cases, a user wishes to upgrade a
target with a new version of a single constituent componghére the APIs exported by the old and new versions are
either an exact match, or there are new APIs introduced byéiaecomponent that have no implementation in the
target.

178

Part Il

Fortress APIs and Documentation for
Application Programmers

179

Chapter 23

Objects

23.1 The Trait Fortress.Core.Object

The trait Object is a single root of the type hierarchy; every object in Fadrhas trailObject and therefore every
object implements the methods of this trait.

trait Object extends { EquivalenceRelation][Object, =], IdentityOperator[Object] }
opr =(self, other: Object): Boolean
opr IDENTITY(self): Object
hash(mazval: N64): N64
hash(mazval: N32): N32
getter hashCode(): N64
toString(): String
property V(x,y,n:N64) x = y — x.hash(n) = y.hash(n)
property V(z,y,n:N32) x = y — x.hash(n) = y.hash(n)
property V(x) z.hashCode = x.hash(2% — 1)
property V(z,y) x = y — x.toString() = y.toString()
end

23.1.1 opr =(self, other: Object): Boolean

The infix operator= (object equivalence) is used to decide whether two objeetsthhe same object” in the strictest
sense possible; this is described in detail in Sec¢tion 10.4.

For # see Sectioh 26.1..1.

23.1.2 opr IDENTITY(self): Object

The operatorIDENTITY simply returns its argument. (This may not be terribly us&fuapplications programming,
but it has technical uses for specifying contracts and afgelproperties in libraries as described in Sedtion]37.3.)

180

23.1.3 hash(mazval: N64): N64
23.1.4 hash(mazval: N32): N32

The hash method returns &ash valudfor the object as an unsigned integer that is less than ol égtize mazval
argument. This hash value is not necessarily consistent fnoe Fortress application to another, nor from one exe-
cution of a Fortress application to another execution ofséimae application, but the hash value produced for a given
value of themazval argument remains fixed during the execution of a single Esstapplication. There is no defined
relationship between hash values produced for the sametdhjewith differentmazval values. Fortress program-
mers and implementors should be aware that the performdriashb tables is likely to be improved if, for any given
collection of objects and given value for theazval argument, théhash method assigns hash values to those objects
with relatively uniform distribution.

23.1.5 getter hashCode(): N64

Every object has associated with it a 64-bit unsigned intggkie called itshash codethis is the value returned by
the hash method when given the argumef* — 1. Hash codes are not necessarily consistent from one Fertres
application to another, nor from one execution of a Forteggsication to another execution of the same application,
but remain fixed during the execution of a single Fortresdiegiion. It is permitted for two objects to have the same
hashCode, but Fortress programmers and implementorstshewware that assigning distinct hash codes to distinct
objects may improve the performance of hash tables.

The trait Object defines itshash methods in terms ohashCode; therefore it suffices for a subtrait to override
hashCode to get the benefit of théash methods as well.

23.1.6 toString(): String

The general contract abString is that it returns a string that “textually represents” thligect. The idea is to provide
a concise but informative representation that will be usiefa person reading it.

181

Chapter 24

Booleans and Boolean Intervals

24.1 The Trait Fortress.Core.Boolean

trait Boolean
extends {BooleanAlgebra[Boolean, A, V, -, V, falsevalue, truevalue],
BooleanAlgebra[Boolean, A, V, -, &, falsevalue, truevalue],
BooleanAlgebra[Boolean, juxtaposition, V,—,V, falsevalue, truevalue],
BooleanAlgebra[Boolean, juxtaposition, V, -, @, falsevalue, truevalue],
IdentityEquality [Boolean],
EquivalenceRelation[Boolean, =],
EquivalenceRelation[Boolean, <],
TotalOrder[Boolean, —],
Symmetric[Boolean, A, Symmetric[Boolean, V],
Symmetric[Boolean, V], Symmetric[Boolean, &,
Symmetric[Boolean, A, Commutative[Boolean, A,
Symmetric[Boolean, V], Commutative[Boolean, V] }
comprises {}

coercion [bool b](x: BooleanLiteral[[d])

opr juxtaposition (self, other: Boolean): Boolean

opr A(self, other: Boolean): Boolean

opr A(self, other: () — Boolean): Boolean

opr V(self, other: Boolean): Boolean

opr V(self, other: () — Boolean): Boolean

opr —(self): Boolean

opr V(self, other: Boolean): Boolean

opr ®(self, other: Boolean): Boolean

opr =(self, other: Boolean): Boolean

opr =(self, other: Boolean): Boolean

opr «(self, other: Boolean): Boolean

opr —(self, other: Boolean): Boolean

opr —(self, other: () — Boolean): Boolean

opr A(self, other: Boolean): Boolean

opr V(self, other: Boolean): Boolean

getter truevalue(): Boolean

getter falsevalue(): Boolean

):
):

182

opr =(self, other: Boolean): Boolean
getter hashCode(): N64
toString(): String

end

test testData[| = { false, true }

24.1.1 coercion [bool b](x: BooleanLiteral[b])

A boolean literal can always serve aBaolean value.

24.1.2 opr juxtaposition (self, other: Boolean): Boolean

Juxtaposition of boolean expressions is equivalent toguia logicalaAND operatorA .

24.1.3 opr A(self, other: Boolean): Boolean
24.1.4 opr A(self, other: () — Boolean): Boolean

The logicalaAND operatorA (AND) returnstrue if both arguments arérue; otherwise it returngalse.

The conditional logicahND operatorA: (AND:) examines its first argument; if it ifulse, the result isfalse, and
the second argument (a thunk) is not evaluated. But if thedfigeiment istrue, the second argument is evaluated and
its result becomes the result of the conditional logirab operator expression.

24.1.5 opr V(self, other: Boolean): Boolean
24.1.6 opr V(self, other: () — Boolean): Boolean

The logicaloR operatorv (OR) returnsfalse if both arguments aréulse ; otherwise it returngrue.

The conditional logicabr operatorV : (OR:) examines its first argument; if it isrue, the result istrue, and the
second argument (a thunk) is not evaluated. But if the figgiment isfalse, the second argument is evaluated and its
result becomes the result of the conditional logiorloperator expression.

24.1.7 opr —(self): Boolean

The logicaINOT operator— (NOT) returnstrue if its argument isfalse; it returnsfalse if its argument istrue.

24.1.8 opr V(self, other: Boolean): Boolean
24.1.9 opr @(self, other: Boolean): Boolean

The logical exclusiver operatorV (XOR) returnstrue if the arguments are different, one beihgie and the other
false; it returns false if both arguments arérue or both arguments argulse.

The operatorp (OPLUS does the same thing as.

183

24.1.10 opr =(self, other: Boolean): Boolean
24.1.11 opr =(self, other: Boolean): Boolean
24.1.12 opr < (self, other: Boolean): Boolean

The logical equivalence, or exclusiveor, operator= (EQV) returns true if both arguments arerue or both
arguments argalse; it returns false if the arguments are different, one being.ec and the otherfalse. (Thus its
behavior on boolean values happens to be exactly the sarhatad the strict equivalence operatar.)

The equality operatoe= and the if-and-only-if operator~ (IFF) do the same thing as.

For # see Sectioh 26.1.2. Fg¢ see Sectioh 26.1.4.

24.1.13 opr —(self, other: Boolean): Boolean
24.1.14 opr —(self, other: () — Boolean): Boolean

The logical implication operato—~ (IMPLIES) returnsfalse if the first argument igrue but the second argument
is false; otherwise it returngrue.

The conditional logical implication operater : (IMPLIES:) examines its first argument; if it ifalse, the result
is true, and the second argument (a thunk) is not evaluated. Bu ifitht argument igrue, the second argument is
evaluated and its result becomes the result of the conditlogical implication operator expression.

24.1.15 opr A(self, other: Boolean): Boolean

The logicalNAND (NOT AND) operator A (NAND returns false if both arguments arérue; otherwise it returns
true.

24.1.16 opr V(self, other: Boolean): Boolean

The logicaINOR (NOT OR) operatorV (NOR returnsfalse if both arguments argalse ; otherwise it returngrue.

24.1.17 getter true(): Boolean
24.1.18 getter false(): Boolean

The gettertrue returns the valuérue, and the gettefalse returns the valugalse. These are defined primarily for
the benefit of thadBooleanAlgebra traits thatBoolean extends.

24.1.19 opr =(self, other: Boolean): Boolean

Two boolean values are strictly equivalent if and only ifittage the same boolean value (that is, bathe or both

false).

184

24.1.20 getter hashCode(): N64

24.1.21 toString(): String

The toString method returns eithetrue or false as appropriate.

24.2 The Trait Fortress.Standard.Booleaninterval

A boolean interval is a set of boolean values. There are tstindt boolean values;yue and false, and therefore
there are four distinct boolean intervals, which for corigane are given names:

True = {true}
False = {false}
Uncertain = {true, false}

Impossible = { }

Logical operations on intervals obey the interval contanbrule: the result interval must contain every booleanltes
that can be produced by applying the operator to a booleare taken from each argument interval. For example, if
P and @ are boolean intervals, then by definitidhA Q = {z Ay |z — Py —Q}.

A principal application of boolean intervals is to express tesults of numerical comparison of numerical intervals.
In this way numerical comparisons can also obey the intexwatainment rule.

Set operations such as and N may also be used on boolean intervals.

185

trait BooleanInterval
extends { BooleanAlgebra[BooleanInterval, N, U, SET_COMPLEMENT, SYMDIFF, empty, universe],
Set[Boolean],
BinaryIntervalContainment[BooleanInterval, Boolean, A],
BinaryIntervalContainment[BooleanInterval, Boolean, V],
BinaryIntervalContainment[BooleanInterval, Boolean, V],
BinaryIntervalContainment[BooleanInterval, Boolean, =],
BinaryIntervalContainment[BooleanInterval, Boolean, =],
BinaryIntervalContainment [BooleanInterval, Boolean, <],
BinaryIntervalContainment[BooleanInterval, Boolean, A],
BinaryIntervalContainment[BooleanInterval, Boolean, V],
BinaryIntervalContainment[BooleanInterval, Boolean, —],
UnaryIntervalContainment[BooleanInterval, Boolean,],
Generator[Boolean] }
comprises {}
coercion (z: Boolean)
opr A(self, other: BooleanInterval): BooleanInterval
opr V(self, other: BooleanInterval): BooleanInterval
opr —(self): BooleanInterval
opr V(self, other: BooleanInterval): BooleanInterval
opr ®(self, other: BooleanInterval): BooleanInterval
opr =(self, other: BooleanInterval): BooleanInterval
opr =(self, other: BooleanInterval): BooleanInterval
opr < (self, other: BooleanInterval): BooleanInterval
opr —(self, other: BooleanInterval): BooleanInterval
opr A(self, other: BooleanInterval): BooleanInterval
opr V(self, other: BooleanInterval): BooleanInterval
opr €(other: Boolean, self): Boolean
opr N(self, other: BooleanInterval): BooleanInterval
opr U(self, other: BooleanInterval): BooleanInterval
opr SET_COMPLEMENT(self): BooleanInterval
opr SYMDIFF(self, other: BooleanInterval): BooleanInterval
opr \(self, other: BooleanInterval): BooleanInterval
possibly(self): Boolean
necessarily(self): Boolean
certainly (self): Boolean
getter empty(): BooleanInterval
getter universe(): BooleanInterval
opr =(self, other: BooleanInterval): Boolean
getter hashCode(): Z64
toString(): String
property true € True A false ¢ True
property true ¢ False A false € False
property true € Uncertain A false € Uncertain
property true ¢ Impossible A false ¢ Impossible
property V(a) necessarily(a) = —possibly(—a)
property Y(a) possibly(a) < true € a
property Y(a) certainly(a) < (true € a A false & a)
property V(a,b) (a Ab) < —(aAb)
property V(a,b) (aVb) < —(aVb)
end
True: BooleanInterval

186

False: BooleanInterval

Uncertain: BooleanInterval

Impossible: BooleanInterval

test testData[] = { True, False, Uncertain, Impossible }

24.2.1 coercion (z:Boolean)

A boolean value can always serve aB@leanInterval value. The valugrue is coerced tolrue; the valuefalse is
coerced taFalse.

24.2.2 opr A(self, other: BooleanInterval): BooleanInterval

The logicalaAND operatorA (AND) returnsImpossible if either argument idmpossible; otherwise it returndalse
if either argument idalse ; otherwise it returnd/ncertain if either argument idjncertain; otherwise it returngrue.
It obeys the interval containment rule. Theoperator may be described by this table:

A | Uncertain True False Impossible
Uncertain | Uncertain ~ Uncertain False Impossible
True | Uncertain True False Impossible
False False False False Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.3 opr V(self, other: BooleanInterval): BooleanInterval

The logicalor operatorVv (OR) returnsImpossible if either argument idmpossible; otherwise it returnsdlrue if
either argument igrue; otherwise it returndJncertain if either argument idJncertain; otherwise it returndralse.
It obeys the interval containment rule. Theoperator may be described by this table:

A | Uncertain True False Impossible
Uncertain | Uncertain True Uncertain Impossible
True True True True Impossible
False | Uncertain True False Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.4 opr —(self): BooleanInterval

The logicalNOT operator— (NOT) returnsImpossible if its argument islmpossible, Uncertain if its argument is
Uncertain, False if its argument isTrue, and True if its argument isFalse. It obeys the interval containment rule.

187

24.2.5 opr V(self, other: Booleanlnterval): BooleanInterval
24.2.6 opr @(self, other: BooleanInterval): BooleanInterval

The logical exclusiveor operatoryv (XOR) returnsImpossible if either argument idmpossible; otherwise it re-
turns Uncertain if either argument idJncertain; otherwise it returngalse if the arguments are strictly equivalent;
otherwise it returndlrue. It obeys the interval containment rule.

The operatord (OPLUS does the same thing as. The vV or & operator may be described by this table:

VvV oor e | Uncertain True False Impossible
Uncertain | Uncertain Uncertain = Uncertain Impossible
True | Uncertain False True Impossible
False | Uncertain True False Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.7 opr =(self, other: BooleanInterval): BooleanInterval
24.2.8 opr =(self, other: BooleanInterval): BooleanInterval
24.2.9 opr —(self, other: BooleanInterval): BooleanInterval

The logical equivalence, or exclusiw®R, operator= (EQV) returnsImpossible if either argument idmpossible;
otherwise it return§Jncertain if either argument idJncertain; otherwise it returndrue if the arguments are strictly
equivalent; otherwise it returnBalse. It obeys the interval containment rule. (Thus its behagioboolean interval
values isnotthe same as that of the strict equivalence operator

The equality operatoe= and the if-and-only-if operator—~ (IFF) do the same thing ass. The = or = or «
operator may be described by this table:

=0r=0r < | Uncertain True False Impossible
Uncertain | Uncertain ~ Uncertain Uncertain Impossible
True | Uncertain True False Impossible

False | Uncertain False True Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.10 opr —(self, other: BooleanInterval): BooleanInterval

The logical implication operator-» (IMPLIES) returnsImpossible if either argument idmpossible; otherwise it
returnsTrue if the first argument idalse or the second argument Brue; otherwise it returndincertain if either

argument isUncertain; otherwise it returnd‘alse. It obeys the interval containment rule. The operator may be
described by this table:

— | Uncertain True False Impossible
Uncertain | Uncertain True Uncertain Impossible
True | Uncertain True False Impossible
False True True True Impossible

Impossible | Impossible Impossible Impossible Impossible

188

24.2.11 opr A(self, other: BooleanInterval): BooleanInterval

The logicalNAND (NOT AND) operatorA (NAND) returnsImpossible if either argument idmpossible; otherwise it
returnsTrue if either argument idalse; otherwise it returndincertain if either argument idJncertain; otherwise
it returnsFalse. It obeys the interval containment rule. Theoperator may be described by this table:

A | Uncertain True False Impossible
Uncertain | Uncertain Uncertain True Impossible
True | Uncertain False True Impossible
False True True True Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.12 opr V(self, other: BooleanInterval): BooleanInterval

The logicalNOR (NOT OR) operatorV (NOR) returnsImpossible if either argument iSlmpossible; otherwise it
returnsFalse if either argument isl'rue; otherwise it returndincertain if either argument idJncertain; otherwise
it returns True. It obeys the interval containment rule. TReoperator may be described by this table:

Y | Uncertain True False Impossible
Uncertain | Uncertain False Uncertain Impossible
True False False False Impossible
False | Uncertain False True Impossible

Impossible | Impossible Impossible Impossible Impossible

24.2.13 opr €(other: Boolean, self): Boolean

The operatore (IN) returnstrue if its first argument, a boolean value, is contained in itosecargument, a boolean
interval regarded as a set; otherwise it retufaise. The € operator may be described by this table:

€ | Uncertain True False Impossible
true true true false false
false true false true false

24.2.14 opr N(self, other: BooleanInterval): BooleanInterval

The intersection operaton (INTERSECTION or CAP) returnsImpossible if either argument idmpossible; oth-
erwise, if either argument iFncertain, it returns the other argument; otherwise, if the argumargshe same value
(strictly equivalent), it returns that value; otherwisegturnsImpossible. The N operator may be described by this
table:

N | Uncertain True False Impossible
Uncertain | Uncertain True False Impossible
True True True Impossible Impossible
False False Impossible False Impossible

Impossible | Impossible Impossible Impossible Impossible

189

24.2.15 opr U(self, other: BooleanInterval): BooleanInterval

The union operatot (UNION or CUP) returnsUncertain if either argument idincertain; otherwise, if either argu-
ment isImpossible, it returns the other argument; otherwise, if the argumargghe same value (strictly equivalent),
it returns that value; otherwise it returficertain. The U operator may be described by this table:

U | Uncertain True False Impossible
Uncertain | Uncertain Uncertain Uncertain Uncertain
True | Uncertain True Uncertain True
False | Uncertain Uncertain False False
Impossible | Uncertain True False Impossible

24.2.16 opr SET_COMPLEMENT(self): BooleanInterval

The set complement operat8ET_COMPLEMENT returnsUncertain if its argument islmpossible, Impossible if its
argument isUncertain, False if its argument isTrue, andTrue if its argument isFalse.

24.2.17 opr SYMDIFF(self, other: BooleanInterval): BooleanInterval

The symmetric difference operat@®YMDIFF produces a result that contains a given boolean value if ahdib
exactly one of the arguments contains that boolean value SYTMDIFF operator may be described by this table:

SYMDIFF | Uncertain True False Impossible
Uncertain | Impossible False True Uncertain
True False Impossible Uncertain True
False True Uncertain Impossible False
Impossible | Uncertain True False Impossible

24.2.18 opr \(self, other: BooleanInterval): BooleanInterval

The set difference operator (SETMINUS produces a result that contains a given boolean value ibahdif the

first argument contains that boolean value but the secondiremgt does not. The operator may be described by this
table:

\ | Uncertain True False Impossible

Uncertain | Impossible False True Uncertain
True | Impossible Impossible True True
False | Impossible False Impossible False

Impossible | Impossible Impossible Impossible Impossible

190

24.2.19 possibly(self): Boolean
24.2.20 necessarily(self): Boolean
24.2.21 certainly(self): Boolean

The predicatepossibly returnstrue if and only if true is a member of this boolean interval.

The predicatenecessarily returnstrue if and only if false is not a member of this boolean interval (thus “necessarily”
is a concise way of saying “not possibly not”).

The predicatecertainly returnstrue if and only if this boolean interval iSrue, that is, it containgrue but not false
(thus “certainly” is a concise way of saying “both possibhdanecessarily”).

The fourteen nontrivial functions from a valueof type BooleanInterval to type Boolean may thus be expressed as
follows:

necessarily(x) A necessarily(—x)
certainly (—x)
necessarily(—x)
certainly(x)
necessarily(x)
possibly(x) = necessarily(z)
necessarily(x) V necessarily(—x)
possibly(x) A possibly(—x)
possibly(x) V necessarily(x)
possibly(—x)
—certainly(z)
possibly(x)
—certainly(—x)
possibly(x) V possibly(—x))

There are other ways to express some of them; for examplegssarily(z) A necessarily(—z) is the same as
2 = Impossible, and possibly(x) A possibly(—x) is the same ag = Uncertain .

24.2.22 getter empty(): BooleanInterval
24.2.23 getter universe(): BooleanInterval

The getterempty returns the valumpossibleand the gettetiniverse returns the valu&ncertain These are defined
primarily for the benefit of théBooleanAlgebra trait that BooleanInterval extends.

24.2.24 opr =(self, other: BooleanInterval): Boolean

Two boolean intervals are strictly equivalent if and onl{hiéy are the same boolean interval.

24.2.25 getter hashCode(): Z64

24.2.26 toString(): String

The toString method returns eitherTrue " or “False ” or “Uncertain or “Impossible " as appropriate.

191

24.3 Top-level Booleaninterval Values

24.3.1 True: BooleanInterval
24.3.2 False: BooleanInterval
24.3.3 Uncertain: BooleanInterval
24.3.4 Tmpossible: BooleanInterval

The immutable variableSrue, False, Uncertain, and Impossible have as their values the four boolean intervals.
They are top-level variables declared in the Fortress araHibraries.

192

Chapter 25

Numbers

25.1 Rational Numbers

The trait Q (QQ encompasses all finite rational numbers, the result ofigtigi any integer by any nonzero integer.
The trait Q* (QQ_star) is Q with two extra elements#oco and —oo. The trait Q% (QQ_splat) is Q* with
one additional element, the indefinite rational (writtef0), which is used as the result of dividing zero by zero or of
adding —oo to +oc0.

Often it is desirable to indicate that a variable ranges ondy a subset of the rationals, such as only positive values
or only nonnegative values or only nonzero values. Unfateiy, traditional notations such &% are not used
consistently in the literature; one author may @& to mean the set of strictly positive rationals and anothey ma
use it to mean the set of nonnegative rationals. Fortressftite uses a notation that is novel but unambiguous:

Q (QQ is the set of rationals (it is a subtype &f and Q*).

Q< (QQ_LT) is the set of strictly negative rationals (it is a subtypefaf , Q% , Q, Q< ,and Q).

Q< (QQ_LEB is the set of nonpositive rationals, that i3, U {0} (itis a subtype ofR<, Q% , and Q).
Q> (QQ_GH s the set of nonnegative rationals, that@, U {0} (itis a subtype ofR> , Q% , and Q).
Q- (QQ_GT7 s the set of strictly positive rationals (it is a subtypelf , Q% , Q, Q> and Q.).

Qx (QQ_NB s the set of strictly nonzero rationals (that @. U Q-) (it is a subtype ofR.. , Q7 , and Q).
Q* (QQ_star)is Q with extra elementstoo and —oo (it is a subtype ofR* and Q*).

Q% (QQ_star_LT)is Q. with extra element-oco (it is a subtype ofR% , Q7 , Q*, *,and Q;).
Q% (QQ_star_LE)is Q< with extra element-oo (it is a subtype ofRZ , Qﬁ ,and Q*).

Q% (QQ_star_GE)is Q> with extra element-co (it is a subtype ofRY , Qf ,and Q*).

QY (QQ_star_GT)is Q- with extra element-oo (it is a subtype ofRY , Q# , Q", QL ,and Q).
Q% (QQ_star_NE)is Q. with extra elementst-oo and —oo (itis a subtype ofR?, , @ﬁ ,and Q*).
Q% (QQ_splat)is Q* with extra element/0 (it is a subtype ofR#).

Qﬁ (QQ_splat_LT)is Q% with extra elementd/0 (it is a subtype ofR” , Q#, Q% , and Qﬁ).

Qﬁ (QQ_splat_LE)is Q% with extra element/0 (it is a subtype oﬂ&ﬁ and Q#).

Qf (QQ_splat_GE)is Q% with extra elemend/0 (it is a subtype oﬁRf and Q7).

Q% (QQ_splat_GT)is Q% with extra elemen/0 (itis a subtype ofR% , Q#, Q% , and Q%).

ij (QQ_splat_NE)is QZ with extra elemen®/0 (it is a subtype oijf and Q7).

The Fortress type system tracks these types closely threagbus arithmetic operations; for example, adding two

values of typeQ. produces a result of typ@-, , and adding a value of typ@% and a value of typed> produces
a value of typeQs .

193

Here we present only the tra@ and its methods. The other rational types have exactly time saethods and differ
only in the details of the types of method arguments and teanld exactly what traits are extended by each rational
type. For example(Q is a field and is totally orderedQ* is totally ordered but is not a field, an@# is neither
totally ordered nor a field. For the exact details of how a8 th implemented, see Section 38.1.

trait Q
extends { R, Q*,
Fleld[[@v Q#a += /ﬂ7
Fleld[[@v Q#a +, =5 %, /]]a
Field[Q, Q, +, —, juxtaposition, /],
TotalOrderOperators[Q, <, <, >, >, CMP] }

coercion (_: Identity[+]) = 0

coercion (_:Identity[-]) =1

coercion (_: Identity[x]) =1

coercion (_: Identity[juxtaposition]) =1
coercion (_: Zero[]) =0

coercion (_: Zero[x]) =0

coercion (_: Zero[juxtaposition]) =0
opr juxtaposition (self, other:Q):Q
opr +(self):Q

opr +(self, other:Q): Q

opr —(self):Q

opr —(self, other:Q): Q

opr -(self, other:Q): Q

opr X(self, other:Q):Q

opr /(self): Q*

opr /(self, other: Q): Q%

opr _(self, power: Z): Q%

opr <(self, other: Q): Boolean

opr <(self, other: Q): Boolean

opr =(self, other: Q): Boolean

opr >(self, other: Q): Boolean

opr >(self, other: Q): Boolean

opr CMP(self, other: Q*): TotalComparison
opr CMP(self, other: Q#): Comparison

opr MAX(self, other: Q): Q
opr MIN(self, other:Q): Q
opr MAXNUM(self, other: Q)
opr MINNUM(self, other: Q)
opr |self|: Q>
signum(self): Z
numerator(self):Z
denominator(self):7Z
floor(self): Z

opr |self|:Z
ceiling(self): Z

opr [self]:Z
round(self): Z
truncate(self): Z

opr |self|:N

opr [self]:N

opr || self||:N

:Q
:Q

194

opr [[self]|:N
realpart(self): Q
imagpart(self):Q

check(self): Q throws CastException
check™(self): Q* throws CastException

check - (self): Q. throws CastException
check<(self): Q< throws CastException
check> (self): Qs throws CastException
check (self): Qs throws CastException
check4(self): Qx throws CastException
check” (self): QL throws CastException
checkZ (self): QL throws CastException
check? (self): Q% throws CastException
check? (self): Q% throws CastException
check’; (self): Q% throws CastException
check™ (self): Q¥ throws CastException
check™ (self): Qﬁ throws CastException
check? (se1f): Q¥ throws CastException
checkf(self) Qf throws CastException
checkﬁ(self) Qi throws CastException

25.1.1 opr juxtaposition (self, other:Q):Q

Juxtaposition of rational expressions is equivalent tagigihe multiplication operator.

25.1.2 opr +(self):Q

The unary addition operatot simply returns its argument.

25.1.3 opr +(self, other:Q): Q

The binary addition operatof returns the sum of its arguments.

For typesQ* and Q7 , the sum of an infinity and either a finite rational or anotimdinity of the same sign is equal
to the given infinity, but the sum of infinities of differinggsi is 0/0, and the sum of)/0 and any rational value is
0/0.

25.1.4 opr —(self):Q

The unary negation operater returns the negative of its argument.

For typesQ* and Q* , the negative of+co is —oo, the negative of-co is +oo, and the negative of /0 is 0/0.

195

25.1.5 opr —(self, other:Q):Q

The binary subtraction operater returns the difference of its arguments, which is equal éosthm of (a) the first
argument and (b) the negation of the second argument.

25.1.6 opr -(self, other:Q):Q
25.1.7 opr x(self, other:Q):Q

The multiplication operator returns the product of its arguments. The multiplicatioerapor x does exactly the
same thing.

For typesQ* and Q7 , the product of0/0 and any rational value i§/0, and the product of zero and an infinity
(regardless of sign) i9/0; the product of an infinity and any rational value other tharozand0/0 is an infinity
whose sign is positive if and only if the two arguments haweghme sign.

25.1.8 opr /(self):Q*

The unary reciprocal operatgr returns the reciprocal of its argument. The reciprocal ob2& +oo (and therefore
the result type of/ when given an arguments of tyf@ is necessarilyQ*).

For typesQ* and Q# , the reciprocal of either-oo or —oc is zero, and the reciprocal @f/0 is 0/0.

25.1.9 opr /(self, other:Q): Q*

The binary division operatoy returns the quotient of its arguments, which is equal to tteelpct of (a) the first
argument and (b) the reciprocal of the second argument.

25.1.10 opr _(self, power:Z): Q%

Exponentiation of a rational number to an integer power pees a rational result. If theower is 0, then the result
is always1, even if the rational number base(is(this definition is somewhat arbitrary but is computatibpakeful).

property V(z,y:Z) a¥ = 1/(zY)
property V(z,y:Z) ¥ = z(|y/2))z[y/2])

196

25.1.11 opr <(self, other: Q): Boolean
25.1.12 opr <(self, other: Q): Boolean
25.1.13 opr =(self, other: Q): Boolean
25.1.14 opr >(self, other: Q): Boolean
25.1.15 opr >(self, other: Q): Boolean

The comparison operators, <, =, >, and > allow any rational value to be compared numerically to artnent
rational value.

For typesQ* and Q, the rational values are totally ordered except 6g, which is unordered with respect to
all other rational values; moreover, for compatibility vftoating-point arithmetic0/0 is unordered with respect to
itself, and therefore these five comparison operators awatyrnfalse if either argument i99/0. The value—co is
less than any finite rational value, arebo is greater than any finite rational value.

For # see Sectioh 26.1.4.

25.1.16 opr CMP(self, other: Q): TotalComparison
25.1.17 opr CMP(self, other: Q): Comparison

The CMP operator compares the arguments and returns one of thedbwesi.essThan, EqualTo, GreaterThan,
and Unordered. If the argument types are such that the result cannoUherdered, then the result has type
TotalComparison rather than simplyComparison.

25.1.18 opr MAX(self, other:Q): Q
25.1.19 opr MIN(self, other:Q): Q
25.1.20 opr MAXNUM(self, other:Q):Q
25.1.21 opr MINNUM(self, other: Q): Q

The operatorg1AX and MAXNUM return whichever argument is larger in the total order deffime <, <, =, >, >,
and CMP, and the operator§IN and MINNUM return whichever argument is smaller. (For all four, if thgiaments
are equal, then the result equals that same value.)

For type Q* , MAXNUM and MINNUM differ from MAX and MIN in their treatment o0/0: if one argument i®)/0 and
the other is not, theMAX or MIN returns0/0 but MAXNUM or MINNUM returns the argument that is nof0.

25.1.22 opr |self|: Q>

The absolute value operatdr. .| returns the negative of this rational number if the argunmetess than zero, and
otherwise returns the argument.

For type Q* , the absolute value di/0 is 0/0.

197

25.1.23 signum(self):Z

The methodsignum returns —1 if this rational number is less than zer©,if this rational number is zero, and if
this rational number is greater than zero.

For type Q* , the signum of0/0 is 0/0.

25.1.24 numerator(self):Z
25.1.25 denominator(self):Z

The methodnumerator returns the numerator of this rational number, and the ntethmominator returns the
denominator of this rational number, when this rational hanis represented in lowest terms (such that the greatest
common divisor of numerator and denominator is 1).

For typesQ* and Q* , the numerator oft-cc is 1, the numerator of-co is —1, and the numerator af/0 is 0;
the denominator oftco, —oo, or 0/0 is 0.

198

25.1.26 floor(self):Z
25.1.27 opr |self|:Z
25.1.28 ceiling(self): Z
25.1.29 opr [self|:Z
25.1.30 round(self):Z
25.1.31 truncate(self):Z

The methodfioor, likewise the enclosing operatdr. .| , returns the largest integer that is not greater than thisval
number.

The methodeeiling, likewise the enclosing operatdr. .|, returns the smallest integer that is not less than thisrrati
number.

The methodround returns the integer that is closest to this rational numbet,if this rational number is exactly
halfway between two consecutive integers, thetnd returns whichever of the two integers is even.

The methodiruncate returns the ceiling of this rational number if it is negatimed otherwise returns the floor of this
rational number. (This has the effect of taking the floor &f thagnitude, also called “rounding toward zero.”)

For typesQ* and Q#, all of these methods simply return the argument if ittiso, —co, or 0/0.
opr [|self|:N
opr [self]:N

opr ||self||:N
opr [[self]:N

The hyperfloor operatiorj 2| computes2(|log,z|) and returns the result as a natural number. If the argument is
equal to0, the resultis0 . If the argument is negative, davalid ArgumentException is thrown.

The hyperceiling operatioffz] computes2([log,z]) and returns the result as a natural number. If the argument is
equal to0, the resultis0 . If the argument is negative, dnvalid ArgumentException is thrown.

The hyperhyperfloor operatiofiz || computes2(|log, ||) and returns the result as a natural number. If the argument
is equal to0 or 1, the result is the same as the argument. If the argument &ineganinvalid ArgumentException
is thrown.

The hyperhyperceiling operatiofiz]] computes2([log,z7]) and returns the result as a natural number. If the argu-
mentis equal td or 1, the resultis the same as the argument. If the argument&ineganinvalid ArgumentException
is thrown.

25.1.32 realpart(self): Q

The methodrealpart for a rational number simply returns its argument.

25.1.33 imagpart(self):Q

The methodimagpart for a rational number simply returns zero.

199

25.1.34 check(self): Q throws CastException
25.1.35 check™(self): Q* throws CastException
25.1.36 check(self): Q. throws CastException
25.1.37 check<(self): Q< throws CastException
25.1.38 check>(self): Q> throws CastException
25.1.39 check (self): Qs throws CastException
25.1.40 check+(self): Q4 throws CastException
25.1.41 check” (self): Q< throws CastException
25.1.42 check throws CastException
25.1.43 check® throws CastException
25.1.44 check throws CastException
25.1.45 check’, throws CastException

25.1.46 check
25.1.47 check

25.1.48 check

25.1.49 check
25.1.50 check

throws CastException
throws CastException

throws CastException

2]

0]

2

Hh
@ SW=Y=N=l=Y=I<Y:
VIRIVIRA AT F VHVHAF

7 throws CastException
self Q# throws CastException

)
):
self)
):
):

Each of these methods checks this rational number to sedertiebelongs to the result type of the method. If, the
number is returned; if not, &astException is thrown.

200

Chapter 26

Negated Relational Operators

26.1 Negated Relational Operators

26.1.1 opr Z(x:Object, y: Object): Boolean

26.1.2 opr #[T extends BinaryPredicate[T,=]](z: T, y: T'): Boolean

26.1.3 opr #[T extends BinaryIntervalPredicate[T, =]](z: T, y: T): BooleanInterval
26.1.4 opr #[T extends BinaryPredicate[T,=]](z: T, y: T'): Boolean

26.1.5 opr #[T extends BinaryIntervalPredicate[T, =]](x: T, y: T): BooleanInterval
26.1.6 opr #[T extends BinaryPredicate[T, ~]](x: T, y: T): Boolean

26.1.7 opr #[T extends BinaryIntervalPredicate[T, ~]](x: T, y: T): BooleanInterval
26.1.8 opr #Z[T extends BinaryPredicate[T, ~]](z: T, y: T'): Boolean

26.1.9 opr #Z[T extends BinaryIntervalPredicate[T, ~]](x: T, y: T): BooleanInterval

The infix operatorZ applies— to the result of= on the same operands.
The infix operator£ applies— to the result of= on the same operands.
The infix operator# applies— to the result of= on the same operands.
The infix operator applies— to the result of~ on the same operands.

The infix operator# applies— to the result of~ on the same operands.

201

26.1.10
26.1.11
26.1.12
26.1.13
26.1.14
26.1.15
26.1.16
26.1.17

opr £[T extends BinaryPredicate[T, <](z: T, y: T'): Boolean

opr £[T extends BinaryIntervalPredicate[T, <](z: T, y: T'): BooleanInterval
opr [T extends BinaryPredicate[T, <[] (x: T, y: T'): Boolean

opr £[T extends BinaryIntervalPredicate[T, <]J](x: T, y: T'): BooleanInterval
opr #[T extends BinaryPredicate[T, >]](x: T, y: T): Boolean

opr #[T extends BinaryIntervalPredicate[T, >]](x: T, y: T'): BooleanInterval
opr #[T extends BinaryPredicate[T, >]](x: T, y: T'): Boolean

opr #[T extends BinaryIntervalPredicate[T, >]](x: T, y: T'): BooleanInterval

The infix operator£ applies— to the result of< on the same operands.

The infix operator£ applies— to the result of< on the same operands.

The infix operator# applies— to the result of> on the same operands.

The infix operator applies— to the result of> on the same operands.

26.1.18
26.1.19
26.1.20
26.1.21
26.1.22
26.1.23
26.1.24
26.1.25

opr ¢ [T extends BinaryPredicate[T, C]]](x: T, y: T): Boolean
opr [T extends BinaryIntervalPredicate[T, C]](z: T, y: T'): BooleanInterval
opr Z[T extends BinaryPredicate[T, C][(xz: T, y: T): Boolean
opr Z[T extends BinaryIntervalPredicate[T, C||](x: T, y: T'): BooleanInterval
opr [T extends BinaryPredicate[T, D[] (x: T, y: T'): Boolean
opr 2T extends BinaryIntervalPredicate[T, D]](xz: T,y: T): BooleanInterval
opr 2[T extends BinaryPredicate[T, D] (x: T, y: T): Boolean
opr 2[T extends BinaryIntervalPredicate[T, D]](z: T, y: T'): BooleanInterval

The infix operatorZ applies— to the result ofC on the same operands.

The infix operatorZ applies— to the result ofC on the same operands.

The infix operator applies— to the result of> on the same operands.

The infix operators applies— to the result of> on the same operands.

202

26.1.26
26.1.27
26.1.28
26.1.29
26.1.30
26.1.31
26.1.32
26.1.33

opr A[T extends BinaryPredicate[T, <]](x: T,y: T'): Boolean
opr A[T extends BinaryIntervalPredicate[T, <]](z: T, y: T'): BooleanInterval
opr A[T extends BinaryPredicate[T, x]](z: T, y: T): Boolean
opr A[T extends BinaryIntervalPredicate[T, x]](z: T, y: T'): BooleanInterval
opr #[T extends BinaryPredicate[T, =]](z: T, y: T): Boolean
opr #[T extends BinaryIntervalPredicate[T, =]](z: T, y: T): BooleanInterval
opr #[T extends BinaryPredicate[T, >=]](x: T, y: T'): Boolean
opr #[T extends BinaryIntervalPredicate[T, =]](x: T, y: T'): BooleanInterval

The infix operator4 applies— to the result of< on the same operands.

The infix operatorA applies— to the result of< on the same operands.

The infix operator applies— to the result of> on the same operands.

The infix operator applies— to the result of- on the same operands.

26.1.34
26.1.35
26.1.36
26.1.37
26.1.38
26.1.39
26.1.40
26.1.41

opr Z[T extends BinaryPredicate[T, C]](x: T, y: T'): Boolean
opr Z[T extends BinaryIntervalPredicate[T, C]](x: T, y: T'): BooleanInterval
opr [Z[T extends BinaryPredicate[T, C]](x: T, y: T): Boolean
opr Z[T extends BinaryIntervalPredicate[T, C]]|(z: T, y: T'): BooleanInterval
opr A[T extends BinaryPredicate[T, J]](z: T, y: T): Boolean
opr A[T extends BinaryIntervalPredicate[T, J]](z: T, y: T'): BooleanInterval
opr A[T extends BinaryPredicate[T, O]](x: T,y: T'): Boolean
opr [T extends BinaryIntervalPredicate[T, O]](z: T, y: T'): BooleanInterval

The infix operatorZ applies— to the result ofC on the same operands.

The infix operatoriZ applies— to the result ofZ on the same operands.

The infix operatorZ applies— to the result ofJ on the same operands.

The infix operatorz applies— to the result of1 on the same operands.

26.1.42
26.1.43
26.1.44
26.1.45

opr ¢[T extends BinaryPredicate[T, €]](x: T, y: T'): Boolean
opr &[T extends BinaryIntervalPredicate[T, €]](x: T, y: T'): BooleanInterval
opr #[T extends BinaryPredicate[T, 3]](z: T, y: T'): Boolean
opr F[T extends BinaryIntervalPredicate[T, 3]](x: T, y: T'): BooleanInterval

The infix operator¢ applies— to the result ofe on the same operands.

The infix operatorZ applies— to the result of> on the same operands.

26.1.46
26.1.47

opr }[T extends BinaryPredicate[T), ||]](z: T, y: T'): Boolean
opr }[T extends BinaryIntervalPredicate[T, ||]](z: T, y: T): BooleanInterval

The infix operator}f applies— to the result of|| on the same operands.

203

Chapter 27

Exceptions

27.1 The Trait Fortress.Standard.Exception

The trait Exception is a single root of the exception hierarchy; every excepitioRortress has traiException. An
exception is either &heckedException or an UncheckException. Every exception has optional fields: a message
and a chained exception. These fields are defal¥itthing where an optional value is eitherNothing or Just(v)

as declared in Sectign 31.2.

trait Exception comprises { CheckedException, UncheckedException }
settable message: Maybe[String]
settable chain: Maybe[Exception]

end

27.1.1 settable message: Maybe[String]

When an exception is thrown, itsessage may be set.

27.1.2 settable chain: Maybe[Exception]

When an exception is thrown, itsiain may be set to the exception thrown immediately before thigption.

27.2 The Trait Fortress.Standard.CheckedException

trait CheckedException

extends { Exception }

excludes { UncheckedException }
end

204

27.3 The Trait Fortress.Standard.UncheckedException

trait UncheckedException
extends { Exception }
excludes { CheckedException }
end

205

Chapter 28

Threads

28.1 The Trait Fortress.Standard.Thread

Every thread in Fortress has trdthread.

trait Thread

val[T](): T

wait(): ()

ready(): Boolean

stop(): () throws Stopped
end

28.1.1 wdl[T)():T

The val method returns the value computed by the expression of tieadh If the thread has not yet completed
execution, the invocation afal blocks until it has done so.

28.1.2 wait(): ()

The wait method waits for a thread to complete, but does not returtgeva

28.1.3 ready(): Boolean

The ready method returngrue if a thread has completed, and returfagse otherwise.

28.1.4 stop(): () throws Stopped

The stop method attempts to terminate a thread.

206

Chapter 29

Dimensions and Units

29.1 Fortress.SlUnits

(x Reference: http://physics.nist.gov/cuu/Units/indéxlhx)
(+ Sl base unit)

dim Length SI_unit meter meters m

dim Mass default kilogram; SI_unit gram grams g: Mass
dim Time SI_unit second seconds s

dim ElectricCurrent SI_unit ampere amperes A

dim Temperature SI_unit kelvin kelvins K

dim AmountOfSubstance SI_unit mole moles mol

dim LuminousIntensity SI_unit candela candelas cd

(+ Sl derived units with special names and symbqgls

dim Angle = Unity SI_unit radian radians rad

dim SolidAngle = Unity SI_unit steradian steradians sr

dim Frequency = 1/Time SI_unit hertz Hz

dim Force = Mass Acceleration SI_unit newton newtons N

dim Pressure = Force/Area SI_unit pascal pascals Pa

dim Energy = Length Force SI_unit joule joules J

dim Power = Energy/Time SI_unit watt watts W

dim ElectricCharge = ElectricCurrent Time SI_unit coulomb coulombs C
dim ElectricPotential = Power/Current SI_unit volt volts V

dim Capacitance = ElectricCharge/Voltage SI_unit farad farads F

dim Resistance = ElectricPotential/Current SI_unit ohm ohms 2

dim Conductance = 1/Resistance SI_unit siemens S

dim MagneticFlux = Voltage Time SI_unit weber webers Wb

dim MagneticFluxDensity = MagneticFlux/Area SI_unit tesla teslas T

dim Inductance = MagneticFlux/Current SI_unit henry henries H

dim LuminousFlux = LuminousIntensity SolidAngle ST_unit lumen lumens Im
dim Illuminance = LuminousFlux/Area SI_unit lux Ix

dim RadionuclideActivity = 1/Time SI_unit becquerel becquerels Bq

dim AbsorbedDose = Energy/Mass SI_unit gray grays Gy

dim CatalyticActivity = AmountOfSubstance/Time SI_unit katal katals kat

(+ other derived dimensions)

207

dim Area = Length?

dim Volume = Length?®

dim Velocity = Length/Time

dim Speed = Velocity

dim Acceleration = Velocity/Time

dim Momentum = Mass Velocity

dim AngularVelocity = Angle/Second

dim AngularAcceleration = Angle/Second?

dim WaveNumber = 1/Length

dim MassDensity = Mass/Volume

dim CurrentDensity = Current/Area

dim MagneticFieldStrength = Current/Length

dim Luminance = LuminousIntensity /Area

dim Work = Energy

dim Action = Energy Time

dim MomentOfForce = Force Length

dim Torque = MomentOfForce

dim MomentOfInertia = Mass Length?

dim Voltage = ElectricPotential

dim Conductivity = Conductance/Length

dim Resistivity = 1/Conductivity

dim Impedance = Resistance

dim Permittivity = Capacitance/Length

dim Permeability = Inductance/Length

dim Irradiance = Power/Area

dim RadiantIntensity = Power/Solid Angle

dim Radiance = Power/Area SolidAngle

dim AbsorbedDoseRate = AbsorbedDose/Time

dim CatalyticConcentration = CatalyticActivity/Volume
dim HeatCapacity = Energy/Temperature

dim Entropy = Energy/Temperature

dim DynamicViscosity = Pressure Time

dim SpecificHeatCapacity = Energy /Mass Temperature
dim SpecificEntropy = Energy/Mass Temperature

dim SpecificEnergy = Energy/Mass

dim ThermalConductivity = Energy /Length Temperature
dim EnergyDensity = Energy/Volume

dim ElectricFieldStrength = ElectricPotential/Length
dim ElectricChargeDensity = ElectricCharge/Volume
dim ElectricFlux = ElectricCharge

dim ElectricFluxDensity = ElectricCharge/Area

dim MolarEnergy = Energy/AmountOfSubstance

dim MolarHeatCapacity = Energy/AmountOfSubstance Temperature
dim MolarEntropy = Energy/AmountOfSubstance Temperature
dim RadiationExposure = ElectricCharge/Mass

(+ Units outside the Sl that are accepted for use with the)SlI

unit minute minutes min: Time

unit hour hours h: Time

unit day days d: Time

unit degreeOfAngle degrees: Angle

unit minuteOfAngle minutesOfAngle: Angle

208

unit secondOfAngle secondsOfAngle: Angle
SI_unit metricTon metricTons tonne tonnes t: Mass
SI_unit liter liters L: Volume

29.2 Fortress.EnglishUnits

import { Length, Area, Volume, Time, Mass, millimeters, liters, grams }
from Fortress.SIUnits

unit inch inches: Length
unit foot feet: Length

unit yard yards: Length
unit mile miles: Length

unit rod rods: Length

unit furlong furlongs: Length

unit surveyFoot surveyFeet: Length
unit surveyMile surveyMiles: Length

unit nauticalMile nauticalMiles: Length
unit knot knots: Speed

unit week weeks: Time
unit fortnight fortnights: Time
unit microfortnight microfortnights

unit gallon gallons: Volume

unit fluidQuart fluidQuarts: Volume
unit fluidPint fluidPints: Volume
unit fluidCup luidCups: Volume
Unit fluidOunce fluidOunces: Volume
unit fluidDram fluidDrams: Volume
unit minim minims: Volume

unit traditionalTablespoon traditionalTablespoons: Volume
unit traditionalTeaspoon traditionalTeaspoons: Volume
unit federalTablespoon federalTablespoons: Volume

unit federalTeaspoon federalTeaspoons: Volume

unit dryPint dryPints: Volume
unit dryQuart dryQuarts: Volume
unit peck pecks: Volume

unit bushel bushels: Volume

unit acre: Area

unit imperialGallon: Volume

unit imperialQuart: Volume

unit imperialPint: Volume

unit imperialGill: Volume

unit imperialFluidOunce: Volume
unit imperialFluidDrachm: Volume
unit imperialFluidDRam : Volume
unit imperialFluidScruple: Volume
unit imperialMinim: Volume

unit pound pounds b lbs: Mass

209

unit ounce ounces oz: Mass

unit grain grains: Mass

unit troyPound troyPounds: Mass
unit troyOunce troyOunces: Mass

29.3 Fortress.InformationUnits

dim Information unit bit bits
unit byte bytes

210

Chapter 30

Tests

30.1 The Object Fortress.Standard. TestSuite

An instance of the objecTestSuite contains a set of test functions that can all be called bykimgothe method-un :

test object TestSuite(testFunctions = {})
add(f: () — ()): 0
run(): ()

end

30.1.1 add(f:() — ()):(

The add method adds a given test function to thastFunctions field of this object.

30.1.2 run():()

The run method calls each test function in thestFunctions field of this object. Note that all tests inBestSuite
are run in parallel.

30.2 Test Functions

30.2.1 test fail(message: String): ()

The helper functiorfail displays the error message provided and terminates egaaiftthe enclosing test.

211

Chapter 31

Convenience Functions and Types

31.1 Convenience Functions

31.1.1 cast[T](z:Object): T

The functioncast converts the type of its argument to a given type. If the stgfie of the argument is not a subtype
of the given type, &astException is thrown.

31.1.2 instanceOf [T](x : Object) : Boolean

The functioninstanceOf tests whether its argument has a given type and returns adowvhlue.

31.1.3 ignore(x: Object): ()

The functionignore discards the value of its argument and retughs

31.1.4 tuple(x: Object) : Object

The functiontuple returns its argument as a tuple expression.

31.1.5 identity(x: Object) : Object

The functionidentity returns its argument.

212

31.2 Convenience Types

An optional valuev is eitherNothing or Just(v) declared as follows:

(x Optional Valuesx)
trait Maybe[T'] comprises { Nothing, Just[T] }
1sNothing: Boolean
end
object Nothing extends Maybe[T] excludes Just[T] where {T extends Object}
end
object Just[T](just: T') extends Maybe[T]
end

213

Part IV

Fortress for Library Writers

214

Chapter 32

Parallelism and Locality

Fortress is designed to make parallel programming as siargleas painless as possible. This chapter describes the
internals of Fortress parallelism designed for use by asatbblibrary code (such adistributions generators, and
arrays). We adopt a multi-tiered approach to parallelism:

e At the highest level, we provide libraries which allocatedlity-aware distributed arrays (Section 32.2) and
implicitly parallel constructs such as tuples and loopsnd®yonization is accomplished through the use of
atomic sections (Sectidn 13]23). More complex synchrdinizanakes use of abortable atomicity, described in

Sectiorl 32.8.

e There is an extensive library of distributions, which pdasthe programmer to specify locality and data distri-
bution explicitly (Sectioh 32]5).

e Immediately below that, thet expression requests that a computation take place in &ylartregion of the
machine (Section 32.7). We also provide a mechanism to tesenia spawned thread early (Section 32.6).

e Finally, there are mechanisms for constructing new geaesatia recursive subdivision into tree structures
with individual elements at the leaves. Secfion B2.8 exgl@iow iterative constructs such @sr loops and
comprehensions are desugared into calls to methods offeaitrator, and how new instances of this trait may
be defined.

We begin by describing the abstractionredions which Fortress uses to describe the machine on which agrogr
run.

32.1 Regions

Every thread and every object in Fortress, and every eleofenFortress array, has an associatggdon The region

in which an objecto resides can be obtained by callingregion . Regions abstractly describe the structure of the
machine on which a Fortress program is running. They arenargd hierarchically to form a tree, thegion hierarchy
reflecting in an abstract way the degree of locality whicksthoegions share. The different levels of this tree reflect
underlying machine structure, such as execution engingénsa CPU, memory shared by a group of processors, or
resources distributed across the entire machine. Objdathweside in regions near the leaves of the tree are local
entities; those which reside at higher levels of the regiea &re logically spread out. The method ealkLocalTo(s)
returnstrue if r is contained within the region tree rootedsat

It is important to understand that regions and the strust(gach as distributions, Section 32.5) built on top of them
exist purely for performance purposes. The placement ofemthor an object does not have any semantic effect on

215

the meaning of a program; it is simply an aid to enable the @mygintation to make informed decisions about data
placement.

It may not be possible for an object or a thread to reside inposgible region. Thexecution levebf the region
hierarchy is where threads of execution reside, and is géneéhe bottommost level in the region tree. A thread is
generally associated with some region at the execution, lexeere that spawned thread will preferentially be run.
The programmer can affect the choice of region by usingarexpression (Sectidn 32.7) when the thread is created.
A spawned thread may be assigned a region higher in the réigoarchy than the execution level, either because
a higher region was requested or because scheduling decisgsmit the thread to run in several possible execution
regions. The region to which a thread is assigned may alsegehaver time due to scheduling decisions. Thgon
method for the object associated with a spawned threachetiie region of the associated thread.

The memory levebf the region hierarchy is where individual reference otgaeside; on a machine with nodes
composed of multiple processor cores sharing a single merttos will not generally be the leaves of the region
hierarchy. Imagine a constructor for a reference objedlied by a thread residing in region yielding an object.
Except in very rare circumstances (for example when a loadéns out of memory) either.isLocalTo(o.region) or
(o.region).isLocalTo(r) ought to hold: data is allocated locally to the thread whiahsrthe constructor. For a value
objectv being manipulated by a thread residing in regioeither (v.region).isLocalTo(r) or r.isLocalTo(v.region)
(value objects always appear to be local).

Note thatregion is a getter method and can be overridden like any other mefftuel chief example of this is arrays,
which are generally composed from many reference objd@3:yion method is overridden to return the location of
the array as a whole—the region which contains all of its ttwrent reference objects.

32.2 Distributed Arrays

Arrays, vectors, and matrices in Fortress are assumed tprbadsout across the machine. As in Fortran, Fortress
arrays are complex data structures; simple linear stosagadapsulated by théeapSequence type, which is used

in the implementation of arrays (see Sectfion B2.7). Theuttefistribution of an array is determined by the Fortress
libraries; in general it depends on the size of the array, @nthe size and locality characteristics of the machine
running the program. For advanced users, the distributtmary (introduced in Sectioh 32.5) provides a way of
combining and pivoting distributions, or of redistribuditwo arrays so that their distributions match. Programmers
should create arrays by using an array comprehension ¢8E&i29) or an aggregate expression (Se€tion 13.28). The
operational internals of array comprehensions are destiibSectioh 32]8.

Because the elements of a fortress array may reside in heutégions of the machine, there is an additional method
a.region(i) which returns the region in which the array elementresides. An element of an array is always local
to the region in which the array as a whole is contained(®eegion(i)).isLocalTo(a.region) must always return
true. When an array contains reference objects, the programmgrive careful to distinguish the region in which the
array elements; resides,a.region(i), from the region in which the object referred to by the arreyreent resides,
a;.region . The former describes the region of the array itself; thietatescribes the region of the data referred to by
the array. These may differ.

32.3 Abortable Atomicity

Fortress provides a user-levebort() function which abandons execution of aomic expression and rolls back
its changes, requiring thetomic expression to execute again from the beginning. This peramitatomic section to
perform consistency checks as it runs. However, the funality provided by abort() can be abused,; it is possible
to induce deadlock or livelock by creating an atomic sectidrich always fails. Here is a simple example of a
program usingabort() which is incorrect because Fortress does not guaranteéhthawo implicit threads (created

216

by evaluating the two elements of the tuple) will always miparallel; it is possible for the first element of the tuple
to continually abort without ever running the second eletoéthe tuple:

r: 7264 :=0
(a,b) = (atomic if r =1 then 17 else abort() end,
do r := 1;r end)(x INCORRECT!x)

Fortress also includes eryatomic expression, which attempts to run its body expression aaliyi If it succeeds,
the result is returned; if it aborts due to a calldtort, the AtomicAborted exception is thrown; if it aborts due to
conflict (as described in Sectibn 13/23), theomicConflict exception is thrown. These exceptions both implement
the AtomicFailed trait, which is an instance dfheckedException. Conceptuallyatomic can be defined in terms
of tryatomic as follows:

label AtomicBlock
while true do
try
result = tryatomic body
exit AtomicBlock with result
catche
AtomicFailed = ()(x continue execution)
end
end
throw UnreachableCode(* inserted for type correctness
end AtomicBlock

Unlike the above definition, an implementation may choosupend a thread running amomic expression which
invokes abort, re-starting it at a later time when it may be possible to nfakher progress. The above definition
restarts the body of thetomic expression immediately without suspending.

32.4 Shared and Local Data

Every object in a Fortress program is considered to be estianedor local (collectively referred to as th&haredness

of the object). A local object must be transitively reaclegltihrough zero or more object references) from the vargable
of at most one running thread. A local object may be accessed nheaply than a shared object, particularly in the
case of atomic reads and writes. Sharedness is ordinaritageal implicitly by the Fortress implementation. Control
over sharedness is intended to be a performance optimzdttvever, methods such asShared and localize can
affect program semantics, and must be used with care.

The sharedness of an object should be contrasted with itmreghe region of an object describes where that object
is located on the machine. The sharedness of an objectlbesevhether the object is visible to one thread or to many.
A local object need not actually reside in a region near thesithto which it is visible (though ordinarily it will).

The following rules govern sharedness:
e Reference objects are initially local when they are corstl
e The sharedness of an object may change as the program execute
¢ If an object is currently transitively reachable from mdmart one running thread, it must be shared.

e When a reference to a local object is stored into a field of asshabject, the local object must peblished
Its sharedness is changed to shared, and all of the data ¢b whéfers is also published.

e The value of a local variable referenced by a thread must bighed before that thread may be run in parallel
with the thread which created it. Values assigned to thealégiwhile the threads run in parallel must also be
published.

217

¢ A field with value type is assigned by copying, and thus haskttaedness of the containing object or closure.

Publishing can be expensive, particularly if the strucheing broadcast is large and heavily nested; this can cause a
apparently shorhtomic expression (a single write, say) to run arbitrarily long.alid this, the library programmer
can request that an object be published by calling the secadiptransparent functiorhared :

x := shared Cons(z, xs)
shared(y)

A local copy of an object can be obtained by calliagyy, a method on traiDbject:
localVar := sharedVar.copy()

Two additional methods are provided which permit differeimbices of program behavior based on the sharedness of
objects:

e The gettero.isShared returnstrue when o is shared, andglalse when it is local. This permits the program to
take different actions based on sharedness.

e Method o.localize() is equivalent to the following expression:
if o.isShared then o.copy() else o end

These methods must be used with extreme caution. For exainpléze should be used only when there is a unique
reference to the object being localized. Theunlize method can have unexpected behavior if there is a referenge t
from another local objech. Updates too will be visible throughp ; subsequent publication gf will publish o. By
contrast, ifo was already shared, and referred to by another shared othjeatewly-localized copy will be entirely
distinct; changes to the copy will not be visible throughand publishingy will not affect the locality of the copy.

32.5 Distributions

Most of the heavy lifting in mapping threads and arrays taaegis performed bylistributions An instance of the
trait Distribution describes the parallel structure of ranges and other nargerierators (such as the generators for
the index space of an array), and provides for the allocati@hdistribution of arrays on the machine:

trait Distribution extends Object
distribute[T extends ArrayIndex](Range[T]) : Range[T]
distribute[E, B extends Arraylndex](a: Array[F, B]): Array[E, B] =
distributeFromTo[E, B](a, a.distribution, self)
end

Abstractly, aDistribution acts as a transducer for generators and arrays. didieibute method applied to a mul-
tidimensionalRange organizes its indices into the leaves of a tree whose innéesiocorrespond to potential levels
of parallelism and locality in the underlying computatipnpducing a frestRange whose behavior as &enerator
may differ from that of the passed-iRange. The distribute method applied to an array creates a copy of that
array distributed according to the given distribution. STHs specified in terms of a call to the overloaded function
distributeFromTo . This permits the definition of specialized versions of faisction for particular pairs of distribu-
tions.

The intention of distributions is to separate the task oddhstribution and program correctness. That is, it shoeld b
possible to write and debug a perfectly acceptable panadtairam using only the default data distribution provided
by the system. Imposing a distribution on particular corapans, or designing and implementing distributions from
scratch, is a task best left for performance tuning, and ohiehwshould not affect the correctness of a working
program.

218

There is aDefaultDistribution which is defined by the underlying system. This distributi®designed to be rea-
sonably adaptable to different system scales and architex;tat the cost of some runtime efficiency. Arrays and
generators that are not explicitly allocated through aithistion are given théefaultDistribution.

We said in Sectiofh 13.15 that there is a generatodices, associated with every array. This generator is dis-
tributed in the same way as the array itself. When we reidigt an array, we also re-distribute the generator;
thus d. distribute(a.indices) is equivalent to(d. distribute(a)).indices .

There are a number of built-in distributions:

DefaultDistribution Name for distribution chosen by system.

Sequential Sequential distribution. Arrays are allocated in one @prdus piece of memory.
Local Equivalent toSequential.

Par Blocked into chunks of size 1.

Blocked Blocked into roughly equal chunks.

Blocked(n) Blocked inton roughly equal chunks.

Subdivided Chopped int@*-sized chunks, recursively.

Interleaved(dy, ds, ...d,) The firstn dimensions are distributed accordingde. . . d,, ,
with subdivision alternating among dimensions.

Joined(dy, da, ... d,) The firstn dimensions are distributed accordingdo. . . d,, ,
subdividing completely in each dimension before procegtiirthe next.

From these, a number of composed distributions are provided

Morton Bit-interleaved Morton order [20], recursive subdivisiorall dimensions.
Blocked(x1,z2,...2,) Blocked inn dimensions into chunks of size; in dimensioni;
remaining dimensions (if any) are local.

To allocate an array which is local to a single thread (andtrilsly allocated in contiguous storage), thecal
distribution can be used:

a = Local.distribute[1 0 0;0 1 0;0 0 1]
Other distributions can be requested in a similar way.
Distributions can be constructed and given names:
spatialDist = Blocked(n, n, 1)(* Pencils along the axis)

The system will lay out arrays with the same distributiorhia same way in memory (as much as this is feasible), and
will run loops with the same distribution in the same way (ag&has this is feasible). By contrast, if we replace every
occurrence ofpatialDist by Blocked(n,n, 1), this code will likely divide up arrays and ranges into theeasized
pieces as above, but these pieces need not be collocated.

32.6 Early Termination of Threads

As noted in Sectioh 414, an implicit thread can be termin#titd group is going to throw an exception. Similarly, a
spawned thread may be terminated by calling stop() . A successful attempt to terminate a thread causes thelthrea
to complete asynchronously. There is no guarantee thairtation attempts will be prompt, or that they will occur at
all; the implementation will make its best effort. If a thdeeompletes normally or exceptionally before an attempt to
terminate it succeeds, the result is retained and the tatmmmattempt is simply dropped.

A termination attempt acts as if a special hiddtap exceptions thrown in that thread. This exception cannot be
thrown by throw or caught bycatch ; however,finally clauses are run as with any other exception. If the stopped
thread was in the middle of amtomic expression, the effects of that expression are rolled hestlag with an ordinary
throw. A special wrapper around every spawned thread is provigetid Fortress implementation; it catches the

219

stop exception and transforms it into a deferfedpped exception. This is visible to the programmer and should be
caught by invoking theval method on the thread object. Implicit threads are termahatdy if another thread in the
group completes abruptly, and the threads that are teredrexe ignored for the purposes of the completion of the

group.
Typical code for stopping a thread looks something like tkfving example:

x:7264:=0
t = spawn do
try
atomic if x = 0 then abort() else () end
finally
z:=1
end
end
t.stop()
try
t.val()
catch s
Stopped = = +=2;x
end

Here the spawned threadlocks until it is killed by the call tot.stop() ; it setsz to 1 in thefinally clause before
exiting. In this case, the call to.val() will throw Stopped, which is caught, causing 2 to be added:itand returning
3.

Note that there is a race in the above code, sotthe block in ¢ may not have been entered whentop() is called,
causingr to be 2 at the end of execution. Note also that the call teop() occurs asynchronously; in the absence of
the call to ¢.val() , the spawning thread would not have waited fdo complete.

32.7 Placing Threads

A thread can be placed in a particular region by usingrarexpression:

(U7w) = (ai’
at a.region(j) do
aj
end)

In this example, two implicit threads are created,; the ficshputesa; locally, the second computes in the region
where thejt" element ofa resides, specified by.region(j). The expression aftest must return a value of type
Region, and the block immediately followinglo is run in that region; the result of the block is the resulttedf ti¢
expression as a whole. Often it is more graceful to useath& do construct (described in Sectibn 13.12) in these
cases:

do
Vi=qa;

alsoat a.region(j) do
w = a;

end

We can also useat with a spawn expression:

220

v = spawn at a.region(i) do

ai
end
w = spawn at v.region() do
v.val() - 17
end

Finally, note that it is possible to use an expression within a block:

do
Vi=a;
at a.region(j) do
w = aj
end
r=0v+w
end

We can think of this as the degenerate caselafo do : a thread group is created with a single implicit thread mgn
the contents of theat expression in the given region; when this thread completedral returns to the original
location.

Note that the regions given in aax expression are non-binding: the Fortress implementatiay choose to run the
computations elsewhere—for example, thread migratiorhtmigt be possible within aatomic expression, or load
balancing might cause code to be executed in a differenbmedi general, however, implementations should attempt
to respect thread placement annotations when they are.given

32.8 Use and Definition of Generators

Several expressions in Fortress make usgeoferator lists(given by the nonterminaBeneratorListin the Fortress
grammar defined in Appendix]|G) to express parallel iteratgme Sectioh 13.17). A generator list binds a series of
variables to the values produced by a series of objects Wili:tnerator trait. A generator list is simply syntactic
sugar for a nested series of invocations of methods on thaisets. All the parallelism provided by a particular
generator is specified by its definitions for the methods efGhnerator trait. In general, the library code for a
generator dictates the parallel structure of computatioraving that generator.

The definition of traitGenerator has very simple functionality at its core:

trait Generator[F']
size : 7,64
generate] R extends Monoid[R, ® [, opr @[(body : E — R): R
join[N](other : Generator[N]) : Generator[(E,N)] =
SimplePairGenerator| E, N | (self, other)
end

The mechanics of object generation are embedded entirhgigenerate method. This method takes one argument,
the body function. Thegenerate method invokeshody once for each object which is to be generated, passing the
generated object as an argument. Note thdy returns a value in somklonoid R; the results of the calls téody

are combined using the monoid operatbr This reduction may include any number of occurrences of the identity
of the monoid—in particular, a generator may generate noefs, in which case it will never invokiady and will
simply the identity.

A simple definition of aGenerator need only define theize field and thegenerate method:

221

TR, H][] body = body
TR, H][= < g,g9s | body = g.generate[R,B](fn () = T[R, B][gs]body)
TIR,H][p, gs] body = if p then (7[R, H][gs]body) else Identity[H] end

Figure 32.1: Naive and simple desugaring of generatoruisitsg only thegenerate method.

value object BlockedRange(lo: Z64, hi: Z64, b: Z64) extends Generator[Z64]
size 1 264 = hi —lo+1
generate| R extends Monoid[R, @], opr @] (body : Z64 — R) : R =
if size < max(b,1) then
r: R = Identity[®]
1: 7264 =lo
if ¢ < hi then
label done do
while true do
r =1 ® body(7)
if ¢ > hi then exit done with () end
1+=1
end
end
end
r
else
mid = [lo/2] + | hi/2]
BlockedRange(lo, mid, b).generate(body)&®
BlockedRange(mid + 1, hi, b).generate(body)
end
end

This example generates the integers betwleeand A inclusive. It does this usingecursive subdivisionRecursive
subdivision is the recommended technique for exposinglargounts of parallelism in a Fortress program because
it adjusts easily to varying machine sizes and can be dyraiyioad balanced. In this example we divide the range
in half if it is larger than the block sizé; these two halves are computed in parallel (recall that theraents to an
operator are evaluated in parallel). If the range is smétlen b, then it is enumerated serially usingsaile loop,
accumulating the result as it goes.

The remainder of this section describes in detail the detwgaf generator lists and expressions with generatoos int
invocations of thegenerate and join methods of the generators in the generator list. It thenmaglhow method
overloading may be used to specialize the behavior of pdaticombinations of generators and reductions.

32.8.1 Simple Desugaring of Expressions with Generators

Each expression with generators is desugared into thenfioldpgeneral form:
wrapper(fn () = TR, B][gs |body)

where the desugaring must provide appropriate instamtiatof wrapper, body, and the reduction static parameters,
R and . Asimple and easily-understood desugarifig['R, H])[gs |body " for generator lists is shown in Figure 32.1.

The desugaring oGeneratorListtakes three parameters: a block of static parameferand H, the actual gener-
ator list (which we enclose in square brackets), andihg, expression which should be used. Here and in sub-
sequent desugarings, in v < g can stand either for a single variable or for a tuple of vdeiab We convert the

222

expr type | wrapper body [R,H]

2 R 2 e [, +]

gs

w:=-egs () noReduction v :=e [NoReduction, @]
(e gs) List[E] | closeList singletonOpen(e) [OpenList, +]

Figure 32.2: Desugaring of expressions with generatorq tddottom: big operators (herg is used as an ex-
ample; the appropriate library function is called on théatiand side), assignments, and comprehensions (here list
comprehensions are shown; with the exception of array cehgmsions, other comprehensions are similar to list
comprehensions).

provided GeneratorListinto a nested series of calls i@enerate. For example, when we perform the desugaring
T[7264,+][x « xs,y < ys,z # y](z - y) we obtain the following code:

zs.generate[Z64, +](fn z =
ys.generate[Z64, +](fn y =
if z # y then (x - y) else Identity[+] end))

Some example desugarings of expressions with generamshawn in Figuré 32|12 for big operators, assignments,
and list comprehensions (set and multiset comprehensiersrailar to list comprehensions).

The simplest desugarings are the ones for big operatorsasukh. The type of the traversal corresponds to the type
of the result. The body expression used is exactly the bogyession of the big operator. The wrapper function is
named by the big operator itself. For example, Yieperator has the following declaration:

opr > [R extends CommutativeMonoid[R, +]](rhs : () = R): R = rhs()

Assignments desugar in a manner similar to big operatoraieMer, they make use of the sped¥dReduction type,
which is a singleton type which extend®mmutativeMonoid[NoReduction, & . We can think ofNoReduction
as composing the writes of the assignments in parallel. TlappernoReduction is defined as follows:

noReduction(rhs : () — NoReduction): () = do
rhs()

()

end

Lists also desugar in a similar way. The desugaring giverignre[32.2 makes use of tf@penList type—such a list
is constructed with an updatable tail cell, permitting j@dist-constructed lists to be appended in constant timagisi
the + (DOUBLEPLUS) operator. TherloseList operation converts the result into an ordinary non-updatiai.

An array comprehension simply desugars into a factory fanatall and a series of assignments:

do a = array()

. ali1] :==e1,9%,
[i =e | 951 aliz] := €2, gs,
12 = €2 ‘ ['ED) N
e gs.] Z[zn] = €n, g5,
end

The desugaring of &or loop depends upon the set of reduction variables. We conakyptdesugar thefor loop
with reduction variables;;, ro, .. ., 7, reduced using the reduction operatprfor type (71, Tz, ... T;,) as follows:

for gs do block end

—

223

(r1,re,...1) &= T[(T1, T2, ... Ty,),®][gs] (do
(r1,7re,...rq) : (Th, T, ... Ty) := Identity[®]
block
(T17T2, .. .Tn)
end)

In practice, a tuple type is not a monoid. If there is only oeduction variable, this is not a problem. If there are no
reduction variables, we simply use the tyNeReduction used in desugaring assignments. When there are multiple
reduction variables, we use nested applications of typ&nding the traitReductionPair. These types encode
the common properties of the variables being reduced. Riébedlevery reduction variable must at least have type
Monoid, so it is not difficult to guarantee th&eductionPair itself also extendd/lonoid.

32.8.2 Accounting for Dependencies among Generators

The naive desugaring for generator lists in Figure 132.1rassithere are always data dependencies among generators.
The actual desugaring makes use of h&, method in theGenerator trait to group together generators that have
no data dependencies. The goal is to permit library code fioelenore efficient merged generators for generator
pairs. For example, it is possible for thein method to take the generator list— 1# 100, j < 2# 200 and generate

a blocked two-dimensional traversal. This could then bagdiwith &£ < 3# 300 to obtain a three-dimensional
blocked traversal.

However, most generators will simply make use of the def@efinition of join which callsSimplePairGenerator:

object SimplePairGenerator[A, B] (outer : Generator[A], inner : Generator[B])
extends Generator[(4, B)]

size : 264 = outer.size - inner.size

generate| R extends Monoid[R, &], opr &](body : (A,B) — R): R =
outer.generate(fn (a : A) = inner.generate(fn (b: B) = body(a,b)))

join[N](other : Generator[N]) : Generator[((A, B),N)] =
SimpleMapGenerator (outer.join(inner.join(other)),

(0 (a (5,m)) = ((a,5),n)

end

Note howSimplePairGenerator itself overrides thegoin method. When we attempt to join an existing pair of joined
generators, we first attempt t@in the inner generator of the pair with thether generator (the new innermost
generator) passed in. This means that every generatoravdl the opportunity to combine with both its left and right
neighbors if neither has a dependency which prevents ite @it we use &impleMapGenerator, which simply
applies a function to the result of another generator, toast-the tuples produced by the nesfeth operation.

Which pairs of adjacent traversals are combined uging? This question is complicated by examples such as
1+ 1:100,5 <« 1:100,k « i:100,1 < j:100. We can either combin¢ and j traversals, or we can combine
and & traversals. In the former case we can also combiraad / traversals. The Fortress compiler is free to choose
any grouping subject to the following constraints:

e Two generators may not be combined usjig: if the second is data dependent upon the first.
e Generator order must be preserved when invoking .
e When a chain of three or more generators is joined, the tsal&emust be combined left-associatively.

We can obtain a simple greedy desugaring which joins togétieersals in accordance with the above rules by simply
adding the following desugaring rule which takes precedemner those given in Figure 32.1 when each variable bound
in v, does not occur free .

TIR,B][v1 < g1,v2 — g2,98] body = T[R,H][(v1,v2) < g1.join(ga), gs| body

224

32.8.3 Using Overloading to Adapt Generators and Traversal

Overloaded instances of thenerate method can be used to adapt a generator to the particulaeniesoof the re-
duction being performed. For example, a commutative mone@t! only maintain a single variablesult containing
the reduced value so far:

value object BlockedRange(lo: Z64, hi: Z64, b: Z64) extends Generator[Z64]

generate| R extends CommutativeMonoid[R, @], opr @] (body : Z64 — R) : R =do
result : R = Identity [®]
traverse(l,u) =
if u—1+1<max(b,1) then
1: 7264 =1
while 7 < wudo
t = body(i)
atomic result 1= result ®t
14+=1
end

0

else
mid = [1/2] + |u/2]
(traverse(l, mid), traverse(mid + 1, u))

0

end
traverse(lo, hi)
result
end
end

The choice of whether to apply this transformation is leftoiphe author of the generator; when many iterations run
in parallel theresult variable becomes a scalability bottleneck and this tealenghould not be used.

Various other properties of the reduction operator can Iptoérd:

e Idempotent reductions permit redundant computation. kamgle, when computing the maximum element of
a set it might be simpler to enumerate set elements more tha o

e On the other hand, sometimes a more efficient non-idempoteatator can be used for a reduction if the
generator promises never to produce duplicates—this fattbe used to advantage in set, multiset, or map
comprehensions.

e If the reduction operator has a zero, this can be used to &t fTom a partial computation. This requires that
the body expression have no visible side effects such asswitio actions.

At the moment, the author of &enerator is responsible for taking advantage of opportunities suckhase. In
future, we expect some standardized support for efficiersiares of various traversals based on experience with the
definitions provided here.

32.8.4 Making a Serial Version of a Generator or Distribution

A generatorg can be made sequential simply by calling the builtin funttiequential as follows:

v« sequential(g)

225

Several builtin generators (such as those for array injlicege an associated distribution. For these generators,
sequential function simply re-distributes the underlying object akofws:

sequential(r) = Sequential. distribute(r)

As a convenient shorthand, tRequential function is also defined to work for distributions themsslvéhe complete
signature for the overloadings eéquential is as follows:

sequential[E'](g : Generator[E]) : Generator[E]
sequential[FE] (d : Distribution) : Distribution

The sequential function has special meaning to the Fortress implememiati@re is no need to distinguish reduction
variables in loops for which generator is surrounded by eafiicall to sequential .

Note that at the moment there is no way to tell the compilempfenformance reasons that we really mean it when
we ask for sequentiality, as opposed to saying that we stprelgbrve sequential semantics. Future versions of this
specification may use thkocal distribution for this purpose, or provide additional fuocis on generators which
guarantee serial execution (rather than simply provideguential semantics).

226

Chapter 33

Overloaded Functional Declarations

Fortress allows multiple functional declarations to bedape of a particular program point. We call this overloading
Chaptef 1b describes how to determine which overloadeddsiins are applicable to a particular functional call,
and when several are applicable, how to select the mostfEpene among them. In this chapter, we give a set of
restrictions on overloaded declarations that guarantye txists a most specific declaration for any given funetion
call. These rules are complicated by the presence of cagreibich may enlarge the set of declarations that are
applicable to a functional call, as discussed in Chdpter 17.

33.1 Principles of Overloading

Fortress allows multiple functional declarations of theneaname to be declared in a single scope. However, recall
from ChaptelF the following shadowing rules:

e dotted method declarations shadow top-level functionatatibns with the same name, and

e dotted method declarations provided by a trait or objeclatation shadow functional method declarations with
the same name that are provided by a different trait or oljeclaration.

Also, note that a trait or object declaration must not haveretional method declaration and a dotted method dec-
laration with the same name, either directly or by inhedtanTherefore, top-level functions can overload with other
top-level functions and functional methods, dotted meshwidh other dotted methods, and functional methods with
other functional methods and top-level functions.

Overloading functional declarations allows the benefitpaimorphic declarations. However, with these benefits
comes the potential for ambiguous calls at run time. Fatpdgces restrictions on tlkeclarationsof functionals to
eliminate thepossibilityof ambiguous call at run time, whether or not these callsaigtappear in the program.

Furthermore, these restrictions are checked staticalfiadt, the restrictions on overloading in Fortress alloes¢bm-
piler to identify the statically most specific declaratiam & particular call. Therefore an implementation strategy

be used in which the statically most specific declarationléniified statically, and the runtime dispatch mechanism
need only consider dispatching among that declaration géetarations that are more specific than that declaration
(proof of this is given in Sectidn Bl.2).

Rather than describe the overloadings that are forbiddd¥ortress, this chapter outlines several criteria for valid
functional overloading. At any given program point, theraynbe a set of overloaded declarations that are in scope.
Fortress determines whether there is a possibility for gonais calls from this set by comparing declarations pair-
wise. The following three sections describe the rules t@pica pair of overloaded functional declarations. If a pair

227

of overloaded declarations satisfies any one of the thresriilis considered valid overloading. In addition, thereve
loaded declarations must have static parameters that eméddl (up toa-equivalence). Also, valid overloading for
declarations that contain keyword or varargs parameteletémined by analyzing the expansion of these declasation
into declarations without such parameters, as describ8datiori 15.4.

Sectior] 33.2 states tt@ubtype Rulewhich stipulates that the parameter type of one declardtioa subtype of the
parameter type of the other. In this case, there is no pdigsibi ambiguous calls, because one declaration is more
specific than the other. This section also places a resimictn the return types of the overloaded declarations torensu
that type safety is not violated. Section 33.3 definesltitmompatibility Rulethat, if satisfied by a pair of declarations,
guarantees that neither declaration is applicable to ttre$anctional call. In Sectidn 33.4, tiMore Specific Rule
requires the existence of a declaration that is more spéké#itboth overloaded declarations in the situation that bot
are applicable to a given call.

In the remainder of this chapter we build on the terminologg aotation defined in Chapfer]15 and Chaptér 17.

33.2 Subtype Rule

If the parameter type of one declaration is a subtype of thharpeter type of another then there is no possibility
of ambiguous calls because the most specific declaratidnbeillispatched to. This is the basis of the Subtype
Rule. The Subtype Rule also requires a relationship bettfeereturn types of the two declarations. Without such a
requirement, a program may be statically well typed but lzasentime error because the return type of a dynamically
resolved functional is not a subtype of the return type ofstia¢ically resolved functional.

The Subtype Rule for Functions and Functional Methods: Suppose that(P) : U andf(Q) : V are two distinct
function or functional method declarations both visiblsate pointZ in a Fortress progran{ need not be the site
ofacall). If P < Q andU =< V thenf(P) andf(Q) are valid overloadings.

The Subtype Rule for Dotted Methods: Suppose thaP,.f(P) : U and Qy.f(Q) : V are two distinct dotted
method declarations provided by a trait or objéttif (Py, P) < (Qo, @) andU = V thenPy.f(P) and Qy.f(Q)
are valid overloadings.

33.3 Incompatibility Rule

The basic idea behind the Incompatibility Rule is that ifrthis no call to which two overloaded declarations are both
applicable then there is no potential for ambiguous catisuich a case, we say that the declarations are incompatible.
Without coercion, incompatibility is equivalent to exdims. However, the presence of coercion complicates the
definition of incompatibility. To formally define incomphtiity we first define the following notation. For typ&s
andU, we say thafl’ andU do not share coerciongind writeT' () U, if any type that coerces t6 excludes any type
that coerces t&/:

TYU < VA, B: A—-TANB—-U = A{B.

We say thatl" is incompatible withl/, and write7 4 U, if T andU exclude, reject each other, and do not share

228

coercions:

TOU =TOUANTSUANUSTAT(GU
= TOoU
ANNVAA-T = AQU)
AN(VB:B—U = B{OT)
AN (VA,B:A—-TANB—-U = A{ B)

Note that if 7" ¢ U then no type is substitutable for bathandU'.

The Incompatibility Rule for Functions and Functional Meth ods: Suppose that(P) andf(Q) are two distinct
function or functional method declarations both visiblsatne pointZ in a Fortress progran{ need not be the site
of acall). If P ¢ @ thenf(P) andf(Q) are valid overloadings.

The Incompatibility Rule for Dotted Methods: Suppose thaP,.f (P) andQ,.f (@) are two distinct dotted method
declarations provided by a trait or object If P ¢ @ thenP,.f(P) andQy.f(Q) are valid overloadings.

33.4 More Specific Rule

If neither the Subtype Rule nor the Incompatibility Rule d®for a pair of overloaded declarations then they may
still be valid overloadings if the More Specific Rule is si¢id. The More Specific Rule requires that for any two
declarations there exists a third applicable declaratiabit at least as specific as both.

This rule is complicated by the fact that functions and fiorel methods can overload. Recall that functional methods
can be viewed semantically as top-level functions, as destin Sectiof 9]2. However, treating functional methods
as top-level functions for determining valid overloadisgao restrictive. In the following example:

trait Z

opr —(self):Z
end
trait R

opr —(self):R
end

if the functional methods were interpreted as top-levetfioms then this program would define two top-level funcsion
with parameter type& and R . These declarations would be statically rejected as idalerloadings because there
is no relation betweefd andR ; another trait may extend them both without declaring ite @arsion of the functional
method which may lead to an ambiguous call at run time. Tovadloch overloading, we define different restrictions
on overloaded function declarations and overloaded fanatimethod declarations. When function and functional
method declarations are overloaded, the more restriattegfor function declarations is used. This rule follows.

The More Specific Rule for Functions and Functional Methods: Suppose that(P) andf(Q) are two function
or functional method declarations both visible at some fpgim a Fortress progran¥{ need not be the site of a call)
such that neitheP nor () is a subtype of the other arfd and () are not incompatible with one another. L&be the
set of types thaP defines coercions from armibe the set of types th&} defines coercions fronf.(P) andf(Q) are
valid overloadings if all of the following hold:

e eitherP ¢ @ orthere is a declaratiof{ P N @) visible atZ, and

e eitherP < Q or Q< Porforall P’ € s andQ’ € 7 one of the two conditions holds:

229

- P o Q) or
— there is a declaratiofi(P’ N Q') visible atZ.

Recall thatP N Q is the intersection of typeB and @ as defined in Sectidn 8.8. If for some tySave haveS < P
andS =< @ thenS < (PN @), but it's not necessarily the case thfat= (P N @) since another type may be more
specific than botlP and(@. For example, suppose the following:

trait S comprises {U,V} end
trait T comprises {V, W} end
trait U extends S excludes W end
trait V extends {S,7T} end

trait W extends T end

f(s:8)=1
f:T)=1
flo:V)=1

Because of theomprises clauses of5 andT and theexcludes clause ofU/, any subtype of botl$' andT must be
a subtype of. Thus,V = S N T, and the declaratiofi(V) “disambiguates’ (S) and f(T), i.e., it is applicable to
and more specific for any call to which boftiS) and f(T") are applicable.

This requirement should not be difficult to obey, especialigause the compiler can give useful feedback. First
example:

foo(x : Number, y:Z64) = ...
foo(x : 764,y : Number) = ...

Assuming tha#Z64 < Number, the compiler reports that these two declarations are dgmobecause of ambiguity
and suggests that a new declaration faes(Z64, Z64) would resolve the ambiguity. Second example:

bar(z : Printable) = ...
bar(x: Throwable) = ...

Assuming thafPrintable and Throwable are neither comparable by the subtyping relation nor digjthhe compiler
reports that these two declarations are a problem bedatiseable and Throwable are incomparable but possibly
overlapping types. As a result, these two declarationstatieally rejected.

The More Specific Rule for Dotted Methods: Suppose thaP,.f(P) and Qy.f (Q) are two dotted method declara-
tions provided by a trait or obje€t such that neithefP,, P) nor (Qo, Q) is a subtype of the other amland @ are
not incompatible with one another. Letbe the set of types that defines coercions from ard be the set of types
that @ defines coercions fron®?,.f(P) and Qy.f (Q) are valid overloadings if all of the following hold:

e eitherP ¢ @ orthere is a declaratioRy.f (P N Q) provided byC with Ry < (Py N @), and
e eitherP < Q or Q< P orforall P’ € s andQ’ € 7 one of the two conditions holds:

- PO Q,or

— there is a declaratioR,.f (P’ N Q) provided byC with Ry < (Po N Qo).

Unlike for functions and functional methods, the More Spie&ule for dotted methods only applies to dotted methods
that are provided by the same trait or object. This is posdielcause two dotted methods are applicable to a given
call 4q.f(A) only if they are both provided by the trait or objet§. This is not the case for functional methods as the
following rule shows.

230

The More Specific Rule for Functional Methods: Suppose that(P) andf(Q) are two functional method decla-
rations occurring in trait or object declarations such tigither P nor @ is a subtype of the other anél and @) are
not incompatible with one another. LE{P) andf(Q) have self parameters atind;j respectively. Also, les be the
set of types thaP defines coercions from aribe the set of types th&} defines coercions fronf.(P) andf(Q) are
valid overloadings if all of the following hold:

e =7
e eitherP ¢ @ or if there exists a trait or object that provides botlf (P) andf(Q) thenP # @ and there is a
declaratiornf (P N @) provide byC, and
e eitherP < Q or Q <« P orforall P’ € s andQ’ € 7 one of the two conditions holds:
- PO Q,or
— there is a declaratiofi(P’ N Q') provided byC.
Verifying the More Specific Rule for functional methods catbought of as a two step process. First there must be no
ambiguity caused by the position of the self parameter. Brantee this, overloaded declarations with different self
parameter positions must be incompatible with one anotBecond, functional method declarations that create the
potential for ambiguity because neither is more specifin tha other must be accompanied by a third disambiguating

declaration that is more specific than both. Notice that #wosd step is similar to the overloading requirements
placed on dotted methods.

33.5 Coercion and Overloading Resolution

The restrictions on overloaded declarations given in thapter are sufficient to prove the following two facts:

1. If no declaration is applicable to a static call but thera declaration that is applicable with coercion then there
exists a single most specific declaration that is applicaiitle coercion to the static call.

2. Ifany declaration is applicable to a static call then¢hexists a single most specific declaration that is applkcabl
to the static call and a single most specific declarationithapplicable to the corresponding dynamic call.

Moreover, we can prove that the most specific declaratiorighapplicable to a dynamic call is more specific than the
most specific declaration that is applicable to the corredjy static call.

Appendix[B formally proves that the restrictions discussethe previous sections guarantee the static resolution
of coercion (described in Sectibn 1I7.5) is well defined farclions (the case for methods is analogous). Also in
Appendix(B is a proof that the restrictions placed on ovetémhfunction declarations are sufficient to guarantee no
undefined nor ambiguous calls at run time (again, the casedtinods is analogous).

231

Chapter 34

Operator Declarations

An operator declaration may appear anywhere a top-levetifomor method declaration may appear. Operator decla-
rations are like other function or method declarations limeslpects except that an operator declaration has theagpeci
reserved wordopr and has an operator name (see Se¢tion 16.1 for a discussiaticbbperator names) instead of
an identifier. The precise placement of the operator nam@miihe declaration depends on the fixity of the operator.
Like other functionals, operators may have overloadedadatibns (see Chapter]15 for a discussion of overloading).
These overloadings may be of the same or differing fixities.

Syntax:
OpDecl := FnDecl
FnDecl := AbsFnDecl
| FnDef
FnDef = FnMod* FnHeader= Expr
FnHeader := OpHeader
OpHeader := opr Op[StaticParamkValParam[IsTypd FnClauses

| opr [StaticParamkValParam OfIsTypé FnClauses
| opr [StaticParamkLeftEncloser ValParams RightEncloder= ValParan [IsTypd FnClauses

An operator declaration has one of seven forms: infix/multfierator declaration, prefix operator declaration, postfi
operator declaration, nofix operator declaration, bracgeiperator declaration, subscripting operator methaiede
ration, and subscripted assignment operator method @giclar Each is invoked according to specific rules of syntax.
An operator method declaration should be a functional ntbtlezlaration, a subscripting operator method declaration
or a subscripted assignment operator method declaration.

34.1 Infix/Multifix Operator Declarations

An infix/multifix operator declaration has the special reserword opr and then an operator name where a functional
declaration would have an identifier. The declaration mostiave any keyword parameters, and must be capable of
accepting at least two arguments. It is permissible to usarargs parameter; in fact, this is a good way to define
a multifix operator. Static parameters (described in Chéld® may also be present, between the operator and the
parameter list.

An expression consisting of an infix operator applied to gression will invoke an infix/multifix operator declaration
The compiler considers all infix/multifix operator declévas for that operator that are both accessible and apjdicab
and the most specific operator declaration is chosen aecgptdithe usual rules for overloaded functionals. If the
expression is actually multifix, the invocation will passmathan two arguments.

232

An infix/multifix operator declaration may also be invokedapgrefix or nofix (but not a postfix) operator application
if the declaration is applicable.

Note that superscripting | may be defined using an infix operator declaration even thdugs very high precedence
and cannot be used as a multifix operator. (An operator dgmarfor superscripting should have exactly two value
parameters.)

Example:

opr MAX[T extends Rational](z:T,y:T):T = if > y then x else y end

34.2 Prefix Operator Declarations

A prefix operator declaration has the special reserved wptdand then an operator name where a functional declara-
tion would have an identifier. The declaration must have @hee/parameter, which must not be a keyword parameter
or varargs parameter. Static parameters may also be preséneen the operator and the parameter list.

An expression consisting of a prefix operator applied to gression will invoke a prefix operator declaration. The
compiler considers all prefix and infix/multifix operator thrations for that operator that are both accessible and
applicable, and the most specific operator declarationdsemaccording to the usual rules for overloaded functsnal

Example:

opr ~(x: Widget) : Widget = x.invert()

34.3 Postfix Operator Declarations

A postfix operator declaration has the special reserved weptdwhere a functional declaration would have an iden-
tifier; the operator name itsebllowsthe parameter list. The declaration must have one valuerpes, which must

not be a keyword parameter or varargs parameter. Statimgdees may also be present, between the special reserved
word opr and the parameter list.

An expression consisting of a postfix operator applied toxgmession will invoke a postfix operator declaration. The
compiler considers all postfix operator declarations fait thperator that are both accessible and applicable, and the
most specific operator declaration is chosen accordingetoshal rules for overloaded functionals.

Example:

opr (n:Integer)! =T][[i < 1:n]i (* factorialx)

34.4 Nofix Operator Declarations

A nofix operator declaration has the special reserved vepad and then an operator name where a functional decla-
ration would have an identifier. The declaration must havparameters.

An expression consisting only of a nofix operator will invakeofix operator declaration. The compiler considers all
nofix and infix/multifix operator declarations for that operathat are both accessible and applicable, and the most
specific operator declaration is chosen according to thaluales for overloaded functionals.

Uses for nofix operators are rare, but those rare examplaggraiseful. For example, the colon operator is used to
construct subscripting ranges, and it is the nofix declamatdi : that allows a lone to be used as a subscript:

opr : ()= ImplicitRange

233

34.5 Bracketing Operator Declarations

A bracketing operator declaration has the special resemoed opr where a functional declaration would have an
identifier. The value parameter list, rather than beingamurded by parentheses, is surrounded by the brackets being
defined. A bracketing operator declaration may have any eurabparameters, keyword parameters, and varargs
parameters in the value parameter list. Static parametaysatao be present, between the special reserved ward

and the parameter list. Any paired Unicode brackets may liefinedexceptordinary parentheses and white square
brackets.

An expression consisting of zero or more comma-separateckssions surrounded by a bracket pair will invoke a
bracketing operator declaration. The compiler consididsracketing operator declarations for that type of bracke
pair that are both accessible and applicable, and the mesifispoperator declaration is chosen according to the usual
rules for overloaded functionals. For example, the exjpoasgp, ¢) might invoke the following bracketing method
declaration:

(+ angle bracket notation for inner produgt
opr {(x: Vector,y: Vector) = Y [i < z.indices|x; - y;

(x vector space norm (may not be the most efficient)
opr ||z : Vector|| = sqrt(z, z)

34.6 Subscripting Operator Method Declarations

A subscripting operator method declaration has the speesalrved wordopr where a method declaration would
have an identifier. The value parameter list, rather thangosiirrounded by parentheses, is surrounded by a pair of
brackets. A subscripting operator method declaration naag any number of value parameters, keyword parameters,
and varargs parameters in that value parameter list. Pi@tioneters may also be present, between the special réserve
word opr and the parameter list. Any paired Unicode brackets may lefinedexceptordinary parentheses and
white square brackets; in particular, the square brackdtsarily used for indexing may be used.

An expression consisting of a subexpression immediatdligvied (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by bracketaweie a subscripting operator method declaration. Methods
for the expression preceding the bracketed expressioaristonsidered. The compiler considers all subscripting op
erator method declarations that are both accessible adidaigp, and the most specific method declaration is chosen
according to the usual overloading rules. For example, xpesssionfoo,, might invoke the following subscripting
method declaration because expressions in the squarestsack rendered as subscripts:

(* subscripting methoel)
opr [z : Bizarrolndex| = self.bizarroFetch(z)

34.7 Subscripted Assignment Operator Method Declarations

A subscripted assignment operator method declaratiorheaspecial reserved worsbr where a method declaration
would have an identifier. The value parameter list, rathantheing surrounded by parentheses, is surrounded by a
pair of brackets; this is then followed by the operatorand then a second value parameter list in parentheses, which
must contain exactly one non-keyword value parameter. Aatted assignment operator method declaration may
have any number of value parameters within the bracketsetheue parameters may include keyword parameters and
varargs parameters. A result type may appear after the deedure parameter list, but it must lfe. Static parameters
may also be present, between the special reserved wardand the first parameter list. Any paired Unicode brackets

234

may be so definedxceptordinary parentheses and white square brackets; in plarithie square brackets ordinarily
used for indexing may be used.

An assignment expression consisting of an expression iratebgl followed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by bsafikeswed by the assignment operater, followed by
another expression, will invoke a subscripted assignmpatator method declaration. Methods for the expression
preceding the bracketed expression list are consideresicd@impiler considers all subscript operator method declara
tions that are both accessible and applicable, and the mesifis method declaration is chosen according to the usual
overloading rules. When a compound assignment operatsciided in Sectioh 13.8) is used with a subscripting
operator and a subscripted assignment operator, for egampl= k , both a subscripting operator declaration and
a subscripted assignment operator declaration are requt@ example, the assignmefito,, := my Widget might
invoke the following subscripted assignment method datilzm:

(x subscripted assignment methegd
opr [z : Bizarrolndex] := (newValue : Widget) = self.bizarrolnstall(x, new Value)

34.8 Conditional Operator Declarations

A conditional operatoris a binary operator (other than’) that is immediately followed by:”; see Sectioh 16I6.

A conditional operator expression@ :y is syntactic sugar forr@(fn () = y) ; that is, the right-hand operand is
converted to a “thunk” (zero-parameter function) that thecomes the right-hand operand of the corresponding
unconditional operator. Therefore a conditional operetsimply implemented as an overloading of the operator that
accepts a thunk.

It is also permitted for a conditional operator to have a edétg as well as a following colon. A conditional operator
expressionz : @ : y is syntactic sugar foffn () = z)@Q(fn () = y); that is, each operand is converted to a thunk.
This mechanism is used, for example, to define the resuttgpadson operator ~: , which takes exceptions into
account.

The conditional\ andV operators for boolean values, for example, are implemesgadethods in this manner:

opr A(self, other: Boolean) = if self then other else false end
opr A(self, other: () — Boolean) = if self then other() else false end
opr V(self, other: Boolean) = if self then true else other end
opr V(self, other: () — Boolean) = if self then true else other() end

34.9 Big Operator Declarations

A big operatorsuch asd_ or] is declared as a usual operator declaration. See Secti8a32r an example
declaration of a big operator. A big operator applicatioreibed areduction expressioand described in Sectién 13]18.

235

Chapter 35

Dimensions and Units Declarations

Syntax:
DimUnitDecl := dim Id [= DimRef|[default Unit]
| (unit | SI_unit)Id™ [: DimRef| [= Expi]
| dim Id [= DimRef| (unit | SI_unit)Id* [= Expr]

35.1 Dimensions Declarations

Dimensions may be explicitly declared; every declared disien must be declared at the top level of a program
component, not within a block expression or trait. Othereligions may be constructed by multiplying and dividing
other dimensions, as described in Chaptér 18. An explidiglglared dimension may bebase dimensiofwith no
definition specified) or derived dimensiofwith a definition specified in the form of an initializatiorgression).

The set of all dimensions has the algebraic structure ofeadbelian group. The identity element of this group is the
dimensionUnity, which represents dimensionlessness.

For every two dimension® and F, there is a dimensioD E (which may also be writterD - E'), corresponding to
the product of the dimension® and E and a dimensionD/E , corresponding to the quotient of the dimensidns
and E. The syntactic sugat/D is equivalent toUnity/D for all dimensionsD. A dimension can be raised to a
rational power where both the numerator and the denomirditibre rational power must be a valitht parameter
instantiation (as described in Section 11.2)° is the same a¥®nity, D' is the same a®, and D™ 1" is the same
as D™D"™ . The syntactic sugaD~" is the same a¥nity /D™ .

Here are some examples of base dimension declarations:

dim Length

dim Mass

dim Time

dim ElectricCurrent

Here are some examples of computed dimensions:

Length/Time

Velocity /Time

Length - Mass/Time?
Length Mass Time 2
ElectricCurrent /Length?

236

and here some of these computed dimensions are given naroegtitthe use of derived dimension declarations:

dim Velocity = Length/Time
dim Acceleration = Velocity/Time
dim CurrentDensity = ElectricCurrent/ Length?

35.2 Units Declarations

Every unit belongs to exactly one dimension, which is thetgpthe unit. A dimension may have more than one unit,
but one of these units may be singled out asdéfault unitfor that dimension by adding default clause:

dim Length default meter
dim Mass default kilogram
dim Time default second

The default unit is used when a numerical type is multipligchldlimension to produce a new type (see Chapter 18).
If no default clause is specified for a base dimension, thBastno default unit. If no default clause is specified for a
derived dimension, then it has a default unit if and only litlaé dimensions mentioned in its initialization expressio
have defaults, in which case its default unit is calculateth@ the initialization expression with each dimension
replaced by its default unit.

Some units are explicitly declared; every declared unittrbaesdeclared at the top level of a program component,
not within a block expression or trait. Other units may bestarcted by multiplying and dividing other units. An
explicitly declared unit may be lase unit(with no definition specified) or derived unit(with a definition specified

in the form of an initialization expression).

The set of all units, like the set of all dimensions, has thyeltaic structure of a free abelian group. The identity
element of this group is the unifimensionless, of dimensionUnity. Note that there may be other units of dimension
Unity, such asradian and steradian, but only dimensionless is the identity of the group of all units. (Note that
there is a straightforward homomorphism of units onto dish@ms, wherein every unit is mapped to its dimension.)

Here are some examples of base unit declarations:

unit meter : Length

unit kilogram : Mass

unit second : Time

unit ampere : ElectricCurrent

Here are some examples of computed units:

meter/second
(meter/second) /second
meter - kilogram /second?
meter kilogram second 2
ampere/meter?

and here some computed units are given names through thé deeved unit declarations:

unit newton: Force = meter - kilogram /second?
unit joule: Energy = newton meter
unit pascal: Pressure = newton/meter?

In the preceding examples, the initialization expressimneach unit is itself a unit. It is also permitted for the
initialization expression to be a dimensioned numericaleain which case the unit being declared is related to the
unit of the dimensioned numerical value by a numerical csiga factor.

237

As with an ordinary variable declaration, one may omit thaehsion for a unit if there is an initialization expression;
the dimension of the declared unit is the dimension of theafrthe expression.

Every unit can be reduced to a canonical value as follows. & lbait is multiplied by the valué ; a unit parameter

is multiplied by the valuel ; a defined unit is replaced by its initialization expressénm then every unit in that
expression is replaced by its canonical form; and finallpdathmetic is performed so as to reduce the units to a single
unit and the numerical values to a single numerical value.imedsioned value with unit/ is convertible by the

in operator to a value with univ’ if the canonical values fot/ and V' have the same unit; the conversion involves
multiplying the numerical value by the ratio of the numericalue of the canonical form of” to the numerical value

of the canonical form ofU.

For example, given the declarations:

dim Length

unit meter: Length; unit meters = meter

unit kilometer: Length = 103meter; unit kilometers = kilometer
unit inch: Length = 2.54 x 10~2meter; unit inches = inch

unit foot: Length = 12 inch;unit feet = foot

unit mile: Length = 5280 foot; unit miles = mile

then one can sag miles in kilometers and thein operator will multiply the numerical valud by the amount of
((2.54 x 1072)(12)(5280)/10%), or 25146/15625 .

Notice the subtle difference between these two declarsition

unit radian = meter/meter
unit radian = 1 meter/meter

The first declaration definesidian to be equivalent talimensionless, and so a value with unitadian can be used
anywhere a dimensionless value can be used, and vice vérsaetond declaration defineslian to be convertible

to dimensionless but not equivalent, and so it is necessary to useitheoperator (or multiplication and division by
radian) to convert between values in radians and truly dimensgznalues.

35.3 Abbreviating Dimension and Unit Declarations

For convenience, three forms of syntactic sugar are prawedsen declaring dimensions and units. First, inmit
declaration one may mention more than one name before tha,cahd the extra names are defined to be synonyms
for the first name; thus

unit foot feet ft: Length
means exactly the same thing as

unit foot: Length
unit feet: Length = foot
unit ft: Length = foot

Second, instead of the reserved waitiit one may use the reserved wad_unit , which has the effect of defining
not only the specified names but also names with the variopsefikes attached. If more than one name is specified,
then the last name is assumed to be a symbol and has symbakpréfuch ad andn) attached; all other names
have the full prefixes (such asega andnano) attached. Thus

SI_unit name; names names:...

may be regarded as an abbreviation for

238

unit name; names names: . ..

unit yottaname; yottanames Ynames = 10**name;
unit zettaname; zettanames Znames = 102 name;
unit exaname; exanames Enames = 10¥name;
unit petaname; petanames Pnames = 10 name;
unit teraname; teranames Tnames = 10%2name;
unit giganame; giganames Gnames = 10°name;
unit meganame; meganames Mnames = 10%name;
unit kiloname; kilonames knames = 103name;
unit hectoname; hectonames hnames = 102name;
unit dekaname; dekanames danames = 10name;
unit deciname; decinames dnames = 10~ name;
unit centiname; centinames cnames = 10~ %?name;
unit milliname; millinames mnames; = 10 3name;
unit microname; micronames pnames = 10~ %name;
unit nanoname; nanonames nnames = 10~ "name;
unit piconame; piconames pnames = 10~ 2name;
unit femtoname; femtonames fnames = 10~ ®name;
unit attoname; attonames anames = 10~ ¥name;
unit zeptoname; zeptonames znames = 10~ name;
unit yoctoname; yoctonames ynames = 10~2*name;

wherey is the Unicode character U+00B5 MICRO SIGN. Thirddam declaration and anit or SI_unit declara-
tion may be collapsed into a single declaration by writing tthit or SI_unit declaration in place of th@efault
clause in thedim declaration and omitting the colon and dimension fromdhét declaration. Thus

dim Length SI_unit meter meters m
dim Power = Energy/Time SI_unit watt watts W = joule/second

is understood to abbreviate

dim Length default meter; SI_unit meter meters m: Length
dim Power = Energy/Time default watt; SI_unit watt watts W: Power = joule/second

In this way the names of the seven Sl base units, along withoakible plural and prefixed forms, may be concisely
defined as follows:

dim Length SI_unit meter meters m

dim Mass default kilogram; SI_unit gram grams g: Mass
dim Time SI_unit second seconds s

dim ElectricCurrent SI_unit ampere amperes A

dim Temperature SI_unit kelvin kelvins K

dim AmountOfSubstance SI_unit mole moles mol

dim LuminousIntensity SI_unit candela candelas cd

Note the subtle difference in the declaration\fiss that allows the default unit to bieilogram rather thangram .

35.4 Absorbing Units

Syntax:
StaticParam := Id [Extend}[absorbs unit]
| unit Id [: DimRef| [absorbs unit]

239

The declaration of a type parameter augit parameter for a parameterized trait may contain a claebgdérbs unit”;
at most one static parameter of a trait may have this claus@nsiance of a parameterized trait with a static parameter
that “absorbs unit” may be multiplied or divided by a unit, the result being dmtinstance of that parameterized
trait in which the static argument corresponding to the-abiorbing parameter has been multiplied or divided by the
unit.

A few examples should make this clear. Given the declaration
trait Vector[EltType extends Number absorbs unit,nat len]... end

then Vector[Float, 3Jmeter means the same agctor[Float meter, 3], and Vector[Float, 3] /second means the
same asVector[Float /second, 3] . Similarly, given the declaration

trait Float[unit U absorbs unit,nat e,nat s]... end
then Float[meter, 11, 53] /second means the same d8oat[meter/second, 11, 53], and
Float[dimensionless, 8, 24]meter kilogram /second?
means the same as
Float[dimensionless meter kilogram /second?, 8,24] ,
which is the same as
Float[meter kilogram /second?, 8, 24] .

This is the mechanism by which meaning is given to the midtiplon and division of library-defined types by units.

240

Chapter 36

Support for Domain-Specific Languages

To support syntax for domain-specific languages, and tovate Fortress language to grow with time, programmers
can extend the basic syntax of Fortress in their programgh 8utensions are possible through the useyoitax
expandersSyntax expanders must be defined in the top level of a singuigoonent.

36.1 Definitions of Syntax Expanders

Syntax:
Decl = ExternalSyntax
ExternalSyntax ::= syntax OpenExpander Id CloseExpander Expr
OpenExpander :: Id | LeftEncloser

CloseExpander ::= Id | RightEncloself end

The definition of a syntax expander starts with the specsgmeed wordsyntax , followed by anopening delimiter
followed by acontents parametefollowed by aterminating delimiteyfollowed by an=, and a subexpression. The
opening delimiter must be either an identifier or the openmggnber of an enclosing operator. The contents parameter
must be an identifier (see Sectlon 3.15). The terminatinigniter must be either an identifier, the terminating member
of an enclosing operator, or the special reserved wardl. If either the opening delimiter or the closing delimiter is
part of an enclosing operator, the opening and closing delisiiteust both be parts of enclosing operators, and they
must match, or it is a static error. Because delimiters cotuadly delimit blocks, just aslo and end delimit blocks,
delimiters of syntax expanders are rendered as specialegse/ords. The subexpression of a syntax expander has
type Fortress.Ast.SyntaxTree. This SyntaxTree must be that of a Fortress expression. Here is an example:

syntax sql e end = parseSQL(e)

where parseSQL is a function that takes an argument of typertress.Lang.SourceAssembly (a sequence of
Unicode characters and abstract syntax trees), interfiratsan SQL query, and returns an expression with type
SyntaxTree consisting of constructor calls to SQL syntax nodes (definetyme SQL library).

At ause site, all characters between the opening delimitktlae terminating delimiter are turned int§aurce Assembly
(see Sectioh 36/.4 for a more detailed description of howdbisersion is achieved). The resultifgurceAssembly

is bound to the contents parameter of the syntax expanderuddsite is then expanded by evaluating the body of the
expander. Every use site of a syntax expander must occurér@ession context, or it is a static error.

For example, we could definerseSQL so that a use site such as:

241

sql
SELECT spectral _class FROM stars
end

would be expanded into the following FortreSgntaxTree:

Call(Empty,
List(VarRef (Identifier(“SqlQuery ")),
Call(Empty,
List(VarRef (Identifier(“Select ")),
String(“spectral_class "),
Call(Empty,

List(VarRef (Identifier(“From”)),
String(“stars ")))))

(The Empty lists passed td@ alls are the lists of static parameters to these calls). NotahfsaSyntaxTree corre-
sponds to the following Fortress concrete syntax:

SqlQuery(Select(“ spectral_class "), From(“stars "))

36.2 Declarations of Syntax Expanders

Syntax:
AbsDecl

: AbsExternalSyntax
AbsExternalSyntax ::

syntax OpenExpander Id CloseExpander

A declarationof a syntax expander is syntactically identical to the dgfiniof a syntax expander, except that
and the body of the expander (i.e., the expression followheg= sign in an expander definition) are elided. Syntax
expander declarations must occur only in APIs. A comporteait éxports an APA must provide, for each syntax
expander declaratiothin A, a syntax expander definition with a header identical.to

36.3 Restrictions on Delimiters

Consider the se$ of syntax expander declarations imported by a componentRir/A along with the syntax ex-
panders defined or declaredihdirectly. Every expander i§ must have a distinct opening delimiter, or it is a static
error. Moreover, the terminating delimiter of each syntagander must be distinct from every opening delimiter of
every syntax expander ifi, or it is a static error.

36.4 Processing Syntax Expanders

In a given component, only syntax expander declarationsanopy in APIs imported by the component may be used.
A component exporting an APA that includes a syntax expander must not import APIs thaharelso imported by

A, oritis a static error. This restriction ensures that athea in scope of the definition of the syntax expander are also
in scope of any component importing the syntax expandet. iAdditionally, all use sites of a syntax expander must
occur in simple components other than the defining compofemthermore, multiple components containing syntax
expanders must not be cyclically linked. These restrictiavoid pathologies with nontermination during expansion.
Finally, to maintain proper separation of test code, a syatpander definition is statically forbidden from refegin

to variables or functions that have modifiegst .

242

Because syntax expanders are defined at the top level ofggnogomponents, and because they are syntactically
distinguished, they can be identified before scanning osipgr(but after ASCII conversion). Use sites are then
identified and expanded before parsing occurs.

Syntax expansion takes a sequence of Unicode charactengeddsl a sequence of Unicode characters and syntax
trees, where all the syntax expanders have been replaceghtaxdrees. This result has tyfurceAssembly.
Syntax expansion proceeds from left to right as followssti-the source is scanned for opening delimiters of syntax
expanders, stopping at the leftmost one. We call this sogrrtress-source scanning

If the opening delimiter of a syntax expander is encountélgihg Fortress-source scanning, the source is scanned
rightward until the first occurrence of either an openingrdiéér of some syntax expander (possibly another use of the
same expander), or the terminating delimiter of that syetgpander, is found. (If no matching terminating delimiter
is found in the remainder of the program, it is a static eridfe call this scanningxpander scanning

If an opening delimiter is encountered before the termigadelimiter, there is aested use sitef another syntax
expander. The nested use site is processed, and then exkpaadering continues rightward of that use site. Thus, the
processing of syntax expanders is recursive, syntax exgpgamaay be nested arbitrarily, and expanders are processed
from the leftmost-innermost occurrence outward and rigintiy

When the terminating delimiter is encountered during eparscanning, the scanning is terminated, the resulting
SourceAssembly is bound to the contents parameter of the expander, andhdyody of the expander is evaluated.
The result of evaluating this body has tyfentaxTree, and it is placed into the resultif§purceAssembly in place

of the expander in the scanned source.

36.4.1 Introduced Variable Names

Often, when expanding concrete syntax for a domain-spdaifiguage, it is useful to introduce variable binding
constructs into the resultin§yntaxTree. It is required that such bindings, in general, respect thesrof hygiene
and referential transparencyl [7]. Several aspects of thiedss semantics allow the library programmer to ensure
referential transparency of syntax expanders:

1. A component exporting an APA that includes a syntax expander must not import APIs thathatealso
imported byA.

2. Syntax expanders must expandimtaxTrees of expressions.
3. Shadowing of identifiers is not allowed.

Thus, syntax expanders cannot expand into new top-levetifis. Moreover, provided that the library programmer
is careful to ensure that all top-level identifier refereneppearing in expanded code are fully qualified identifiers
exported by APIs, all top-level identifiers referred to ie thefinition of a syntax expander are visible at all use sites.

To ensure hygiene, all variables bound iSgntaxTree resulting from an expansion are renamed, following the
syntax-case system of Dybvig et al[[9].

36.4.2 Comments and Syntax Expansion

Comments araotrecognized before syntax expansion (the embedded syntakava its own commenting syntax):
during expander scanning, an opening or terminating dedinthat occurs in what appears to be a Fortress comment
is nonetheless recognized as an opening or terminatingniietifor that expander. Comments can be viewed as uses
of a syntax expander, with special opening and terminateligniters.

243

36.5 Expanders for Fortress

As the above examples demonstrate, it is often useful totddrmtress abstract syntax using Fortress concrete syntax
A special set of syntax expanders are defined in the Bd?tress.Syntax for every nonterminal in Fortress grammar,
defined in AppendiX G. The name of each expander consistseohdime of the nonterminal in lowercase. The
terminating symbol for each nonterminal is the specialmeskword end . For example:

expr
Tty
end

expands to th&yntaxTree:

Call(Empty,
VarRef (Identifier(“+")),
VarRef (Identifier(“x")),
VarRef (Identifier(“y”)))

When one of these syntax expanders parses a binding canstredound identifier is replaced with an identifier
resulting from a call to the functiogensym, which yields an identifier distinct from all other identifiebound in
any component installed in the same fortress, or in any dtngess, anywhere, throughout all time past, present, and
future. All variable references captured by the originaritifier are replaced with references to the new identifier.

For convenience, a syntax expander with opening delimiemand terminating delimiters- behaves identically to
the expr expander wherfortress.Syntax is imported.

244

Part V

Fortress APIs and Documentation for
Library Writers

245

Chapter 37

Algebraic Constraints

The traits in this component are used to describe propetigsits and their associated operators. These traitdgeov
very few concrete methods, but specify abstract methodspaagerty declarations. For this reason, the complete
code for these traits is presented here, rather than jugtRihe

37.1 Predicates and Equivalence Relations

A predicateis an operator that produces a boolean result. A binary gagglimay be identified with a mathematical
relation, where the predicate returtizie in exactly those cases that its two operands satisfy théaejaherefore we
use the mathematical terminology usually associated wltitions to describe the properties of binary predicates.

trait UnaryPredicate[T extends UnaryPredicate[T, ~], opr ~]
opr ~(self): Boolean
end

A unary predicate is a prefix operator that takes one arguarahteturns a boolean valuée-¢e or false). Note that
~ is a static parameter, used here as a “variable” name for emratp.

trait BinaryPredicate[T extends BinaryPredicate[T, ~], opr ~]
opr ~(self, other: T): Boolean
end

A binary predicate is an infix operator that takes two argushand returns a boolean value. Thus, for example, any
trait T that extendsBinaryPredicate[T, Z] necessarily has an infix method for the operator and that operator
returns a boolean value.

trait Reflexive[T extends Reflexive[T, ~], opr ~]
extends { BinaryPredicate[T, ~] }
property V(a:T) (a ~ a)
end

A reflexivepredicate always returnsue when its operands are the same. Because this fact is expaesaproperty
declaration, the behavior of such an operator can be chdokedrrectness by unit testing.

trait Irreflexive[T extends Irreflexive[T, ~], opr ~]
extends { BinaryPredicate[T, ~] }

246

property V(a:T) —(a ~ a)
end

An irreflexivepredicate always return&lse when its operands are the same. (Note that it is possible goedicate
to be neither reflexive nor irreflexive.)

trait Symmetric[T" extends Symmetric[T, ~], opr ~]
extends { BinaryPredicate[T, ~] }
property V(a: T,b:T) (a ~ b) < (b~ a)
end

A symmetriredicate doesn’t care in which order its arguments areepted; the result is the same either way.

trait Transitive[T extends Transitive[T, ~], opr ~]
extends { BinaryPredicate[T, ~] }
property V(a:T,b:T,c:T) ((a ~b) A (b~¢)) — (a~c)
end

A transitivepredicate has the property thatdfis related tob and b is related toc, thena is related toc.

trait EquivalenceRelation]T" extends EquivalenceRelation[T, ~], opr ~]
extends { Reflexive[T, ~], Symmetric[T, ~], Transitive[T, ~] }
end

An equivalence relatioiis any predicate that is reflexive, symmetric, and trarsitiou can think of an equivalence
relation as describing a way to separate a set of items irtegodes, such that each item belongs to exactly one
category; the predicate isue of two items if and only if they are in the same category.

trait IdentityEquality[T extends IdentityEquality[77]
extends { EquivalenceRelation[T, =] }
opr =(self, other:T): Boolean = (self = other)
end

This trait provides a concrete implementation of the omerat (defining it to behave the same as the operatgr
and states that is an equivalence relation over instances of the tfpe

trait UnaryPredicateSubstitutionLaws[T extends UnaryPredicateSubstitutionLaws[T, ~, ~],
opr ~, opr ~]
extends { UnaryPredicate[T, ~], BinaryPredicate[T, ~] }
property V(a:T,a":T) (a = a') —: ((~ a) < (~a))
end

This handy trait states that the unary predicatés consistent under substitutions described by the relatioqwhich
is typically, but not always, an equivalence relation)tfisathe result produced by is unchanged if its argument is
replaced by some other value that is equivalent.

trait BinaryPredicateSubstitutionLaws[T extends BinaryPredicateSubstitutionLaws[T, ~, ~],
opr ~, opr =]
extends { BinaryPredicate[T, ~], BinaryPredicate[T, ~] }
property V(a:T,a":T) (a =~ a') —:V(b:T) (a ~ b) < (a’ ~b)
property V(b: T,V T) (b~V) —:V(a:T) (a~b) < (a~ V)
end

This equally handy trait states that the binary predicatés consistent under substitutions described by the relatio
~ (which is typically, but not always, an equivalence rela}idhat is, the result produced by is unchanged if either

247

argument is replaced by some other value that is equivalkeid.then easy to prove that the result is unchanged even
whenbotharguments are replaced by equivalent values.)

37.2 Partial and Total Orders

trait Antisymmetric[T extends AntiSymmetric[T, ~], opr ~]
extends { BinaryPredicate[T, ~], EquivalenceRelation[T, =],
BinaryPredicateSubstitutionLaws[T, ~, =] }
property V(a:T,b:T) ((a ~b) A (b~ a)) :—:(a=0b)
end

A binary predicate~ is antisymmetridf and only if two conditions are true: (a) is consistent under substitutions
described by the predicate:, which must be an equivalence relation; (b) whenewerholds true for a pair of
arguments and for those same arguments in reverse ordeg, dnguments are equivalent as specifiecd-hy

trait PartialOrder[T extends PartialOrder[T,], opr <]
extends { Reflexive[T,], Antisymmetric[T,], Transitive[T, <] }
end

A partial orderis a binary predicate that is reflexive, antisymmetric, andditive.

trait StrictPartialOrder[T extends StrictPartialOrder[T), <], opr <]
extends { Irreflexive[T, <], Antisymmetric[T, <], Transitive[T, <] }
end

A strict partial orderis a binary predicate that is irreflexive, antisymmetricd &amansitive. (Thus it differs from an
ordinary partial order in being irreflexive rather than reifte.)

It is easy to prove that, because is irreflexive and antisymmetric, that < 4 and a = b cannot both be true. (If
they were both true, then because antisymmetry requirésthabey substitution lawsg < a would be true—but
that contradicts the fact that is irreflexive.) It is then easy to prove that< b and b < a cannot both be true. (If
they were both true, then by antisymmetry= b must be true—but: < b and ¢ = b cannot both be true.)

trait TotalOrder[T extends TotalOrder[T, <], opr <]
extends { PartialOrder[7T, <] }
property V(a:T,b:T) (a < b) V (b < a)
end

A total orderis a partial order in which every pair of operands must betedly the predicateg in one order or the
other; thus no two values are ever unordered with respeeido ether.

trait StrictTotalOrder[T" extends StrictTotalOrder[T, <], opr <]
extends { StrictPartialOrder[T, <] }
property V(a:T,b:T) (a < b) V (b <a)V (a=Db)
end

A strict total orderis a strict partial order in which every pair of operands nhestelated, either by equality or by
the predicate< in one order or the other; thus no two values are ever unaideite respect to each other.

For a strict total ordeat leastone ofa < b anda = b and b < « is true; but a strict total order is also a strict partial
order, for whichat mostone of a < b and a = b and b < a is true. Therefore a strict total order obeys the of
trichotomy for any ¢ and b, exactlyone ofa < b anda = b and b < a is true.

248

trait PartialOrderOperators[T extends PartialOrderOperators[T, <, <, &=, =, CMP],
opr <, Opr <, OpT ‘=, 0pT >, 0pr CMP]
extends { StrictPartialOrder[T, <], PartialOrder[T, <],
PartialOrder[T, =], StrictPartialOrder[T, >] }
opr CMP(self, other: T'): Comparison

opr <(self, other: T): Boolean = (a CMP b) = LessThan

opr <(self, other: T): Boolean = (a CMP b) = LessThan V (a CMP b) = EqualTo

opr =(self, other: T'): Boolean = (a CMP b) = EqualTo

opr =(self, other: T'): Boolean = (a CMP b) = GreaterThan V (a CMP b) = EqualTo
(

opr ~(self, other: T): Boolean = (a CMP b) = GreaterThan

):

):

):

):
property V(a:T,b:T) ((a CMP b) = LessThan) < ((bCMP a) = GreaterThan)
property V(a: T,b: T) ((a CMP b) = EqualTo) < ((bCMP a) = EqualTo)
property V(a: T,b: T) ((a CMP b) = Unordered) < ((bCMP a) = Unordered)
property V(a:T,b:T) (a < b) < ((a CMP b) = LessThan)
property V(a: T,b:T) (a < b) < ((a CMP b) = LessThan V (a CMP b) = EqualTo)
property V(a: T,b:T) (a = b) < ((a CMP b) = EqualTo)
property V(a: T,b:T) (a = b) < ((a CMP b) = GreaterThan V (a CMP b) = EqualTo)
property V(a: T,b:T) (a > b) < ((a CMP b) = GreaterThan)

end

For practical programming, we assume that partial orderatpes come in groups of five: a “less than” predicate, a
“less than or equal to” predicate, a “greater than or equaptedicate, a “greater than” predicate, and a “compar-
ison” operator that returns one of the four valdessThan, EqualTo, GreaterThan, and Unordered. The trait
PartialOrderOperators declares such a set of five operators and describes the apcakgebraic constraints among
them and the equality predicate. It also provides default definitions for the predicategl(iding =) in terms of
the comparison operator.

trait TotalOrderOperators[T extends TotalOrderOperators[T, <, <, =, >, CMP],
opr <, 0pr <, Opr =, opr >, 0opr CMP]
extends { PartialOrderOperators[T), <, <, =, >, CMP],
Strict TotalOrder[T, <], TotalOrder [T, <],
TotalOrder[T, =], Strict TotalOrder [T, >] }
opr CMP(self, other: T): TotalComparison
end

Total order operators likewise come in groups of five: a “lss” predicate, a “less than or equal to” predicate, a
“greater than or equal to” predicate, a “greater than” pratdi, and a “comparison” operator that returns one of the
three valued.essThan, EqualTo, and GreaterThan. The trait TotalOrderOperators declares such a set of five
operators and describes the necessary algebraic cotstaantong them and the equality predicate For a total
order, the comparison operatoFMP never returndJnordered.

trait PartialOrderBasedOnLE[T extends PartialOrderBasedOnLE[T, <, <, %=, =, CMP],
opr <, opr <, opr =, opr >, opr CMP]
extends { PartialOrderOperators[T, <, <, =, >, CMP] }
opr CMP(self, other: T'): Comparison =
if @ < b then
if b < a then EqualTo else LessThan end
else
if b < a then GreaterThan else Unordered end
end
opr <(self, other: T): Boolean = (self < other) A —(other < self)
opr =(self, other: T'): Boolean = (self < other) A (other < self)
opr =(self, other: T): Boolean = (other < self)

249

opr >+ (self, other: T): Boolean = (other < self)
end

The trait PartialOrderBasedOnLE specifies a partial order by assuming that the “less thanwaleéq” predicate is
already defined and providing definitions for the compariseerator, the “less than” predicate, the equality predicat
the “greater than or equal to” predicate, and the “greatertpredicate in terms of the “less than or equal to” predicat

trait TotalOrderBasedOnLE[T extends TotalOrderBasedOnLE[T, <, <, =, >, CMP],
opr <, 0pr <, 0pr =, opr >, opr CMP]
extends { TotalOrderOperators[T, <, <, =, >, CMP] }
opr CMP(self, other: T'): TotalComparison =
if a < b then (if b < a then EqualTo else LessThan end) else GreaterThan end
opr <(self, other: T): Boolean = —(other < self)
opr =(self, other: T'): Boolean = (self < other) A (other < self)
opr =(self, other: T): Boolean = (other < self)
opr > (self, other: T'): Boolean = (other < self)
end

The trait TotalOrderBasedOnLE specifies a total order by assuming that the “less than orlequaredicate is
already defined and providing definitions for the comparsoerator, the “less than” predicate, the equality predicat
the “greater than or equal to” predicate, and the “greatertpredicate in terms of the “less than or equal to” predicat

trait TotalOrderBasedOnLT [T extends TotalOrderBasedOnLT[T, <, <, &=, =, CMP],
opr <, Opr <, OpT ‘=, 0pT >, 0pr CMP]
extends { TotalOrderOperators[T, <, <, >=, =, CMP] }
opr CMP(self, other: T'): TotalComparison =
if a < b then LessThan elif b < a then GreaterThan else EqualTo end
opr <(self, other: T): Boolean = —(other < self)
opr =(self, other: T'): Boolean = (self < other) A (other < self)
opr =(self, other: T): Boolean = (other < self)
opr >~(self, other: T): Boolean = (other < self)
end

The trait TotalOrderBasedOnLT specifies a total order by assuming that the “less than” patelis already defined
and providing definitions for the comparison operator, flegs$ than or equal to” predicate, the equality predicate, th
“greater than or equal to” predicate, and the “greater thmatlicate in terms of the “less than” predicate.

value object MaximalElement[opr <] end

trait HasMaximalElement[T extends HasMaximalElement[T, <], opr <]
extends { PartialOrder[T, <] }
where {T coerces MaximalElement[<] }
property V(a:T) a < MaximalElement[<]
end

The HasMaximalElement trait specifies that a partial order has a maximal elemeat,shone to which every other
element is related by the ordering predicate The maximal element may be identified by coercing the objanted
MaximalElement[<] to type T'.

value object MinimalElement[opr <] end

trait HasMinimalElement[T extends HasMinimalElement[T, <], opr <]
extends { PartialOrder[T, <] }
where { T coerces MinimalElement[=] }
property V(a:T) MinimalElement[<] < «a
end

250

The HasMinimalElement trait specifies that a partial order has a minimal elemeat, i) one to which every other
element is related by the ordering predicate The minimal element may be identified by coercing the objached
MinimalElement[<] to type T'.

trait LexicographicPartialOrder[T extends LexicographicPartialOrder[T, C, C, =, J, 1, TCMP,
X, <, =, =, =, XCMP],
opr C,opr L, opr =, opr _J, opr 1, opr TCMP,
X extends TotalOrderOperators[X, <, <, ~, =, >, XCMP],
opr <, 0pr <, OpPr =, OpT =, 0pr >, opr XCMP]
extends { PartialOrderOperators[LexicographicPartialOrder[T, C, C, =, J, 2, TCMP,
X, <, =, =, =, XCMP],
C,C,3,3,TcMP] }
where {T extends ZeroBasedIndexing[T, X] }
opr TCMP(self, other: LexicographicPartialOrder[T, C, C,=, 1, 1, TCMP, X, <, <, ~, =, >, XCMP]) :
Comparison =
BIG LEXICO (self; XCMP other;)) LEXICO (|self| CMP |other|)

i«—self.indicesNother.indices
end

The Comparison trait provides an associative operat®XIC0 whose principal use is in defining lexicographic order
on sequences of elements, which may be partial or total diépgion whether the ordering of the elements is partial
or total.

A set of lexicographic partial order operatars C, =, J, 3, TCMP may be defined in terms of a partial order on the
elements of the sequence with operaterss, ~, =, =, XCMP . All thatis really necessary is to define the lexicographic
sequence comparison operafttMP in terms of the element comparison operaX@MP ; this is easily expressed by
using the associativeEXICO operator to reduce the results of elementwise comparispassingle value. (If the
sequences to be compared are of unequal length, then theerskequence is compared to a prefix of the longer
sequence, and if they are equal, then the longer sequenoasilered to be greater than the shorter sequence. This
rule is implemented by an additional application of ttEXICO operator to the result of comparing the lengths of the
sequences.)

trait LexicographicTotalOrder[T extends LexicographicTotalOrder[T, C, C, =, J, 1, TCMP,
X, =<, =, ~, =, =, XCMP],

opr C,opr L, opr =, opr _J, opr 1, opr TCMP,

X extends TotalOrderOperators[X, <, <, ~, =, >, XCMP],
opr <, 0pr <, 0pr ~, opr ‘=, opr >, opr XCMP]

extends { LexicographicPartialOrder[T, C, C, =, 3,3, TCMP, X, <, %, =, =, >, XCMP],

TotalOrderBasedOnLE[LexicographicTotalOrder[T, C, C, =, J, 1, TCMP,
X, <, <, ~, =, =, XCMP],
C,C,3,3,TcMP] }
opr TCMP(self, other: LexicographicTotalOrder[T,C, C, =, J, 1, TCMP, X, <, <, ~, =, >, XCMP])) :
TotalComparison =

BIG LEXICO (self; XCMP other;)) LEXICO (|self| CMP |other|)

i«—self.indicesNother.indices
end

Similarly, a set of lexicographic total order operatarsC, =, 3, 73, TCMP may be defined in terms of a total order on
the elements of the sequence with operatersg, ~, =, >, XCMP .

251

37.3 Operators and Their Properties

For some types, such as the integé&ror the rationalsQ, results are always exact, and algebraic properties can be
expected to be obeyed exactly. For other types, such asnfipptint numbers, results are not always numerically
exact, and algebraic properties can be expected to be olbeyedpproximately. For example, given three floating-
point valuesa and b and ¢, it may well be thata + (b + ¢) is not equal to(a + b) + ¢; but we would expect their
values to be reasonably close—unless, of course, overflour@ in one expression but not the other.

In order to address the difficulties of such approximate astaton, many of the traits described in this section come
in two varieties: approximate and exact. The operator on integers or rationals is correctly describethbytrait
Associative, and the+ operator on floating-point numbers is correctly describethb trait Approximately Associative.
An important distinction is that the predicate used to teseatability of exact algebraic properties4s, which is
required to be an equivalence relation and therefore tre@sbut a type-dependent binary predicate (typicaHy
may be used to test acceptability of approximate algebraisgties, and this predicate is required only to be refiexiv
and symmetric.

trait UnaryOperator[T extends UnaryOperator[T, ®], opr @]
opr O(self): T
end

A unary operatoris a prefix operator that takes one argument and returns a eéline same type. Note that is a
static parameter, used here as a “variable” name for an gpera

trait BinaryOperator[T extends BinaryOperator[T, ®], opr @]
opr ®©(self, other:T): T
end

A binary operatoris an infix operator that takes two arguments of the same tygeeturns a value of that type. Thus,
for example, any traitl’ that extendsBinaryPredicate[T, +] necessarily has an infix method for the operator
and that operator takes two operands of typpand returns a value of typ&'.

trait IdentityOperator[T extends IdentityOperator[T]]
extends { UnaryOperator[T, IDENTITY] }
opr IDENTITY(self): T = self
property V(a:T) (IDENTITY a) = a
end

The traitIdentityOperator provides a definition of the unaryDENTITY operator, which simply returns its argument.
The trait Object extendsIdentityOperator[Object], so the IDENTITY operator is defined for every type whatso-
ever. (This operator may not be terribly useful for applmas programming, but it has technical uses for specifying
contracts and algebraic properties in libraries. It is u$edexample, when defining the traRooleanAlgebra in
terms of the traifRing : because every value is its own inverse with respect to tketisiveOR” operator in a Boolean
Algebra, IDENTITY is the appropriate additive inverse operator for use wightthit Ring in this connection.)

trait ApproximatelyCommutative[T extends ApproximatelyCommutative[T, ®, =], opr ®, opr =]
extends { BinaryOperator[T, @], Reflexive[T, ~], Symmetric[T, ~] }
property V(a: T,b:T) (a ©® b) :=: (b ©® a)
end
The trait ApproximatelyCommutative requires the operatap to beapproximately commutatiyéhat is, reversing
the operands produces a result that is considered to be"elosugh” as determined by the specifiedpredicate.

trait Commutative[T extends Commutative[T, @], opr O]
extends { ApproximatelyCommutative[T, ®, =], EquivalenceRelation[T, =] }
end

252

The traitCommutative requires the operatap to becommutativethat is, reversing the operands produces an equal
result.

trait Approximately Associative[T extends ApproximatelyAssociative[T, ®,~], opr @, opr]
extends { BinaryOperator[T, @], Reflexive[T, ~], Symmetric[T, ~] }
property V(a:T,b0:T,c:T) ((a©b) ©®¢) :=: (a @ (b®¢))
end

The trait Approximately Associative requires the operatap to beapproximately associatiyéhat is, the expressions
(a®b)®c and a © (b©® ¢) always produce results that are “close enough” to each @thetetermined by the
specified~ predicate.

trait Associative[T extends Associative[T, @], opr ®]
extends { ApproximatelyAssociative[T, ®, =], EquivalenceRelation[T, =] }
end

The trait Associative requires the operatop to beassociativethat is, the expressiong © b) ® ¢ anda ® (b © ¢)
always produce equal results.

trait IdempotentBinaryOperator[T extends IdempotentBinaryOperator[T, ®], opr @]
extends { BinaryOperator[T, @], EquivalenceRelation[T, =] }
property V(a:T) (a ®a) :=:a
end

An idempotent binary operator has the property that if its akguments are the same then the result is equal to each
argument. For exampléjAX and MIN are idempotent, as are and vV applied to boolean arguments andand U
applied to sets; bu- applied to integers is not idempotent becadse 1 does not producd , and & applied to
boolean arguments is not idempotent becatise & true producesfalse. The property of idempotency is sometimes
of interest when performing reductions such H&X a; .

i«—1l:n

trait HasLeftZeroes[T extends HasLeftZeroes[T, ®, isLeftZero], opr ®, ident isLeftZero]
extends { BinaryOperator[T, ®] }
isLeftZero(): Boolean
property V(a: T,b:T) a.isLeftZero() —: ((a ©® b) = a)
end

Avalue e is aleft zerofor a binary operators if the result of ©® always equalg whenevere is the left-hand operand.
For example,—cc is a left zero for theMIN operator on floating-point values, am@FFFFFF 4 is a left zero for the
MAX operator on values of typ£32 . The purpose of this trait is to specify a method that say<ivéia given element
is a left zero for® .

trait HasRightZeroes[T extends HasRightZeroes[T, ®, isRightZero], opr ®, ident isRightZero]
extends { BinaryOperator[T, ®] }
isRightZero(): Boolean
property V(a: T,b:T) b.isRightZero() —: ((a ® b) = b)
end

A value e is aright zerofor a binary operator® if the result of © always equals whenevere is the right-hand
operand. For example-oco is a right zero (as well as a left zero) for tiNgN operator on floating-point values, and
TFFFFFFFy¢ is aright zero (as well as a left zero) for tNeX operator on values of typ#32 . By way of contrast()

is a left zero for the arithmetic shift operator on integéxg,is not a right zero. The purpose of this trait is to specify
a method that says whether a given element is a right zer@for

trait ApproximatelyLeftDistributive[T extends ApproximatelyLeftDistributive[T, ®, @, ~],

253

opr ®, opr @, opr &
extends { BinaryOperator[T, ®], BinaryOperator[T, @], Reflexive[T,], Symmetric[T, ~] }
property V(a:T,0:T,c:T) (a® (b D)) :=: ((a®b) ® (a®c))

end

The trait ApproximatelyLeftDistributive requires the operator to be approximately left distributivever the
operatord ; thatis, the expressions® (b @ ¢) and (a ® b) & (a ® ¢) always produce results that are “close enough”
to each other as determined by the specifiegredicate.

trait LeftDistributive[T extends LeftDistributive[T, ®, ®], opr ®, opr @]
extends { ApproximatelyLeftDistributive[T, ®, &, =], EquivalenceRelation[T, =] }
end

The traitLeftDistributive requires the operataop to beleft distributiveover the operator ; that is, the expressions
a® (bdc) and (a ® b) @ (a ® ¢) always produce equal results.

trait ApproximatelyRightDistributive[T extends ApproximatelyRightDistributive[T, ®, ®, ~],
opr ®, opr @, opr
extends { BinaryOperator[T, ®], BinaryOperator[T, @], Reflexive[T, ~], Symmetric[T, ~] }
property Y(a:T,0:T,c:T) ((a®b) ®c) = ((a®c)® (b®c))
end

The trait ApproximatelyRightDistributive requires the operatog to beapproximately right distributivever the
operator®d ; thatis, the expressions @ b) @ ¢ and (a ® ¢) ® (b ® ¢) always produce results that are “close enough”
to each other as determined by the specifiegbredicate.

trait RightDistributive[T extends RightDistributive[T, ®, @], opr ®, opr @]
extends { ApproximatelyRightDistributive[T, ®, ®, =], EquivalenceRelation[T, =] }
end

The traitRightDistributive requires the operatop to beright distributiveover the operatorp ; that is, the expres-
sions(a ¢ b) ® ¢ and (a ® ¢) & (b ® ¢) always produce equal results.

trait ApproximatelyDistributive[T extends ApproximatelyDistributive[T, ®, ®, ~],
opr ®, opr @, opr]
extends { ApproximatelyLeftDistributive[T, ®, $, ~],
ApproximatelyRightDistributive[T, ®, ®, ~] }
end

The trait ApproximatelyDistributive requires the operatop to be both approximately left distributive and approx-
imately right distributive over the operatay .

trait Distributive[T" extends Distributive[T, ®, @], opr ®, opr @]
extends { ApproximatelyDistributive[T, ®, ®, =], LeftDistributive[T, ®, @], RightDistributive[T, ®, ®] }
end

The trait Distributive requires the operatap to be both left distributive and right distributive over thperatord .

trait HasLeftIdentity[T extends HasLeftIdentity[T, ®], opr @]
extends { BinaryOperator[T, @], EquivalenceRelation[T, =] }
isLeftIdentity(): Boolean
property V(a: T, b:T) a.isLeftIdentity() —: ((a ® b) = b)

end

254

A value ¢ is aleft identityfor a binary operator® if the result of © always equals the right-hand operand whenever
e is the left-hand operand. For examplejs a left identity for the+ operator on integers and the empty set is a left
identity for the U operator on sets.

trait HasRightldentity[T extends HasRightIdentity[T, ®], opr @]
extends { BinaryOperator[T, @], EquivalenceRelation[T, =] }
isRightIdentity(): Boolean
property V(a:T,b:T) b.isRightIdentity() —: ((a ® b) = a)
end

A value e is aright identityfor a binary operator> if the result of © always equals the right-hand operand whenever
e is the left-hand operand. For examplejs a right identity (as well as a left identity) for the operator on integers
and the empty set is a right identity (as well as a left idghfibr the U operator on sets. By way of contrast,is a
right identity for division of rationals but not a left idetyt

value object Identity[opr @] end

trait Hasldentity[T extends HasIdentity[T, @], opr @]
extends { HasLeftIdentity[T, ®], HasRightIdentity [T, ®] }
where {T coerces Identity[®] }
property Y(a:T) (a ® Identity[®]) = a
property V(a:T) (Identity[©] ® a) =a
property V(a: T) a.isLeftIdentity() < (a = Identity[®])
property Y(a:T) a.isRightldentity() < (a = Identity[®])
end

If the same value is both a left identity and a right identity f, then it may be called simply a@dentity—in fact,
theidentity, for it is unique and may be obtained by coercingahgct nameddentity[©] to type T'.

value object ZeroJopr ®] end

trait ApproximateZeroAnnihilation] T extends ApproximateZeroAnnihilation[T, ®, ~],
opr ®, opr =
extends { BinaryOperator[T, ®], Reflexive[T, ~], Symmetric[T, ~] }
property V(a:T) (Zero[®] ® a) :~: Zero[®]
property V(a:T) (a ® Zero[®]) :~: Zero[®]
end

An operator® obeysapproximate zero annihilatioif and only if there is an element (call i) that when used as
either operand ofy causes the result to be “close enough’:t@s determined by the specified predicate. This
zero element may be obtained by coercing the object nafieed®] to type T'.

trait ZeroAnnihilation[T extends ZeroAnnihilation[T, ®], opr ®]

extends { ApproximateZeroAnnihilation[T, ®, =], EquivalenceRelation[T, =] }
end

An operator® obeyszero annihilationif and only if there is an element (call it) that when used as either operand of
® causes the result to equal (It follows that z is both a left idempotent element and a right idempotent eferfor

® . However, the traiZeroAnnihilation[7, ®] intentionally does not extend the traltkasLeftZeroes[T, ®, name]
and HasRightZeroes[T, ®, name] because there is not always a practical requirement foradstthat determine
whether any value is left idempotent or right idempotentnstimes it suffices to know only that one particular
element, produced by coercifigro[®] to type T, has that property.)

trait UnaryOperatorSubstitutionLaws[T extends UnaryOperatorSubstitutionLaws[T, ®, =],
opr ©®, opr ~]

255

extends { UnaryOperator[T, ®], BinaryPredicate[T, ~] }
property V(a:T,a":T) (a = a') —: (®a) ~ (©a’)
end

This peculiarly spiffy trait states that the unary operatoiis consistent under substitutions described by the relatio
~ (which is typically, but not always, an equivalence relajjathat is, the result produced by is unchanged if its
argument is replaced by some other value that is equivalent.

trait BinaryOperatorSubstitutionLaws[T extends BinaryOperatorSubstitutionLaws[T, ®, =],
opr ®, opr ~]
extends { BinaryOperator[T, ©], BinaryPredicate[T, ~] }
property V(a:T,a":T) (a = a') —=:V(b: T) (a ®b) ~ (' ©b)
property V(b: T,0:T) (b~¥) —:V(a:T) (a®b) ~ (a® V)
end

This equally spiffy trait states that the binary operators consistent under substitutions described by the relatio
(which is typically, but not always, an equivalence relajichat is, the result produced hy is unchanged if either
argument is replaced by some other value that is equivgleig.then easy to prove that the result is unchanged even
whenbotharguments are replaced by equivalent values.)

37.4 Monoids, Groups, Rings, and Fields

trait ApproximateMonoid[T extends ApproximateMonoid[T,®, =], opr ®, opr =]
extends { Approximately Associative[T, ®, ~], HasIdentity [T, ®] }
end

An approximate monoids a set of values with an approximately associative bingerator ©® that has an identity.
For example, floating-point multiplication has identityand is approximately associative.

trait Monoid[T extends Monoid[T, ®], opr @]
extends { ApproximateMonoid[T, ®, =], Associative[T, ®] }
end

A monoidis a set of values with an associative binary operatothat has an identity. For example, tr&tring
extendsMonoid[String, ||] where || is the string concatenation operator. Note that string atamation is associative
but not commutative and that the empty string is the iderfititystring concatenation, so coerciddentity[||,] to
type String produces the empty string.

trait ApproximateCommutativeMonoid[T extends ApproximateCommutativeMonoid[T, @, ~],
opr @, opr ~]
extends { ApproximateMonoid[T, ®, =], ApproximatelyCommutative[T, ®, ~] }
end

An approximate commutative mondaislan approximate monoid whose binary operator is also appedely com-
mutative. For example, floating-point multiplication hdeitity 1 and is approximately associative and also approx-
imately (indeed, exactly) commutative.

trait CommutativeMonoid[T extends CommutativeMonoid[T, @], opr @]
extends { ApproximateCommutativeMonoid [T, &, =], Monoid[T, ®], Commutative[T, &] }
end

A commutative monoits a monoid whose binary operator is also commutative. Famgle, the operaton on
boolean values is associative and commutative and hasdtideénte; likewise, the operatot/ on boolean values is
associative and commutative and has idenfitige .

256

trait ApproximatelyHasInverses[T extends ApproximatelyHasInverses[T, ®, @, ~],
opr ®, opr @, opr &
extends { Hasldentity [T, ®], UnaryOperator[T, @], BinaryOperator[T, @] }
property V(a:T) (a © (@ a)) :~:Identity[©]
property V(a:T) ((© a) ® a) :=:Identity[®]
property V(a:T,b:T) (a @ b) :=: (a © (@ b))
end

A set of values with a binary operatap hasapproximate inverse and only if the operator has an identity and
for every valuea there is another value’ such that the result of applying to « and a’ (in either order) is
“close enough” to the identity. The unary operatorreturns the approximate inverse of its argument; as a ookt
convenience, it may also be used as a binary operator.

trait HasInverses[T extends Haslnverses[T, ®, @], opr ®, opr @]
extends { ApproximatelyHasInverses[T, ®,®, =] }
end

A set of values with a binary operatay hasinversesf and only if the operator has an identity and for every value
a there is another value’ such that the result of applying to a and a’ (in either order) equals the identity. The
unary operatorp returns the inverse of its argument; as a notational coeweei, it may also be used as a binary
operator. A standard example is the operatoion integers; the identity i®, and the unary operator returns the
additive inverse of its argument, such that- (—a) = 0 and (—a) + a = 0. Moreover,— may be used as a binary
operator:a — b meansa + (—b).

trait ApproximateGroup[T extends ApproximateGroup[T,®,@,=~], opr ®,opr @, opr =]
extends { ApproximateMonoid[T, ®, ~], ApproximatelyHasInverses[T, ®, @, ~] }
end

An approximate groupis an approximate monoid that has approximate inverseseXxanple, a floating-point repre-
sentation of quaternions with multiplication as the binapgrator would form an approximate group.

trait Group[T extends Group[T,®, @], opr ®,opr @]
extends { ApproximateGroup[T, ®, @, =], Monoid [T, ®], HasInverses[T, ®, @] }
end

A groupis monoid that has inverses.

trait ApproximateAbelianGroup[T extends ApproximateAbelianGroup[T, &, S, ~],
opr @, opr O, opr &
extends { ApproximateGroup[T, ®, ©, ~],
ApproximateCommutativeMonoid[T, ®, ~] }
end

An approximate Abelian groujs an approximate group whose binary operator is also appedgly commutative.

trait AbelianGroup[T extends AbelianGroup[T, ®, O], opr @, opr]
extends { ApproximateAbelianGroup[T, ®, &, =],
Group[T, &,], CommutativeMonoid[T, &] }
end

An Abelian groupis group whose binary operator is also commutative. (The té&belian” is traditionally used
instead of “commutative” when discussing groups, in trébist mathematician Niels Henrik Abel.) For example, the
integers with the binary addition operater, unary negation operator , and identity0 form an Abelian group. As
another example, the boolean values with the binary exaust operator® and unary negation operat@bENTITY
form an Abelian group; the valuglse is the identity for& .

257

trait ApproximateSemiRing[T extends ApproximateSemiRing[T, &, ®, ~],
opr @, opr ®, opr &
extends { ApproximateCommutativeMonoid [T, &, ~],
ApproximateMonoid[T, ®, ~],
ApproximatelyDistributive[T, ®, ®, ~],
ApproximateZeroAnnihilation[T, ®, ~] }
property cast[T](Zero[®]) =~ cast[T](Identity[®])
end

An approximate semirings a set of values that has two binary operatersaand ® , such that (a) the values form an
approximate commutative monoid with ; (b) the values form an approximate monoid with; (c) ® is approxi-
mately distributive overp ; and (d) ® obeys approximate zero annihilation, where the zerasois the same as the
identity for & .

trait SemiRing[T extends SemiRing[T,®, ®], opr &, opr ®]
extends { ApproximateSemiRing[T, &, ®, =],
CommutativeMonoid [T, ®],
Monoid[T, ®],
Distributive[T, ®, ®],
ZeroAnnihilation[T, ®] }
end

A semiringis a set of values that has two binary operatarsand ®, such that (a) the values form a commuta-
tive monoid with @ ; (b) the values form a monoid witt ; (¢) ® is distributive over® ; and (d) ® obeys zero
annihilation, where the zero fap is the same as the identity fap .

trait ApproximateRing[T extends ApproximateRing[T,®, S, ®,~],
opr @, opr S, opr ®, opr]
extends { ApproximateAbelianGroup[7, ®, &, ~],
ApproximateSemiRing[T, ®, ®, ~] }
end

An approximate ringis an approximate semiring that also has a unary operatdhat returns inverses for the
operator so that the values form an approximate group &itand © .

trait Ring[T extends Ring[T,®, O,)], opr &, opr &, opr ®]
extends { ApproximateRing[T, ®, o, ®, =],
AbelianGroup[T, @, O],
SemiRing[T, &, ®] }
end

A ring is a semiring that also has a unary operatothat returns inverses for the operator so that the values form
agroup with@ ando.

trait ApproximateCommutativeRing[T extends ApproximateCommutativeRing[T,®, O, ®,~],
opr @, opr &, opr &, opr &
extends { ApproximateRing[T, ®, ©, ®, ~],
ApproximatelyCommutative[T, ®, =] }
end

An approximate commutative rinig an approximate ring for which the binary operater is also approximately
commutative.

trait CommutativeRing[7T extends CommutativeRing[T, ®, S, ®],
opr @, opr S, opr Q]

258

extends { ApproximateCommutativeRing[T, ®, ©, ®, =],
Ring[T, &, ©, ®],
Commutative[T, ®] }
end

A commutative rings a ring for which the binary operatap is also commutative.

trait ApproximateDivisionRing[T extends ApproximateDivisionRing[T,U, @, 6, ®, @, ~],
U extends T,
opr @, opr ©, opr ®, opr @, opr]
extends { ApproximateRing[T, ®, &, ®, &,
ApproximateGroup[U, ®, @, =] }
property — instanceOf [U](cast[T](Zero[®]))
property V(a:T) a # Zero[®] — instanceOf [U](a)

An approximate division rings an approximate ring for which the binary operatoralso has approximate inverses,
so that the values other than the zerasofform an approximate group witty and ©.

trait DivisionRing[T extends DivisionRing[T,U, ®, O, ®, @],
U extends T,
opr @, opr ©, opr ®, opr Q]
extends { ApproximateDivisionRing[T, U, ®, 0, ®, ®, =],
Ring[T, ®, 5, ®],
Group[U, ®, @] }

end

A division ringis a ring for which the binary operatap also has inverses, so that the values other than the zexo of
form a group with® and © .

trait ApproximateField[T extends ApproximateField[T,U,®,o,®,®,~],
U extends T,
opr @, opr ©, opr ®, opr @, opr]
extends { ApproximateCommutativeRing[T, ®, &, ®, ~],
ApproximateDivisionRing[T, U, &, 5, ®, @, ~] }
end

An approximate fields an approximate commutative ring that is also an approv@mi@ision ring: the binary operator
® is approximately commutative and also has approximateseg so that the values other than the zer@diorm
an approximate Abelian group wit®h and ©.

trait Field[T extends Field[T,U,®,S,®,],U extends T,opr &, opr S, opr ®, opr O]
extends { ApproximateField[T, U, ®, 0, ®, @, =],
CommutativeRing[[T, ®, ©, @],
DivisionRing[T, U, ®, 0, ®, 2] }
end

A field is a commutative ring that is also a division ring: the binapgrator® is commutative and also has inverses,
so that the values other than the zerosofform an Abelian group withe and @ .

37.5 Boolean Algebras

value object ComplementBound[opr @] end
trait HasComplements[T extends HasComplements[T, ®, ~], opr ®, opr ~]

259

extends { BinaryOperator[T, ®], UnaryOperator[T, ~], EquivalenceRelation[7T, =] }
where { T coerces ComplementBound[©®] }
property V(a:T) (a ® (~ a)) :=: ComplementBound[®]
end

A set of values with a binary operatoy hascomplement# and only if there is a specific value such that for every
value a there is another value’ such that the result of applying to ¢ and a’ (in either order) equals the specified
value e. This value may be obtained by coercing the object nafiedhplementBound[®] to type T'. The unary
operator~ returns the complement of its argument with respect to tlegaipr © .

Note that the trailasComplements is similar to the traitHasInverses, but HasComplements does not require that
that specified element be an identity of the binary operator.

trait DeMorgan[T extends DeMorgan[T, A, Y, ~], opr A,opr Y, opr ~]
extends { BinaryOperator[T, A], BinaryOperator[T, Y],
UnaryOperator[T, ~], EquivalenceRelation[T, =] }
property V(a: T,b:T) (~ (a Y b)) :=:((~ a) A (~ D))

end

This trait expresses De Morgan'’s law for two binary opemtar and Y and a unary operatox : the expressions
~ (a Y b) and (~ a) A (~ b) produce equal results.

trait BooleanAlgebra[T extends BooleanAlgebra[T, A, Y, ~,V],opr A,opr Y,opr ~,opr V]
extends { Commutative[T, A], Associative[T, A],
Commutative[T, Y], Associative[T, Y],
IdempotentBinaryOperator[T, A],
IdempotentBinaryOperator [T, Y],
Hasldentity [T, A], HasIdentity [T, Y],
HasComplements[T, Y, ~], HasComplements[T, A, ~],
Distributive[T, A, Y], Distributive[T, ¥, A],
DeMorgan[T, A, Y, ~], DeMorgan[T, Y, A, ~],
Ring[T, v, IDENTITY, A] }
property V(a:T) (~ (~ a)):=: a
opr V(self, other:T):T = (self A (~ other)) Y ((~ self) A other)
property cast[T](Identity[V]) = cast[T](Identity[Y])
property cast[T](ComplementBound[A]) = cast[T] (Identity[Y])
property cast[T](ComplementBound[Y]) = cast[T] (Identity[A])
end

A boolean algebras an algebraic structure consisting of a set of valuesethimeary operatorst., Y, andV, and a
unary operator~, such that the operators obey a number of specific properties

e .\ is commutative, associative, and idempotent, and has ae@mndgntity
e Y is commutative, associative, and idempotent, and has a@migntity
e A has complements with respectto

e Y has complements with respectto

e . and Y distribute over each other

e De Morgan’s law applies to., Y, and ~, and also toy, A, and~

e The values form a ring with/ as the addition operatoLDENTITY as the additive inverse operator, andas
the multiplication operator

260

A default definition is provided for the/ operator in terms of\, Y, and ~.

The typeBoolean is the most familiar example of a boolean algebra. The poetofka set (that is, the set of all
subsets of the set) also forms a boolean algebra with opsratou, set complement, and symmetric set difference;
the empty set is the identity fap, and the original set is the identity fon.

261

Chapter 38

Numbers

38.1 The Trait Fortress.Standard.RationalQuantity

The standard types for rational numbers suctpaand Q* and Qﬁ are defined in terms of a single traittionalQuantity
that handles dimensions and units as well as performingeaaraysis to distinguish rather a particular expression is
guaranteed not to produce infinitie®/0 , or numbers of a particular sign.

The traitRationalQuantity takes seven static parameters; the first is a dimensionalamnd the others are booleans
specifying whether an instance of the trait can possibly-fae , a finite rational less than zero, zero, a finite rational
greater than zero4oo, or 0/0. This allows the standard rational types to be represerstéallaws:

type Q = RationalQuantity [dimensionless, false, true, true, true, false, false]
type Q« = RationalQuantity [dimensionless, false, true, false, false, false, false]
type Q< = RationalQuantity [dimensionless, false, true, true, false, false, false]
type Q> = RationalQuantity[dimensionless, false, false, true, true, false, false]
type Q- = RationalQuantity[dimensionless, false, false, false, true, false, false]
type Qx = RationalQuantity [dimensionless, false, true, false, true, false, false]
type Q* = RationalQuantity[dimensionless, true, true, true, true, true, false]
type Qf = RationalQuantity[dimensionless, true, true, false, false, false, false]
type Q% = RationalQuantity[dimensionless, true, true, true, false, false, false]
type Qi = RationalQuantity [dimensionless, false, false, true, true, true, false]
type Qi = RationalQuantity [dimensionless, false, false, false, true, true, false]
type Q; = RationalQuantity [dimensionless, true, true, false, true, true, false]
type Q% = RationalQuantity [dimensionless, true, true, true, true, true, true
type Qﬁ = RationalQuantity [dimensionless, true, true, false, false, false, true]
type Qﬁ = RationalQuantity [dimensionless, true, true, true, false, false, true]
type Qf = RationalQuantity [dimensionless, false, false, true, true, true, true]
type Qf = RationalQuantity [dimensionless, false, false, false, true, true, true]
type Qj: = RationalQuantity [dimensionless, true, true, false, true, true, true]

Here is the detailed description &fationalQuantity, showing the details of the type calculations:

262

trait RationalQuantity[unit U absorbs unit,bool ninf,bool It,bool eq,bool gt,bool pinf,bool nan]
extends { RationalQuantity[U, ninf’, It', eq’, gt’, pinf’, nan']
where {bool ninf’ ,bool It',bool eq’,bool gt’,bool pinf’ bool nan’,
ninf — ninf’, It — It', eq — eq’, gt — gt', pinf — pinf’, nan — nan'},
Field] RationalQuantity [U, ninf, It, eq, gt, pinf, nan],

RationalQuantity [U, ninf, It, false, gt, pinf, nan],+,—, -, /]
where { It A eq A gt A —ninf A —pinf A —nan,U = dimensionless },
Field[RationalQuantity [U, ninf, It, eq, gt, pinf, nan],

RationalQuantity[U, ninf, lt, false, gt, pinf, nan], +, —, X, /]
where { It A eq A\ gt A\ —ninf A —pinf A —nan,U = dimensionless },
Field] RationalQuantity [U, ninf, It, eq, gt, pinf, nan],

RationalQuantity [U, ninf, It, false, gt, pinf, nan], 4+, —, juxtaposition, /]
where { It A eq A gt A —ninf A —pinf A —nan,U = dimensionless },
AbelianGroup[RationalQuantity[U, ninf, it, eq, gt, pinf, nan], +, =],
TotalOrderOperators[RationalQuantity [U, ninf, Iit, eq, gt, pinf, nan], <, <,>, >, CMP]
where { —nan } }

where { ninf VIt V eqV gtV pinf V nan }
coercion (_: Identity[+]) = 0
coercion (_:Identity[-]) =1
coercion (_: Identity[x]) =1
coercion (_: Identity[juxtaposition]) =1
coercion (_: Zero[x]) =0
coercion (x: IntegerQuantity[U, ninf, It, eq, gt, pinf, nan])
opr juxtaposition [unit U’,bool ninf’ bool It',bool eq’,bool gt',bool pinf’ ,bool nan']
(self, other: RationalQuantity [U’, ninf’, It’, eq’, gt', pinf’, nan']) :
RationalQuantity [U U’,
ninf A pinf' V ninf A gt’ VIt A pinf' V pinf A ninf’ v pinf AtV gt A ninf’,
ItA gt Vgt AL,
eq A (It'Veq' vV gt') v (It Veq V gt) A eq,
AUV gt A gt
ninf A ninf’ V ninf A ItV It A ninf' v pinf A pinf’ V pinf A gt' v gt A pinf’,
nan \V nan’ V ninf A eq' V pinf A eq’ V eq A ninf' V eq A pinf’]
opr +(self): RationalQuantity[U, ninf, lt, eq, gt, pinf, nan]
opr +[bool ninf’ bool It',;bool eq’,bool gt',bool inf’ bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt', pinf’, nan']):
RationalQuantity[U,
ninf A (ninf' V It' V eq' vV gt') vV (ninf V It V eq V gt) A ninf’,
AV eqd Vgt')Vv(ItVegVgt) Al
ItAgt'VegNeq Vgt
gt AN(It'Veqg' vV gt') vV (It VeqV gt) A gt',
pinf A (It'V eq' V gt' v pinf') v (It V eq V gt V pinf) A pinf’,
nan \V nan' V ninf A pinf’ v pinf A ninf’]
opr —(self): RationalQuantity[U, pinf, gt, eq, lt, ninf, nan]
opr —[bool ninf’,bool It',;bool eq’,bool gt',bool pinf’ bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt', pinf’, nan']):
RationalQuantity[U,
ninf A (It' V eq' Vv gt' v pinf') V (ninf V It V eq V gt) A pinf’,
A Veq VgtV (ItVegV gt)A gt
IEAW Vegneqd VgtA gt
gt A(It' vV eq vV gt') Vv (It VeqV gt) NIt
pinf A (ninf VIt'Veq Vv gt') v (It V eq V gt V pinf) A ninf’,
nan \V nan’ vV ninf A ninf’ V pinf A pinf’]

263

opr -[unit U’,bool ninf’,bool It';bool eq’,bool gt’,bool pinf’ bool nan’]
(self, other: RationalQuantity [U’, ninf’, It', eq’, gt', pinf’, nan']) :
RationalQuantity[U U’,
ninf A pinf' vV ninf A gt’ V It A pinf’ V pinf A ninf’ V pinf AtV gt A ninf’,
LA gtV gt NI,
eq A (It'Veqg' vV gt') v (It VeqV gt) A eq,
ALV gt A gt',
ninf A nanf’ V ninf A ItV It A ninf’ v pinf A pi?/lf/ V pinf A gt’ V gt A pinf’,
nan V nan’ V ninf A eq’ V pinf A eq’ V eq A ninf’ V eq A pinf’]
opr /(self): RationalQuantity[1/U, eq, lt, ninf V pinf, gt, eq, nan]
opr /[unit U’,bool ninf’,bool It',bool eq’,bool gt’',bool pinf’ bool nan']
(self, other: RationalQuantity [U’, ninf’, It', eq’, gt’, pinf’, nan']) :
RationalQuantity[U/U’,
ninf A eq’ V mn/f Agt' VIt Aeq V pinf ANt
tAgt'Vvgt NI,
eq N (/lt/ V gt') \// (It Veq V gt) A (ninf' V pinf')’,
NIV gt A gt
ninf AUtV pinf A eq’ V pinf A gt’ V gt A eq’,
nan V nan’ vV (ninf V pinf) A (ninf' V pinf') V eq A eq']
opr <[bool ninf’,bool It',bool eq’,bool gt ,bool pinf’ bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt’, pinf’, nan’]): Boolean
opr <[bool ninf’,bool It',;bool eq’,bool gt’',bool pinf’ bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt’, pinf’, nan']): Boolean
opr =[bool ninf’ bool It',;bool eq’,bool gt',bool pinf’,bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt', pinf’, nan']): Boolean
opr >[bool ninf’,bool It',bool eq’,bool gt',bool pinf’ bool nan']
(self, other: RationalQuantity[U, ninf’, It', eq’, gt’, pinf’, nan’]): Boolean
opr >[bool ninf’,bool It',;bool eq’,bool gt',bool pinf’ bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt’, pinf’, nan']): Boolean
opr CMP[bool ninf’,bool It',bool eq’,bool gt',bool pinf']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt', pinf’, false]): TotalComparison
opr CMP[bool ninf’ bool It',bool eq’,bool gt',bool pinf']
(self, other: RationalQuantity [U, ninf’, lt', eq’, gt', pinf’, true]): Comparison
opr MAX[bool minf’ ,bool It',bool eq’,bool gt',bool pinf’ bool nan’]
(self, other: RationalQuantity [U, ninf’, It', eq’, gt', pinf’, nan']):
RationalQuantity[U,
ninf A ninf’,
It A (ninf' VvV It')V (ninf V Iit) NIt
eq A (ninf' vV 1t' v eq’) vV (ninf V It V eq) A eq',
gt A (ninf' vV It' v eq vV gt') v (ninf VIt V eq V gt) A gt’,
pinf A (ninf' vV It' v eq’ vV gt' Vv pinf') V (ninf V It V eq V gt V pinf) A pinf’,
nan V nan']
opr MIN[bool ninf’ bool It',bool eq’,bool gt',bool pinf’,bool nan']
(self, other: RationalQuantity [U, ninf’, lt', eq’, gt’, pinf’, nan']) :
RationalQuantity [U,
ninf A (ninf' vV It' V eq' v gt' V pinf') vV (ninf V It V eq V gt V pinf) A ninf’,
AtV eq Vv gt' v pinf') vV (It V eqV gtV pinf) NIt
eq A (eq’ vV gt' v pinf') V (eq V gt V pinf) A eq’,
gt A (gt" v pinf") V (gt V pinf) A gt',
pinf A pinf’,
nan V nan']
opr MAXNUM[bool ninf’,bool It',bool eq’,bool gt',bool pinf’,bool nan']

264

(self, other: RationalQuantity [U, ninf’, lt', eq’, gt’, pinf’, nan']) :
RationalQuantity[U,
ninf A (nan’ V ninf') V (nan V ninf) A ninf’,
It A (nan' v ninf' vV Iit') V (nan V ninf V It) A It
eq A (nan’ V ninf' vV It' V eq') V (nan V ninf V It V eq) A eq’,
gt A (nan’ V ninf' vV Iit' vV eq' V gt') V (nan V ninf VItV eq V gt) A gt’,
pinf A(nan’ v ninf' vV It' v eq’ v gt' Vv pinf")Vv
(nan V ninf VItV eq V gt V pinf) A pinf’,
nan A nan']
opr MINNUM[bool ninf’,bool It',bool eq’,bool gt',bool pinf’ ,bool nan']
(self, other: RationalQuantity [U, ninf’, It', eq’, gt’, pinf’, nan']) :
RationalQuantity[U,
ninf AN(ninf' vV It' vV eq’ v gt' v pinf’ V nan’)Vv
(ninf V It V eq \V gt V pinf V nan) A ninf’,
AtV eq Vv gt' Vv pinf' vV nan') Vv (It V eq V gt V pinf V nan) A It
eq A (eq’ Vv gt' v pinf' V nan’) V (eq V gt V pinf V nan) A eq’,
gt A (gt' Vv pinf’ V nan’) V (gt V pinf V nan) A gt’,
pinf A (pinf’ vV nan’) V (pinf V nan) A pinf’,
nan A nan']
opr |self|: RationalQuantity[U, false, false, eq, It \/ gt, ninf V pinf, nan]
signum(self): RationalQuantity [U, false, It, eq, gt, false, nan]
numerator(self): IntegerQuantity[U, false, ninf V It, eq, gt VV pinf, false, nan]
denominator(self): IntegerQuantity[dimensionless, false, false, ninf V pinf, It V eq V gt, false, nan]
floor(self): IntegerQuantity [U, ninf, It, eq V gt, gt, pinf, nan]
opr |self|: IntegerQuantity [U, ninf, lt, eq V gt, gt, pinf, nan]
ceiling(self): IntegerQuantity[U, ninf, It, It V eq, gt, pinf, nan]
opr [self]: IntegerQuantity [U, ninf, lt, L V eq, gt, pinf, nan]
round(self): IntegerQuantity [U, ninf, It, It \V eq V gt, gt, pinf, nan]
truncate(self): IntegerQuantity [U, ninf, lt, It V eq V gt, gt, pinf, nan]
realpart(self): RationalQuantity [U, ninf, It, eq, gt, pinf, nan]
imagpart(self): RationalQuantity [U, false, false, true, false, false, nan]
check(self): Q throws CastException
check™ (self): Q* throws CastException

check (self): Q< throws CastException
check<(self): Q< throws CastException
check>(self): Q> throws CastException
check~ (self): Qs throws CastException
check(self): Q4 throws CastException
check’ (self): Q% throws CastException
check (self): Q% throws CastException
check (self): Q% throws CastException
check? (self): Q% throws CastException
check’(self): Qy throws CastException
check™ (self): Q¥ throws CastException
check™ (self): Q% throws CastException
checkf(self) Qf throws CastException
checkf(self) Qf throws CastException
checki(self) sz throws CastException
end

For descriptions of the methods, see Sedtion|25.1.

265

38.2 The Trait Fortress.Standard.TotalComparison

The comparison operataMP, when applied to values belonging to a total order, typycegturns a value of type
TotalComparison. The three values of typ€otalComparison are calledLessThan, EqualTo, and GreaterThan.

This trait supports an associative operat@XIC0 that is useful for supporting lexicographic comparison iafeved
sequences; the trick is to compare the sequences elemeranisthen to use theREXICO operator to reduce the
sequence of comparison results. Note thgtialTo is the identity forLEXICO, and all other comparison values are
left zeroes forLEXICO.

value trait TotalComparison
extends { Comparison,
Associative[TotalComparison, LEXICQ],
HasIdentity[TotalComparison, LEXICO],
HasLeftZeroes[TotalComparison, LEXICO, isLeftZeroForLEXICO] }
comprises { LessThan, EqualTo, GreaterThan }
opr LEXICO(self, other: TotalComparison): TotalComparison
isLeftZeroForLEXICO(self): Boolean
opr =(self, other: TotalComparison): Boolean
getter hashCode(): 264
toString(): String
end

LessThan: TotalComparison
EqualTo: Total Comparison
GreaterThan: TotalComparison

38.2.1 opr LEXICO(self, other: TotalComparison): TotalComparison

The operatorLEXICO returns its right argument if the left argumentiigual To; otherwise it returns its left argument.
The LEXICO operator as applied to total comparison values may be desthy this table:

LEXICO ‘ LessThan EqualTo GreaterThan
LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan

GreaterThan | GreaterThan GreaterThan GreaterThan

38.2.2 isLeftZeroForLEXICO(self): Boolean

This method returngalse for EqualTo and true for all other total comparison values.

38.2.3 opr =(self, other: TotalComparison): Boolean

Two total comparison values are strictly equivalent if antydf they are the same.

266

38.2.4 getter hashCode(): Z64

38.2.5 toString(): String

The toString method returns eitherLessThan ” or “EqualTo " or “GreaterThan " as appropriate.

38.3 Top-level Total Comparison Values

38.3.1 LessThan: TotalComparison
38.3.2 EqualTo: TotalComparison
38.3.3 GreaterThan: Total Comparison

The immutable variable&essThan, EqualTo, and GreaterThan have as their values the three total comparison
values that respectively signify whether a left-hand corapd is less than, equal to, or greater than a right-hand
comparand. They are top-level variables declared in thedss standard libraries.

38.4 The Trait Fortress.Standard.Comparison

When the comparison operatOFP is applied to values belonging to a partial order, rathen théotal order, it typi-
cally returns a value of typ€omparison, which includes the three valuégssThan, EqualTo, and GreaterThan
of type TotalComparison and also a fourth valudJnordered.

This trait, like trait TotalComparison, supports an associative operatcXIC0 that is useful for supporting lexi-
cographic comparison of ordered sequences; the trick isrtgpare the sequences elementwise and then to use the
LEXICO operator to reduce the sequence of comparison results. thittEqualTo is the identity for LEXICO, and

all other comparison values are left zeroesf@XICO.

value trait Comparison
extends { IdentityEquality[Comparison],
Associative[Comparison, LEXICO],
HasIdentity[Comparison, LEXICO],
HasLeftZeroes[Comparison, LEXICO, isLeftZeroForLEXICO] }
comprises { TotalComparison, Unordered }
opr LEXICO(self, other: Comparison): Comparison
isLeftZeroForLEXICO(self): Boolean
opr =(self, other: Comparison): Boolean
getter hashCode(): Z64
toString(): String
end

Unordered: Comparison

267

38.4.1 opr LEXICO(self, other: Comparison): Comparison

The operatoLEXICO returns its right argument if the left argumentiigual To; otherwise it returns its left argument.
The LEXICO operator as applied to comparison values may be describtdsoyable:

LEXICO | LessThan EqualTo GreaterThan Unordered
LessThan LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan Unordered

GreaterThan | GreaterThan GreaterThan GreaterThan GreaterThan
Unordered Unordered Unordered Unordered Unordered

38.4.2 isLeftZeroForLEXICO(self): Boolean

This method returngalse for EqualTo and true for all other comparison values.

38.4.3 opr =(self, other: Comparison): Boolean

Two comparison values are strictly equivalent if and onlyhdy are the same.
38.4.4 getter hashCode(): Z64

38.4.5 toString(): String

The toString method returns eitherLessThan ” or “EqualTo ” or “GreaterThan ” or “Unordered " as
appropriate.

38.5 Top-level Comparison Value

38.5.1 Unordered: Comparison

The immutable variabldJnordered has as its value the comparison value that signifies that tmaparands are
unordered. It is a top-level variable declared in the Fegigtandard libraries.

268

Chapter 39

Components and APIs

We define a speciakortress.Components API that provides handles on components and APIs, and opesabn
them, for use by components themselves (e.g., developmenbements), allowing components to build and maintain
other components, manipulate projects and componentged®lcompile projects into components, link components
together, deploy components on specific sites over theniateetc. This API is also used by thépgradable and
Installable APls. A component implementing this APl is installed alonighwhe Fortress standard libraries on every
fortress.

Note thatComponents andApis can be constructed only from the factory functions prayidghe APIl. The compo-
nents and APIs so constructed are also installed and abkegs getComponent, preferences (which returns a list

of components implementing a given API, in order of prefeednandgetA PI. Calling preferences on an APl in the
Fortress standard libraries returns a non-empty list offmmments. In particularpreferences(Fortress.Components)
returns a non-empty list whose first element is the very carapbon which the call tgreferences was made. Con-
ceptually, this component serves as a handle on the englémmiimess, which might be necessary for the purposes of
certain development tools.

The operations on a fortress provided in this API take coreptsiand APIs as arguments directly, rather than names
of components and APIs as the corresponding shell opesatimndescribed. This decision is done for the sake of
convenience. Note, however, that a component name may barréton a fortress, or even uninstalled, while some
process keeps a reference to a correspondifignponent object. This possibility is not problematic because the
component corresponding to this object may be simply keghbyfortress until the object is freed jin Also, note
thatupgrade operations on a compound component are purely functiohey: produce new compound components
as a result. Thus, the structure of a component as viewedghraComponent object does not became stale in the
face of upgrades.

We include a methodetSourceFile on components that returns the source file the component evapiled from.
Source files can be included with simple components duringpdlation as a compiler option. Doing so allows
development tools such as graphical debuggers to easijijaglishe locations of errors without the possibility that
source code would not be synchronized with compiled codeaashappen in conventional programming models
where compiled code is stored in nonencapsulated objest file

api Fortress.Components
import File from Fortress.10
import { List, Set, Date } from Fortress.Util

trait Fortress
fortressName: Name
birthDate: Date
getComponent(componentName: Name): Component

269

getAPI (apiName: Name): Api

preferences(ofAPI: Api): (Component)

compile(file: File): SimpleComponent

install(file: File): Component

install(file: File, preregs: Set[Api]): Component
upgradeAll(componentName: Name, that: Component): ()

isValidLink (constituents: (Component), exports = Set[Api], hide = Set[Api]): Boolean

link (result: Name, constituents: (Component), exports = Set[Api], hide = Set[Api]): Component
requires isValidLink (constituents, exports, hide)
end

object EnclosingFortress extends { Fortress } end

trait FortressElement
elementName: Name
vendor: String
owner: Fortress
timeStamp: Date
version: Version
uninstall(): ()

end

trait Component extends FortressElement
imports: Set[Api]
exports: Set[Api]
provides: Set[Api]
visibles: Set[Api]
constituents: Set[Component]
run(args: String . . .): ()
constrain(destination: Name, apis: Set[Api]): Component
hide(destination: Name, apis: Set[Api]): Component
extract(preregs: Set[Api]): File
isValidUpgrade(that: Component): Boolean
abstract upgrade(result: Name, that: Component): Component
requires self.isValidUpgrade(that)
sourcelsAvailable: Boolean
getSourceFile(): File
requires sourcelsAvailable
runTests(inclusive = Boolean): ()
end

trait Api extends FortressElement
uses: Set[Api]
extraction: File

end

trait Name end
trait SimpleComponent extends Component end

trait Version
major: N
minor: N
end

end

270

Chapter 40

Memory Sequences and Binary Words

These are the lowest-level data structures in Fortressy which all others are built. Even such conceptually “primi-
tive” data types a& and Z32 and R64 are defined in terms of memory sequences and binary words.

Consider, for example, the typd&inaryWord[6], Z64, and N64 . All three may be regarded as 64-bit data objects.
However, Z64 causes the operater. to compare 64-bit words as two’s-complement signed integé64 causes
the operator< to compare 64-bit words as unsigned integers, BigaryWord[6] does not support the operator
< at all—instead it has two methods namegned LT and unsignedLT (which are, of course, conveniently used
to implement the operatox for Z64 and N64). Moreover, Z64 and N64 support units and dimensions, but
BinaryWord values do not. The parameterized typimary Word provides methods that are only a modest abstraction
of operations supported by typical hardware instructids aad serves as the lowest-level substrate that allows type
such asZ64 to be defined by libraries coded entirely in Fortress.

Similarly, the parameterized traifsnearSequence and HeapSequence describe the lowest-level data structures that
are array-like or vector-like, capable of little more thameedimensional indexing. They serve as the lowest-level
substrate that allows the complete distributed and miuttiedsional array types to be defined by libraries coded
entirely in Fortress.

For convenience, we use the tehimary linear sequenct refer to a linear sequence of binary words, and the term
binary heap sequende refer to a heap sequence of binary words.

type BinaryLinearSequence[nat b, nat n] = LinearSequence[BinaryWord[b], n]
type BinaryHeapSequence[nat b] = HeapSequence[Binary Word[b]]

Most operations on binary words do not dependeodiannessthat is, in which order the bits are numbered. For
operations that do depend on endianness, the parameteaidginaryEndianWord is provided.

It is also sometimes desirable to perform endianness-digmtioperations on a linear sequence of binary words. For
this purpose the specialized parameterized tfiitgry LinearEndianSequence and BinaryEndianLinearEndianSequence
are provided; the former hd3inaryWord values as elements, and the latter BasaryFEndianWord values as ele-
ments.

271

40.1 The Trait Fortress.Core.LinearSequence

A value of type LinearSequence[T, n] is a sequence of, things of type T, wheren may be any natural number.
Note that its length is statically fixed and may be describgd ktatic expression. The general intent is that such a
sequence will reside in a contiguous region of memory, gihidelonging to a single processor or processor node,
and that any element (indicated by an integer index) maytobée or updated quickly by that processor or processor
node.

If T is not a value type, thef.inearSequence[T,n] describes a sequence of references, and a variable of type
LinearSequence[T, n] occupies an amount of storage equalitdimes the amount of storage required to hold a
reference. IfT is a value type, thef.inearSequence[T', n] describes a sequence of “unboxed” values, and a variable
of type LinearSequence[T,n] occupies an amount of storage equaktdimes the amount of storage required to
hold one value of typel".

Linear sequences, unlike arrays, are not too fancy. The thaigs you can do with linear sequences are subscripting
and subscripted assignment, as well as assignment of eatjteences. They also support the concatenation operator
|| . For example:

x: LinearSequence[Thread, 3]
y: LinearSequence[Thread, 6]
z: LinearSequence[Thread, 5] = z||y[3# 2]

Note in this example that the lengths are statically chelekalhe range3 # 2 is a range of constant size 2, g8 # 2]
is known to be of typeLinearSequence[Thread, 2] . Indeed, only ranges of static size with element typéexInt
may be used to subscript a linear sequence.

value trait LinearSequence[T" extends Object, nat n] comprises {}
coercion [nat b,bool bigEndianSequence]
(z: BinaryLinearEndianSequence[b, n, bigEndianSequence])
where { T extends BinaryWord[b] }
coercion [nat b,bool bigEndianBytes,bool bigEndianBits, bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }
coercion [nat b, bool bigEndianBytes,bool bigEndianBits,bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where { T extends BinaryWord[b] }
opr [j: IndexInt]: T throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]]: T where {k <n}
opr [nat m][r: RangeOfStaticSize[IndexInt, m]]: LinearSequence[T, m]
throws { IndexOutOfBoundsException } where {m <n}
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]]: LinearSequence[T’, m]
where {0<a<n,0<a+m-c<n}
opr [j: IndexInt] := (v: T'): LinearSequence[T, n] throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] := (v:T'): LinearSequence[T, n] where { k < n }
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: LinearSequence[T, m]):
LinearSequence[T, n]
throws { IndexOutOfBoundsException } where {m <n}
opr [int a,nat m, int c]|[r: StaticRange[a, m, ¢]] := (v: LinearSequence[T, m]):
LinearSequence[T, n]
where {0<a<n,0<a+m-c<n}
update(j: IndexInt, v: T'): LinearSequence[T, n] throws { IndexOutOfBoundsException }

272

update[nat k] (j: IntegerStatic[k], v: T'): LinearSequence[T, n] where { k < n }
update[nat m](r: RangeOfStaticSize[IndexInt, m], v: LinearSequence[T, m]):
LinearSequence[T, n]
throws { IndexOutOfBoundsException } where {m <n}
update[int a,nat m, int c](r: StaticRange[a, m, c]|, v: LinearSequence[T, m]):
LinearSequence[T, n]
where {0<a<n,0<a+m-c<n}
opr || [nat m](self, other: LinearSequence[T, m]): LinearSequence[T, n + m]
getter reverse(): LinearSequence[T, n]
getter littleEndian[nat b](): BinaryLinearEndianSequence[b, n, false]
where { T extends BinaryWord[b] }
getter bigFndian[nat b](): BinaryLinearEndianSequence[b, n, true]
where { T extends BinaryWord[b] }
getter littleEndian[nat b, bool bigEndianBytes, bool bigEndianBits]():
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits, n, false]
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }
getter bigFndian[nat b, bool bigEndianBytes, bool bigEndianBits]():
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits, n, true]
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }
end

40.1.1 coercion [nat b, bool bigEndianSequence]
(z: BinaryLinearEndianSequence[b, n, bigEndianSequence])
where { T extends BinaryWord[b] }
40.1.2 coercion [nat b,bool bigEndianBytes,bool bigEndianBits,bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }

Any binary linear endian sequence may be coerced to an eydbiaary linear sequence of corresponding element
type. The bit values remain the same; all that is lost is tlitegmess information of the sequence in the static type.

40.1.3 coercion [nat b, bool bigEndianBytes,bool bigEndianBits,bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where { T extends BinaryWord[b] }

A binary linear endian sequence of binary endian words magdegced to an ordinary binary linear sequence of
ordinary binary words. The bit values remain the same; ait tb lost is the endianness information of both the
sequence and the elements.

273

40.1.4 opr [j: IndexInt): T throws { IndexOutOfBoundsException }
40.1.5 opr [nat k][j: IntegerStatic[k]]: T where {k <n}

Subscripting returns elemeptof this linear sequence. Indexing is zero-origin;ladexOutOfBoundsException is
thrown unless) < j < n, wheren is the length of the linear sequence. If the subscript isticsgtapression, then its
validity is checked statically, and no exception will ocetirun time.

40.1.6 opr [nat m][r: RangeOfStaticSize[IndexInt, m]]: LinearSequence[T’, m]
throws { IndexOutOfBoundsException } where {m < n}

40.1.7 opr [int a,nat m, int c][r: StaticRange[a, m, c]]: LinearSequence[T’, m]
where {0<a<n,0<a+m-c<n}

Subscripting with a range of static size returns the indicated subsequence of this linear sequérdexing is zero-
origin; anIndexOutOfBoundsException is thrown unless: C 0# n, wheren is the length of the linear sequence.
If the subscript is a static range, then its validity is chegtktatically, and no exception will occur at run time. Ele-
ment k of the result sequence is the same as elemdnterBound + k x r.stride of this linear sequence, for all
0<k<m.

40.1.8 opr [j: IndexInt] := (v: T): LinearSequence[T, n] throws { IndexOutOfBoundsException }
40.1.9 opr [nat k][j: IntegerStatic[k]] := (v:T): LinearSequence[T, n] where { k < n }

After subscripted value object assignment, elemenof the subscripted variable is the same as the given value
and all other elements are the same as before. Indexingdsozigyin; anIndexOutOfBoundsException is thrown
unlessO < j < n, wheren is the length of the linear sequence. If the subscript isticstapression, then its validity
is checked statically, and no exception will occur at ruretim

40.1.10 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: LinearSequence[T, m]):
LinearSequence[T, n]
throws { IndexOutOfBoundsException } where {m <n}

40.1.11 opr [int a,nat m, int ¢][r: StaticRange[a, m, c]] := (v: LinearSequence[T, m]):
LinearSequence[T, n]
where {0<a<n,0<a+m-c<n}

After subscripted value object assignment, elements otitscripted variable selected byare the same as corre-

sponding elements af, and all other elements are the same as before; specifiglgligentr. lowerBound + k x r.stride

of the updated variable is the same as elemtenit v, for all 0 < k£ < m. Indexing is zero-origin; aindexOutOfBoundsException
is thrown unlessr C 0#n, wheren is the length of the linear sequence. If the subscript is icstange, then its

validity is checked statically, and no exception will ocetirun time.

274

40.1.12 wupdate(j: IndexInt, v: T): LinearSequence[T, n] throws { IndexOutOfBoundsException }
40.1.13 update[nat k](j: IntegerStatic[k], v: T): LinearSequence[T, n] where { k < n }

This is a functional version of subscripted value objectgsaent: elemenj of the result is the same as the given
value v, and all other elements are the same as before. Indexingasorigin; anIndexOutOfBoundsException is
thrown unless) < j < n, wheren is the length of the linear sequence. If the subscript isticsgtapression, then its
validity is checked statically, and no exception will ocetirun time.

40.1.14 wupdate[nat m](r: RangeOfStaticSize[IndexInt, m], v: LinearSequence[T, m]):
LinearSequence[T, n]
throws { IndexOutOfBoundsException } where {m <n}

40.1.15 wupdate[int a,nat m,int c](r: StaticRange[a, m, c]), v: LinearSequence[T, m]):
LinearSequence[T, n]
where {0<a<n,0<a+m-c<n}

This is a functional version of subscripted value objecigasrent: elements of the result selectedrbgre the same as
corresponding elements of and all other elements are the same as before; specifielgifigentr. lowerBound + k x r.stride
of the resultis the same as eleméndf v, forall 0 < k£ < m . Indexing is zero-origin; atndexOutOfBoundsException

is thrown unles) < j < n, wheren is the length of the linear sequence. If the subscript is icstange, then its
validity is checked statically, and no exception will ocetirun time.

40.1.16 opr || [nat m](self, other: LinearSequence[T, m]): LinearSequence[T, n + m]

The result is a linear sequence whose length is equal to theo$the lengths of this linear sequence and the other
linear sequence. Elemehtof the result is the same as eleménbf this linear sequence il < k < n, and is the
same as elemerit — n of the other linear sequenceiif < k <n +m.

40.1.17 getter reverse(): LinearSequence[T, n]

The result is a linear sequence such that elenteof the result is the same as element- 1 — & of this linear
sequence, foral) < k <n.

40.1.18 getter littleEndian[nat b])(): BinaryLinearEndianSequence[b, n, false]
where { T extends BinaryWord[b] }

40.1.19 getter bigEndian[nat b](): BinaryLinearEndianSequence[b, n, true]
where { T extends BinaryWord[b] }

40.1.20 getter littleEndian[nat b, bool bigEndianBytes, bool bigEndianBits]():
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits, n, false]
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }

40.1.21 getter bigEndian[nat b,bool bigEndianBytes,bool bigEndianBits]():
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits, n, true]
where { T extends BinaryEndianWord[b, bigEndianBytes, bigEndianBits] }

These conversion getters allow a linear sequence of (dgssilalian) binary words to be treated as a specifically
little-endian or specifically big-endian linear sequenthis is especially useful just before invoking an endiasnes
dependent method, for exampi€littie Endian.countLeadingZeroBits() .

275

40.2 Constructing Linear Sequences

40.2.1 makeLinearSequence|T extends Object,nat n](item: T): LinearSequence[T, n]

A new linear sequence of length is returned. Every element of the linear sequence is iingdlto be the same as
the givenitem.

40.2.2 computeLinearSequence[T extends Object,nat n](f: IndexInt — T'): LinearSequence[T, n]

A new linear sequence of lengthis returned. Element of the new linear sequence is initialized to a value computed
by calling the given functiorf with argument; .

40.3 The Trait Fortress.Core.HeapSequence

A value of type HeapSequence[T] is an array-like object that contains items of tyie The length of a heap
sequence is in general not known statically, but can be ded by asking for its length. A variable of type
HeapSequence[T] occupies the amount of storage required to hold a refereheereference refers to an object
that occupies an amount of storage greater than or equag tanlount that would be occupied by a variable of type
LinearSequence[T, n] wheren is the length of the heap sequence.

Heap sequences, like linear sequences and unlike arra&yspatoo fancy. The main things you can do with heap
sequences are subscripting and subscripted assignmemtai€nation imot supported, because a basic principle of
the low-level types is that none of the operations, othem iaglicit construction of a heap sequence, does any heap
allocation. However, a range of static size may be used &xiacheap sequence; the result is a linear sequence.

trait HeapSequence[T extends Object] extends Object comprises {}
opr [j: IndexInt]: T throws { IndexOutOfBoundsException }
opr [nat m][r: RangeOfStaticSize[IndexInt, m]]: LinearSequence[T, m]
throws { IndexOutOfBoundsException }
opr [j:IndexInt] := (v: T): () throws { IndexOutOfBoundsException }
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: LinearSequence[T, m]): ()
throws { IndexOutOfBoundsException }
reverse(selfStart: IndexInt, length: IndexInt): () throws { IndexOutOfBoundsException }
opr |self| : IndexInt
end

40.3.1 opr [j:IndexInt): T throws { IndexOutOfBoundsException }

Subscripting returns elemeitof this heap sequence. Indexing is zero-origin;ladexOutOfBoundsException is
thrown unless) < j < n, wheren is the length of the heap sequence.

276

40.3.2 opr [nat m][r: RangeOfStaticSize[IndexInt, m]]: LinearSequence[T, m]
throws { IndexOutOfBoundsException }

Subscripting by a range returns the indicated subsequdribis thheap sequence. The range must be a range of static
size, and the result is returned as a linear sequence (hapsskguence), so no heap allocation is performed. Indexing
is zero-origin; anndexOutOfBoundsException is thrown unless: C (0:n — 1), wheren is the length of the heap
sequence. Elemerit of the result linear sequence is the same as eleménterBound + k x r.stride of this heap
sequence, foral) <k <m.

40.3.3 opr [j:IndexInt] := (v: T): () throws { IndexOutOfBoundsException }

After subscripted assignment, elemgrtf this heap sequence is the same as the given valaad all other elements
are the same as before. Indexing is zero-origin;IatexOutOfBoundsException is thrown unless0) < j < n,
wherer is the length of the heap sequence.

40.3.4 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: LinearSequence[T’, m]): ()
throws { IndexOutOfBoundsException }

After subscripted assignment using a range as a subsciépbeats of the subscripted variable selectedrbgire

the same as corresponding elementsvofand all other elements are the same as before; specifieddigent
r.lowerBound + k x r.stride of the updated variable is the same as elenteat v, for all 0 < k£ < m. The range
must be a range of static size, and the values to be assigr&dmpassed as linear sequence of the same size. Index-
ing is zero-origin; alndexOutOfBoundsException is thrown unless: C (0:n — 1), wheren is the length of the
heap sequence.

40.3.5 reverse(selfStart: IndexInt, length: IndexInt): () throws { IndexOutOfBoundsException }

ElementsselfStart through selfStart + length — 1, inclusive, are reversed in order, that is, rearranged abttie
value originally stored at elementifStart + j becomes elementelfStart + length — 1 — j,forall 0 < j < length .
Other elements of this heap sequence are unaffected.

40.3.6 opr |self| : IndexInt

The length of this heap sequence is returned. Note that zkeo§ia heap sequence is specified at run time when the
heap sequence is created; once a heap sequence has besth deelgingth does not change.

277

40.4 Constructing Heap Sequences

40.4.1 makeHeapSequence[T extends Object](n: IndexInt, item: T'): HeapSequence[T']
throws { NegativeLengthException }

A new heap sequence of lengthis allocated and returned. RegativeLengthException is thrown if n < 0. Every
element of the heap sequence is initialized to be the sanmeagvenitem.

40.4.2 computeHeapSequence[T extends Object](n: IndexInt, f: IndexInt — T'): HeapSequence[T']
throws { NegativeLengthException }

A new heap sequence of lengthis allocated and returned. AegativeLengthException is thrown if n < 0.
Element; of the new heap sequence is initialized to a value computezdlling the given functiory with argument

7

278

40.5 The Trait Fortress.Core.BinaryWord

A value of type BinaryWord[b] is a binary word o? bits; b may be any natural number, inaryWord[0] is a
bit, BinaryWord[3] is a byte, BinaryWord[6] is a 64-bit word, andBinaryWord[10] is a 1024-bit word. In fact,
for convenience, the type abbreviatioRg and Byte are defined:

type Bit = BinaryWord[0]
type Byte = BinaryWord[3]

The typeBinaryWord[b] has 2(2") distinct values. When the binary word is regarded as an oedignteger, these
values are identified with the nonnegative integers thatemethan2(”) . A binary word may also be regarded as a
signed integer: a value that, when regarded as an unsigtegkemis identified with an integer less thal?’ v | is
identified with that same integer when regarded as a sigriedan but a value that, when regarded as an unsigned
integer, is identified with an integer not less th2®’—1) , is identified with that same integer 1e88") . (This is the
standard “two’s complement” representation for signedgets.)

A binary word of one bit can have one of two values, 0 or 1. A hingord of more than one bit has two halves, a
high half and a low half, which are binary words of half theesi#f v is the unsigned integer value of a binary word
of 2% bits, b > 1, h is the unsigned integer value of its high half, ahi$ the unsigned integer value of its low half,
thenv=h-22""" +1.

Operations on binary words include bitwise boolean openati arithmetic operations, shifts and rotates, populatio
count, and counting of leading and trailing zeros. The tiearyWord[b] is not “endian” and has no operations
that depend on endianness. Howeveryifis binary word, thenw.littleEndian is a little-endian version ofv and
w.bigEndian is a big-endian version ob; for example, ifw is of type BinaryWord[6] , then w.littleEndiangs is
the most significant bit (the sign bit if the word is regardeddawo’s-complement integer), and bigEndian, is that
same bit.

trait BinaryWord[nat b] extends { BasicBinaryWordOperations[BinaryWord[d]] }
comprises {}
where { b < mazBinaryWordBitLog }
coercion [int 7](z: IntegerStatic[r]) where { —2b~1 <r < 2%}
coercion [bool bigEndianBytes, bool bigEndianBits]
(z: BinaryEndianWord[b, bigEndianBytes, bigEndianBits])
coercion [nat i’,nat n,bool bigEndianSequence]
(z: BinaryLinearEndianSequence[t', n, bigEndianSequence])
where {20 =n -2}
coercion [nat b, bool bigEndianBytes, bool bigEndianBits,nat n,bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[V’, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where {20 =n -2}
bit(m: IndexInt): Bit
getter lowHalf (): BinaryWord[[b — 1] where {b >0}
getter highHalf (): BinaryWord[[b — 1] where {b > 0}
opr || [nat m](self, other: BinaryWord[[b]): BinaryWord[[b + 1]
where { b < mazBinaryWordBitLog }
bitShuffle(other: BinaryWord[b])): BinaryWord[b + 1]
where { b < mazBinaryWordBitLog }
bitUnshuffle(): (BinaryWord[b — 1], BinaryWord[b — 1]) where {b >0}
end

279

40.5.1 coercion [int 7](z: IntegerStatic[r]) where { =201 <r < 2}

An static integer may be coerced to a binary word that comeds to that integer value when interpreted as either a
signed integer or an unsigned integer. For example, the BiparyWord[3] has 2(2°) = 256 distinct binary word
values; when they are interpreted as signed integers, tegenvalues range from128 to 127, and when they are
interpreted as unsigned integers, the integer values rmoge0 to 255. Therefore any static integer from128 to

255 may be coerced to typBinaryWord[3] .

40.5.2 coercion [bool bigEndianBytes,bool bigEndianBits]
(z: BinaryEndianWord[b, bigEndianBytes, bigEndianBits])

Any binary endian word may be coerced to a plain binary worthefsame size and value. In effect, this coercion
merely discards the endianness information.

40.5.3 coercion [nat b, nat n,bool bigEndianSequence]
(z: BinaryLinearEndianSequence[V’, n, bigEndianSequence])
where {20 =n .20}

A binary linear endian sequence of smaller binary words meagderced to a single binary word, provided that the
length of the linear sequence is an appropriate power of $edhat the total number of bits in the sequence is the
same as the total number of bits in the resulting binary wdtte manner in which the elements of the sequence are
used to form the new binary word value respects the endiarofethe sequence, so that element 0 of the sequence
supplies the most significant bits of the resulbifiEndianSequence is true, but supplies the least significant bits of
the result ifbigEndianSequence is false.

40.5.4 coercion [nat b',bool bigEndianBytes,bool bigEndianBits, nat n,bool bigEndianSequence]
(z: BinaryEndianLinearEndianSequence[t’, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])
where {20 =n -2}

A binary endian linear endian sequence of smaller binaryaendiords may be coerced to a single binary word,
provided that the length of the linear sequence is an apjategoower of two, so that the total number of bits in the
sequence is the same as the total number of bits in the regbithary word. The manner in which the elements of
the sequence are used to form the new binary word value rssghecendianness of the sequence, so that element 0
of the sequence supplies the most significant bits of thdtréstigEndianSequence is true, but supplies the least
significant bits of the result ibigEndianSequence is false. In effect, the “bytes and bits” endianness infdromais
simply ignored and discarded.

280

40.5.5 bit(m: IndexInt): Bit

The resultis a bit whose value (0 or 1) is equal to- 2= | mod 2 wherew is the value of the binary word regarded
as an unsigned integer. This formula holds for any value:phote that if m is negative or greater tha2f — 1, the
result will always be a 0-bit. Thus thit method provides a kind of “little-endian” indexing of thesbf a binary
word, even a binary word whose type is not intrinsically @mdibut it does not require that the bit number identify an
actual represented bit of the binary word.

The bit method is particularly useful for describing the behavipraperties of other methods of binary data.

40.5.6 getter lowHalf(): BinaryWord[b — 1] where {b >0}
40.5.7 getter highHalf (): BinaryWord[b — 1] where {b >0}

The getterdowHalf and highHalf each return a binary word of half the size (in bits) of thisdminword; lowHalf
returns the less significant bits, ahdyh Half returns the more significant bits.

property V(v) N v.lowHalf .bit(m) = v.bit(m)
m—0H2v-1

property V(v) A v.highHalf .bit(m) = v.bit(m + 2°~1)
me—0f20—1

40.5.8 opr || [nat m](self, other: BinaryWord[[b]): BinaryWord[b + 1]
where { b < mazBinaryWordBitLog }

The result of concatenating two binary words of sZeis a single binary word of siz&®*! . The left-hand operand
becomes the high (more significant) half of the result andritji#-hand operand becomes the low (less significant)
half of the result.

property Y(v,w) (v || w).highHalf = v
property V(v,w) (v|| w).lowHalf = w

40.5.9 bitShuffle(other: BinaryWord[b]): BinaryWord[b + 1]
where { b < mazBinaryWordBitLog }

The bit-shuffle operation interleaves the bits of two woadsif shuffling cards together (using what magicians call a
“perfect shuffle”). The result of shuffling the bits two bigawords of size2® is a single binary word of siz@’*" .
This binary word provides the odd-numbered bits of the tesud the other binary word provides the even-numbered
bits of the result. For example, shufflirgl11 and 0000 produces10101010 .

property V(v, w, m: IndexInt) v.bitShuffle(w).bit(m) = (if odd m then v.bit((m — 1)/2) else w.bit(m/2))

281

40.5.10 bitUnshuffle(): (BinaryWord[b — 1], BinaryWord[[b — 1]) where {b > 0}

This is the inverse of théitShuffle method: the odd-numbered bits of this binary word are usddrta a binary
word of half the size, and likewise the even-numbered bitd,atuple of the two binary words is returned.

property V(v, w) v.bitShuffle(w).bitUnshuffle() = (v, w)

282

40.6 The Trait Fortress.Core.BinaryEndianWord

The type BinaryEndianWord[b, bigEndianBytes, bigEndianBits] is exactly like BinaryWord[b] but bears two
kinds of endianness information. BinaryEndianWord may be split into a sequence of smaller words; the result is of
type BinaryLinearEndianSequence. The flag bigEndianBytes indicates whether subword 0 is the most significant
subword (if bigEndianBytes is true) or least significant subword (@fgEndianBytes is false) of the original binary
word. A BinaryEndianWord may also be subscripted to extract a bit or a bit field; the #lad/ndianBits indicates
whether bit 0 is the most significant bit (igEndianBits is true) or least significant bit (ibigEndianBits is false)

of the original binary word. (Yes, it may seem strange fortith@rdering to differ from the subword ordering, but they
do differ on a number of architectures, including SPARC fr&oting a bit produces Bit, that is, aBinaryWord[0] .
Extracting a bit field of widthk produces aBinaryEndianLinearEndianSequence with n =%k and b =0; the
endianness of the sequence matches the bit-endiannessafgmal BinaryEndianWord.

trait BinaryEndianWord[nat b, bool bigEndianBytes, bool bigEndianBits]
extends { BasicBinaryWordOperations[BinaryEndianWord[b, bigEndianBytes, bigEndianBits], b] }
comprises {}
where { b < mazBinaryWordBitLog }
coercion [int 7](z: IntegerStatic[r]) where { —20~1 < r < 20}
opr [j: IndexInt] : BinaryEndianWord[1, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] : BinaryEndianWord[1, bigEndianBytes, bigEndianBits]
where {k < 2°}
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryEndianLinearEndianSequence[1, bigEndianBytes, bigEndianBits, m, bigEndianBits]
throws { IndexOutOfBoundsException }
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]] :
BinaryEndianLinearEndianSequence[1, bigEndianBytes, bigEndianBits, m, bigEndianBits]
where {0 <a<2°0<a+m-c<2}
opr [j: IndexInt] := (v: Bit):
BinaryEndianWord [, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] := (v: Bit):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
where {k < 2°}
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: BinaryLinearSequence[1, m]):
BinaryEndianWord [b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
opr [int a,nat m, int c][r: StaticRange[a, m, c]] := (v: BinaryLinearSequence[1, k]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
where {0<a<2°,0<a+m-c<2}
update(j: IndexInt, v: Bit):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
update[nat k](j: IntegerStatic[k], v: Bit):
BinaryEndianWord [, bigEndianBytes, bigEndianBits]
where {k < 2°}
update[nat m](r: RangeOfStaticSize[IndexInt, m], v: BinaryLinearSequence[1, m]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
update[int a,nat m, int c]|(r: StaticRange[a, m, c]}, v: BinaryLinearSequence[1, m]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
where {0<a<2°,0<a+m-c<2}

283

lowHalf (): BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits] where {b > 0}
highHalf (): BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits] where {b > 0}
opr || [nat m,bool bigEndianSequence]
(self, other: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[[b + 1, bigEndianBytes, bigEndianBits,
2, bigEndianSequence]
where { bigEndianSequence = bigEndianBytes }
opr || [nat m,bool bigEndianSequence,nat radiz,nat g,nat k,nat v]
(self, other: NaturalNumeral[m, radiz, v]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequence]
where { bigEndianSequence = bigEndianBytes, radiz = 2¢,q-m =k - 2"}
opr || [nat m,bool bigEndianSequence,nat radiz,nat ¢,nat k,nat v
(other: NaturalNumeral[m, radiz, v], self):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequence]
where { bigEndianSequence = bigEndianBytes, radiz = 2¢,q-m =k - 2° }
bitShuffle(other: BinaryEndianWord([[b, bigEndianBytes, bigEndianBits]):
BinaryEndianWord[[b + 1, bigEndianBytes, bigEndianBits]
where { b < mazBinaryWordBitLog }
bitUnshuffle(): (BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits],
BinaryEndianWord[b — 1, bigEndianBytes, bigEndianBits])
where {b >0}
littleEndian(): BinaryEndianWord[b, false, false]
bigEndian(): BinaryEndianWord[b, true, true]
end

40.6.1 coercion [int 7](z: IntegerStatic[r]) where { =201 <r < 20}

An static integer may be coerced to a binary endian word Bxastif it were coerced to a plain binary word of the
same size; the endian numbering of the bytes and bits doexfaot which binary word value is produced from the
static integer.

40.6.2 opr [j: IndexInt] : BinaryEndianWord[1, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.3 opr [nat k][j: IntegerStatic[k]] : BinaryEndianWord[1, bigEndianBytes, bigEndianBits]
where {k < 2°}

Subscripting returns bij of this binary endian word. The numbering of the bits is dietlaby bigEndianBits.
Indexing is zero-origin; adindexOutOfBoundsException is thrown unless) < j < 2°. If the subscript is a static
expression, then its validity is checked statically, angxeeption will occur at run time.

property V(v) A wv; = (if bigEndianBits then v.bit(2° — 1 — j) else v.bit(j) end)
j—0ottab

284

40.6.4 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryEndianLinearEndianSequence[1, bigEndianBytes, bigEndianBits, m, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.5 opr [int a,nat m, int c][r: StaticRange[a, m, c]] :
BinaryEndianLinearEndianSequence[1, bigEndianBytes, bigEndianBits, m, bigEndianBits]
where {0<a<2°,0<a+m-c<2}

Subscripting with a range of static size returns the indicated subsequence of bits of this binaryaendord. The
numbering of the bits is dictated byigEndianBits. The result is a binary endian linear endian sequence of bits
whose sequence endianness is the same as the bit endiahtigissbinary endian word. Indexing is zero-origin;
an IndexOutOfBoundsException is thrown unless- C 0# 2% . If the subscript is a static range, then its validity is
checked statically, and no exception will occur at run tirfidement% of the result sequence is the same as the bit
that would be selected from this binary endian word by supsig it with r.lowerBound + k x r.stride, for all
0<k<m.

40.6.6 opr [j: IndexInt] := (v: Bit):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.7 opr [nat k][j: IntegerStatic[k]] := (v: Bit):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
where { k < 2°}

After subscripted value object assignment, the bit thatldvbe selected from this binary endian word by subscript-
ing it with j is the same as the given hit, and all other bits are the same as before. Indexing is zegoipan
IndexOutOfBoundsException is thrown unless) < j < 2°. If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at ruretim

40.6.8 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] := (v: BinaryLinearSequence[1, m]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.9 opr [int a,nat m, int ¢][r: StaticRange[a, m, c]] := (v: BinaryLinearSequence[1, m]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
where {0<a<2°,0<a+m-c<2b}

After subscripted value object assignment, bits that wanéldelected from this binary endian word by subscripting
it with » are the same as corresponding elements,aind all other bits are the same as before; specifically, ithe b
that would be selected from this binary endian word by supsig it with r.lowerBound + k x r.stride is the same
as element of v, for all 0 < k < m. Indexing is zero-origin; afndexOutOfBoundsException is thrown unless

r C 0#2°. If the subscript is a static range, then its validity is dteztstatically, and no exception will occur at run
time.

285

40.6.10 wupdate(j: IndexInt, v: Bit):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.11 wupdate[nat k](j: IntegerStatic[k], v: Bit):
BinaryEndianWord [b, bigEndianBytes, bigEndianBits]
where {k < 20}

This is a functional version of subscripted value objectgasaent: the bit that would be selected from the result by
subscripting it withj is the same as the given hit and all other bits are the same as before. Indexing is zégaipan
IndexOutOfBoundsException is thrown unless) < j < 2. If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at ruretim

40.6.12 update[nat m](r: RangeOfStaticSize[IndexInt, m], v: BinaryLinearSequence[1, m]):
BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

40.6.13 wupdate[int a,nat m,int c](r: StaticRange[a, m, c], v: BinaryLinearSequence[l, m]):
BinaryEndianWord[[b, bigEndianBytes, bigEndianBits]
where {0<a<2°0<a+m-c<2}

This is a functional version of subscripted value objecigasaent: bits that would be selected from the result by
subscripting it withr are the same as corresponding elements,@&nd all other bits are the same as before; specifi-
cally, the bit that would be selected from the result by stipsng it with r.lowerBound + k X r.stride is the same

as element of v, forall 0 < k < m. Indexing is zero-origin; afndexOutOfBoundsException is thrown unless

r C 0#2b. If the subscript is a static range, then its validity is dteztstatically, and no exception will occur at run
time.

40.6.14 lowHalf (): BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits]| where {b > 0}
40.6.15 highHalf (): BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits] where {b > 0}

The getterslowHalf and highHalf each return a binary endian word of half the size (in bits)hig binary endian
word, and with the same endian characteristios)Half returns the less significant bits, andghHalf returns the
more significant bits.

property V(v) N v.lowHalf .bit(m) = v.bit(m)

property V(v) W_O/ﬁzb_l v.highHalf .bit(m) = v.bit(m + 2°~1)

property V(v) M&O/#\bbi1 v.lowHalf ,, = v[if bigEndianBits then m + 2°~! else m end]
property V(v) mHOKQbil v.highHalf ,, = v[if bigEndianBits then m else m + 2! end]

me—0ff2v—1

286

40.6.16 opr || [nat m,bool bigEndianSequence]
(self, other: BinaryEndianWord[[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[[b + 1, bigEndianBytes, bigEndianBits,
2, bigEndianSequencel]
where { bigEndianSequence = bigEndianBytes }

[Description to be supplied.]

40.6.17 opr || [nat m,bool bigEndianSequence,nat radiz,nat q,nat k,nat v]
(self, other: NaturalNumeral[m, radiz, v]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequence]
where { bigEndianSequence = bigEndianBytes, radiz = 2¢,q-m =k - 2"}

[Description to be supplied.]

40.6.18 opr || [nat m,bool bigEndianSequence,nat radiz,nat q,nat k,nat v]
(other: NaturalNumeral[m, radiz, v], self):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequence]
where { bigEndianSequence = bigEndianBytes, radiz = 2¢,q-m =k - 2°}

[Description to be supplied.]

40.6.19 bitShuffle(other: BinaryEndianWord[[b, bigEndianBytes, bigEndianBits]):
BinaryEndianWord[b + 1, bigEndianBytes, bigEndianBits]
where { b < mazBinaryWordBitLog }

[Description to be supplied.]

40.6.20 bitUnshuffle(): (BinaryEndianWord[[b — 1, bigEndianBytes, bigEndianBits],
BinaryEndianWord[b — 1, bigEndianBytes, bigEndianBits])
where {b >0}

[Description to be supplied.]

40.6.21 [littleEndian(): BinaryEndianWord[b, false, false]
40.6.22 bigEndian(): BinaryEndianWord[b, true, true]

[Description to be supplied.]

287

40.7 The Trait Fortress.Core.BasicBinaryOperations

trait BasicBinaryOperations[T extends BasicBinaryOperations[77]
wrappingAdd(other: T): T
add(other: T, carryIn: Bit = 0): (T, Bit)
signedAdd(other: T, overflowAction: () — T): T
unsignedAdd (other: T, overflowAction: () — T): T
saturatingSignedAdd (other:T): T
saturatingUnsignedAdd(other:T): T
wrappingSubtract(other:T): T
subtract(other: T, carryln: Bit = 1): (T, Bit)
signedSubtract(other: T, overflowAction: () — T): T
unsignedSubtract(other: T, overflowAction: () — T): T
saturatingSignedSubtract(other: T): T
saturatingUnsignedSubtract (other: T): T
wrappingNegate(): T
negate(carryln: Bit = 1): (T, Bit)
signedNegate(overflowAction: () — T): T
unsignedNegate(overflowAction: () — T): T
saturatingSignedNegate(): T
bitNot(): T
bitAnd(other:T): T
bitOr(other:T): T
bitXor(other:T): T
bitXorNot(other:T): T
bitNand(other:T): T
bitNor (other:T): T
bitAndNot(other:T): T
bitOrNot(other:T): T
signedMazx (other:T): T
signedMin(other:T): T
unsignedMax (other:T): T
unsignedMin(other:T): T
opr =(self, other: T): Boolean
opr #(self, other: T): Boolean
signedLT (other: T'): Boolean
signedLE (other: T'): Boolean
signedGE (other: T): Boolean
signedGT (other: T'): Boolean
unsignedLT (other: T'): Boolean
unsignedLE (other: T): Boolean
unsignedGE (other: T'): Boolean
unsignedGT (other: T): Boolean
signedShift(j: IndexInt): T
signedShift(j: IndexInt, overflowAction: () — T): T
saturatingSignedShift(j: IndexInt): T
unsignedShift(j: IndexInt): T
unsignedShift(j: IndexInt, overflowAction: () — T): T
saturatingUnsignedShift(j: IndexInt): T
bitRotate(j: IndexInt): T’
countOneBits(): IndexInt

):
):

288

countLeadingZeroBits(): IndexInt
countTrailingZeroBits(): IndexInt
leftmostOneBit(): T
rightmostOneBit(): T
bitReverse(): T

signedIndez(): IndexInt throws { IntegerOverflowException }
unsignedIndex(): IndexInt throws { IntegerOverflowException }

gatherBits(mask:T): T

spreadBits(mask: T): T

disentangleBits(mask:T)

intersperseBits(mask:T)
end

T
T

40.7.1 wrappingAdd(other:T):T

40.7.2 add(other:T, carryln: Bit = 0): (T, Bit)

40.7.3 signedAdd(other: T, overflowAction: () — T): T
40.7.4 unsignedAdd(other: T, overflowAction: () — T):T
40.7.5 saturatingSignedAdd(other:T): T

40.7.6 saturatingUnsignedAdd(other:T):T

[Description to be supplied.]

40.7.7 wrappingSubtract(other:T): T

40.7.8 subtract(other: T, carryIn: Bit = 1): (T, Bit)

40.7.9 signedSubtract(other: T, overflowAction: () — T): T
40.7.10 wunsignedSubtract(other: T, overflowAction: () — T): T
40.7.11 saturatingSignedSubtract(other:T): T

40.7.12 saturatingUnsignedSubtract(other:T): T

[Description to be supplied.]

40.7.13 wrappingNegate(): T

40.7.14 negate(carryln: Bit = 1): (T, Bit)

40.7.15 signedNegate(overflowAction: () — T): T
40.7.16 wunsignedNegate(overflowAction: () — T):T
40.7.17 saturatingSignedNegate(): T

[Description to be supplied.]

40.7.18 bitNot(): T

[Description to be supplied.]

289

40.7.19 bitAnd(other:T):T
40.7.20 bitOr(other:T):T
40.7.21 bitXor(other:T):T
40.7.22 bitXorNot(other:T): T
40.7.23 bitNand(other:T):T
40.7.24 bitNor(other:T): T
40.7.25 bitAndNot(other:T): T
40.7.26 bitOrNot(other:T):T

[Description to be supplied.]

40.7.27 signedMaz(other:T)

:T
40.7.28 signedMin(other:T):T

[Description to be supplied.]

40.7.29 wunsignedMax(other:T): T
T

40.7.30 wunsignedMin(other:T)

[Description to be supplied.]

40.7.31
40.7.32

opr =(self, other:T): Boolean
opr #(self, other:T): Boolean

[Description to be supplied.]

40.7.33
40.7.34
40.7.35
40.7.36

signedLT (other: T'): Boolean

signedLE (other: T'): Boolean

signedGE (other: T'): Boolean
():

signedGT (other:T): Boolean

):
):

[Description to be supplied.]

40.7.37
40.7.38
40.7.39
40.7.40

unsignedLT (other: T'): Boolean
unsignedLE (other: T): Boolean
unsignedGE (other: T'): Boolean
unsignedGT (other: T): Boolean

):
):

[Description to be supplied.]

290

40.7.41 signedShift(j: IndexInt): T'
40.7.42 signedShift(j: IndexInt, overflowAction: () — T): T
40.7.43 saturatingSignedShift(j: IndexInt): T’

[Description to be supplied.]

40.7.44 unsignedShift(j: IndexInt): T'
40.7.45 unsignedShift(j: IndexInt, overflowAction: () — T):T
40.7.46 saturatingUnsignedShift(j: IndexInt): T

[Description to be supplied.]

40.7.47 bitRotate(j: IndexInt): T

[Description to be supplied.]

40.7.48 countOneBits(): IndexInt

[Description to be supplied.]

40.7.49 countLeadingZeroBits(): IndexInt
40.7.50 countTrailingZeroBits(): IndexInt

[Description to be supplied.]

40.7.51 leftmostOneBit(): T
40.7.52 rightmostOneBit(): T

[Description to be supplied.]

40.7.53 bitReverse(): T

[Description to be supplied.]

40.7.54 signedIndex(): IndexInt throws { IntegerOverflowException }
40.7.55 unsignedIndex(): IndexInt throws { IntegerOverflowException }

[Description to be supplied.]

291

40.7.56 gatherBits(mask:T): T
40.7.57 spreadBits(mask:T): T

[Description to be supplied.]

40.7.58 disentangleBits(mask:T): T
40.7.59 intersperseBits(mask:T): T

[Description to be supplied.]

40.8 The Trait Fortress.Core.BasicBinaryWordOperations

trait BasicBinaryWordOperations[T extends BasicBinaryWordOperations[T’, b], nat b]
extends BasicBinaryOperations[T] where { b < mazBinaryWordBitLog }
multiplyLow (other:T): T where { b < mazMultiplyBitLog }
multiplyLow (other: T, overflowAction: () — T): T where { b < mazMultiplyBitLog }
saturatedMultiplyLow (other: T): T where { b < maxMultiplyBitLog }
multiplyHigh(other: T): T where { b < mazMultiplyBitLog }
multiplyDouble(other: T): (T, T) where { b < maxMultiplyBitLog }
signedDivide(other: T, overflowAction: () — T, zeroDivideAction: () — T): T
where { b < maxDivideBitLog }
unsignedDivide(other: T, zeroDivideAction: () — T): T where { b < mazDivideBitLog }
signedDivRem(other: T, overflowAction: () — T, zeroDivideAction: () — T): (T, T)
where { b < mazDivideBitLog }
unsignedDivRem (other: T, zeroDivide Action: () — T): (T, T) where { b < mazDivideBitLog }
signedRemainder(other: T, zeroDivide Action: () — T'): T where { b < mazDivideBitLog }
unsignedModulo(other: T, zeroDivide Action: () — T): T where { b < mazDivideBitLog }
bitSwap (j: IndexInt): T'
getter littleEndian(): BinaryEndianWord[b, false, false]
getter bigEndian(): BinaryEndianWord [b, true, true]
end

40.8.1 multiplyLow (other:T): T where { b < maxMultiplyBitLog }

40.8.2 multiplyLow (other: T, overflowAction: () — T): T where { b < mazMultiplyBitLog }
40.8.3 saturatedMultiplyLow(other: T): T where { b < mazMultiplyBitLog }

40.8.4 multiplyHigh(other: T): T where {b < mazMultiplyBitLog }

40.8.5 multiplyDouble(other:T): (T, T) where { b < maxMultiplyBitLog }

[Description to be supplied.]

292

40.8.6 signedDivide(other: T, overflowAction: () — T, zeroDivideAction: () — T): T
where { b < mazDivideBitLog }
40.8.7 unsignedDivide(other: T, zeroDivideAction: () — T): T where { b < mazDivideBitLog }

[Description to be supplied.]

40.8.8 signedDivRem(other: T, overflowAction: () — T, zeroDivideAction: () — T): (T, T)
where { b < mazDivideBitLog }
40.8.9 wunsignedDivRem(other: T, zeroDiwideAction: () — T): (T,T) where { b < maxDivideBitLog }

[Description to be supplied.]

40.8.10 signedRemainder(other: T, zeroDivideAction: () — T): T where { b < maxDivideBitLog }
40.8.11 wunsignedModulo(other: T, zeroDivideAction: () — T): T where { b < maxDivideBitLog }

[Description to be supplied.]

40.8.12 bitSwap(j: IndexInt): T

[Description to be supplied.]

40.8.13 getter littleEndian(): BinaryEndianWord[[b, false, false]
40.8.14 getter bigEndian(): BinaryEndianWord[[b, true, true]

[Description to be supplied.]

293

40.9 The Trait Fortress.Core.BinaryLinearEndianSequene

trait BinaryLinearEndianSequence[nat b,nat n,bool bigEndianSequence]
extends { BasicBinaryOperations[BinaryLinearEndianSequence[b, n, bigEndianSequence]] }
where { b < mazBinaryWordBitLog }
coercion [nat ', bool bigEndianBytes,bool bigEndianBits]
(z: BinaryEndianWord[[¥', bigEndianBytes, bigEndianBits])
where { bigEndianBytes = bigEndianSequence,2” =n - 20}
coercion [nat m,nat radiz,nat ¢,nat k,nat v](z: NaturalNumeral[m, radiz, v])
where { radiz = 29,q-m =n - 2%}
opr [j: IndexInt] : BinaryWord[b]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] : BinaryWord[[b] where {k < n }
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryLinearEndianSequence[b, m, bigEndianSequence]
throws { IndexOutOfBoundsException } where {m <n}
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]] :
BinaryLinearEndianSequence[b, m, bigEndianSequence]
where {0<a<n,0<a+m-c<n}
opr [j: IndexInt] := (v: BinaryWord[[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] := (v: BinaryWord[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence] where { k < n }
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :=
(v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequence]
throws { IndexOutOfBoundsException }
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]] :=
(v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}
update(j: IndexInt, v: BinaryWord[b])):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
update[nat k](j: IntegerStatic[k], v: BinaryWord[[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence] where {k < n }
update[nat m](r: RangeOfStaticSize[IndexInt, m],
v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
update[int a,nat m, int ¢](r: StaticRange[a, m,],
v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}
opr || [nat m](self, other: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n + m, bigEndianSequencel]
opr || [nat m,nat radiz,nat g,nat k,nat v](self, other: NaturalNumeral[m, radiz, v]):
LinearSequence[BinaryWord[b], n + k] where { radiz =29,q-m =k -2}
opr || [nat m,nat radiz,nat g,nat k,nat v](other: NaturalNumeral[m, radiz, v], self):
LinearSequence[BinaryWord[b], n + k] where { radiz =29,q-m =k -2}

294

littleEndian(): BinaryEndianLinearEndianSequence[b, false, false, n, bigEndianSequencel]
bigEndian(): BinaryEndianLinearEndianSequence[b, true, true, n, bigEndianSequence]
littleEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, false,

n, bigEndianSequencel]
bigEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, true,

n, bigEndianSequence]
littleEndianSequence(): BinaryLinearEndianSequence[b, n, false]
bigEndianSequence(): BinaryLinearEndianSequence[b, n, true]
split[nat b'](): BinaryLinearEndianSequence[[t’, n - 20~ bigEndianSequence]

where {V/ < b}
end

40.9.1 coercion [nat b',bool bigEndianBytes,bool bigEndianBits]
(z: BinaryEndianWord[[b', bigEndianBytes, bigEndianBits])
where { bigEndianBytes = bigEndianSequence,2® =n - 2%}

[Description to be supplied.]

40.9.2 coercion [nat m,nat radiz,nat ¢,nat k,nat v](x: NaturalNumeral[m, radiz, v])
where { radiz = 2%, q-m =n - 2%}

[Description to be supplied.]

40.9.3 opr [j: IndexInt] : BinaryWord[b]
throws { IndexOutOfBoundsException }
40.9.4 opr [nat k|[j: IntegerStatic[k]] : BinaryWord[[b] where {k < n }

[Description to be supplied.]

40.9.5 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryLinearEndianSequence[b, m, bigEndianSequence]
throws { IndexOutOfBoundsException } where {m <n}

40.9.6 opr [int a,nat m, int c][r: StaticRange[a, m, c]] :
BinaryLinearEndianSequence[b, m, bigEndianSequence]
where {0<a<n,0<a+m-c<n}

[Description to be supplied.]

295

40.9.7 opr [j: IndexInt] := (v: BinaryWord[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence]
throws { IndexOutOfBoundsException }

40.9.8 opr [nat k][j: IntegerStatic[k]] := (v: BinaryWord[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence] where { k < n }

[Description to be supplied.]

40.9.9 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :=
(v: BinaryLinearEndianSequence[[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequence]
throws { IndexOutOfBoundsException }
40.9.10 opr [int a,nat m, int][r: StaticRange[a, m, c]] :=
(v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}

[Description to be supplied.]

40.9.11 update(j: IndexInt, v: BinaryWord[[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
throws { IndexOutOfBoundsException }

40.9.12 wupdate[nat k](j: IntegerStatic[k], v: BinaryWord[b]):
BinaryLinearEndianSequence[b, n, bigEndianSequence] where {k < n }

[Description to be supplied.]

40.9.13 update[nat m](r: RangeOfStaticSize[IndexInt, m],
v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequence]
throws { IndexOutOfBoundsException }

40.9.14 update[int a,nat m,int c](r: StaticRange[a, m, c],
v: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}

[Description to be supplied.]

40.9.15 opr || [nat m](self, other: BinaryLinearEndianSequence[b, m, bigEndianSequence]):
BinaryLinearEndianSequence[b, n + m, bigEndianSequencel]

[Description to be supplied.]

296

40.9.16 opr || [nat m,nat radiz,nat ¢,nat k,nat v](self, other: NaturalNumeral[m, radiz, v]):
LinearSequence[T, n + k] where { radiz = 29,q-m =k -2°}

[Description to be supplied.]

40.9.17 opr | [nat m,nat radiz,nat ¢,nat k,nat v](other: NaturalNumeral[m, radiz, v], self):
LinearSequence[T, n + k] where { radiz = 29,q-m =k -2}

[Description to be supplied.]

40.9.18 littleEndian(): BinaryEndianLinearEndianSequence[[b, false, false, n, bigEndianSequencel]
40.9.19 bigEndian(): BinaryEndianLinearEndianSequence[b, true, true, n, bigEndianSequence]

[Description to be supplied.]

40.9.20 littleEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, false,
n, bigEndianSequence]

40.9.21 bigEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, true,
n, bigEndianSequence]

[Description to be supplied.]

40.9.22 littleEndianSequence(): BinaryLinearEndianSequence[b, n, false]
40.9.23 bigEndianSequence(): BinaryLinearEndianSequence[b, n, true]

[Description to be supplied.]

40.9.24 split[nat b'](): BinaryLinearEndianSequence[d', n - 2b=b" bigEndianSequence]
where {V' < b}

[Description to be supplied.]

297

40.10 The Trait Fortress.Core.BinaryEndianLinearEndianSequence

trait BinaryEndianLinearEndianSequence[nat b, bool bigEndianBytes, bool bigEndianBits,
nat n,bool bigEndianSequence]
extends { BasicBinaryOperations|
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence])] }
where { b < mazBinaryWordBitLog }
coercion [nat b, bool bigEndianBytes, bool bigEndianBits]
(z: BinaryEndianWord[¥', bigEndianBytes, bigEndianBits])
where { bigEndianBytes = bigEndianSequence, 2" =n - 20}
coercion [nat m,nat radiz,nat ¢,nat k,nat v](z: NaturalNumeral[m, radiz, v])
where { radiz = 29,q-m =n - 2%}
opr [j: IndexInt] : BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] : BinaryWord[b, bigEndianBytes, bigEndianBits]
where {k <n}
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequencel]
throws { IndexOutOfBoundsException } where {m <n}
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]] :
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}
opr [j: IndexInt] := (v: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
opr [nat k][j: IntegerStatic[k]] :=
(v: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
where {k <n}
opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :=
(v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence])):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
throws { IndexOutOfBoundsException }
opr [int a,nat m, int c]|[r: StaticRange[a, m, c]] :=
(v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k, bigEndianSequence]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
where {0<a<n,0<a+m-c<n}
update(j: IndexInt, v: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
update[nat k](j: IntegerStatic[k],

298

v: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
where {k <n}
update[nat m](r: RangeOfStaticSize[IndexInt, m],
v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence])):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
update[int a,nat m, int]
(r: StaticRange[a, m,],
v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
where {0<a<n,0<a+m-c<n}
opr || [nat m](self, other: BinaryEndianLinearEndianSequence]
b, bigEndianBuytes, bigEndianBits,
m, bigEndianSequence]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n + m, bigEndianSequence]
opr || [nat m,nat radiz,nat g,nat k,nat v](self, other: NaturalNumeral[m, radiz, v]):
LinearSequence[T, n + k]
where { radiz =27, q-m =k - 2%}
opr || [nat m,nat radiz,nat g,nat k,nat v](other: NaturalNumeral[m, radiz, v], self):
LinearSequence[T, n + k]
where { radiz =2%,q-m =k -2%}
littleEndian(): BinaryEndianLinearEndianSequence[b, false, false, n, bigEndianSequence]
bigEndian(): BinaryEndianLinearEndianSequence[b, true, true, n, bigEndianSequence]
littleEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, false,
n, bigEndianSequencel
bigEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, true,
n, bigEndianSequence]
little EndianSequence(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, false]
bigEndianSequence(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, true]
split[nat b']() :
BinaryEndianLinearEndianSequence[d’, bigEndianBytes, bigEndianBits,
n-2vY bigEndianSequence]
where {V' < b}
end

40.10.1 coercion [nat b’,bool bigEndianBytes,bool bigEndianBits]
(z: BinaryEndianWord[[¥', bigEndianBytes, bigEndianBits])
where { bigEndianBytes = bigEndianSequence,2” =n - 2°}

[Description to be supplied.]

299

40.10.2

coercion [nat m,nat radiz,nat ¢,nat k,nat v](x: NaturalNumeral[m, radiz, v])

where { radiz = 2¢,q-m =n - 2%}

[Description to be supplied.]

40.10.3

40.10.4

opr [j: IndexInt] : BinaryEndianWord[b, bigEndianBytes, bigEndianBits]
throws { IndexOutOfBoundsException }

opr [nat k][j: IntegerStatic[k]] : BinaryWord b, bigEndianBytes, bigEndianBits]
where {k <n}

[Description to be supplied.]

40.10.5

40.10.6

opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequencel]

throws { IndexOutOfBoundsException } where {m <n}

opr [int a,nat m,int c]J[r: StaticRange[a, m, c]] :
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequencel]

where {0<a<n,0<a+m-c<n}

[Description to be supplied.]

40.10.7

40.10.8

opr [j: IndexInt] := (v: BinaryEndianWord [b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,

n, bigEndianSequence]

throws { IndexOutOfBoundsException }

opr [nat k][j: IntegerStatic[k]] :=

(v: BinaryEndianWord[[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,

n, bigEndianSequence]

where {k <n}

[Description to be supplied.]

300

40.10.9 opr [nat m][r: RangeOfStaticSize[IndexInt, m]] :=
(v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence])):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
throws { IndexOutOfBoundsException }
40.10.10 opr [int a,nat m, int c][r: StaticRange[a, m, c]] :=
(v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
k, bigEndianSequence]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
where {0 <a<n,0<a+m-c<n}

[Description to be supplied.]

40.10.11 wupdate(j: IndexInt, v: BinaryEndianWord[[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequencel]
throws { IndexOutOfBoundsException }
40.10.12 wupdate[nat k](j: IntegerStatic[k],
v: BinaryEndianWord[b, bigEndianBytes, bigEndianBits]):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
where {k <n}

[Description to be supplied.]

40.10.13 wupdate[nat m](r: RangeOfStaticSize[IndexInt, m],
v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequencel)):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
throws { IndexOutOfBoundsException }

40.10.14 update[int a,nat m, int (|
(r: StaticRange[a, m,],
v: BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence])):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, bigEndianSequence]
where {0<a<n,0<a+m-c<n}

[Description to be supplied.]

301

40.10.15 opr || [nat m](self, other: BinaryEndianLinearEndianSequence[
b, bigEndianBytes, bigEndianBits,
m, bigEndianSequence])):
BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n + m, bigEndianSequence]

[Description to be supplied.]

40.10.16 opr || [nat m,nat radiz,nat q,nat k,nat v](self, other: NaturalNumeral[m, radiz, v]):
LinearSequence[T, n + k]
where { radiz =29,q-m =k -2}

[Description to be supplied.]

40.10.17 opr || [nat m,nat radiz,nat ¢,nat k,nat v](other: NaturalNumeral[m, radiz, v], self):
LinearSequence[T, n + k]
where { radiz =27, q-m =k -2°}

[Description to be supplied.]

40.10.18 littleEndian(): BinaryEndianLinearEndianSequence[[b, false, false, n, bigEndianSequence]
40.10.19 bigEndian(): BinaryEndianLinearEndianSequence[b, true, true, n, bigEndianSequence]

[Description to be supplied.]

40.10.20 littleEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, false,
n, bigEndianSequencel]

40.10.21 bigEndianBits(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, true,
n, bigEndianSequencel]

[Description to be supplied.]

40.10.22 littleEndianSequence(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, false]

40.10.23 bigEndianSequence(): BinaryEndianLinearEndianSequence[b, bigEndianBytes, bigEndianBits,
n, true]

[Description to be supplied.]

302

40.10.24 split[nat b']():
BinaryEndianLinearEndianSequence[t/, bigEndianBytes, bigEndianBits,
n - 2°7Y bigEndianSequence]

where {V/ <0}

[Description to be supplied.]

40.11 The Trait Fortress.Core.BinaryHeapEndianSequence

trait BinaryHeapEndianSequence[nat b, bool bigEndianSequence]

extends { BinaryHeapSequence[b],
BasicBinaryHeapSubsequenceOperations|
BinaryHeapEndianSequence[b, bigEndianSequence],

bigEndianSequence] }

end

40.12 The Trait Fortress.Core.BinaryEndianHeapEndianSgquence

trait BinaryEndianHeapEndianSequence[nat b, bool bigEndianBytes, bool bigEndianBits,
bool bigEndianSequence]

extends { HeapSequence[BinaryEndianWord[b, bigEndianBytes, bigEndianBits]],

BasicBinaryHeapSubsequenceOperations|
BinaryHeapEndianSequence[b, bigEndianSequence],

bigEndianSequence] }

end

303

40.13 The Trait Fortress.Core.BasicBinaryHeapSubseque&eOperations

trait BasicBinaryHeapSubsequenceOperations[
T extends BasicBinaryHeapSubsequenceOperations[[T, bigEndianSequence],
bool bigEndianSequence]
copy(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
wrappingAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
add (selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, carryln: Bit = 0): Bit
throws { IndexOutOfBoundsException }
signedAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
unsignedAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
saturatingSignedAdd (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
saturatingUnsigned Add (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
wrappingSubtract (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
subtract(selfStart: IndexInt, source: T', sourceStart: IndexInt,
length: IndexInt, carryln: Bit = 1): Bit
throws { IndexOutOfBoundsException }
signedSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
unsignedSubtract (selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
saturatingSignedSubtract (selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }
saturating UnsignedSubtract (selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }
wrappingNegate (selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
negate(selfStart: IndexInt, length: IndexInt, carryln: Bit = 1): Bit
throws { IndexOutOfBoundsException }
signedNegate (selfStart: IndexInt, length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
unsignedNegate(selfStart: IndexInt, length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
saturatingSignedNegate (selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
bitNot(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

304

bitAnd(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitOr(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitXor(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitXorNot(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitNand (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitNor(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitAndNot(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitOrNot (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

signedMaz (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

signedMin(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMaz (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMin(selfStart: IndexInt, source: T', sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

equal (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unequal (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signed GE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedG T (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsigned LT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedLE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedGE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean

throws { IndexOutOfBoundsException }

unsignedG T (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean

throws { IndexOutOfBoundsException }
signedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }
signedShift (selfStart: IndexInt, length: IndexInt, j: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
saturatingSignedShift (selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }
unsignedShift (selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

305

unsignedShift (selfStart: IndexInt, length: IndexInt, j: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
saturating UnsignedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }
bitRotate(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }
countOneBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }
countLeadingZeroBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }
countTrailingZeroBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }
leftmostOneBit (selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
rightmostOneBit(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
bitReverse(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
gatherBits(selfStart: IndexInt, mask: T, maskStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
spreadBits(selfStart: IndexInt, mask: T, maskStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
clearAllBits(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
setAllBits(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
signedIndez(): IndexInt
throws { IntegerOverflowException }
signedIndex (selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }
unsignedIndex(): IndexInt
throws { IntegerOverflowException }
unsignedIndex (selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }
end

40.13.1 copy(selfStart: IndexInt, source: T', sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

306

40.13.2 wrappingAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.3 add(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, carryln: Bit = 0): Bit
throws { IndexOutOfBoundsException }

40.13.4 signedAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.5 wunsignedAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.6 saturatingSignedAdd (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.7 saturatingUnsignedAdd(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.8 wrappingSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }
40.13.9 subtract(selfStart: IndexInt, source: T', sourceStart: IndexInt,
length: IndexInt, carryln: Bit = 1): Bit
throws { IndexOutOfBoundsException }
40.13.10 signedSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
40.13.11 wunsignedSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }
40.13.12 saturatingSignedSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }
40.13.13 saturating UnsignedSubtract(selfStart: IndexInt, source: T, sourceStart: IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

307

40.13.14 wrappingNegate (selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.15 negate(selfStart: IndexInt, length: IndexInt, carryln: Bit = 1): Bit
throws { IndexOutOfBoundsException }

40.13.16 signedNegate(selfStart: IndexInt, length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.17 unsignedNegate(selfStart: IndexInt, length: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.18 saturatingSignedNegate(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.19 bitNot(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.20 bitAnd(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.21 bitOr(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.22 bitXor(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.23 bitXorNot(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.24 bitNand(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.25 bitNor(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.26 bitAndNot(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.27 bitOrNot(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.28 signedMazx (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.29 signedMin(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

308

40.13.30 unsignedMax (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.31 unsignedMin(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.32 equal(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.33 unequal(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.34 signedLT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.35 signedLE(selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.36 signedGE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.37 signedGT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.38 wunsignedLT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.39 wunsignedLE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.40 wunsignedGE (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.41 wunsignedGT (selfStart: IndexInt, source: T, sourceStart: IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.42 signedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.43 signedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.44 saturatingSignedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

309

40.13.45 unsignedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.46 unsignedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt, overflowAction: () — ()): ()
throws { IndexOutOfBoundsException }

40.13.47 saturatingUnsignedShift(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.48 bitRotate(selfStart: IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.49 countOneBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.50 countLeadingZeroBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

40.13.51 countTrailingZeroBits(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.52 leftmostOneBit(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.53 rightmostOneBit(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.54 bitReverse(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

310

40.13.55 gatherBits(selfStart: IndexInt, mask: T, maskStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.56 spreadBits(selfStart: IndexInt, mask: T, maskStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.57 clearAllBits(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.58 setAllBits(selfStart: IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.59 signedIndex(): IndexInt
throws { IntegerOverflowException }
40.13.60 signedIndex(selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }
40.13.61 wunsignedIndez(): IndexInt
throws { IntegerOverflowException }
40.13.62 unsignedIndex (selfStart: IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

[Description to be supplied.]

311

Part VI

Appendices

312

Appendix A

Fortress Calculi

A.1 Basic Core Fortress

In this section, we define a basic core calculus for Fortrégscall this calculuBasic Core FortressFollowing the
precedent set by prior core calculi such as Featherweighéf@elaval [12], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress progr

A.1l.1 Syntax

A syntax for Basic Core Fortress is provided in Figure]A.1. We the following notational conventions:
e For brevity, we omit separators such aand ; from Basic Core Fortress.
e 7 is a shorthand for a (possibly empty) sequenge - -, 7,,.
« Similarly, we abbreviate a sequence of relations extends N, - -, a,, extends N,, toa extends N
e We user; to denote théth element of 7.

e For simplicity, we assume that every name (type variablek] fiames, and parameters) is different and every
trait/object declaration declares unique name.

e We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subisiiteoFortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method aeldl finvocations, andself expressions. The types of
Basic Core Fortress include type variables, instantiatgthf instantiated objects, and the distinguished taifect .
Note that we syntactically prohibit extending objects. Amamther features, Basic Core Fortress deesinclude
top-level variable and function definitions, overloadirg.cludes clausesbounds clauseswhere clauses, object
expressions, and function expressions. Basic Core Ferwdsbe extended to formalize a larger set of Fortress
programs in the future.

A.1.2 Dynamic Semantics

A dynamic semantics for Basic Core Fortress is provided guféi[A.2. This semantics has been mechanized via
the PLT Redex tool [15]. It therefore follows the style of égjp evaluation contexts and redexes. The Basic Core

313

a, 3 type variables
f method name
x field name
T trait name
0] object name
R type
| o
o = N type that is not a type variable
| O[7]
N,M,L == T[7T] type that can be a type bound
| Object
e n= expression
| self
| O[TI(*)
| e.x
| eSITIE)
fd 2= flaextends N](z:7):T =e method definition
_ —. =
td = trait TJa extends N] extends { N} fd end trait definition
od = object OJa extends N](z:7) extends { N} fd end object definition
d n= td definition
| od
=
D = de program

Figure A.1: Syntax of Basic Core Fortress

Fortress dynamic semantics consists of two evaluatioesrane for field access and another for method invocation.
For simplicity, we use *’ to denote some parts of the syntax that do not have key rolagile. We assume that
does not expand across definition boundaries unless thre definition is included in it.

A.1.3 Static Semantics

A static semantics for Basic Core Fortress is provided inufeig A.3[A.4, and Al5. The Basic Core Fortress static
semantics is based on the static semantics of Featherw@mdric Java (FGJ) [12]. The major difference is the
division of classes into traits and objects. Both trait abgot definitions include method definitions but only object
definitions include field definitions. With traits, Basic @dfortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in Basic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows parametymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

We proved the type soundness of Basic Core Fortress usirggahdard technique of proving a progress theorem and
a subject reduction theorem.

314

Values, evaluation contexts, redexes, and trait and obgaoes

v == O[T|?) value
E = 0O evaluation context
| O[TI€ET)
| E.x
| ESITIE)
| ef[FIEET)
R == wvx redex
| uf[TN)
C =T trait name
| 0 object name

Evaluation rules‘: pF E|R] — Ele] ‘

[R-FIELD] object O _(z:_)_end €p
pt EO[T)7).2i] — Eui
R-Mernog] It O— (F0)_endep mbody, (f[7'LOITD = {(+/) — e}
p+ HOIFIT)-AI7 ()] — E[T/FOIFKT)/see][o/ /']

Method body lookup} mbody,,(f[7], 7) = {(Z) — €}

[MB-SELF] _ Claextends _] - f_d> _ Eﬁ fle! eﬁceids_:]]_zc’:_)_ =e€ {f_d>}
mbody, (f[7'} CI7]) ={[r'//][7/d](") — €}
[MB-SUPER] _ Claextends _] — eit):ends {N)}_]Td> _€p ff {_]:"name(fd)}
mbody, (f[7'LCITN) = |J mbody, (f[7'}[7/@IN:)
Nie{]v}
[MB-0BJ] mbody,,(f[7] Object) =0

Function/method name lookupFname(fd) = f
Fname(f[a extends N|(z:7):7 =€) = f

Figure A.2: Dynamic Semantics of Basic Core Fortress

315

Environments

A = a<: N bound environment
r == oz:7 type environment

Program typing

— —
p=de pkdok p00Fe:T
Fp:71

[T-PROGRAM]

Definition typing:

_ — — SN —
A=a <: N p; A N ok p; A F M ok p; A;self : T[&]; T+ fd ok
p = oneOuwner(T)

= = —
p b trait Ta extends N| extends {M} fd end ok

[T-TRAITDEF]

_ — _ —
A=a <: N p; A N ok p; AF T ok p; A+ M ok
— —— e
p;As;self : O]z 7;0F fdok pF oneOwner(O)
B —_— —_ =
p - object O extends N|(z:7) extends { M} fd end Ok

[T-OBJECTDEF]

Method typing:‘ p; AT CF fd ok‘

— . e T I
C extends{M}_€p p; At override(f,{M}, [extends N 7 — 79)
~ l - /
A'=Aa <: N p; A" F N ok p; A 7 ok p; A"+ 19 ok
p ATz 7he: T p AT < m
—_—
p; AT C F flaextends N (z:7):79 = e 0K

[T-M ETHODDEF]

L — e
Method overriding] p; A F override(f,{ N}, [a extends N]| 7 — 1)

—[@/BIM 7 =[@/F)7 pa< Nkn < [@/B]%

p; A & override(f,{ L }, [a extends N| 7 —)

[OVERRIDE]

———
Method type lookupt mtype,,(f,7) = {[a extends N] 7 — 7}

_ Claextends _] —]Td> _€p flB extends M](_:7'):ti=e€ {ﬁ}

[MT-SELF] — SR
mtypep(f; CI7]) ={[7/][B extends M| 7" — 7}
[MT-SUPER] _ Claextends _]— eii):ends {N}_fd _€p - f_? {Fname(fd)}
mtype,(f,CIT]) = |J mtype,(f.[T/QIN;)
N.e(N}
[MT-OBJ] mtypep(f7 Object) =0

Figure A.3: Static Semantics of Basic Core Fortress (I)

316

Expression typing
[T-VAR] p; AT Ha:T(x)
[T-SELF] p; A; T self : I'(self)

object OJa extends _|(_:7')_end€p p; Ak O[T]ok
- = — N
p; AT € 1" py AT < [T/

[T-OBJECT] —— —
p; AT HO[T]E) : O] 7]
[T-FIELD] p; AsT Feg 7o bounda (7o) = O[[?]] object Ofa extends _](7:7) _ end € p
p; AT Feg. x;: [7/3]71-
p; AT Feg 1o mtype,,(f, bounda(79)) = {[a extends N] ? — 74}
pAFTok pART < [T/A|N
p;A;FF?:ﬁ p;AF;; < [?/E]?
[T-METHOD] — ey e
P AL Eeo f[T]C€) : [T/ a]m
[S-O8J] p; AF T <: Object
[S-REFL] pAFT <7
[S-TRANS] p;AFE T <: T p;AFE T <73
p;AFT < T3
[S-VAR] DA a < Ala)
_— —
[S-TaPH] — Claextends _]_ extends {N} _ €p

p;AFC[T] <: [T/d]N;

Well-formed types

[W-OBJ] p; A F Object ok
[W-VAR] a € domA)
p; A F ok

_ Claextends N[€p pAFTok pAFT < [?/E]ﬁ
p; A= C[7] ok

[W-TaPP]

Figure A.4: Static Semantics of Basic Core Fortress (Il)

317

Bound of type] bounda(r) = o

bounda(a) = Aa)
bounda(oc) = o

One owner for all the visible methoqso F oneOwner(C) ‘

Vf € visible,(C) . f only occurs once inisible,(C)

[ONEOWNER]
p = oneOwner(C)

Aucxiliary functions for methods:defined,, | inherited,, | visible,(C) = {?}

defined ,(C) = {Fname(fd)} where _ C_]Tci_ €p

inherited,(C) = HN-e{ﬁ} {fi'| fi € visible,(N;), fi & defined,(C)} where _ C _ extends {ﬁ}_ €p

visible,(C) = defined ,(C) W inherited,(C)
Figure A.5: Static Semantics of Basic Core Fortress (ll)

A.2 Core Fortress with Where Clauses

In this section, we define a Fortress core calculus withre clauses. We call this calcul@ore Fortress with Where
Clauses Core Fortress with Where Clauses is an extension of Bagie Bartress withwhere clauses.

A.2.1 Syntax

The syntax for Core Fortress with Where Clauses is providegigure[A.6. For simplicity, we use the following
notational conventions:
_

. . — — —
e We abbreviate a sequence of relationsextends {K;} - -+ «,, extends {K,,} toa extends {K } andry <:
Hyym <:Hyg 1 <:Hym<:Ho - 7 <:HpmtoT <: H.

e Substitutions ofr with v anda with 7 are denoted g /] and|7/«], respectively. A sequence of substitutions
represents the composition of those substitutions whergght-most substitution is applied first. For example,
Sp -+ Si7represents,, (- - - Sa(S17)).

Most of the syntax is a straightforward extension of BasiceJeortress in Sectidn A.1.1. An object or trait definition
may includewhere clauses. Every method invocation is annotated with thredskof static types by type inference:
the static types of the receiver, the arguments, and thdt.réBoese type annotations appear in Core Fortress with
Where Clauses in a form afs 7. If the annotated types are not enough (to find “witnessesttfe where-clauses
variables), type checking rejects the program and requi@e type information from the programmer.

A.2.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Where Clausemigqied in Figures Al7 and Al8.

318

a, B type variables
f method name
x field name
T trait name
0] object name
C trait or object name
7,7 = « type
| o
o = N type that is not a type variable
| O[7]
N,M,L == T[7T] super trait
| Object
K HJ := « bound on a type variable
| N
e = expression
| self
| O[7I*)
| e.x
| eas C[T].f[T](eas7)asT
| typecasexr =ein T = ¢else e end
_
fd w= flaextends {K)}](z7):r=e method definition
td = trait T« extends {?}]] extends {ﬁ} where {« extends {?}} f_d) end trait definition
od == object OJo extends {I—f}]](ﬁ') extends {ﬁ} where {« extends {I—(>}} f—d> end object definition
d n= td definition
| od
=
P = de program

Figure A.6: Syntax of Core Fortress with Where Clauses

A.2.3 Static Semantics

A static semantics for Core Fortress with Where Clausesogiged in Figures AJd, A.10, A.11, ahd Al12.
For simplicity, we use the following conventions:

e FTV(r) collects all free type variables in

e Similarly, FTV (e) collects all free type variables in all typesdn

We proved the type soundness of Core Fortress with Wheres€3ausing the standard technique of proving a progress
theorem and a subject reduction theorem.

319

Values, evaluation contexts, and redexes

v u= O[T]7)

E == 0O
O[TVE®)
E.x

vasT.f[T(vas7 EasTeéeas 7)as T
typecasexr = E in 7= ¢else cend
R == vz
| vasT.f[T](vas 7)as T
| typecasex = v in 7= ¢ elsecend

|
|
| FEast.f[T]eas 7)as T
|
|

Evaluation rules‘: pF E|R] — Ele] ‘

—_—
object Ofa extends _|(7:_)_ end € p

[R-FIELD] ———
pt EO[TI(V)-2)] — Ev)
miype, (£, O[], 0) = {([o’ extends _] 7" — 7,)} S((7/al") =7 (7 fal)rg) =7
R-METHOD object O_ (7=) _endep mbody,(f[7],OIFLCIF]D = {(x') — e}

p+ HO[FL(¥)as C[F].f[7 (v as 7)as 7] — H[T/Z)O[FLT)/sels][v /2] Se]

[R-TyPECASH type(v) =7 |T|=n 07" < 7)) 1<i<n plFT" <1,

—
pk Eltypecasex =vinT = é 7’ = ¢’ else e end] — E[[v/z]e,]

type(v) = 1Y —(p 0T <iom) 1<i<|7]
pt Eltypecasexz = v inT = ¢ else ¢’ end| — El[v/z]¢/]

[R-TYPECASEELSE]

Method body lookupt mbody,,(f[7], 7. 7) ={(Z) — €}

[MB-SELF] _ CJo extends _]];f_d> __>Ep _}f[[o/ e;i:)ends ;ﬂ(i/:;):; =e€ {f_)d}
mbody,,(f[7'], C[7], C[7]) = {(«") — [/ /][7°/d]e}
— Cfaextends _] - f_d> _€p flo' extends _](a':) =e€ {f_d>}

TOfC[[_]] witness, (C[T]] T°) =
mbody, (f[7'} C[7],7°) = {(2') — ['/Oé](S([T/Oé})}

_ Claextends _] — extends {JTT)}_ f-d) _€p f & {Fname(fd)} C#£C

[MB-WITNESS]

[MB-SUPER pr— — =
mbody,(f[7'LC[T],C' 7)) = |J mbody,(f[7'} [7/@]N:, C'[°]))
[Me-STATIC] _ Cla exiends _]- e_x}tends {N}_ fd _ 6p_> f-? {Fname(fd)}
mbody,,(f[7'],C[7], C[°]) = U mbody,,(f[7'], [7¢/ @] N;, 0bject)
Nie{ﬁ}
[MB-OBJ] mbodyp(f[[?}], Object,7) =10

Figure A.7: Dynamic Semantics of Core Fortress with Wheau€és (1)
320

Function/method name lookupFrame(fd) = f

—

Fname(f]a extends {}}]](ﬁ')T =e)=f

Types of value

type(O[T(V)) = O[7]

Finding witnesses from the static type of the receipeﬁmessp(r, T)= S‘

[] if 7/ = 0bject
match(C[7T],C[']) if r=C[7]andr’ = C[7']

—
Sy St if r=C[7T], 7 =C'[r],C #C,

witness, (T, 7') = i B LN N
_ CJoextends _]_ extends {N}_ €p,

andwitness, ([T /&N, O'[7']) = S, for N; € {N}
[] otherwise

Match two types to get substitutiodsnatch(T, T)= S‘

[] if =1’
nirry = 4 TR
= —
AT, T Sp--- 8, ifr=C[T], 7 =C[r'], andmatch(S;_1--- Simi,7') = S;ifor1 <i<n
] otherwise

Figure A.8: Dynamic Semantics of Core Fortress with Whegu€ks (I1)

321

Environments and method types

- =7
A = o< {K} bound environment
r uw= z:7 type environment
e =
n == [aextends {I_{)}]] 7T — 1 method type

Program typing

— —
p=de pkdok pd0Fe:T
Fp:71

[T-PROGRAM]

Definition typing:

p b validMultipleInheritance(T) A=a < {I_{)} 8 <: {ﬁ}
. 3 . ~ . j . . . - . 3]
p; A+ K ok p; A N ok p; A+ H ok p; A;self : T[d]; T+ fd ok

[T-TRAITDEF] — — ——
ph trait Ta extends { K }] extends { N} where {3 extends { H}} fd end ok

e e —

p b validMultipleInheritance(O) A=a < {I—f} A=A < {ﬁ}
p;A’FEOk p; A F T ok p;A’FﬁOk p; A’ H ok
—
p; Alsself : O[@] x:7;0 - fd ok

. — N — — . =
p - object O extends { K }](2:7) extends { N } where {3 extends {H }} fd end Ok

=

[T-OBJECTDEF]

Method typing:‘ p; AT CF fd ok‘

—_— _ E——— =
p b override(f,C, [ooextends {K}] T — 79) A=A o <: {K} p; A’ F K ok
p;A'FT ok pA'Frgok pATrirRe:rt p AR <1

[T-METHODDEH s
p;A;T;C F fla extends { K }](7:7):m0 = e ok

Method overridingl p b override(f,C,n) ‘

-_
1 —/} ~ =7
— CJo" extends {K"}] — extends { N} where {Sextends {H}}_ €p

A=d" < {ﬁ}ﬁ < {ﬁ}
mitype, (f,C'[77], A) = {([o extends {K'}] 7 — 14, A")}

Ucﬂf_’;]]e{ﬁ}

K =[a/d]K pAF[G/d]7 < 7 pAbr < [@/d)

[OVERRIDE] =
p F override(f, C, [extends {K}] T — 7o)

Valid multiple inheritance‘:p F validMultipleInheritance(C) ‘

p F oneOuwner(C) p b validWhere(C)

[VALID MI]
p b validMultipleInheritance(C')

Figure A.9: Static Semantics of Core Fortress with Wherei§3a (1)

322

One owner for all the visible methoo‘gj F oneQuwner(C) ‘

Vf € visible,(C) . f only occurs once inisible,(C)
pF oneOuwner(C)

[ONEOWNER]

Valid where clauseéf:p F valid Where(C') ‘

Vf € visible,(C) .

where _Cla_] __e>xtends {ﬁ} _€p
mbody, (flof],Cla],Cla]) ={- —er}, mtype,(f.C[],0) = {(ns, A)}
1. VBe (FTV(ep)\{a .p e FTV(nys)
2. VBe(FTV(n)\{a@ VO[] € Uy, e, defining, (£, N:) .

IR

}
}
_
B=1f AB) = [?Z forl1 <i< \;C)\ where _ C'[o extends {I?;H] _ €D

[VALID WHERE]
p = validWhere(C)

_

Valid witnessest p - valid Witness(A,a <: {7}, 7T)

== - — = -
p; A8/ 37 ok p A F 7P ok p AT < 18 BT
{#}ndomA) =9
p F validWitness(A, 8 <: {7}, 7%)

[VALIDWITNESS]

Expression typing
[T-VAR] p; AT Fa: ()
[T-SELF] p; A;T F self : T'(self)

object Ofaextends _| (_:7)_end€p p;AFO[7T]ok
— . vy — =17
p; AT e T p;AET" < [T/d]T

[T-OBJECT] —— —
p; AT HO[T](E) : O T]
[T-FIELD] ;AT Feg:mg bounda(my) = {O[[:’}]]} object Oa extends _|(7:7) _ end € p
p; AT eg. ;0 [T)]
_
;AT ey p;AET < C[[;C)ﬂ mtypep(f,C’[[;c)]],@) = {([o’ extends {I?;H] RN 75, AN}
= —
pAFTok p AFC[r]ok p;AFTi0k p; AR 7T ok
- = — — — - —
p A TEE 7" p AR <o 7% dom(A) ={B} S=[r%/3]
— - = — — — -
[T-METHOD)] p = validWitness(A, A, 7)) p; AT < S([T /1K) S([T/d|17)=7¢ S([T/d17y) =7"

p; AT Foep as C[[:c)]] fl7](east@)as 7" : 7"

p; AT e T oy AT zimbe i1l P AFRTE < 7 1<i<|7
p AT z:iThe 79 p AT <1

p; A;T - typecasez =einT = éelsee’ end: 7/

[T-TYyPECASH

Figure A.10: Static Semantics of Core Fortress with Wheeu&is (I1)
323

p; AT <: Object

[S-OBJ]
[S-REFL] pAFT <t T
[S-TRANS] Dy AFT < T D;AF T < T3
p;AFT < T3
[S-VAR] LA(Q)
Ao < T
s -
_ C[o extends {?}]] extends {]—V}} where {(extends {ﬁ}} _ €p
A+ 7T ok AFT < T—éﬁ?E}K F valid Witness(A, 3 <: 7 /aH T—é
[S-TAPP] p7 p7 p))
pAFCIF] < [/ B)7 /aIN,
Well-formed types
[W-OBJ] p; A Object ok
[W-VAR] a € domA)
p; A F ook
-_ _
_ C[Jo extends {ﬁ}]] _ where {fextends {H}}_ €p
(WeTapr] BAF Tok pAFT < [(P/F)[T/TVK pr vaidWitness(A, B <: {[T/QH},P)
p; A= C[7] ok
Method type lookupt mtype,, (f,7,A) ={(n,A)}
- - — —_ —
[l extends {K'}(—:7"):m0— € {fd}

_ CJavextends _] _ where {§ extends {ﬁ}} _JT)d _ €p
AN =ApB <: {H}

mitype, (f,C[7],A) = {([7 /@[extends {K'}] 7 — ro,[7/@)A")}

[MT-SELF]
_ CJoextends _] extends {N} where {3 extends {ﬁ}} _f_d) — €p fé&{Fname(fd)}
[MT-SUPER]| = A=Ap < {H) — =
mtype,(f,C[7T],A) = | miype,(f,[7/@|N;, [T/]A)
Nie{ﬁ}
[MT-OBJ] mtype,(f,0bject, A) =0

Bound of type* bounda(r) = {7} ‘

bound () UTI,EA(Q) bounda (7;)

bounda(c) = {o}
Figure A.11: Static Semantics of Core Fortress with Wheeu&as (l11)

324

Traits defining a methoddefining,,(f, N) = {N)}

defining,,(f,0bject) = ()
U defining, ([, [T/ a]N;)
Nie{N} R
if _Cla_] - extends {N}_ €pandf ¢ defined,(C)
U defining,(f,[7/@1N;) U{C[TT}
Nie{]v}

defining,,(f, CI7]) =

if _CJa_] - extends {ﬁ} — epandf € defined,(C)

Aucxiliary functions for methods:defined,, | inherited,, | visible,(C) = {7}

defined ,(C) = {Fname(fd)} where _ C’_ﬁ_ €p

inherited,(C) = |4 {fi | fi € visible,(N;), fi & defined,(C)} where _ C _ extends {]Tf)}_ €p

visible,(C) = defined ,(C) W inherited,(C)

Figure A.12: Static Semantics of Core Fortress with Wheeu&is (1V)

A.3 Core Fortress with Overloading

In this section, we define a Fortress core calculus with oaglihg for dotted methods and first-order functions. We
call this calculusCore Fortress with Overloading Core Fortress with Overloading is an extension of BasiceCor
Fortress with overloading.

A.3.1 Syntax

The syntax for Core Fortress with Overloading is provideBigure[A.13.

A.3.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Overloading ejated in Figuré A.1).

A.3.3 Static Semantics

A static semantics for Core Fortress with Overloading is/jgted in Figure§ A.1H, A.16. A.17, ahd A118.

We proved the type soundness of Core Fortress with Overigadiing the standard technique of proving a progress
theorem and a subject reduction theorem.

325

fd
td
od

€.x

e fI7I(E)
I71(°)

flo extends N|(z:7):7 = e

—_—
trait T« extends N| extends {ﬁ} f_d) end
e —_ =
object Ofa extends N|(z:7) extends { N} fd end

fd
td
od

—

de

type variables

function or method name
field name

trait name

object name

type
type that is not a type variable
type that can be a type bound

expression

function or method definition
trait definition

object definition
definition

program

Figure A.13: Syntax of Core Fortress with Overloading

326

Values, evaluation contexts, and redexes

v u= O[T|7) value

O evaluation context
O[T €E®)
FE.x

Evaluation rules‘: pt E|R] — Ele] ‘

[R-FIELD] object O _(z:_)_end €p
pF HO[TNV).zi] — Elvi]
object Of« extindiNﬂ (z77)_ end €p type(v') = 7
[R-METHOD] mostspecific,g(applicable,, o (f[7'7"), visible,(O[T])) = f[o/ extends N'](2': _): _ =e
p = EO[TLW).fl7')(v")] — H[V/Z]|O[TKV)/self][v" /a']e]
type(v) = 7

[R-FUNCTION] mostspeciﬁcp;w(applicablep;w(f[[?]](?), {(fd,0bject) | fd € p})) = fla extends N](z:_):— =e

pFEfITI(V)] — H[V/T]e]

Types of value
type(O[T0)) = O[T]

Figure A.14: Dynamic Semantics of Core Fortress with Oaating

327

Environments and trait or object names

A = o<
I == z:7
c =T

| @)

N bound environment
type environment
trait name
object name

Program typing

[T-PROGRAM]

p:ﬁ)e p;(/);@%ﬁ)ok vaalidFun(E)) p;0;0Fe:T
Fp:7

Trait typing:| p; 0; 0 - ¢d ok

[T-TRAITDEF]

A=a <: N p;A}—ﬁok p;AI—MOk
—
p; Asself : T[] - fd ok p validMeth(T)
eSS — =
p;0; 0+ trait To extends N| extends {M} fd end ok

Object typing:| p; 0; 0 I od ok

[T-OBJECTDEF]

- — N —
A=a <: N p; A N ok p; AF T ok p; A F M ok
— — 73 .
p; A;self : O[d] z: 7+ fd ok p b validMeth(O)
- —_— = =
p; 0;0 - object O extends N|(7:7) extends { M} fd end ok

Function and method typingp; A; T" - fd ok

[T-FUNMETHDEF]

’ ~ Iy —
A'=Aa < {N} pA'FENok pA'F7ok pA't 7ok
ATz 7he:T p AT <7
——
p; A;T F f[o extends N|(z:7):70 = e 0k

Valid method declaration#p F validMeth(C) ‘

[VALIDMETH]

v (fd, C[7]), (fd', C'[7°]) € wisible,(C°[a?]).

where _ C°[a® extends _]_ € p,
fd # fd’ (not same declaration)
fd = floaextends N|(Z7):7" = _, fd' = f[o’ extends N'](_:7):r" = _,

— ’ ’
p b valid(Jo extends N}]C[[:g]]? — 77, [/ extends N'|C'[r°¢]]? — 7" ,visiblep(Co[[?ﬂ))

p F validMeth(C?)

Figure A.15: Static Semantics of Core Fortress with Ovelilog (1)

328

Valid function declarations:p + UalidFun(E))

Vfd,fd € d.
where fd # fd’ (not same declaration)
fd = f[a extends N|(—:7):7" = _, fd' = f[o/ extends N'](_:7):7"" = _,
- Y . — RN . - 4 . i
p b valid([o extends N]Object T — 77, [o extends N'|0bjectr’ — 7", {(fd,0bject) | fd € d })

[VALID FUN] —
p b validFun(d)

Valid declarations} p I~ valid([a extends N]|7 — 7, [a extends N| 7T — 7,{(fd,7)})

=
J1<i<n. 7 #[ad/d]7]
A 4) 3 (f[a” extends N"](_:7"):r"" = _,7!) € S.
where
. — —
VO0<i<n. pAFmeet({r,[a/d]|r]}, [/a’]T])
~N =
A N =[d/a"|N
A pAR[R /T < T
—

- " ’
AN p AR /)T <7
—_— ’
p F valid([a extends N| 7T — 7", [’ extends N']7/ — 7", 9)

Expression typing:p; A; T ke : 7]

=
)
) = - =
AN 2)V1<i<n.pAb7 < [ad/dr] Vv pARd/d)T] <
)
)

[VALID]

[T-VAR] p; AT Ha: T(x)
[T-SELF] p; A; T self : T'(self)
object OJaextends _|(_:7')_end€p p;AF O[7T]ok
[T-OBJECT] p AT e 7 p AR < [T)A)T
p; AT =O[T](€) : O[]
[T-FIELD] ;AT Feg:mo bounda (7o) = O[[:;]] object Oa extends _[(7:7)_ end € p
p; AT eg. 0 [T)7
— — =
p; A;T' Feg: 7 p; AT ok p AT € 7
. . —_ — .. —_— r
[T-METHOD)] mostspecific, A (applicable, A (f[T](7"), visible,(bounda(70)))) = f[o extends N(_):7" _

p; AT eo.f[[?]}(?) T

-
p;AFTok pATETE: T
— [
mostspecific,. o (applicable, A (f[T)7'), {(fd,0bject) | fd € p}))) = f[a extends N](_):7" _
p AT fITICE) 77

[T-FUNCTION]

Figure A.16: Static Semantics of Core Fortress with Ovetilog (11)
329

[S-0OBJ] p; AT <: Object

[S-REFL] AT <i T

[S-TRANS] D;AFT < T D;AF T < T3
D;AFT < T3

[S-VAR] pAFa < Ala)

[S-TaPF] - C[[Wﬂ_ extends {ﬁ} _€p

p; AFC[T] <: [T/d]N;

Well-formed types

[W-OBJ] p; A F Object ok
[W-VAR] a € dom(A)
p; A F ook

—_— — — — =17
_ Claextends N]_ €p p; A+ T ok p;AET < [T/d]N
p; A C[7] ok

[W-TaPP]

—

Most specific definitiong:mostspecific, A({(fd, 7)}) = fd

Jd = f(a extends N)J((Z7%)1):t — -+ f(c extends N), J((_ 7)) —

1<i<n (771))i=7'f1-~-7“ TH =T VO<j<m.pAF meet({rj, -+, 75}, 755)

m
—_—

mostspecific, A({(fd, 7)}) = fd;

Applicable definitions applicable, A (f[TK7), {(fd,7)}) = {(fd,7)}

(7 /@)fd,7)| where(fd,) € S,
fd = flaextends N|(z:7""): _,

— =
applicable, A(f[T')(7"),S) =

— — 7

p AT < [/A
—

pAFT < [7/3]N}

Figure A.17: Static Semantics of Core Fortress with Ovetilog (111)

330

Method definition lookupy visible,, / defined,(C[7]) ={(fd,C[7])}

visible,(C[T]) = deﬁnedp(C[[?]]) uy visiblep([?/ﬁ]C’[[:’)]]) where _ Ca_] _ extends {ﬁ}_ €p

o 1e(N}

defined (C[7]) = {([7/@)fd, C[T])} where _ C[aZ]_fd_ €p

Most specific type}p; A meet({T},7) ‘

e {7} VI<i<|7T|.ppAFT <1y
p; A F meet({T}, 1)

Bound of type] bounda(r) = o

bounda(a) = Aa)
bounda(c) = o

[MEET]

Figure A.18: Static Semantics of Core Fortress with Ovetilog (1V)

A.4 Acyclic Core Fortress with Field Definitions

In this section, we define a Fortress core calculus with &cggbe hierarchy and field definitions inside object defini-
tions. We call this calculuAcyclic Core Fortress with Field Definition#\cyclic Core Fortress with Field Definitions
is an extension of Basic Core Fortress with acyclic typednadry and field definitions inside object definitions.

A.4.1 Syntax

The syntax for Acyclic Core Fortress with Field Definitiossarovided in Figurg A.119.

A.4.2 Dynamic Semantics

A dynamic semantics for Acyclic Core Fortress with Field Difbns is provided in Figure A.20.

A.4.3 Static Semantics

A static semantics for Acyclic Core Fortress with Field D#fims is provided in Figurds A.2[L, A.22, ahd A]23.

We proved the type soundness of Acyclic Core Fortress wighdADefinitions and the acyclic type hierarchy of a
well-type program in Acyclic Core Fortress with Field Defians using the standard technique of proving a progress
theorem and a subject reduction theorem.

331

fd

td
od

e.x
e-f[7](€)

—_—
flo extends N|(z:7):7 = e
mT=e

—_— —. —

trait T[a extends N] extends { N} fd end

. BRI s S - =
object O extends N|(z:7) extends { N} fd end
td
od

—

de

type variables
method name
field names
trait name
object name

type
type that is not a type variable
type that can be a type bound

expression

method definition
field definition

trait definition

object definition
definition

program

Figure A.19: Syntax of Acyclic Core Fortress with Field Défaoms

332

Values, intermediate expressions, evaluation conteadiexes, and trait and object names

v u= O[TKz—v;} value
T intermediate expression
| self
| OI7ICe)
| €.x
| efITICE)
| O[FKT =474}
E == 0 evaluation context
O[T €E™®)
E

e f[TICE?)

O[Tz = v; 2 — Exr &}

|

| T

I Ef[TIe)
|

R == O[T]7?) redex
| O[Tz —=70; vz ¢}
| V.T
| fITIY)
C u= T trait name
| 0 object name

Evaluation rules‘:p F E[R] — El¢] ‘

[R-OBJECT] object O[(Mﬂ(ﬁ)_ 2 _=¢ _end e D

pF HO[TV)] — HO[THz=70;2" = [v/7|[7/d]e'}]
[R-SuB] pFHO[THz =0, y— vz e} — HO[THz = 0y +— v; 2z [v/yle}]
[R-FIELD] pF EHO[THz = 0; }.a5] — Evi]
Romeron mbody, (/[71.0[FD = {(&) — ¢}

p+ HO[FRT =0 A7)(vV)] — H[T/Z)O[FHT = 5; }/selt][v/ /o |e]

Method body lookup} mbody,,(f[7], 7) = {(Z) — €}

[MB-SELF] — Claextends _] —]Td> - Eﬁ fle! ex_}ten_}ds-:ﬂ(_ai’:_):_ =ec€ {f_)d}
mbody,,(f[7'], C[T]) = {l7'/'][7 /a](«") — €}
[MB-SUPEH] _— Claextends _] — ei:ends {ﬁ}_ f-d) _€p fj {_]i‘name(fd)}
mbody, (f[7'LCIT]) = | mbody,(f[7'}[7/a]N:)
Ni":‘{ﬁ}
[MB-OBJ] mbody,,(f[7] Object) = 0

Function/method name lookupFname(fd) = f
-
Fname(f[a extends N|(z:7):m =€) = f
Figure A.20: Dynamic Semantics of Acyclic Core Fortresdwhiteld Definitions
333

Environments

A = a<: N bound environment
r == oz:7 type environment

Program typing

p:E}e p;(Z);QH—E}Ok p;0;0Fe:T acyclic(g))

[T-PROGRAM]
Fp:T

Acyclic type hierarchy acyclz‘c(ﬁ))

trait T]a extends N] extends {]\—j} _ended 1<i<|a]
(1) M;#T[_] implies p; _ +[7/@|M; £: T[7]
(The type names excluding self-extensions form an acyieliarbhy.)
(2) M;=T[_] implies M;#T[_] 1<j<|M| i#j
(3) MZ:T[[?]] ImplleS (TZ:OZZ)\/(TZ:Nz)\/(TZ:Ot]/\O[zZNJ) 1§j§ |E ’L;ﬁj
acyclic(?)

[AcycLiC]

Definition typing:| p; 0; @ - d ok

jr— . . ~ . IV . . . - 3
A=a <: N p; A N ok p; A F M ok p; A;self : T[] F T okfd
p = oneOuwner(T)

[T-TRAITDEF] —_— =
p; 0;0 - trait Ta extends N| extends {M} fd end ok

— — —

A=a <: N p; A N ok p: AT ok p; A+ M ok
— o / / / /ot ;
vd=2x"1"=e p;NjziT oz .oxh_ Tl Falbrl=e0k 1<i<n

1 — . 3
p;Aj;self : Ofa] =7 o' : 7'+ O okfd p - oneOuwner(0)
- —_— —_ =
p; 0; 0 - object OJ« extends N](z:7) extends {M} fd end Ok

[T-OBJECTDEF]

One owner for all the visible methoqsa F oneOwner(C) ‘

Vf € wisible,(C) . f only occurs once invisible, (C)

[ONEOWNER]
pF oneOuwner(C)

Method typing:‘ p; A; T E C okfd ‘

- Y — . ry- L i —
— C[o/ extends _]_ extends{K}_ €p plt override(f,{M}, o extends N] T — 1)
_ —
A'=Aa <: N p; A’ Nok p;A'FT ok pA'F ok
p; ATz 7he: 1! p AET <1

[T-METHODDEF] o extends N| (77
p; A; T F C okf[o extends N|(z:7):mg =

Figure A.21: Static Semantics of Acyclic Core Fortress tbld Definitions (1)

334

Field typing:| p; A; T+ vd ok

p; A F 7ok p; A;T e 1/ pART <7
p; AT R o 7=eok

Expression typing

[T-VAR] p; AT F o T(x)

[T-FIELDDEF]

[T-SELF] p; AT F self : T'(self)

object Ofaextends _| (Z:7)_ end € p p; A+ O[7T]ok
- = — =
p; AT R €1 p; AbET" < [T /AT

[T-OBJECT] —— —
py AT EO[TICE) - O[]
-
object OJaextends _](a":7") _ «”:7""= _ _end €p
A3_ 7 A3 _ =1 -
zle? =2’z e =¢€e p; AT EO[TNE) : O T
—_—— = — — =
py AT a2 = p AR [T/ < [7/)a)r"

[T-INT-OBJECT]

p; AT O[Tzt = el 22— €2} : O] 7]

;AT He: bounda (7o) = O[[?ﬂ

-
object OJaextends _[(z':7')_ 2”:7" = _ _end€p T =2z

[T-FIELD]
p; ;T Re oy [73/3]71-
p; AT Re:m mtype,, A (f, bounda (7)) = {[a extinds NJ 7 — 75}
p: A+ 7T ok pAFT < [T/d]N
— — —
AT AR < [F/A)T
[T-METHOD] P <7 ﬁ’ — T_)<_)[T/Q}T
p AT e f[7T])0€) : [T/
[S-08BJ] p; AF T <: Object
[S-REFL] pAFT <0 T
A F : AR DT
[S-TRANS] b; 71 <! T2 D; T2 <! T3
AR T <: T3
[S-VAR] DA a < Ala)
_ —
[S-TaPH] — Claextends _]_ extends {N} _ €p

p;AFC[T] <: [T/d]N;
Figure A.22: Static Semantics of Acyclic Core Fortress vitbld Definitions (1)

335

Well-formed types

[W-OBJ] p; A F Object ok
[W-VAR] a € domA)
p; A+ a ok

Claextends N] €p pAFTok pAFT < [?/E)]N)
p; A= C[7] ok

[W-TAPF]

Method overriding| p - override(f, {ﬁ}, [extends N| 7 — 7)

UL{E{f}
N=[@/fIM 7=[@/F)7 pmda< (N}krn < [@/Fln
p b override(f, {f}, [« extends NJ T = T0)

-
miype, A (f; Li) = {[6 extends M] 7" — 79}

=
-

[OVERRIDE]

Method type lookup mtype,, A (f,7) = {[o extends N] 7 — 7}

[MT-SELF] _ Claextends] —]Td;)_ Ep _ f_[[)ﬂ extends M| (Z:7):mh= _ € {]TCZ}
mitype, A (f, C[T]) = {[7/@][3 extends M] 7" — 79}
[MT-SUPER] _ Claextends _] — ei:ends {K}_fd _€p ;)f i{Fname(fd)}
mtypep;A(faC[[T]]) = U mtypep;A(fﬂ[T/a]Ni)
[MT-OBJ] mtype,.A(f,0bject) =0

Aucxiliary functions for methods:defined,, | inherited,, | visible,(C) = {7}

defined ,(C) = {Fname(fd)} where _ C’_ﬁ_ €p

inherited,(C) = |4 {fi | fi € visible,(N;), fi & defined,,(C)} where _ Cla extends _] _ extends {ﬁ} _€p

visible,(C) = defined,(C) W inherited,(C)

Bound of type] bounda(r) =7

bounda () = A(a)
bounda (N) = N
bounda(O[T]) = O[7T]

Figure A.23: Static Semantics of Acyclic Core Fortress Witbld Definitions (l11)

336

Appendix B

Overloaded Functional Declarations

As mentioned in Chaptér 83, this appendix proves that thdetens discussed in Chapter]33 guarantee no undefined
nor ambiguous call at run time.

B.1 Proof of Coercion Resolution for Functions

This section proves that the restrictions discussed in teeiqus sections guarantee the static resolution of coerci
(described in Sectidn 17.5) is well defined for function® (tlase for methods is analogous).

Consider a static function cafl A) at some program poirff and its corresponding dynamic function cAllX). Let
Y be the set of parameter types of function declaratiorfstbét are visible aZ and applicable to the static cgl{ 4).
Let X' be the set of parameter types of function declarationfstbft are visible aZ and applicable with coercion to
the static callf (4). Moreover, letv’ be the subset of’ for which no type inX’ is more specific:

o = {Se¥ | -39e¥:58«aS }.

We prove the following:
|Z] = 0and|X’| # 0imply |o'| = 1.

Informally, if no declaration is applicable to a static dalit there is a declaration that is applicable with coercimmt
there exists a single most specific declaration that is ealplié with coercion to the static call.

Lemma 1. Given an acyclic, irreflexive binary relatioR on a setS, and a finite nonempty subsdtof .S, the set
{a € A|=3d’ € A: (d’,a) € R} is nonempty.

Proof. Consider the relatiof® on S as a directed acyclic graph. Ldtrepresent a subgraph. Then the Lemma amounts
to proving that there exists a node in the graph representetiwith no edges pointing to it. This follows from the
fact thatA is finite and the graph is acyclic. O

Lemma 2. If |¥'| > 1then|o’| > 1.

Proof. Follows from Lemmall wher§ is the set of all types4 is X', and the relatior is acyclic and irreflexive. O

Lemma 3. If |X| = 0 then|o’| < 1.

337

Proof. For the purpose of contradiction suppose there are two @deidas/ (P) andf(Q) in o’. Since bothf (P) and
f(Q) are applicable with coercion t(A) and|X| = 0 there must exist a coercion from some typéto P and a
coercion from some typé’ to () such thatd < P’ N Q’. Therefore it is not the case thAt¢ Q. By the overloading
restrictions,P # @ and eitherP <« Q or Q <« P orforall P’ € s andQ’ € T eitherP’ ¢ Q’, or there is a declaration
f(P'n @) visible atZ. If P< @ or @ < P then we contradict our assumption. Otherwise, if theretexdsleclaration
f(P'n Q') visible atZ then this declaration is applicable t0A) without coercion. This contradic{E| = 0. If such
a declaration does not exist then it must be the casethét Q’. Then bothf(P) andf(Q) can not be applicable to
the callf (A) which is a contradiction. O

Theorem 1. If |[¥| = 0 and|YX’| # 0 then|o’| = 1.

Proof. Follows from LemmakI]2 ard 3. O

B.2 Proof of Overloading Resolution for Functions

This section proves that the restrictions placed on ovdddaunction declarations are sufficient to guarantee no
undefined nor ambiguous call at run time (the case for metisaatsalogous).

Consider a static function cgll A) at some program poirff and its corresponding dynamic function clX). Let
A be the set of parameter types of function declarationftbft are visible afZ and applicable to the dynamic call
f(X). LetX be the set of parameter types of function declaratiorfstoét are visible aZ and applicable to the static
call f(A). Moreover, lets be the subset of for which no type inx is more specific and le be the subset ah for
which no type inA is more specific:

o {Sex | -39€x:58<S }
0 = {DeA | -3D'eA:D' <D }.

Below we prove:
|X| # 0 implies|o| = 1, and
|X| # 0implies|d| = 1.

Informally, if any declaration is applicable to a staticldaken there exists a single most specific declaration that is
applicable to the static call and a single most specific detitan that is applicable to the corresponding dynamic call

Lemma4. X C A.

Proof. Notice thatX < A by type soundness. [f(P) is applicable to the caji(A) thenA < P. Notice thatX < A
implies X < P. Thereforef (P) is applicable to the cafi(X). O

Lemma5. If |A| > 1 then|d| > 1. Also, if|X| > 1 then|o| > 1.

Proof. Follows from Lemmall wher§ is the set of all typesd4 is A andX: respectively, and the relatior is acyclic
and irreflexive. O

Lemma 6. If |X| > 1 then|d| > 1.

Proof. Follows from Lemmag]4 arid 5. O

Lemma7. |o| < 1. Also,|d| < 1.

338

Proof. We prove this ford, but the case for is identical. For the purpose of contradiction supposeetiaee two
declarationg (P) andf(Q) in 6. Since bothy (P) andf (@) are applicable without coercion to the cA(lX') we have
X =X PN Q. Therefore it is not the case thEt ¢ Q. By the overloading restrictions} # @ and eitherP { @ or
there is a declaratiofi(P N @) visible atZ. Since it cannot be the case that¢ @ there must exist a declaration
f(PnQ)visible atZ. SinceP N @ < PandP N @ =< @ we knowf (P N Q) is applicable without coercion to the
call f(X). SinceP # @ eitherP N @ < Por PN @ < Q. Either case contradicts our assumption. O

Theorem 2. If |X| # 0 then|o| = 1. Also, if|X] # 0 then|d| = 1.

Proof. Follows from Lemmag]%.]6 ard 7. O

Theorem 3. If 0 = {S} andé = {D} thenD < S.

Proof. If the declaration with parameter tygeand the declaration with parameter typesatisfy the Subtype Rule
then the theorem is proved. Otherwise, by the definitiom ok haver C X. ThereforeS € . By Lemmd 4,5 € A.
Notice thatS, D € A impliesX < S andX < D. Therefore,S ¢ D. By the More Specific Rule for Functions, there
must exist a declaration with parameter type) D. BecauseX < (SN D), (SN D) € A. Notice(SND) < S
and(S N D) =< D. By the definition of§, we have-3D’ € A : D’ < D. In particular,(S N D) £ D. Therefore
(SN D) =D. O

339

Appendix C

Components and APIs

As mentioned in Chaptér 22, we formally specify key functility of the Fortress component system, and illustrate
how we can reason about the correctness of the system.

Components One important restriction on components is that no APl mapdith imported and exported by the
same component. Formally, we introduce two functions onpmmmentsimp andexp that return the imported and
exported APIs of the component, respectively. For any caraptr, imp(c) Nexp¢) = 0. This restriction is required
throughout to ground the semantics of operations on comysnas discussed in Section 22.7.

APIs Other than its identity, the only relevant characterisfiaw API a is the set of APIs that it uses, denoted by
usesa). Because an AP4 might expose types defined irsega), we require that a component that expartalso
exports all APIs irusesa) that it does not import. Formally, the following conditionltls on the exported APIs of a
component:

a € explc) Aa' €usesa) = a’ €imp(c) Uexpc)

Link GivenasetC = {¢,..., ¢} of components, we define a partial functiork(C') that returns the component
resulting frome; throughcy. If ¢ = link(C'), thenexp(c) = J, ¢ exp(c¢’) andimp(c) = U, <o imp(c’) — expc).

The functionlink is partial because we do not allow arbitrary sets of comptntnbe linked. In particular, Two
components cannot be linked if they export the samdlAiis restriction is made for the sake of simplicity; it allow
programmers to link a set of components without having taipexplicitly which constituent exporting an ARA
provides the implementation exported by the linked compgrend which constituent connects to the constituents
that importA: only one component export$, so there is only one choice. Although we lose expressienéh this
design, the user interface to link is vastly simplified, ahi$ irare that including multiple components that export a
given APl in a set of linked components is even desirable. Weuds how even such rare cases can be supported in
Sectiori 22.B.

For a compound component, in addition to the exported anditeg APIs, we want to know what its constituents
are. So we introduce another functions which takes a component and returns the set of its constguerl hat
is, cnglink(C)) = C. Itis an invariant of the system that for any compound corepod’ (i.e., cngc) # 0),
any API imported by any of its constituents is either impdri®y C' or exported by one of its constituents (i.e.,
Uereongey iMp(c’) € imp(c) U U, ceng) €XA¢)). This property is crucial for executing components, as igeuts
below. A simple component (i.e., one produced directly bypibation) has no constituents (i.engc) = 0).

1There is one exception to this rule: the special ARigradable, which is used during upgrades discussed below.

340

Upgrade A predicateupg?takes two components and indicates whether the first candradgd with the second;
that is,upg? ¢, ¢;) returns true if and only it; can be upgraded with.. This predicate captures both the constraints
imposed by a components Valid Upgrade function and the conditions that guarantee the well-fornesd of the
result. That is,

upgc, o) = ¢.isValidUpgrade(c,)
Aimp(e;) C exple,) Uimp(c,)
Aexple) C exple)
AVe € cngc).(expc) C exple) Vexpc) Nexple) =0V upgdc, o))

Visible and Provided We introduce two new functions on componenis, which returns the APIs of a component
that have not been hidden; apobv, which returns those visible APIs that are exported by sapdedvel constituent

of the component (or all the exported APIs of a simple comptnee say these APls apgovidedby the component.
We need to distinguish provided APIs because they can bertetpby the top-level constituents of a component, and
thus by a replacement component in an upgrade, while oth#&iAPIs cannot be. Thus, for a compound component
¢, provic) = vis(c) MU, ceng o) €XR¢’). For a simple component prov(c) = vis(c) = exp(c).

Constrain If ¢ is a compound component andC exfc) is a set of APIs such that € expc) A a’ € usega) N

A = a € A, we definec’ = constrair(c, A) such thatexg¢’) = exp(c¢) — A and for any component”,
upg?ac’, ¢”) <= upg¥ec, c”’) Aexpc') € exdc¢”). Theimp, vis, prov andcnsfunctions all have the same values
for c and¢’. The extra condition on the upgrade compatibility simplptoaes the restriction we mentioned above,
that a replacement component should not export every ARiréag by the target.

Hide If ¢ is a compound component andC vis(c) is a set of APIs such thaxp(c) € A anda € vis(c) Aa’ €
usegsa) N A = a € A, we definec’ = hide(c, A) such thatvis(¢’) = vis(c) — A, prov(c’) = prov(c) — A4,
exp(¢’) = exp(c) — 4, and for any componert’, upg? ¢/, ¢”’) <= upgqc,c’) Aexpc’) € expc”) Avis(c”) C
vis(¢’). The additional clause iopg? ¢/, ¢’') (compared with that o€onstrair) reflects the hiding of the APIs: we
can no longer upgrade APIs that are hidden.

Upgrade The interplay between imported, exported, visible and iole APIs introduces subtleties. In particular,
the last of the three conditions imposed for well-formednafsupgrades is modified to state that for any constituent
that is not subsumed by a replacement component, eithenibeaupgraded with the replacement, orvisible
APIls are disjoint from the APIs exported by the replacemeat, (it is unaffected by the upgrade). To maintain the
invariant that no two constituents export the same API, veslranother condition, which was implied by the previous
condition when no APIs were constrained or hidden: if théaegment subsumes any constituents of the target, then
its exported APIs must exactly match the exported APIs ofessobset of the constituents of the target. That is, if
upgdcs, &) A dc € cngc;). expc) C exple) thenexp(c,) = J o explc) for someC C cngc;). In practice,
this restriction is rarely a problem; in most cases, a useh@s to upgrade a target with a new version of a single
constituent component, where the APIs exported by the alidnew versions are either an exact match, or there are
new APIs introduced by the new component that have no impiéatien in the target.

341

Appendix D

Rendering of Fortress ldentifiers

In order to more closely approximate mathematical notatiamtress mandates standard rendering for various input
elements, particularly for numerals and identifiers, agi§ipe in Sectioh 5.17.

In this Appendix, we describe the detailed rules for rermdgan identifier.

If an identifier consists of letters and possibly digits, boiunderscores or other connecting punctuation, primesnark
or apostrophes, then the rules are fairly simple:

(a) If the identifier consists of two ASCII capital lettersattare the same, possibly followed by digits, then a single
capital letter is rendered double-struck, followed by-&illed (not subscripted) digits in roman font.

QQ isrenderedas Q RR64 isrendered as R64
ZZ isrenderedas Z Z7Z512 isrenderedas Z512

(b) Otherwise, if the identifier has more than two characerdsbegins with a capital letter, then itis rendered in roman
font. (Such names are typically used as names of types ineSert Note that an identifier cannot consist entirely of
capital letters, because such a token is considered to beeaator.)

Integer is rendered as Integer Matrix is rendered as Matrix
TotalOrder is rendered as TotalOrder BooleanAlgebra is rendered as BooleanAlgebra
Fredl17 is rendered as Fred17 R2D2 isrendered as R2D2

(c) Otherwise, if the identifier consists of one or more lettiollowed by one or more digits, then the letters are
rendered in italic and the digits are rendered as roman gplsc

a3 isrenderedas as foo7 isrenderedas foo,
M1 isrenderedas M; z128 isrendered as zisg
Q13 isrendered as (i3 myFavoriteThings1625 is rendered as myFavoriteThingsgos

(d) The following names are always rendered in roman typ@bréspect for tradition:

sin Ccos tan cot sec csc
sinh cosh tanh coth sech csch
arcsin arccos arctan arccot arcsec arccsc
arsinh arcosh artanh arcoth arsech arcsch
arg deg det exp inf sup

lg In log ged max min

(e) Otherwise the identifier is simply rendered entirelytatic type.

342

a isrenderedas a foobar is rendered as foobar
length is rendered as length isInstanceOf is rendered as isInstanceOf
foo7a is rendered as foo7a 133tsp33k is rendered as [33tsp33k

If the identifier begins or ends with an underscore, or batlhhlas no other underscores or other connecting punctua-
tion, or prime marks, or apostrophes:

(f) If the identifier, ignoring its underscores, consistswd ASCII capital letters that are the same, possibly foldw

by one or more digits, then a single capital letter is rendiénesans-serif (for a leading underscore), script (for a
trailing underscore), or italic san-serif (for both a lesgland a trailing underscore), and any digits are rendered as
roman subscripts.

(g) Otherwise, the identifier without its underscores igdered in boldface (for a leading underscore), roman (for a
trailing underscore), or bold italic (for both a leading anttailing underscore); except that if the identifier, igngr

its underscores, consists of one or more letters followedrtgyor more digits, then the digits are rendered as roman
subscripts regardless of the underscores.

m isrendered as m s_ isrendered as s
km_ isrendered as km kg_ isrenderedas kg
V. isrenderedas V kW. isrenderedas kW
v isrenderedas v fool3 isrendered as foois

(Roman identifiers are typically used for names of Sl dimamesli units. See sections 6.1.1 and 6.2.1 of [24] for style
guestions with respect to dimensions and units.)

These last two rules are actually special cases of the folpgeneral rules that apply whenever an identifier contains
at least one underscore, other connecting punctuatiangpmark, or apostrophe:

An identifier containing underscores is divided into partidy its underscores; in addition, any apostrophe, prime, o
double prime character separates portions and is alsbatpektion.

(h) If any portion is empty other than the first or last, thea éntire identifier is rendered in italics, underscores and
all.

Otherwise, the portions are rendered as follows. The idélaaisthere is grincipal portionthat may be preceded
and/or followed by modifiers, and there may also bace portion

e If the first portion is not emptyscript , fraktur , sansserif , or monospace , then the principal portion is
the first portion and there is no face portion.

o If the first portion isscript , fraktur , sansserif , or monospace, then the principal portion is the second
portion and the face portion is the first portion.

o If the first portion is empty and the second portion is swtpt , fraktur , sansserif , or monospace , then
the principal portion is the second portion and there is e faortion.

e Otherwise the principal portion is the third portion and thee portion is the second portion.

If there is no face portion, the principal portion will be dered in ordinary italics. However, if the first portion is
empty (that is, the identifier begins with a leading undemrsgdhen the principal portion is to be rendered in roman
boldface. If the last portion is empty (that is, the identiBads with a trailing underscore), then the principal porti
will be roman rather than italic, or bold italic rather thamidh

If there is a face portion, then that describes an alteryagface to be used in rendering the principal portion. Ifehe

is no face portion, but the principal portion consists of wapies of the same letter, then it is rendered as a single
letter in a double-struck face (also known as “blackboardd hpsans-serif, script, or italic sans-serif font acdogl

to whether the first and last portions are (not empty, not gmfempty, not empty), (not empty, empty), or (empty,
empty), respectively. Otherwise, if the first portion is eéynfthat is, the identifier begins with a leading underscore)
then the principal portion is to be rendered in a bold versibine selected face, and if the last portion is empty (that

343

is, the identifier ends with a trailing underscore), thenghacipal portion to be rendered in an italic (or bold italic
version of the selected face. The bold and italic modifierg beused only in combination with certain faces; the
following are the allowed combinations:

script

bold script

fraktur

bold fraktur
double-struck
sans-serif

bold sans-serif
italic sans-serif

bold italic sans-serif
monospace

If a combination can be properly rendered, then the pringipéion is rendered but not any preceding portions or
underscores. If a combination cannot be properly rendéned,the principal portion and all portions and underscores
preceding it are rendered all in italics if possible, anceothise all in some other default face.

If the principal portion consists of a sequence of lettel®fzed by a sequence of digits, then the letters are rendered
in the chosen face and the digits are rendered as roman gibs@therwise the entire principal portion is rendered
in the chosen face. The remaining portions (excepting the ifit is empty) are then processed according to the
following rules:

e If a portion isbar , then a bar is rendered above what has already been renéacdalding superscripts and
subscripts. For examplex_bar is rendered ag, x17_bar is rendered as;7, X_bar_bar is rendered
as z,andfoo_bar isrendered agoo. (Contrast this last witHoo_baz , which is rendered agoo_baz .)

e If a portion isvec, then a right-pointing arrow is rendered above what hasdirdeen rendered, exclud-
ing superscripts and subscripts. For exampleyec is rendered ag/, v17_vec is rendered agj;, and
zoom_vec is rendered agooni .

e If a portion ishat , then a hat is rendered above what has already been renéacdading superscripts and
subscripts. For examplecl7_hat is rendered ag;~ .

e If a portion isdot , then a dot is rendered above what has already been rendsadding superscripts and
subscripts; but if the preceding portion was adso , then the new dot is rendered appropriately relative to the
previous dot(s). Up to four dots will be rendered side-liesather than vertically. For examplg, dot is ren-
dered asa, a_dot_dot isrendered adi, a_dot_dot_dot is rendered asi’, a_dot _dot dot dot
is rendered asa . Also, a_vec_dot isrendered ag.

e If a portion isstar , then an asterisk is rendered as a superscript. For examplestar is rendered as*,
a_star_star is rendered ag**, ZZ_star isrendered aZ* .

e If a portionissplat , then a number sig# is rendered as a superscript. For examQl€_splat is rendered
as Q#.

e If a portion isprime , then a prime mark is rendered as a superscript.

e A prime character is treated the sameasie , and a double prime character is treated the same as twoazonse
utive prime portions. An apostrophe is treated the same as a prime ¢bgiait only if all characters following
it in the identifier, if any, are also apostrophes. For examal is rendered ag’, al3’ isrendered as/;,
anda” isrendered ag”, butdon’'t isrendered aslon't.

e If a portion issuper and another portion follows, then that other portion is exed as a superscript in roman
type, and enclosed in parentheses if it is all digits.

344

If a portion issub and another portion follows, then that other portion is mred as a subscript in roman type,
and enclosed in parentheses if it is all digits, and precégesubscript-separating comma if this portion was
immediately preceded by another portion that was rendesedsabscript.

e If a portion consists entirely of capital letters and woufdzonsidered by itself as an identifier, be the name
of a non-letter Unicode character that would be subject pdasement by preprocessing, then that Unicode
character is rendered as a subscript. For exanigléPLUS is rendered asdq , ZZ_GT is rendered aZ.-. ,
and QQ_star_LE is rendered af)% .

o If the portion is the last portion, and the principal portivas a single letter (or two letters indicating a double-
struck letter), and none of the preceding rules in this [itli@s, it is rendered as a subscript in roman type. For
example,T_min is rendered ad,,;, . Note thatT_MAXis rendered simply a$_MAX —because all its letters
are capital letters, it is considered to be an operator—bwub MAX is rendered adyiax -

e Otherwise, this portion and all succeeding portions areleegd in italics, along with any underscores that
appear adjacent to any of them.

Examples:
M isrenderedas M M isrenderedas M
v_vec Iisrenderedas ¥ wv_.vec Iisrenderedas v
vl isrendered as v; vx isrenderedas vy
vl isrenderedas v; vXx isrenderedas vy
adot isrenderedas a a_dot dot isrendered as a
a_dot _dot dot isrenderedas a a_dot _dot _dot .dot isrenderedas ‘a’
a_dot dot dot dot dot isrenderedas ‘G’ p13 isrendered as pi,
p isrenderedas p’ p_prime isrendered as p’
T_min isrendered as Tyin T_max isrenderedas Ty ax
foo _bar isrendered as foo foo baz isrenderedas foo_baz

In this way, through the use of underscore characters anataiom portions delimited by underscores, the program-
mer can exercise considerable typographical control dweréndering of variable names; but if no underscores are
used, the rendering rules are quite simple.

345

Appendix E

Support for Unicode Input in ASCII

As mentioned in Chaptéi 5, to facilitate the writing of Fess programs using legacy, ASCII-based tools, Fortress
programs are subjected to two preprocessing steps. Thasease described in detail in this appendix.

E.1 Word Pasting across Line Breaks

Consider every line terminator in the program (procesdiegnt from left to right) such that the following conditions
are all true:

e the last non-whitespace character before the line teranimsatn ampersandy;

the first non-whitespace character after the line termiriatan ampersanaj;

a word character immediately precedes the first ampersadd; a

a word character immediately follows the second ampersand.

Then all the characters from the first ampersand to the sesmopérsand are removed from the program, including the
two ampersands. (Note that all the removed characters ththieithe two ampersands must be whitespace characters.)
(The purpose of this is to allow very long identifier names aardheric tokens to be split across line boundaries.) For
example:

supercalifragilisticexpiali&
&docious = 0.142857142857142857&
&142857 TIMES &
GREEK_SMALL_LETTER_&
&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

supercalifragilisticexpialidocious = 0.14285714285714 2857&
&142857 TIMES &
GREEK_SMALL_LETTER_&
&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

346

supercalifragilisticexpialidocious = 0.14285714285714 2857142857 TIMES &
GREEK_SMALL_LETTER_&
&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

supercalifragilisticexpialidocious = 0.14285714285714 2857142857 TIMES &
GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTICA_AND_TONOS

E.2 Preprocessing of Names of Unicode Characters

After a program encoded as a sequence of ASCII charactersdmasprocessed for word pasting across line breaks
as described in the previous section, this step convetisctes words into corresponding Unicode characters.sib al
converts some other characters, as discussed below.

First the program is analyzed to determine the boundaristriofy literals and comments as follows: There are three
modes of processing: outside any comment or string litémalde a string literal and inside a comment. Within a
comment, we also keep track of “nesting depth” (this is 0 whehwithin a comment). All processing proceeds
from left to right. Outside any comment or string literalcenntering an unescaped string literal delimiter changes
processing to the mode for within a string literal (howeveis a static error if the string literal delimiter is the
right double quotation mark), and encountering the opengrgment delimiter #(” changes processing to the mode
for within a comment, incrementing the nesting depth (to All. other characters are ignored, except to note they
are outside any comment or string literal. Within a strirtgrl, all characters, including comment delimiters, are
ignored (except to note that they are within a string lifeeatept an unescaped string literal delimiter, which swatc
processing back to the mode for outside any comment or ditergl. Inside a comment, all characters, including
unescaped string delimiters, are ignored (except to natethiey are within a comment) other than the two-character
opening and closing comment delimiters:” and “+) . Whenever the opening comment delimiter is encountered,
the nesting depth is incremented, and each time the closimgnent delimiter is encountered, the nesting depth is
decremented, until it becomes 0. At that point, processrghanged again to the mode for outside any comment or
string literal. This step partitions the characters intmstiawithin string literals (including the string literallateiters)

and those not within string literals. Note that characterdil delimiters are ignored in this step. Thus, we require
string literal delimiters to be escaped within characterdils.

The characters outside of string literals are partitiomdd contiguous subsequences formed by the restricted words
and all the characters between the restricted words amd $térals separated by whitespace. That is, no subsequenc
considered has any whitespace characters or ampersanoisréamds being part of whitespace). Each subsequence is
considered separately.

For a restricted word, the general rule is that we try to eplhe restricted word with a single Unicode character that

it “names”. But we never do the replacement if the character printable ASCII character, a control character, or

a left or right double quotation mark (i.e., characters veitille points below U+009F, inclusive, or with code point
U+201C or U+201D). We call such charactgmetectedcharacters. Protecting the backslash and double quotation
mark characters is necessary to maintain the boundarissiing literals, and protecting the printable ASCII chaeas
ensures that the ASCII conversion process is idempoteate@mg the control characters makes sense because most
of them are forbidden from valid Fortress programs, andehbat aren’t are available directly in ASCII.

There are four sources for determining whether a restrietad is a “name” for a Unicode character. Because these
sources overlap in some cases, and not necessarily in cibhepagys, the order in which we try these names is
important.

First, Fortress explicitly provides short ASCIl names foanmy characters, especially ones that programmers might
be most commonly want. For operators, these names are givieppendiXF. For example, here are some common
ones:

347

LE becomes < GE becomes > NE becomes #
BY becomes x TIMES becomes x CROSS becomes x
DOT becomes PRODUCT becomes [] SUM becomes
CUP becomes U CAP becomes N SUBSET becomes C
EMPTYSET becomes) AND becomes A OR becomes V

Note that some characters have more than one short name sAtse non-operator characters also have short names,

particularly, the Greek letters and the special letters:

ALPHA becomes A alpha becomes «
BETA becomes B beta becomes [
GAMMA becomes T’ gamma becomes ~
DELTA becomes A delta becomes ¢
EPSILON becomes E epsilon becomes ¢
ZETA becomes Z zeta becomes (
ETA becomes H eta becomes 7
THETA becomes © theta becomes 6
IOTA becomes | iota becomes .
KAPPA becomes K kappa becomes k
LAMBDA becomes A lambda becomes A
MU becomes M mu becomes u
NU becomes N nu becomes v
Xl becomes = xi becomes ¢
OMICRON becomes O omicron becomes o
Pl becomes II pi becomes =
RHO becomes P rho becomes p
SIGMA becomes X sigma becomes o
TAU becomes T tau becomes T
UPSILON becomes T upsilon becomes v
PHI becomes & phi becomes ¢
CHI becomes X chi becomes ¥y
PSI becomes ¥ psi becomes v
OMEGA becomes () omega becomes w
BOTTOM becomes L TOP becomes T
INF becomes oo

A careful reader will note that AppendixX F also gives thedaling short names for printable ASCII characters:

LT becomes < GT becomes > EQ becomes =

These names provide a certain level of compatibility withtfam. However, they are only replaced by the correspond-
ing character only when they are delimited by whitespaceatters (note, not ampersands) or the beginning or end
of the program. Thus, they cannot participate in furtheveesion.

The second source is the official Unicode 5.0 names, as gkdifi the Unicode Standard. However, recall that
restricted words consist of letters, digits and underscondy, while Unicode names may include hyphens and spaces.
Thus, we replace a restricted word if it is the Unicode 5.0 @arha character with hyphens and spaces replaced
by underscores. For any Unicode character other than thieot@haracters, there is a unique official Unicode 5.0
name not shared by any other Unicode character. Since tohamacters are protected characters, they do not present
a problem in this regard. The third source is alternative eémffior characters specified by the Unicode Standard,
again we use the names with underscores in place of hyphehspaces. With this source, however, some names
designate more than one character. In this case, we replacesdtricted word with the character with a smallest code
point, unless that character is a protected character (ichidase we replace the restricted word with the appropriate
unprotected character with the smallest code point, if afgurth, we consider the official Unicode 5.0 nhames and

348

any alternative names, with underscores in place of hyphedsspaces, where any of the following substrings may
be omitted:

"LETTER_"
"DIGIT_"
"RADICAL_"
"NUMERAL_"

If there are multiple such substrings in a given name, anybioation of them may be omitted. Again, if this process
yields multiple characters as possible replacement, theotected character with the smallest code point is used.

If none of the above replaces the restricted word with a sitslicode character, then the following step is applied,
which transforms certain restricted words by replacing pssts of them with Unicode characters. If the restricted
word begins with the short name (i.e., the name in the tabdeg)of a Greek letter followed by an underscore or a
digit, or ends with the short name of a Greek letter that ie@ided by an underscore, or contains the short name of
a Greek letter with an underscore on each side of it, thenhtbg same of the Greek letter is replaced by the Greek
letter itself. In the same manner, the word “micro” is repldevith the Unicode charact®iCRO SIGNu (U+00B5,
which looks just like the Greek lowercase mtbut is different). A special ad-hoc rule is that if a word4daging thus
replaced has an underscore to each side, and the undersctite ght is the last character of the restricted word,
then the underscore on the left is removed as the name isceghlthis is done for the sake of the abbreviations of
certain dimensional units, so that, for examphizro _OMEGAWIll be transformed intqu€2_, signifying micro-ohms,
andG.OMEGAwWill be transformed intaz<2_, signifying gigaohms.

Here are some other examples:

alpha becomes « OMEGA13 becomes 13
alpha _hat becomes a_hat theta _elephant becomes 6_elephant
OMEGA becomes _ Xl becomes _=

For the sequences of characters other than restricted weads is converted from left to right, with the longest
possible substring being converted at once, with one eixaepihe sequencd ” is not converted if it is immediately
followed by any of the following characterss’; '| 7, /7, *\ 7, “«’, or *. ". That is, with this one exception, the longest
shorthand begining from the first character, if any, is coteeefirst. Then, the longest shorthand beginning from the
second character of the string after replacement is cateaind so on. Here are the ASCII shorthands for some of

the characters we expect to be most frequently used:

I becomes [\] becomes]
-> becomes — => becomes =
~> becomes ~ [-> becomes —
>= becomes > <= becomes <

=/= becomes 7_&

Although the characters with string literals are genenadlyysubject to this step of ASCII conversion, They are if they
are part of a restricted-word escape sequence or a quotedetlr escape sequence. See Selction 5.10 for details.

Finally, if an ampersand is adjacent to a sequence of clagattiat is changed by this step of ASCII conversion (even
if the sequence was only partly changed, as long as the ¢baeatjacent to the ampersand is changed), or to two such
names, one on either side, the ampersand is removed afteatisformationunlessthe ampersand is the first or last
non-whitespace character on the line.

The process is not iterative. It behaves as if all names aggdd in the program texthenall the names are replaced
or transformed as described aboteenampersands that had been adjacent to replaced or transfaorames are
removed. However, because we never replace sequencetethis &lempotent, so applying the process again won't
change the string again.

Here is a simple example. The expression:

349

(GREEK_SMALL_LETTER_PHI GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA GREEK_SMALL_LETTER_LAMBDA)

is converted to:
(¢ ¥ + w A)
where there are four identifiers in all. To get two identifierach consisting of two Greek letters, one may write

(GREEK_SMALL_LETTER_PHI&GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA&GREEK_SMALL_LETTER_LAMBDA)

which is converted to:

(¢ + wA)

A comprehensive list of recognized Unicode operators viigirtnames and abbreviations appears in Appendix F.

350

Appendix F

Operator Precedence, Chaining, and
Enclosure

This appendix contains the detailed rules for which Unicedecharacters may be used as operators, which operators
form enclosing pairs, which operators may be chained, arat wrecedence relationships exist among the various
operators. (If no precedence relationship is stated axplior any given pair of operators, then there is no precede
relationship between those two operators. Remember thaegdence is not transitive in Fortress.)

In each of the character lists below, each line gives the dtlécodepoint, the full Unicode 5.0 name, an indication of
what the character looks like ingX (if possible), then any alternate names or ASCII shorthfanthe character.

F.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosingtaper&lote that there is one group of four brackets;
within that group, either left bracket may be paired wittheitright bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET
U+005D RIGHT SQUARE BRACKET

U+007B LEFT CURLY BRACKET
U+007D RIGHT CURLY BRACKET

Ay —
A

U+2045 LEFT SQUARE BRACKET WITH QUILL [/
U+2046 RIGHT SQUARE BRACKET WITH QUILL 1]

U+2308 LEFT CEILING
U+2309 RIGHT CEILING

U+230A LEFT FLOOR
U+230B RIGHT FLOOR

—

U+27C5 LEFT S-SHAPED BAG DELIMITER |\
U+27C6 RIGHT S-SHAPED BAG DELIMITER 1|

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET

U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET

===
N
N

351

U+2983 LEFT WHITE CURLY BRACKET
U+2984 RIGHT WHITE CURLY BRACKET

U+2985 LEFT WHITE PARENTHESIS
U+2986 RIGHT WHITE PARENTHESIS

U+2987 z NOTATION LEFT IMAGE BRACKET
U+2988 7z NOTATION RIGHT IMAGE BRACKET

U+2989 z NOTATION LEFT BINDING BRACKET
U+298A Z NOTATION RIGHT BINDING BRACKET

U+298B LEFT SQUARE BRACKET WITH UNDERBAR
U+298C RIGHT SQUARE BRACKET WITH UNDERBAR

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER

U+2991 LEFT ANGLE BRACKET WITH DOT
U+2992 RIGHT ANGLE BRACKET WITH DOT

U+2993 LEFT ARC LESS-THAN BRACKET
U+2994 RIGHT ARC GREATER-THAN BRACKET

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET
U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET

U+2997 LEFT BLACK TORTOISE SHELL BRACKET
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET

U+29D8 LEFT WIGGLY FENCE
U+29D9 RIGHT WIGGLY FENCE

U+29DA LEFT DOUBLE WIGGLY FENCE
U+29DB RIGHT DOUBLE WIGGLY FENCE

U+29FC LEFT-POINTING CURVED ANGLE BRACKET
U+29FD RIGHT-POINTING CURVED ANGLE BRACKET

U+300C LEFT CORNER BRACKET
U+300D RIGHT CORNER BRACKET

U+300E LEFT WHITE CORNER BRACKET
U+300F RIGHT WHITE CORNER BRACKET

U+3010 LEFT BLACK LENTICULAR BRACKET
U+3011 RIGHT BLACK LENTICULAR BRACKET

U+3018 LEFT WHITE TORTOISE SHELL BRACKET
U+3014 LEFT TORTOISE SHELL BRACKET
U+3015 RIGHT TORTOISE SHELL BRACKET
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET

U+3016 LEFT WHITE LENTICULAR BRACKET
U+3017 RIGHT WHITE LENTICULAR BRACKET

F.2 \ertical-Line Operators

The following are vertical-line operators:

352

{
I

>

</
\>
<</
\>>
{/
[*}
[
[/

]
n
{
I}

U+007C VERTICAL LINE |
U+2016 DOUBLE VERTICAL LINE ||
U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION 1]

F.3 Arithmetic Operators

F.3.1 Multiplication and Division

The following are multiplication operators. Note th®TERISK OPERATORs always a multiplication operator;
ASTERISK s treated as a synonym falSTERISK OPERATORhere appropriate, b#STERISK also has other uses,
for example in the ASCII bracket encodings/ and/ =] and{+/ and/ *}.

U+002A ASTERISK * *
U+00B7 MIDDLE DOT . DOT
U+00D7 MULTIPLICATION SIGN x TIMES BY

U+2217 ASTERISK OPERATOR
U+228D MULTISET MULTIPLICATION

*

U+2297 CIRCLED TIMES ® OTIMES
U+2299 CIRCLED DOT OPERATOR ® ODOoT
U+229B CIRCLED ASTERISK OPERATOR ® CIRCLEDAST
U+22A0 SQUARED TIMES X BOXTIMES
U+22A1 SQUARED DOT OPERATOR = BOXDOT

U+22C5 DOT OPERATOR
U+29C6 SQUARED ASTERISK BOXAST
U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT x CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES
U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. Note tH2itVISION SLASH is always a division operato§OLIDUS s treated
as a synonym fobIVISION SLASH where appropriate, bl®OLIDUSalso has other uses, for example in the ASCII
bracket encodingé and/) and[/ and/] and{/ and/} .

U+002F soLIbus [
U+00F7 DIVISION SIGN +~ DIV
U+2215 DIVISION SLASH /

U+2298 CIRCLED DIVISION SLASH © OSLASH

U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR
U+29F8 BIG SOLIDUS

U+29F9 BIG REVERSE SOLIDUS
U+2A38 CIRCLED DIVISION SIGN oDIv

T~ —

353

U+2AFD DOUBLE SOLIDUS OPERATOR
U+2AFB TRIPLE SOLIDUS BINARY RELATION

Note also thaper is treated as a division operator.

F.3.2 Addition and Subtraction

The following three operators have the same precedence apdenmixed.

U+002B PLUS SIGN
U+002D HYPHEN-MINUS
U+2212 MINUS SIGN

//

+

I
i

They each have lower precedence than any of the followingjpfiohtion and division operators:

U+002A ASTERISK

U+002F soLibus

U+00B7 MIDDLE DOT

U+00D7 MULTIPLICATION SIGN
U+00F7 DIVISION SIGN

U+2215 DIVISION SLASH

U+2217 ASTERISK OPERATOR
U+22C5 DOT OPERATOR

U+2A2F VECTOR OR CROSS PRODUCT

The following two operators have the same precedence andmayxed.

U+2214 DOT PLUS
U+2238 DOT MINUS

They each have lower precedence than this multiplicatiradpr:
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE
The following two operators have the same precedence andmayxed.

U+2A25 PLUS SIGN WITH DOT BELOW
U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence andmayxed.

U+2A39 PLUS SIGN IN TRIANGLE
U+2A3A MINUS SIGN IN TRIANGLE

They each have lower precedence than this multiplicatieratpr:
U+2A3B MULTIPLICATION SIGN IN TRIANGLE
The following two operators have the same precedence andmayxed.

U+2295 CIRCLED PLUS
U+2296 CIRCLED MINUS

/

2]
S

*

/

DOT
TIMES
DIV

CROSS

DOTPLUS
DOTMINUS

DOTTIMES

TRIPLUS
TRIMINUS

TRITIMES

OPLUS
OMINUS

They each have lower precedence than any of the followingipfiohtion and division operators:

U+2297 CIRCLED TIMES

U+2298 CIRCLED DIVISION SLASH
U+2299 CIRCLED DOT OPERATOR
U+229B CIRCLED ASTERISK OPERATOR
U+2A38 CIRCLED DIVISION SIGN

354

® 600 R

OTIMES
OSLASH
ODOT

CIRCLEDAST

ODIV

The following two operators have the same precedence andeayxed.

U+229E SQUARED PLUS H BOXPLUS
U+229F SQUARED MINUS H BOXMINUS

They each have lower precedence than any of these multiplicar division operators:

U+22A0 SQUARED TIMES X BOXTIMES
U+22A1 SQUARED DOT OPERATOR © BOXDOT
U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29C6 SQUARED ASTERISK BOXAST

These are other miscellaneous addition and subtractiomtps:

U+00B1 PLUS-MINUS SIGN +
U+2213 MINUS-OR-PLUS SIGN F
U+2242 MINUS TILDE
[e]

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE +
U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE F
U+2A24 PLUS SIGN WITH TILDE ABOVE +
U+2A26 PLUS SIGN WITH TILDE BELOW +
U+2A27 PLUS SIGN WITH SUBSCRIPT TWO +9

U+2A28 PLUS SIGN WITH BLACK TRIANGLE
U+2A29 MINUS SIGN WITH COMMA ABOVE
U+2A2B MINUS SIGN WITH FALLING DOTS
U+2A2C MINUS SIGN WITH RISING DOTS
U+2A2D PLUS SIGN IN LEFT HALF CIRCLE
U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

F.3.3 Miscellaneous Arithmetic Operators

The operatorsMIAX MIN, REMMODGCD LCM CHOOSEandper , none of which corresponds to a single Unicode
character, are considered to be arithmetic operatorsngadugher precedence than certain relational operators, as
described in a later section.

F.3.4 Set Intersection, Union, and Difference

The following are the set intersection operators:

U+2229 INTERSECTION N CAP INTERSECT
U+22D2 DOUBLE INTERSECTION m CAPCAP
U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR n

U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION
U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

The following are the set union operators:

355

U+222A UNION

U+228E MULTISET UNION

U+22D3 DOUBLE UNION

U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR

U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

CUP UNION
UPLUS
CUPCUP

E & C

(@

They each have lower precedence than any of the set intersegerators.
This is a miscellaneous set operator:

U+2216 SET MINUS \ SETMINUS

F.3.5 Square Arithmetic Operators

The following are the square intersection operators:

U+2293 SQUARE CAP n SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP L SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the squarseation operators.

F.3.6 Curly Arithmetic Operators

The following is the curly intersection operator:

U+22CF CURLY LOGICAL AND A CURLYAND
The following is the curly union operator:

U+22CE CURLY LOGICAL OR Y CURLYOR

It has lower precedence than the curly intersection operato

F.4 Relational Operators

F.4.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedemae any operator listed in SectionF.3.

The following are equivalence operators. They may be cldaik®reover, they may be chained with any other single
group of chainable relational operators, as describedén ections.

356

U+003D EQUALS SIGN = EQ

U+2243 ASYMPTOTICALLY EQUAL TO ~ SIMEQ
U+2245 APPROXIMATELY EQUAL TO o

U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO %

U+2248 ALMOST EQUAL TO ~ APPROX
U+224A ALMOST EQUAL OR EQUAL TO ~ APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO =

U+224E GEOMETRICALLY EQUIVALENT TO = BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO = DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF =

U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO =

U+2256 RING IN EQUAL TO = EQRING
U+2257 RING EQUAL TO = RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO £ EQDEL

U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO EQV EQUIV
U+2263 STRICTLY EQUIVALENT TO SEQV ===
U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS

U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE
U+29E5 IDENTICAL TO AND SLANTED PARALLEL

U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT

U+2A70 APPROXIMATELY EQUAL OR EQUAL TO

U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR

U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW
U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE

U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

IS

The following are inequivalence operators. They may nothizered.

U+2244 NOT ASYMPTOTICALLY EQUAL TO % NSIMEQ
U+2249 NOT ALMOST EQUAL TO % NAPPROX
U+2260 NOT EQUAL TO # =/= NE
U+2262 NOT IDENTICAL TO % NEQV
U+226D NOT EQUIVALENT TO #

357

F.4.2 Plain Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Sectidns F8.1, F.3.2[and|F.3.3.

The following are less-than operators. They may be mixedchathed with each other and with equivalence operators

(see Section F.411).

U+003C LESS-THAN SIGN

U+2264 LESS-THAN OR EQUAL TO

U+2266 LESS-THAN OVER EQUAL TO

U+2268 LESS-THAN BUT NOT EQUAL TO

U+226A MUCH LESS-THAN

U+2272 LESS-THAN OR EQUIVALENT TO

U+22D6 LESS-THAN WITH DOT

U+22D8 VERY MUCH LESS-THAN

U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO

U+29C0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT
U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO
U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE
U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN
U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN
U+2AA1l DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR
U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO
U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN

AN A IAININ A

K

N

< LT

<= LE

<<

DOTLT
<<<

The following are greater-than operators. They may be miawd chained with each other and with equivalence

operators (see Sectibn F4.1).

U+003E GREATER-THAN SIGN

U+2265 GREATER-THAN OR EQUAL TO
U+2267 GREATER-THAN OVER EQUAL TO
U+2269 GREATER-THAN BUT NOT EQUAL TO
U+226B MUCH GREATER-THAN

U+2273 GREATER-THAN OR EQUIVALENT TO
U+22D7 GREATER-THAN WITH DOT

U+22D9 VERY MUCH GREATER-THAN

358

VIV Y RVIVIV V

v
\%

> GT

>= GE

>>

DOTGT
>>>

U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO

U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT
U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE
U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN
U+2A9E SIMILAR OR GREATER-THAN

U+2AAOQ SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN
U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
U+2AF8 TRIPLE NESTED GREATER-THAN

U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO
U+FE65 SMALL GREATER-THAN SIGN

U+FF1E FULLWIDTH GREATER-THAN SIGN

RV

The following are miscellaneous plain comparison opesatbhey may not be mixed or chained.

NLT
NGT
NLE
NGE

U+226E NOT LESS-THAN

U+226F NOT GREATER-THAN

U+2270 NEITHER LESS-THAN NOR EQUAL TO

U+2271 NEITHER GREATER-THAN NOR EQUAL TO

U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO

U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO

U+2276 LESS-THAN OR GREATER-THAN

U+2277 GREATER-THAN OR LESS-THAN

U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN

U+22DB GREATER-THAN EQUAL TO OR LESS-THAN

U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL
U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL
U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVETSDA EQUAL
U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVETSDA EQUAL
U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

AV VA T CATCTA Y A

ATWINA

The following are not really comparison operators, but ¢agvenient to list them here because they also have lower

359

precedence than any operator listed in Secfionsl]F.3. 2, RBd F.3.B:

U+0023 NUMBER SIGN # #
U+003A COLON : :

F.4.3 Set Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Section FI3.4.

The following are subset comparison operators. They mayikedand chained with each other and with equivalence
operators (see Sectibn F4.1).

U+2282 SUBSET OF Cc SUBSET
U+2286 SUBSET OF OR EQUAL TO C SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO C SUBSETNEQ
U+22D0 DOUBLE SUBSET € SUBSUB

U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW
U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE
U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR
U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO
U+2ACB SUBSET OF ABOVE NOT EQUAL TO
U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They reayilted and chained with each other and with equiva-
lence operators (see Section F4.1).

SUPSET
SUPSETEQ
SUPSETNEQ
SUPSUP

U+2283 SUPERSET OF

U+2287 SUPERSET OF OR EQUAL TO

U+228B SUPERSET OF WITH NOT EQUAL TO

U+22D1 DOUBLE SUPERSET

U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2ACO0 SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW
U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE
U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR
U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO
U+2ACC SUPERSET OF ABOVE NOT EQUAL TO
U+2ADO0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

VR VRIVAY,

The following are miscellaneous set comparison operaidrsy may not be mixed or chained.

U+2284 NOT A SUBSET OF ¢ NSUBSET
U+2285 NOT A SUPERSET OF 5 NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO g NSUBSETEQ

360

U+2289 NEITHER A SUPERSET OF NOR EQUAL TO ;j NSUPSETEQ
U+2AD3 SUBSET ABOVE SUPERSET

U+2AD4 SUPERSET ABOVE SUBSET

U+2AD7 SUPERSET BESIDE SUBSET

U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

F.4.4 Square Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Section FI3.5.

The following are square “image of” comparison operatotseeyimay be mixed and chained with each other and with
equivalence operators (see Seclion F.4.1).

U+228F SQUARE IMAGE OF C SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO C SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO

The following are square “original of” comparison operatofhey may be mixed and chained with each other and
with equivalence operators (see Seclion F.4.1).

U+2290 SQUARE ORIGINAL OF O SQSUPSET
U+2292 SQUARE ORIGINAL OF OR EQUAL TO J SQSUPSETEQ
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

The following are miscellaneous square comparison opexattiey may not be mixed or chained.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO Z
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO i

F.4.5 Curly Comparison Operators

Every operator listed in this section has lower precedemae any operator listed in Section FI3.6.

The following are curly “precedes” comparison operatoriseymay be mixed and chained with each other and with
equivalence operators (see Seclion F.4.1).

U+227A PRECEDES < PREC
U+227C PRECEDES OR EQUAL TO < PRECEQ
U+227E PRECEDES OR EQUIVALENT TO < PRECSIM
U+22B0 PRECEDES UNDER RELATION

U+22DE EQUAL TO OR PRECEDES < EQPREC
U+22E8 PRECEDES BUT NOT EQUIVALENT TO ; PRECNSIM

U+2AAF PRECEDES ABOVE SINGLE-LINE EQUALS SIGN
U+2AB1 PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO
U+2AB3 PRECEDES ABOVE EQUALS SIGN

U+2AB5 PRECEDES ABOVE NOT EQUAL TO

U+2AB7 PRECEDES ABOVE ALMOST EQUAL TO
U+2AB9 PRECEDES ABOVE NOT ALMOST EQUAL TO
U+2ABB DOUBLE PRECEDES

The following are curly “succeeds” comparison operatotseyimay be mixed and chained with each other and with
equivalence operators (see Seclion F.4.1).

361

U+227B SUCCEEDS = SUCC
U+227D SUCCEEDS OR EQUAL TO = SUCCEQ
U+227F SUCCEEDS OR EQUIVALENT TO 7~ SUCCSIM
U+22B1 SUCCEEDS UNDER RELATION

U+22DF EQUAL TO OR SUCCEEDS = EQSUCC
U+22E9 SUCCEEDS BUT NOT EQUIVALENT TO > SUCCNSIM

U+2AB0 SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN
U+2AB2 SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO
U+2AB4 SUCCEEDS ABOVE EQUALS SIGN

U+2AB6 SUCCEEDS ABOVE NOT EQUAL TO

U+2AB8 SUCCEEDS ABOVE ALMOST EQUAL TO
U+2ABA SUCCEEDS ABOVE NOT ALMOST EQUAL TO
U+2ABC DOUBLE SUCCEEDS

The following are miscellaneous curly comparison opegatdhey may not be mixed or chained.

U+2280 DOES NOT PRECEDE 4 NPREC
U+2281 DOES NOT SUCCEED # NSUCC
U+22EO0 DOES NOT PRECEDE OR EQUAL A
U+22E1 DOES NOT SUCCEED OR EQUAL %

F.4.6 Triangular Comparison Operators
The following are triangular “subgroup” comparison operat They may be mixed and chained with each other and
with equivalence operators (see Seclion F.4.1).

U+22B2 NORMAL SUBGROUP OF
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO <

The following are triangular “contains as subgroup” conmgaar operators. They may be mixed and chained with each
other and with equivalence operators (see Settion]F.4.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO

AVARV)

The following are miscellaneous triangular comparisorrames. They may not be mixed or chained.

U+22EA NOT NORMAL SUBGROUP OF

U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP

U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO

U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL

A Y A

F.4.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparisoreogtors. They may be mixed and chained with each other
and with equivalence operators (see Sedtion F.4.1).

U+2AAA SMALLER THAN < SMALLER
U+2AAC SMALLER THAN OR EQUAL TO < SMALLEREQ

The following are chickenfoot “larger than” comparison mggers. They may be mixed and chained with each other
and with equivalence operators (see Sedtion F.4.1).

U+2AAB LARGER THAN > LARGER
U+2AAD LARGER THAN OR EQUAL TO > LARGEREQ

362

F.4.8 Miscellaneous Relational Operators

The following operators are considered to be relationakatpes, having higher precedence than certain boolean
operators, as described in a later section.

IN
NOTIN

U+2208 ELEMENT OF

U+2209 NOT AN ELEMENT OF

U+220A SMALL ELEMENT OF

U+220B CONTAINS AS MEMBER

U+220C DOES NOT CONTAIN AS MEMBER

U+220D SMALL CONTAINS AS MEMBER

U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL SHROK
U+22F5 ELEMENT OF WITH DOT ABOVE

U+22F6 ELEMENT OF WITH OVERBAR

U+22F7 SMALL ELEMENT OF WITH OVERBAR

U+22F8 ELEMENT OF WITH UNDERBAR

U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
U+22FD CONTAINS WITH OVERBAR

U+22FE SMALL CONTAINS WITH OVERBAR

U+22FF zZ NOTATION BAG MEMBERSHIP

CONTAINS

[m m m m- WRLW MR M

Wl W

F.5 Boolean Operators

Every operator listed in this section has lower precedemae any operator listed in SectionF.4.

The following are the Boolean conjunction operators:

U+2227 LOGICAL AND A AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE A
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND /N

U+2A5A LOGICAL AND WITH MIDDLE STEM
U+2A5C LOGICAL AND WITH HORIZONTAL DASH
U+2A5E LOGICAL AND WITH DOUBLE OVERBAR
U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the Boolean disjunction operators:

U+2228 LOGICAL OR v OR
U+2A52 LOGICAL OR WITH DOT ABOVE v
U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR W

U+2A5B LOGICAL OR WITH MIDDLE STEM
U+2A5D LOGICAL OR WITH HORIZONTAL DASH
U+2A62 LOGICAL OR WITH DOUBLE OVERBAR
U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR

363

They each have lower precedence than any of the Booleanraziign operators.

The following are miscellaneous Boolean operators:

U+2192
U+2194

RIGHTWARDS ARROW
LEFT RIGHT ARROW

U+22BB XOR
U+22BC NAND
U+22BD NOR

F.6 Other Operators

—

>

< >1iI<

Each of the following operators has no defined precedenatiaeships to any of the other

appendix.

u+0021
U+0024
U+0025
U+003F
U+0040
U+005E
U+007E
U+00Al
U+00A2
U+00A3
U+00A4
U+00A5
U+00A6

EXCLAMATION MARK
DOLLAR SIGN
PERCENT SIGN
QUESTION MARK
COMMERCIAL AT
CIRCUMFLEX ACCENT
TILDE

INVERTED EXCLAMATION MARK
CENT SIGN

POUND SIGN
CURRENCY SIGN
YEN SIGN

BROKEN BAR

U+00AC NOT SIGN

U+00B0
U+00BF
U+203C
U+2190
U+2191
U+2193
U+2195
U+2196
U+2197
U+2198
U+2199
U+219A
U+219B
U+219C
U+219D
U+219E
U+219F
U+21A0
U+21A1
U+21A2
U+21A3
U+21A4

DEGREE SIGN

INVERTED QUESTION MARK
DOUBLE EXCLAMATION MARK
LEFTWARDS ARROW

UPWARDS ARROW

DOWNWARDS ARROW

UP DOWN ARROW

NORTH WEST ARROW

NORTH EAST ARROW

SOUTH EAST ARROW

SOUTH WEST ARROW

LEFTWARDS ARROW WITH STROKE
RIGHTWARDS ARROW WITH STROKE
LEFTWARDS WAVE ARROW
RIGHTWARDS WAVE ARROW
LEFTWARDS TWO HEADED ARROW
UPWARDS TWO HEADED ARROW
RIGHTWARDS TWO HEADED ARROW
DOWNWARDS TWO HEADED ARROW
LEFTWARDS ARROW WITH TAIL
RIGHTWARDS ARROW WITH TAIL
LEFTWARDS ARROW FROM BAR

364

J

(o)

=

PENNSTET

$

-> IMPLIES
<-> |FF

operators listed in this

CENTS

NOT
DEGREES

I

<-

UPARROW
DOWNARROW
UPDOWNARROW
NWARROW
NEARROW
SEARROW
SWARROW
<-/-

-[->

LEADSTO

U+21A5 UPWARDS ARROW FROM BAR

U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS
U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS
U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS
U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS
U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS
U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS
U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW
U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW

U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR
U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS
U+21C0O RIGHTWARDS HARPOON WITH BARB UPWARDS
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW
U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW
U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW
U+21C7 LEFTWARDS PAIRED ARROWS

U+21C8 UPWARDS PAIRED ARROWS

U+21C9 RIGHTWARDS PAIRED ARROWS

U+21CA DOWNWARDS PAIRED ARROWS

U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE
U+21D0 LEFTWARDS DOUBLE ARROW

U+21D1 UPWARDS DOUBLE ARROW

U+21D2 RIGHTWARDS DOUBLE ARROW

U+21D3 DOWNWARDS DOUBLE ARROW

U+21D4 LEFT RIGHT DOUBLE ARROW

U+21D5 uP DOWN DOUBLE ARROW

U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

U+21D8 SOUTH EAST DOUBLE ARROW

U+21D9 SOUTH WEST DOUBLE ARROW

365

=4l L= 717

su=mn

SrEsd=Tre e 40

LEFTHARPOONUP
LEFTHARPOONDOWN
UPHARPOONRIGHT
UPHARPOONLEFT
RIGHTHARPOONUP
RIGHTHARPOONDOWN
DOWNHARPOONRIGHT
DOWNHARPOONLEFT
RIGHTLEFTARROWS

LEFTRIGHTARROWS
LEFTLEFTARROWS
UPUPARROWS
RIGHTRIGHTARROWS
DOWNDOWNARROWS

RIGHTLEFTHARPOONS

<=>

U+21DA LEFTWARDS TRIPLE ARROW
U+21DB RIGHTWARDS TRIPLE ARROW

41

U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW

U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF
U+21E0
U+21E1
U+21E2
U+21E3
U+21E4
U+21E5
U+21E6
U+21E7
U+21E8
U+21E9
U+21EA UPWARDS WHITE
U+21EB UPWARDS WHITE
U+21EC UPWARDS WHITE
U+21ED UPWARDS WHITE
U+21EE UPWARDS WHITE

UPWARDS WHITE

DOWNWARDS ARROW WITH DOUBLE STROKE
LEFTWARDS DASHED ARROW

UPWARDS DASHED ARROW

RIGHTWARDS DASHED ARROW

DOWNWARDS DASHED ARROW

LEFTWARDS ARROW TO BAR

RIGHTWARDS ARROW TO BAR

LEFTWARDS WHITE ARROW

ARROW

RIGHTWARDS WHITE ARROW
DOWNWARDS WHITE ARROW

ARROW FROM BAR

ARROW ON PEDESTAL

ARROW ON PEDESTAL WITH HORIZONTAL BAR
ARROW ON PEDESTAL WITH VERTICAL BAR
DOUBLE ARROW

U+21EF UPWARDS WHITE DOUBLE ARROW ON PEDESTAL
U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 UP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
U+21F6 THREE RIGHTWARDS ARROWS

U+21F7 LEFTWARDS ARROW WITH VERTICAL STROKE
U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE
U+21F9 LEFT RIGHT ARROW WITH VERTICAL STROKE
U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE
U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE
U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE
U+21FD LEFTWARDS OPEN-HEADED ARROW

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT

U+2202 PARTIAL DIFFERENTIAL

U+2204 THERE DOES NOT EXIST

U+2206 INCREMENT

U+220F N-ARY PRODUCT

U+2210 N-ARY COPRODUCT

U+2211 N-ARY SUMMATION

U+2218 RING OPERATOR

U+2219 BULLET OPERATOR

U+221A SQUARE ROOT

U+221B CUBE ROOT

U+221C FOURTH ROOT

U+221D PROPORTIONAL TO

U+2223 DIVIDES

«. OM::D\LHQ)L_J

R

366

DEL

PRODUCT
COPRODUCT

SUM

CIRC RING COMPOSE
BULLET

SQRT

CBRT

FOURTHROOT
PROPTO

DIVIDES

U+2224 DOES NOT DIVIDE

U+2225 PARALLEL TO

U+2226 NOT PARALLEL TO

U+222B INTEGRAL

U+222C DOUBLE INTEGRAL

U+222D TRIPLE INTEGRAL

U+222E CONTOUR INTEGRAL

U+222F SURFACE INTEGRAL

U+2230 VOLUME INTEGRAL

U+2231 CLOCKWISE INTEGRAL
U+2232 CLOCKWISE CONTOUR INTEGRAL
U+2233 ANTICLOCKWISE CONTOUR INTEGRAL
U+2234 THEREFORE

U+2235 BECAUSE

U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION
U+223B HOMOTHETIC

U+223C TILDE OPERATOR

U+223D REVERSED TILDE

U+223E INVERTED LAZY S

U+223F SINE WAVE

U+2240 WREATH PRODUCT

U+2241 NOT TILDE

U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN
U+2250 APPROACHES THE LIMIT
U+2258 CORRESPONDS TO

U+2259 ESTIMATES

U+225A EQUIANGULAR TO

U+225E MEASURED BY

U+226C BETWEEN

U+228C MULTISET

U+229A CIRCLED RING OPERATOR
U+229D CIRCLED DASH

U+22A2 RIGHT TACK

U+22A3 LEFT TACK

U+22A6 ASSERTION

U+22A7 MODELS

U+22A8 TRUE

U+22A9 FORCES

U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
U+22AC DOES NOT PROVE

U+22AD NOT TRUE

U+22AE DOES NOT FORCE

U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP

U+22B9 HERMITIAN CONJUGATE MATRIX

367

TTTLTOOO ol

E

X

® <

PARALLEL
NPARALLEL

WREATH

BUMPEQ
DOTEQ

CIRCLEDRING

VDASH TURNSTILE
DASHV

U+22BA INTERCALATE

U+22BE RIGHT ANGLE WITH ARC
U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND

U+22C1 N-ARY LOGICAL OR

U+22C2 N-ARY INTERSECTION

U+22C3 N-ARY UNION

U+22C4 DIAMOND OPERATOR

U+22C6 STAR OPERATOR

U+22C7 DIVISION TIMES

U+22C8 BOWTIE

U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT
U+22CB LEFT SEMIDIRECT PRODUCT
U+22CC RIGHT SEMIDIRECT PRODUCT
U+22D4 PITCHFORK

U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS
U+22F0 UP RIGHT DIAGONAL ELLIPSIS
U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS
U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR

U+27D0 WHITE DIAMOND WITH CENTRED DOT
U+27D2 ELEMENT OF OPENING UPWARDS
U+27D3 LOWER RIGHT CORNER WITH DOT
U+27D4 UPPER LEFT CORNER WITH DOT
U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE
U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

U+27DE LONG LEFT TACK

U+27DF uUP TACK WITH CIRCLE ABOVE
U+27EO0 LOZENGE DIVIDED BY HORIZONTAL RULE
U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK
U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK
U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW
U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW
U+27F3 CLOCKWISE GAPPED CIRCLE ARROW
U+27F4 RIGHT ARROW WITH CIRCLED PLUS
U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW

368

—

SAY XXX ¥ OCOD<L>

BIGAND ALL

BIGOR ANY

BIGCAP BIGINTERSECT
BIGCUP BIGUNION
DIAMOND

STAR

PERP

U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR
U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE
U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE
U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE
U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE
U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE
U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE
U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW
U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE
U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERBTRODKE
U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND
U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND
U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW
U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW
U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW
U+292A SOUTH WEST ARROW AND NORTH WEST ARROW
U+292B RISING DIAGONAL CROSSING FALLING DIAGONAL

369

U+292C
U+292D
U+292E
U+292F
U+2930
U+2931
U+2932
U+2933
U+2934
U+2935
U+2936
U+2937
U+2938
U+2939
U+293A
U+293B
U+293C
U+293D
U+293E
U+293F
U+2940
U+2941
U+2942
U+2943
U+2944
U+2945
U+2946
U+2947
U+2948
U+2949
U+294A
U+294B
U+294C
U+294D
U+294E
U+294F
U+2950
U+2951
U+2952
U+2953
U+2954
U+2955
U+2956
U+2957
U+2958
U+2959
U+295A
U+295B
U+295C
U+295D
U+295E
U+295F

FALLING DIAGONAL CROSSING RISING DIAGONAL

SOUTH EAST ARROW CROSSING NORTH EAST ARROW
NORTH EAST ARROW CROSSING SOUTH EAST ARROW
FALLING DIAGONAL CROSSING NORTH EAST ARROW
RISING DIAGONAL CROSSING SOUTH EAST ARROW
NORTH EAST ARROW CROSSING NORTH WEST ARROW
NORTH WEST ARROW CROSSING NORTH EAST ARROW
WAVE ARROW POINTING DIRECTLY RIGHT

ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS
ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS
ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS
ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS
RIGHT-SIDE ARC CLOCKWISE ARROW

LEFT-SIDE ARC ANTICLOCKWISE ARROW

TOP ARC ANTICLOCKWISE ARROW

BOTTOM ARC ANTICLOCKWISE ARROW

TOP ARC CLOCKWISE ARROW WITH MINUS

TOP ARC ANTICLOCKWISE ARROW WITH PLUS

LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW
LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW
ANTICLOCKWISE CLOSED CIRCLE ARROW

CLOCKWISE CLOSED CIRCLE ARROW

RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW
LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW
SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW
RIGHTWARDS ARROW WITH PLUS BELOW

LEFTWARDS ARROW WITH PLUS BELOW

RIGHTWARDS ARROW THROUGH X

LEFT RIGHT ARROW THROUGH SMALL CIRCLE

UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE
LEFT BARB UP RIGHT BARB DOWN HARPOON

LEFT BARB DOWN RIGHT BARB UP HARPOON

UP BARB RIGHT DOWN BARB LEFT HARPOON

UP BARB LEFT DOWN BARB RIGHT HARPOON

LEFT BARB UP RIGHT BARB UP HARPOON

UP BARB RIGHT DOWN BARB RIGHT HARPOON

LEFT BARB DOWN RIGHT BARB DOWN HARPOON

UP BARB LEFT DOWN BARB LEFT HARPOON

LEFTWARDS HARPOON WITH BARB UP TO BAR
RIGHTWARDS HARPOON WITH BARB UP TO BAR
UPWARDS HARPOON WITH BARB RIGHT TO BAR
DOWNWARDS HARPOON WITH BARB RIGHT TO BAR
LEFTWARDS HARPOON WITH BARB DOWN TO BAR
RIGHTWARDS HARPOON WITH BARB DOWN TO BAR
UPWARDS HARPOON WITH BARB LEFT TO BAR
DOWNWARDS HARPOON WITH BARB LEFT TO BAR
LEFTWARDS HARPOON WITH BARB UP FROM BAR
RIGHTWARDS HARPOON WITH BARB UP FROM BAR
UPWARDS HARPOON WITH BARB RIGHT FROM BAR
DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
LEFTWARDS HARPOON WITH BARB DOWN FROM BAR
RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR

370

U+2960
U+2961
U+2962
U+2963
U+2964
U+2965
U+2966
U+2967
U+2968
U+2969
U+296A
U+296B
U+296C
U+296D
U+296E
U+296F
U+2970
U+2971
U+2972
U+2973
U+2974
U+2975
U+2976
U+2977
U+2978
U+2979
U+297A
U+297B
U+297C
U+297D
U+297E
U+297F
U+2980
U+2981
U+2982
U+2999
U+299A
U+299B
U+299C
U+299D
U+299E
U+299F
U+29A0
U+29A1
U+29A2
U+29A3
U+29A4
U+29A5
U+29A6
U+29A7
U+29A8
U+29A9

UPWARDS HARPOON WITH BARB LEFT FROM BAR

DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOOBARBTIEBOWN
UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOONAWRBHRIBHT
RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARHAGIOBARB DOWN
DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARP@ARBVRIGHT
LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPGORARMBT UP
LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOBARBY DOWN
RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPGORARBST UP
RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOBMARBY DOWN
LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPBMARBTRIGHT
DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPBMARBTRIGHT
RIGHT DOUBLE ARROW WITH ROUNDED HEAD

EQUALS SIGN ABOVE RIGHTWARDS ARROW

TILDE OPERATOR ABOVE RIGHTWARDS ARROW

LEFTWARDS ARROW ABOVE TILDE OPERATOR

RIGHTWARDS ARROW ABOVE TILDE OPERATOR

RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

LESS-THAN ABOVE LEFTWARDS ARROW

LEFTWARDS ARROW THROUGH LESS-THAN

GREATER-THAN ABOVE RIGHTWARDS ARROW

SUBSET ABOVE RIGHTWARDS ARROW

LEFTWARDS ARROW THROUGH SUBSET

SUPERSET ABOVE LEFTWARDS ARROW

LEFT FISH TAIL

RIGHT FISH TAIL

UP FISH TAIL

DOWN FISH TAIL

TRIPLE VERTICAL BAR DELIMITER

Z NOTATION SPOT

Z NOTATION TYPE COLON

DOTTED FENCE

VERTICAL ZIGZAG LINE

MEASURED ANGLE OPENING LEFT

RIGHT ANGLE VARIANT WITH SQUARE

MEASURED RIGHT ANGLE WITH DOT

ANGLE WITH S INSIDE

ACUTE ANGLE

SPHERICAL ANGLE OPENING LEFT

SPHERICAL ANGLE OPENING UP

TURNED ANGLE

REVERSED ANGLE

ANGLE WITH UNDERBAR

REVERSED ANGLE WITH UNDERBAR

OBLIQUE ANGLE OPENING UP

OBLIQUE ANGLE OPENING DOWN

MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UPIBND R
MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UPEMID L

371

U+29AA MEASURED ANGLE WITH
U+29AB MEASURED ANGLE WITH
U+29AC MEASURED ANGLE WITH
U+29AD MEASURED ANGLE WITH
U+29AE MEASURED ANGLE WITH
U+29AF MEASURED ANGLE WITH
U+29B0 REVERSED EMPTY SET

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

U+29B1 EMPTY SET WITH OVERBAR
U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE
U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE
U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR
U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR
U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VHEBAL BAR

U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD uP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET
U+29BF CIRCLED BULLET

ARM
ARM
ARM
ARM
ARM
ARM

ENDING
ENDING
ENDING
ENDING
ENDING
ENDING

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT
U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE
U+29C8 SQUARED SQUARE
U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE
U+29CB TRIANGLE WITH UNDERBAR

U+29CC s IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE
U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR
U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE
U+29D1 BOWTIE WITH LEFT HALF BLACK
U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE
U+29D6 WHITE HOURGLASS
U+29D7 BLACK HOURGLASS
U+29DC INCOMPLETE INFINITY
U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR
U+29DF DOUBLE-ENDED MULTIMAP

U+29EO0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS
U+29E2 SHUFFLE PRODUCT
U+29E6 GLEICH STARK
U+29E7 THERMODYNAMIC

ARROW
ARROW
ARROW
ARROW
ARROW
ARROW

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK
U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK
U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW

372

POINTING
POINTING
POINTING
POINTING
POINTING
POINTING

DOWRIGHN
DOWMNE AN
RISBITUR
LHFTURN
RISBITDAWN
LHFTDA@MWN

U+29ED BLACK CIRCLE WITH DOWN ARROW
U+29EE ERROR-BARRED WHITE SQUARE
U+29EF ERROR-BARRED BLACK SQUARE
U+29F0 ERROR-BARRED WHITE DIAMOND
U+29F1 ERROR-BARRED BLACK DIAMOND
U+29F2 ERROR-BARRED WHITE CIRCLE
U+29F3 ERROR-BARRED BLACK CIRCLE
U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR

U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE
U+29FA DOUBLE PLUS

U+29FB TRIPLE PLUS

U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR ® BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR @ BIGOPLUS
U+2A02 N-ARY CIRCLED TIMES OPERATOR ® BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP

U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE
U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN x JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 z NOTATION SCHEMA PIPING

U+2A21 7z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 7z NOTATION DOMAIN ANTIRESTRICTION

U+2A65 Z NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE
U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE
U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACD SQUARE LEFT OPEN BOX OPERATOR

373

U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS

U+2ADA PITCHFORK WITH TEE TOP

U+2ADC FORKING

U+2ADD NONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AEO SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE
U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE
U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE
U+2AE5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE
U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL
U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK
U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH
U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AFO0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE
U+2AF6 TRIPLE COLON OPERATOR

U+2AFB TRIPLE SOLIDUS BINARY RELATION

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR
U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR

374

Appendix G

Concrete Syntax

In this chapter, we describe the concrete syntax of Formeggams in BNF notation. This syntax is “human-readable”
in the sense that it does not describe uses of whitespacesgamcolons exactly. Instead, they are described as follows
Fortress has three different contexts influencing the whidee-sensitivity of expressions:

statement Expressions immediately enclosed by a block expressiomarstatement-like context. Multiple expres-
sions can appear on a line if they are separated (or termlinbyesemicolons. If an expression can legally end
at the end of a line, it does; if it cannot, it does not. A prefixrdix operator that lacks its last operand prevents
an expression from ending. For example,

an = expression+
spanning+
four+
lines

a = oneLiner

Jour(); on(); one(); line();

nested An expression or list of expressions immediately encloseg@drentheses or braces is nested. Multiple ex-
pressions are separated by commas, and the end of a line dibeschan expression. Because of this effect,
the meaning of a several lines of code can change if they apped in parentheses. Parentheses can also be
used to ensure that a multiline expression is not terminatechaturely without paying special attention to line
endings.

lhs = rhs
—aSeparate Expression

postProfit(revenue
—expenses)

pasted Fortress has special syntax for matrix pasting. Within sgji@ackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elemenssibmatrices within a row. Because whitespace
is the separator, it also ends expressions where possibéldition, newline-or-semicolon-separated rows are
pasted vertically along their columns. Higher-dimensigesting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.

id2% =[10;01]

id2b = [1 0;
01]

id2 =110
01]

375

cubes = [10;01;;1—1;11]

A restricted form of the pasting syntax can also be used otethband side of variable declarations to express

both declaration and submatrix decomposition.

[top
bot] = X
[left right] =

Y

Z = [top - left top - right;
bot - left bot - right |

Sectior 6.5 describes matrix unpasting in detail and iredudore examples.

CompilationUnit
Component

Api

DottedId

Import
ImportFrom
Names

Name

NameList
AliasedNames

AliasedName
AliasedNamelList
AliasedDottedlds

AliasedDottedld

AliasedDottedIdList

Export
Dottedlds

DottedldList
Decl

TraitDecl
TraitHeader

Component

Api

component Dottedld Import Export* Decl end
api Dottedld Import AbsDect end

Id (. Id)*

import ImportFrom from Dottedld

import AliasedDottedlds

* [except Name$}

AliasedNames

Name

{ NamelList}

Id

opr Op

Name(, Namg*

AliasedName

{ AliasedNameLis}

Id [as Dottedld

opr Op[as Op]

opr LeftEncloser RightEncloséras LeftEncloser RightEnclosgr
AliasedNamé , AliasedNamg

AliasedDottedId

{ AliasedDottedIdLis}

Dottedld[as Dottedld

AliasedDottedld, AliasedDottedI)

export Dottedlds

Dottedld

{ DottedIdList}

Dottedld(, Dottedld*

TraitDecl

ObjectDecl

FnDecl

VarDecl

DimUnitDecl

TypeAlias

TestDecl

PropertyDecl

ExternalSyntax

TraitHeader(MdDecl| AbsFldDecl| PropertyDec)* end
TraitMod* trait Id [StaticParamp[Extend$[Exclude$[Comprisef[Wheré

376

Extends
Excludes
Comprises
TraitTypes

TraitTypelList
MayTraitTypes

Where

WhereClauselList ::

WhereClause

ObjectDecl
ObjectHeader
ObjectParams

ObjectVarargs
ObjectKeyword
ObjectParam
FnDecl
AbsFnDecl

FnDef
FnHeader

OpHeader

ValParam
Paramid

ValParams

PlainParam

IsType
FnClauses
Throws
Contract
Requires
Ensures
Invariant

extends TraitTypes

excludes TraitTypes

comprises MayTraitTypes

TraitType

{ TraitTypeList}

TraitType(, TraitType*

0

TraitTypes

where { WhereClauseLis}

WhereClaus¢, WhereClausg

Id Extends

TypeAlias

NatConstranint

IntConstranint

BoolConstraint

UnitConstraint

TypeRefcoerces TypeRef

TypeRefwidens TypeRef

ObjectHeadeXMdDef | FIdDef | PropertyDec)* end
ObjectMod object Id [StaticParam[([ObjectParamp] [Extend$ FnClauses
ObjectParani, ObjectParany*

[ObjectParant, ObjectParany* ;] ObjectVarargs
[ObjectParan(, ObjectParany* ,] [ObjectVarargs] ObjectKeyword, ObjectKeyworjf
transient Id:TypeRef..

ObjectParam= Expr

FldMod* PlainParam

transient PlainParam

AbsFnDecl

FnDef

FnMod* FnHeader

Name: ArrowType

FnMod* FnHeader= Expr

Id [StaticParampValParam[IsTypd FnClauses
OpHeader

opr Op [StaticParamkValParam[IsTypé FnClauses
opr [StaticParamkValParam OfIsTypé FnClauses
opr [StaticParamELeftEncloser ValParams RightEncloder ValParani [IsTypé& FnClauses
Paramid

([VvalParam$)

Id

PlainParan{ , PlainParany*

[PlainParan(, PlainParan)* ,] Id : TypeRef..
[PlainParant, PlainParam* ,] [Id : TypeRef.. ,] PlainParam= Expr (, PlainParam= Expr)*
Paramld[IsTypég

TypeRef

: TypeRef

[Throwd [Wherd [Contraci

throws MayTraitTypes
[Require}[Ensure$[Invariant]

requires Exprt

ensures (Exprt [provided Expr])™
invariant Exprt

377

VarDecl =

Vars =

Var =
VarWTypes L=

VarWType
VarWoTypes

VarWoType
SimpleTupleType
TypeRefList
DimUnitDecl

TypeAlias
TestDecl
PropertyDecl
MdDecl

AbsMdDecl
MdDef

MdHeader
MdParams

MdParam =

Coercion
CoercionClauses
CoercionWhere :
CoercionWhereClauselList ::
CoercionWhereClause

|

AbsFldDecl
FldDef
UniversalMod
TraitMod
ObjectMod
FnMod
VarMod
MdMod
AbsFldMod
FldMod
StaticParams
StaticParamList

Vars(=|:=) Expr

VarWTypes

VarWoTypes TypeRef.. [(=|:=) Exp1]
VarWoTypes SimpleTupleTypHE = |:=) Expr]
Var

(Var(, van™)

VarMod* Id [IsTypé

VarWType

(VarWTypeg(, VarWTypg*)

VarMod* Id IsType

VarWoType

(VarWoTypd, VarWoTypg")

VarMod* Id

(TypeRef TypeRefLis})

TypeRef(, TypeRef*

dim Id [= DimRef] [default Unit]

(unit | SI_unit)Id™ [: DimRefl [= Expi]
dim Id [= DimRef| (unit | SI_unit) Id* [= Expr]
type |d [StaticParamp = TypeRef

test Id [GeneratorLisf = Expr

property [ld =][V ValParanj Expr
AbsMdDecl

MdDef

[abstract] MdMod* MdHeader

MdMod* MdHeader= Expr

Coercion

[(Id | self).]ld [StaticParamK [MdParam$) [IsTypé FnClauses
MdParan(, MdParan)*

[MdParan(, MdParam* ,] Id : TypeRef..
[MdParan(, MdParam* ,] [Id : TypeRef.. ,] MdParam= Expr (, MdParam= Expr)*
Paramld[IsTypé

self

TypeRef

[widening] coercion [StaticParamy Id IsTypg CoercionClauses= Expr
[Throwg [CoercionWherE] Contraci

where { CoercionWhereClauseLigt
CoercionWhereClausg CoercionWhereClaugée
WhereClause

TypeRefwidens or coerces TypeRef
AbsFldMod Id IsType

FldMod* Id [IsTypé (=|:=) Expr

private | test

value | UniversalMod

TraitMod

atomic | io | UniversalMod

var | UniversalMod

getter | setter | FnMod

hidden | settable| wrapped | UniversalMod
var | AbsFldMod

[StaticParamLigt

StaticParant(, StaticParany*

378

StaticParam

TypeRef

TraitType

ArraySize
Extent

MatrixSize
TupleType

ArrowType

ArrowTypeRef

DimType

DimRef

UnitRef

DUPreOp
DUPostOp
StaticArgList

Id [Extend}[absorbs unit]

nat Id

int Id

bool Id

dim Id

unit Id [: DimRef| [absorbs unit]
opr Op

ident Id

TraitType

TupleType

ArrowType

BottomType

0

(TypeRef

DimType

DottedId[[StaticArgList]]

{ TypeRef— TypeRef}

(TypeRef)

TypeRefl [ArraySizé]

TypeRefl MatrixSize]

Extent(, Exten)*

NatRef

NatRef# NatRef

NatRef(x NatRe)™

(TypeRe(, TypeReJ")

([TypeRef, TypeRef*] TypeRet..)
([TypeRef, TypeRef* |1 [TypeRef.. ;] Id = TypeRef(, Id = TypeRef*)
ArrowTypeRef— ArrowTypeRe{ Throwg
TypeRef(x TypeRef*

TypeRef Number

DimRef

TypeRef DimRef TypeRef- DimRef
TypeRef/ DimRef| TypeRefper DimRef
TypeRef UnitRef TypeRef. UnitRef
TypeRef/ UnitRef| TypeRefper UnitRef
TypeRefin DimRef

Unity

Dottedld

DimRef DimRef DimRef - DimRef
DimRef / DimRef| DimRef per DimRef
DimRef” NatRef| 1 / DimRef| (DimRef)
DUPreOp DimRef] DimRef DUPostOp
dimensionless

DottedlId

UnitRef UnitRef| UnitRef - UnitRef
UnitRef / UnitRef | UnitRef per UnitRef
UnitRef”~ NatRef| 1/ UnitRef| (UnitRef)
DUPreOp UnitRef| UnitRef DUPostOp
square | cubic | inverse

squared | cubed

StaticArg(, StaticArg*

379

StaticArg = TypeRef
| NatRef
| IntRef
| BoolRef
| DimRef
| UnitRef
| Op
| Id
NatRef = Number
| Id
| NatRef NatRef
| NatRef + NatRef
| NatRef - NatRef
| (NatRe)
NatRef
true
| false
| Id
| BoolRef AND BoolRef
|
|

IntRef
BoolRef

BoolRef OR BoolRef
(BoolRef)
Expr = Flow
| Value
| DottedNamf]StaticArgList]]
| self
| Expr.Id
| Expr. Id[[StaticArgList]]([ExprList)
| Expr Expr
| TraitType. coercion[[StaticArgList]](Expr)
| Op Expr
| Expr Op[Exp1]
| Expr AssignOp Expr
| Comprehension
| Expr as TypeRef
| Expr asif TypeRef
| UnitExpr
Flow = Do
| label Id Exprt end Id
| exit [Id] [with Expi]
| while Expr Do
| for GeneratorList Do
| Accumulatol{[GeneratorLisf] Expr
| if Expr then Exprt (elif EXpr then Exprt)* [Elsd end
| (if Expr then Exprt (elif Expr then Exprt)* Else[end])
| case Expr[Op] of (Expr = Exprt)* [Elsd end
| case (largest | smallest)[Op] of (Expr = Exprt)"™ end
| typecase TypecaseBindingsn (TypecaseTypeRefs Exprt)* [Elsd end
| atomic Expr
| tryatomic Expr
| spawn Expr
| throw Expr
| try Expr [catch Id (TraitType = Exprt)™][forbid TraitType$[finally Exprt] end

380

Value

DottedName

ExprList
AssignOp
Do

BlockElem

GeneratorlList
Generator

IdList
Accumulator

Else
TypecaseBindings

Binding
BindingList
TypecaseTypeRefs

Aggregate

EntryList
Entry
Comprehension

ArrayComprehensionLeft ::=

LocalVarFnDecl

LocalVarDecl

LocalVars

LocalVar

Literal

fn ValParam[IsTypd [Throwg = Expr
object [Extend}(FldDef | MdDef)* end
Aggregate

LeftEncloser ExprList RightEncloser
DottedId

opr Op

Expr(, Expn*

:= | Op=

do BlockElent end

do BlockElent also Do

at Expr Do

Expr, GeneratorLis}t

LocalVarFnDecl

Generator(, Generato)*

Id — Expr

(Id, IdList) < Expr

Expr

Id (, Id)*

> | T1| BIG Op

else Exprt

Id

Binding

(BindingList)

Id = Expr

Binding(, Binding*

TypeRef

(TypeRefLis})

{ [ExprLis{ }

{ EntryList}

([ExprLisf)

[(Expr| ;)]

(Expr(, Expr)*)

([Expr(, Expn*,] Expr...)

([Expr(, Expn*,] [Expr... ,] Id = Expr(, Id = Expn*)
Entry (, Entry)*

Expr+— Expr

{ Expr| GeneratorList}

{ Expr— Expr| GeneratorList}

(Expr| GeneratorList)

[(ArrayComprehensionLeft GeneratorLis)™ |
Id — Expr

(Id, IdList) — Expr

LocalVarDecl

Id ValParam[IsTypé [Throw§ = Expr
LocalVars(=|:=) Expr
LocalVarwWTypes

LocalVarWoTypes TypeRef.. [(=|:=) Expi]
LocalVarWoTypes SimpleTupleTypE = | :=) Expr]
LocalVar

(Localvar(, Localvan™)
LocalVarWType

LocalVarWoType

381

LocalVarWTypes ::=
|

LocalVarWType
(LocalVarWTypd , LocalvVarWTypg")

LocalVarWType w= [var]Id IsType
LocalVarWoTypes := LocalVarWoType

| (LocalVarWoTypé, LocalVarWoTypg")
LocalVarWoType == [var]ld

| Unpasting
Unpasting = [L-Elt (Paste L-Elj*]
L-Elt w= Id[[L-ArraySize]

| Unpasting
L-ArraySize = L-Extent(xL-Exten)*
L-Extent n= Expr

| Expr: Expr

| Expr# Expr
Paste n= (Whitespacé ;)*
UnitExpr = UnitRef

\ Expr UnitRef| Expr - UnitRef

| Expr / UnitRef| Expr per UnitRef

| Expr in UnitRef
ExternalSyntax = syntax OpenExpander Id CloseExpander Expr
OpenExpander n= Id | LeftEncloser
CloseExpander = Id | RightEncloset end
AbsDecl == AbsTraitDecl

| AbsObjectDecl

| AbsFnDecl

| AbsVarDecl

\ AbsDimUnitDecl

\ AbsTypeAlias

\ TestDecl

| PropertyDecl

| AbsExternalSyntax
AbsTraitDecl := TraitHeader(AbsMdDec| AbsCoercionj ApiFldDecl| PropertyDec)* end
AbsObjectDecl := ObjectHeadefAbsMdDecl AbsCoercior} ApiFldDecl| PropertyDec)* end
AbsCoercion = [widening] coercion [StaticParamK Id IsTypg CoercionClauses
ApiFldDecl ;= ApiFldMod* Id IsType
ApiFldMod = hidden | settable | UniversalMod
AbsVarDecl ‘= VarWTypes

| VarWoTypes TypeRef..

| VarWoTypes SimpleTupleType
AbsDimUnitDecl = dim Id[default Unit]

| (unit | SI_unit)Id™ [: DimRef

| dim Id (unit | SI_unit)Ild*
type Id [StaticParamp
syntax OpenExpander Id CloseExpander

AbsTypeAlias
AbsExternalSyntax ::

382

Appendix H

Generated Concrete Syntax

This grammar is automatically derived from a Fortress parsder development, and is included to help give insight
into how some syntactic features (white-space sensitfifional semicolons) are supported. A GLR parser-geoerat

is assumed. Some restrictions that could be enforced gigatly (e.g., which modifiers are allowed in which contgxts
are instead assumed to be checked in a later phase of thelepmpd some language features are not yet implemented.

compilation_unit
-=> W api w
-> w component w
-> imports_opt
exports_opt
defs_opt w

api
-> "api" w
dotted
imports_opt
decls_opt
w "end"

component
-> "component" w
dotted
imports_opt
exports_opt
defs_opt w
"end"

dotteds
-> dotted
-> dotted w "," w dotteds

dotted
-> build_dotted

build_dotted

383

-> |IDENTIFIER
-> IDENTIFIER "." build_dotted

imports_opt
->
-> W imports

imports
-> import
-> import wr imports

import
-> "import" wr aliased_names
-> "import" wr import_ids

import_ids
-=> " " wr "from" wr dotted
> " w ids w "} wr "from" wr dotted

ids

-> id

> jd w """ w ids
id

-> |IDENTIFIER

aliased_names
-> aliased_name
-> aliased_name w "" w aliased_names

aliased_name
-> dotted
-> dotted wr "as" wr dotted

exports_opt
->
-> W exports

exports
-> "export" wr dotteds
-> "export" wr dotteds w exports

decls_opt
->
-> w decls

decls
-> decl
-> decl br decls

decl
-> trait_decl

384

defs_opt

->
->

defs

def

var_decl

->

var_def
>
->

fn_decl
object_decl
var_decl
def _or_decl

w defs

def
def br defs

trait_def
fn_def
object_def
var_def
def_or_decl

mods_opt id w is_type

mods_opt id is_type opt w "=" w no_newline_expr
mods_opt id w "" w type_ref w ":=" w no_newline_expr

is_type_opt

>
>

is_type

> e

type_ref

->
>

w is_type

w type_ref

arg_type w "->" w ret_type throws_opt
simple_type_ref

simple_type_ref

>
>

"
dotted

simple_type_ref w "[\" w type_args w "\]"

type_ref w "[" w array_indices w "]"

type_ref "™ nat_type

type_ref "™ "(" w extent_range_minus_nat w ")"

type_ref "™ "(" w extent_range w "BY" w extent_range w ")"
type_ref w "

"I" w type_ref w "[->" w type_ref w "]"

"unity"

type_ref sr type_ref

type_ref w div w type_ref
"(" w type_ref w ")"

385

fn_decl
-> mods_opt
fn_header
is_ret_type_opt
throws_opt
where_opt
contract_opt

fn_def
-> mods_opt
fn_header
is_ret_type opt
throws_opt
where_opt
contract_opt
w "=" w no_newline_expr

fn_header
-> id
type_params_opt
w params
-=> id """ id
type_params_opt
w params
-> "opr* w op
type_params_opt
w params
-> "opr"
type_params_opt
w params
w op
-> "opr"
type_params_opt
w left_op_or_enc comma_sep_params_opt w right op_or_enc
-> "opr"
type_params_opt
w "[" w comma_sep_params w "]"
w "="w "(" w param w ")"
-=> "opr"
type_params_opt
w "[* w comma_sep_params w "

type_params_opt

>

-=> w "[\" w comma_sep_type_params w "\]"
comma_sep_type_params

-> type_param

-> type_param w "," w comma_sep_type_ params

type_param

386

-> id extends_opt absorbs_opt
-=> "nat" w id

-> "bool" w id

-=> "dim" w id

-> "unit" w id absorbs_opt
"opr" w op

-=> "ident" w id

absorbs_opt
->
-> w "absorbs" w "unit"

throws_opt
->
-> w "throws" w type_ref
-> w "throws" w type_ref list

where_opt
->
-> w where

where
-> "where" w "{" w wecl: where_clause_list w "}"

where_clause_list
-> where_clause w " w where_clause_list
-> where_clause

where_clause
-> type_alias
-> id w extends

contract_opt
-> requires_opt ensures_opt invariant_opt

requires_opt
->
-> w "requires" w "{" w comma_sep_exprs w "}"

ensures_opt
->
-> w "ensures" w
"{" prefix_ensures_clauses w ensures_clause w "}"

prefix_ensures_clauses
->
-> w provided_clause w

prefix_ensures_clauses

provided_clause
-> comma_sep_exprs w "provided" w expr

ensures_clause

387

-> provided_clause
-> comma_sep_exprs

invariant_opt
->
-> w "invariant" w "{" w comma_sep_exprs w "}"

trait_decl
-> mods_opt
"trait” w
id
type_params_opt
extends_opt
excludes_opt
comprises_opt
where_opt
fn_decls_or_property_opt
w "end"

trait_def
-> mods_opt
"trait" w
id
type_params_opt
extends_opt
excludes_opt
comprises_opt
where_opt
fn_def_or_decls_or_property_opt
w "end"

extends_opt
->
-> w extends

extends
-> "extends" w type_ref
-> "extends" w type_ref list_nonempty

type_ref list
-> type_ref_list_nonempty
_> II{II W Il}ll

type_ref list_nonempty
> "{" w type_refs w "}

type_refs
-> type_ref
-> type _ref w "," w type_refs

excludes_opt
->

388

-> w "excludes" w type ref list

comprises_opt
->
-> w "comprises" w type_ref
-> w “comprises” w "{" w "}"
-> w "comprises" w "{" w type_refs w "}"

fn_def_or_decls_or_property_opt
->
-> w fn_def _or_decls_or_property

fn_def_or_decls_or_property
-> fn_def_or_decl_or_property
-> fn_def_or_decl_or_property br fn_def or_decls_or_pr

fn_def _or_decl_or_property
-> fn_def
-> fn_decl
-> property

fn_decls_or_property_opt
->
-> w fn_decls_or_property

fn_decls_or_property
-> fn_decl_or_property
-> fn_decl_or_property br fn_decls_or_property

fn_decl_or_property
-> fn_decl
-> property

fn_decls_opt
->
-> w fn_decls

fn_decls
-> fn_decl
-> fn_decl br fn_decls

object_decl
-> mods_opt

"object” w
id
type_params_opt
params_opt
extends_opt
throws_opt
where_opt
contract_opt
obj_decl_body_opt

389

operty

w uendn

object_def
-> mods_opt

"object" w
id
type_params_opt
params_opt
extends_opt
throws_opt
where_opt
contract_opt
obj_body_opt
w "end"

params_opt
->
-> w params

params
_> II(II W Il)ll
-=> "(" w comma_sep_params w ")"

comma_sep_params_opt
->
-> W comma_sep_params

comma_sep_params
-> param
-> param w " w comma_sep_params

param
-> mods_opt id is_type_opt default value_opt

obj_body_opt

->

-> w obj_body
obj_body

-> obj_body_elem
-> obj_body_elem br obj_body

obj_body_elem
-> fn_def
-> var_def

obj_decl_body_opt
->

-> w obj_decl_body

obj_decl_body
-> obj_decl_body_elem

390

-> obj_decl_body _elem br obj_decl_body

obj_decl_body elem
-> fn_decl
-> var_decl
-> property

op_expr
-> op_expr_result

op_expr_result
-> opexpr_list

opexpr_list
-> 0p_expr_no_enc
-> enc op_expr_no_enc
-> enc

op_expr_no_enc
-> juxt_component

juxt_component wr expr_follows_expr_w
juxt_component op_follows_expr
juxt_component wr op_follows_expr_w
juxt_component enc_follows_expr
juxt_component wr enc_follows_expr_w

op
op
op
op
op
op
op

expr_follows_op

wr expr_follows_op_w
op_follows_op

wr op_follows_op_w
enc_follows_op

wr enc_follows_op_w

enc_follows_expr

>
>

enc
enc
enc
enc
enc
enc

expr_follows_op

wr expr_follows_expr_w
op_follows_op

wr op_follows_expr_w
wr enc_follows_expr_w

enc_follows_expr_w

enc

Op_expr_no_enc

-> enc wr expr_follows_op w
-> enc wr op_follows_op_w
-> enc wr enc_follows_op_w

enc_follows_op
-> enc op_expr_no_enc

enc_follows_op_w
-> enc op_expr_no_enc

391

expr_follows_expr_w

juxt_component

juxt_component op_follows_expr
juxt_component wr op_follows_expr_w
juxt_component wr expr_follows_expr_w
juxt_component enc_follows_expr
juxt_component wr enc_follows_expr_w

expr_follows_op

juxt_component

juxt_component op_follows_expr
juxt_component wr op_follows_expr_w
juxt_component wr expr_follows_expr_w
juxt_component enc_follows_expr
juxt_component wr enc_follows_expr_w

expr_follows_op_w

juxt_component

juxt_component op_follows_expr
juxt_component wr op_follows_expr_w
juxt_component wr expr_follows_expr_w
juxt_component enc_follows_expr
juxt_component wr enc_follows_expr_w

op_follows_op

op
op
op
op
op
op

wr expr_follows_op_w
expr_follows_op

wr op_follows_op_w
op_follows_op
enc_follows_op

wr enc_follows_op_w

op_follows_op_w

op
op
op
op
op
op

wr expr_follows_op_w
expr_follows_op

wr op_follows_op_w
op_follows_op
enc_follows_op

wr enc_follows_op_w

op_follows_expr

op
op
op
op
op
op
op

wr expr_follows_op_w
expr_follows_op

wr op_follows_op_w
op_follows_op

enc_follows_op
wr enc_follows_op_w

op_follows_expr_w
-> op wr expr_follows_op_w

392

-> op wr op_follows _op_w
-> op wr enc_follows_op_w

no_newline_op_expr
-> no_newline_op_expr_result

no_newline_op_expr_result
-> no_newline_opexpr_list

no_newline_opexpr_list
-> no_newline_op_expr_no_enc
-> enc no_newline_op_expr_no_enc

>

enc

no_newline_op_expr_no_enc

>

juxt_component
juxt_component
juxt_component
juxt_component
juxt_component
juxt_component

op

sr no_newline_expr_follows_expr_w
no_newline_op_follows_expr

sr no_newline_op_follows_expr_w

no_newline_enc_follows_expr

sr no_newline_enc_follows_expr_w

op no_newline_expr_follows_op

op sr no_newline_expr_follows_op_w
op no_newline_op_follows_op

op sr no_newline_op_follows_op_w

op no_newline_enc_follows_op

op sr no_newline_enc_follows_op_w

no_newline_enc_follows_expr

enc no_newline_expr_follows_op

enc sr no_newline_expr_follows_expr_w
enc no_newline_op_follows_op

enc sr no_newline_op_follows_expr_w

enc sr no_newline_enc_follows_expr_w

enc

no_newline_enc_follows_expr_w

enc no_newline_op_expr_no_enc

enc sr no_newline_expr_follows_op_w
enc sr no_newline_op_follows_op_w

enc sr no_newline_enc_follows_op_w

->
->
->
>

no_newline_enc_follows_op
-> enc no_newline_op_expr_no_enc

no_newline_enc_follows_op_w
-> enc no_newline_op_expr_no_enc

no_newline_expr_follows_expr_w
-> juxt_component
-> juxt_component no_newline_op_follows_expr

393

juxt_component sr no_newline_op_follows_expr_w
juxt_component sr no_newline_expr_follows_expr_w
juxt_component no_newline_enc_follows_expr
juxt_component sr no_newline_enc_follows_expr_w

no_newline_expr_follows_op

juxt_component

juxt_component no_newline_op_follows_expr
juxt_component sr no_newline_op_follows_expr_w
juxt_component sr no_newline_expr_follows_expr_w
juxt_component no_newline_enc_follows_expr
juxt_component sr no_newline_enc_follows_expr_w

->
>
>

no_newline_expr_follows_op_w

juxt_component

juxt_component no_newline_op_follows_expr
juxt_component sr no_newline_op_follows_expr_w
juxt_component sr no_newline_expr_follows_expr_w
juxt_component no_newline_enc_follows_expr
juxt_component sr no_newline_enc_follows_expr_w

>

no_newline_op_follows_op

->
>
>

op
op
op
op
op
op

sr no_newline_expr_follows _op_w
no_newline_expr_follows_op

sr no_newline_op_follows_op_w
no_newline_op_follows_op
no_newline_enc_follows_op

sr no_newline_enc_follows_op_w

no_newline_op_follows_op_w

>

op
op
op
op
op
op

sr no_newline_expr_follows_op_w
no_newline_expr_follows_op

sr no_newline_op_follows_op_w
no_newline_op_follows_op
no_newline_enc_follows_op

sr no_newline_enc_follows_op_w

no_newline_op_follows_expr

->
>
>

op
op
op
op
op
op
op

sr no_newline_expr_follows_op_w
no_newline_expr_follows_op

sr no_newline_op_follows_op_w
no_newline_op_follows_op

no_newline_enc_follows_op
sr no_newline_enc_follows_op_w

no_newline_op_follows_expr_w
-> op wr no_newline_expr_follows_op_w
-> op wr no_newline_op_follows_op_w
-> op sr no_newline_enc_follows_op_w

no_space_op_expr

394

-> no_space_op_expr_result

no_space_op_expr_result
-> no_space_opexpr_list

no_space_opexpr_list
-> no_space_op_expr_no_enc
-> enc no_space_op_expr_no_enc
-> enc

No_space_op_expr_no_enc
-> juxt_component
-> juxt_component no_space_op_follows_expr
-> juxt_component no_space_enc_follows_expr
-=> op
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op no_space_enc_follows_op

no_space_enc_follows_expr
-> enc no_space_expr_follows_op
-> enc no_space_op_follows_op
-> enc

no_space_enc_follows_op
-> enc no_space_op_expr_no_enc

no_space_expr_follows_op
-> juxt_component
-> juxt_component no_space_op_follows_expr
-> juxt_component no_space_enc_follows_expr

no_space_op_follows_op
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op no_space_enc_follows_op

no_space_op_follows_expr
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op
-> op no_space_enc_follows_op

expr
-> op_expr
-> tuple_expr
-> flow_expr
-> fn_expr
-> object_expr
-> assignment_expr
-> type_ascription_expr

395

no_newline_expr

>
>
>

no_newline_op_expr

tuple_expr

no_newline_flow_expr
no_newline_fn_expr

object_expr
no_newline_assignment_expr
no_newline_type_ascription_expr

no_space_expr

no_space_op_expr
tuple_expr
no_space_flow_expr
object_expr
no_space_assignment_expr

type_ascription_expr

->

expr w "as" w type_ref

no_newline_type_ascription_expr

-> no_newline_expr s "as" w type_ref

asif_expr

->

expr w "asif' w type_ref

no_newline_asif_expr

-> no_newline_expr s "asif* w type_ref

no_newline_atomic_expr

>

"atomic" w no_newline_expr

atomic_expr

->

"atomic" w expr

no_newline_tryatomic_expr

>

"tryatomic" w no_newline_expr

tryatomic_expr

->

"tryatomic" w expr

no_newline_throw_expr

->

"throw" w no_newline_expr

throw_expr

->

"throw" w expr

no_newline_exit_expr

-> "exit" id_opt no_newline_with_opt

exit_expr

->

"exit" id_opt with_opt

396

id_opt
->
> w id

with_opt
->
-> w "with" w expr

no_newline_with_opt
->
-> w "with" w no_newline_expr

tuple_expr
> "(" w expr w "," w comma_sep_exprs w)"

object_expr
-> "object" extends_opt obj _body opt w "end"

no_newline_fn_expr
-> "fn" w params is_ret_type_opt throws_opt w "=>" w
no_newline_expr

fn_expr
-> "fn" w params is_ret_type_opt throws_opt w

=" w expr

no_newline_accumulator
-> "SUM" w "[* w generators w "]" w no_newline_expr
-> "PRODUCT" w "[" w generators w "' w no_newline_expr
-=> "BIG" w op_or_enc w "[" w generators w "]" w no_newline_exp

accumulator
-> "SUM" w "[* w generators w "]" w expr
-> "PRODUCT" w "[" w generators w "]" w expr
-> "BIG" w op_or_enc w "[" w generators w "]" w expr

no_space_assignment_expr
-> no_space_expr ":=" no_space_expr
-> NO_space_expr assign_op no_space_expr

no_newline_assignment_expr

-> no_newline_expr s ":=" w no_newline_expr
-> no_newline_expr s assign_op w no_newline_expr

assignment_expr
> expr w =" w expr
-> expr w assign_op w expr

let_expr
-> let_mutable
-> let_immutable
-> let_fun

397

let_fun
-> let_fun_list

let_fun_list
-> fn_def
-> fn_def br let_fun_list

let_mutable
-> "var" w lIvals
-=> "var" w lIvals s "=" w no_newline_expr
-=> "var" w lIvals s ":=" w no_newline_expr
-> typed lIvals s ":=" w no_newline_expr

let_immutable
-> typed_lvals
-> |vals s "=" w no_newline_expr

tuple_lvals
> (" wids w)" s " s type_ref
= "(" woids w)" s "(" w type_refs w ")"

S

Ivals
-> |val
-=> "(" w comma_sep_lvals w ")"
-> tuple_lvals

typed_Ivals
-> typed_lIval
-=> "(" w comma_sep_typed lvals w ")"
-> tuple_lvals

comma_sep_lvals
-> |val
-=> |val w " w comma_sep_lvals

comma_sep_typed_lvals
-> typed_lval
-> typed Ival w " w comma_sep_typed_lvals

Ival

-> typed_lIval

-> id

-> unpasting
typed_lval

> id s "" s type_ref
unpasting

-> "[" w unpasting_elems w "]"

unpasting_elems
-> unpasting_elem

398

-> unpasting_elem rect_separator unpasting_elems

unpasting_elem
-> unpasting
-> id
> id s """ w "[" w unpasting_dim w "]"

unpasting_dim
-> extent_range w "BY" w extent_range
-> extent_range w "BY" w unpasting_dim

comma_sep_exprs_opt
->
-> W comma_sep_exprs

comma_sep_exprs
-> expr
-=> expr w ", w comma_sep_exprs

juxt_component
-> primary

exponentiation
-> primary exp exponent
-> primary exp_op

exponent
-> id
-> literal
-> parenthesized

primary
-> base_expr
-> type_application
-> bracket_expr
tight_juxtaposition
field_selection
-> exponentiation

\%

\

type_application
-> primary "[\" w type_args w "\]"

bracket_expr
-> primary "[" comma_sep_exprs_opt w "]"

tight_juxtaposition
#Ambiguity -- favor KeywordsExpr parses
-> primary "(" w ")"
-> primary "(" w expr w ")"
-> primary tuple_expr
-> primary keyword_args

399

args_opt
->
-> W comma_sep_exprs w ","

keyword_args
Ambiguity -- favor parses with largest number of keywords
-> "(" args_opt w comma_sep_keywords w ")"

comma_sep_keywords
> id w "=" w expr
> id w "=" w expr w "," w comma_sep_keywords

field_selection
-> primary "." id

base_expr
-> parenthesized
-> matched_enclosing_operator
-> id
-> base_value_expr
-> comprehension

matched_enclosing_operator
-> not_yet matched_enclosing_operator

not_yet matched_enclosing_operator
-> left_ op comma_sep_exprs_opt w right_op

left op_or_enc
-> enc
-> left_op

right op_or_enc
-> enc
-> right_op

left_op
-> left_op_literal

right_op
-> right_op_literal

left_op_literal
-> "LC"
-> "LF"
>
-> e

right_op_literal
-> "RC"
-> "RF"
-=> >t

400

> e

comprehension
-> set_comprehension
-> list_comprehension
-> map_comprehension
-> rect_comprehension

comprehension_rhs
-> expr
-> generator

-> expr w " w comprehension_rhs

-> generator w "," w comprehension_rhs

set_comprehension
> "{" w expr wr "|" wr comprehension_rhs w "}"

list_comprehension
-=> "<|" w expr wr "|" wr comprehension_rhs w "[>"

map_comprehension
> "[" w oexpr w "|->" w expr wr "|" wr comprehension_rhs w "]"

rect_comprehension
-> "[" w rect_comp_clauses w "]"

rect_comp_clauses
-> rect_comp_clause
-> rect_comp_clause br rect_comp_clauses

rect_comp_clause
-=> "(" w comma_sep_exprs w)" w
"' 'wr comprehension_rhs

W expr wr

parenthesized
> "(" w oexpr w)"

base value_expr
-> literal

literal
> w)
-=> INT
-> FLOAT
-> STRING
-> CHAR
-> map_expr
-> rect_expr

rect_expr
-=> "[" w rect_elements w ""

401

rect_elements
-> no_space_expr
-> no_space_expr rect_separator rect_elements

rect_separator
-> sr
-=> nl
-> w semicolons w

semicolons
>

-> """ semicolons

map_expr
-=> "[* w comma_sep_entries w "]"
comma_sep_entries
-> entry
-=> entry w ", w comma_sep_entries

entry
-=> expr w "|->" w expr

no_space_flow_expr
-> label_expr
-> do_expr
-> for_expr
-> spawn_expr
-> if_expr
-> try_expr
-> case_expr
-> type_case_expr
-> while_expr

no_newline_flow_expr
-> label_expr
-> do_expr
-> for_expr
-> spawn_expr
-> if_expr
-> try_expr
-> case_expr
-> type_case_expr
-> while_expr
-> no_newline_accumulator
-> no_newline_atomic_expr
-> no_newline_tryatomic_expr
-> no_newline_throw_expr
-> no_newline_exit_expr

flow_expr
-> label_expr

402

-> do_expr

-> for_expr

-> spawn_expr
-> if_expr

-> try_expr

-> case_expr

-> type_case_expr
-> while_expr

-> accumulator
-> atomic_expr
-> tryatomic_expr
-> throw_expr

-> exit_expr

label_expr
-> "label" w id w exprs w "end" w id

while_expr
-> "while" w expr w do_expr

type_case_expr
-> "typecase" w type_case

type_case

-> type_case_bindings w "in" w type_case_clauses w "end"
-> type_case_bindings w "in" w type_case_clauses br type c

type_case_else
-> "else" w

=>" w exprs

type_case_type_refs
-> type_ref
> (" w type_refs w)"

type_clause
-> type_case_type_refs w

=" w exprs

type_case_clauses
-> type_clause
-> type_clause br type case clauses

type_case_bindings
-> id
-> bindings

bindings
-> binding
-> "(" w comma_sep_bindings w ")"

comma_sep_bindings
-> binding
-> binding w

w comma_sep_bindings

403

ase_else w "end"

binding
-=> id w "=" w expr

case_clauses
-> case_clause
-> case_clause br case_clauses

case_clause
-> no_newline_expr w

=" w exprs

case_expr
-> "case" w case_prefix w "of" w case_suffix w "end"

case_prefix
-> expr
-> expr w op
-> "largest"
-> "smallest"

case_suffix
-> case_clauses
-> case_clauses w "else" w

=" w exprs

try_expr
-> "try" w exprs catch_opt forbid_opt finally_opt w "end"

catch_opt
->
-> w "catch" w id w catch_clauses

forbid_opt
->
-> w "forbid" w type_ref list

finally_opt
->
-> w "finally" w expr

catch_clauses
-> type ref w
-> type_ref w

=" w exprs
"=>" w exprs br catch_clauses
if_expr
-=> i woexpr w "then" w exprs w "end"
-=> "if" woexpr w "then" w exprs w "else" w exprs w "end"
-=> "if" woexpr w "then" w exprs w else_clauses w "else" w exprs w "end"
-=> "if* woexpr w "then" w exprs w else_clauses w "end"

else_clauses

-> else_clause
-> else_clause w else_clauses

404

else_clause
-=> "elif* w expr w "then" w exprs

spawn_expr
-> "spawn" expr_opt w do_expr

expr_opt
->
-> W oexpr

for_expr
-> "for" w generators w do_expr

no_newline_generators
-> no_newline_generator
-> no_newline_generator s "," w no_newline_generators

generators
-> generator
-> generator w "," w generators

no_newline_generator
-=> ids w "<-" w no_newline_expr

generator
-=> ids w "<-" w expr

do_expr
-> "do" w exprs w "end"
_> lldoll W llendll

block_elem
-> no_newline_expr
-> let_expr
-> no_newline_expr s ", w no_newline_generators

exprs
Ambiguity -- favor LetExpr parses
-> block_elem
-> block_elem w ;"
-> block_elem br exprs

default_value_opt
->
> W

w expr
is_ret_type_opt
->

> w """ w ret_type

ret_type

405

-> type_ref
> (" w type_ref w)" w type_refs w)"

arg_type
-> type_ref
-> named_arg
-=> (" w arg_types w ")"

arg_types
-> type_ref w "" w type_ref
-> named_arg
-> type ref w "," w arg_types

-> named_arg w ", w named_arg_types

named_arg_types
-> named_arg
-> named_arg w ", w named_arg_types

named_arg
> id w ™" w type_ref

array_indices
-> array_extent_ranges

array_extent_ranges
-> extent_range
-> extent_range w "," w array_extent_ranges

extent_range
-> nat_type
-> extent_range_minus_nat

extent_range_minus_nat
> g
-> pat_type w "#"' w nat_type
-> nat_type w "#"
-=> "#' w nat_type

type_args
-> type_arg
-> type_arg w "," w type_args
type_arg
-> type_ref
-> nat_type
-> op
nat_type
> INT
-> """ INT
-> id

> "(" w nat_type w)"

406

-> pat_type w "-" w INT
-> nat_type sr nat_type
-> pat_type w "+" w nat_type

bool_type
-> id
-=> "(" w bool_type w ")"
-> bool_type w "AND" w bool_type
-> bool_type w "OR" w bool_type

mods_opt
->
-> mods w

mods
-> modifier
-> modifier wr mods

space_sep_ids
-> id
-> id wr space_sep_ids

assign_op
-> ASSIGNMENT_OPERATOR

exp_op
-> EXPONENT_OPERATOR

op
-> op_literal
-> div

exp
_> n~n

div
> o

op_literal
>
>t
-> n_n

*
> Ut
>
-> "BY"

> <t

> ="

> >

> ">

-> "in"

-> OPERATOR

407

enc
-> enc_literal

op_or_enc
> Op
-> enc

enc_literal
_> II|II
_> II| |ll
_> ll//ll

def _or_decl
-> "dim" w id equal_ty opt default_unit_opt
-=> "dim" w id equal_ty opt s unit_var
-> unit_var
-> type alias
-> test
-> property

unit_var
-> unit_keyword w space_sep_ids is_type_opt eq_expr_opt

eq_expr_opt
->
> W

W expr

unit_keyword
_> "unit"
-> "si_unit"

equal_ty opt
->
> w "=" w type_ref

default_unit_opt
->
-> w "default" w type_ref

type_alias
-=> "type" woid w "[\" w ids w "\]" w "=" w type_ref
-=> "type" w id w "=" w type_ref
test
-> "test" w id w "[" w generators w "]" w "=" w expr
property
-> "property" w id w "=" w "FORALL" w params w expr
-> "property" w "FORALL" w params w expr
-> "property" w id w "=" w w expr
-> "property" w expr

408

modifier

wr

Sr

nl

br

-> "abstract”
-> "atomic"
-> "getter"
-> "hidden"
-=> "io"

-> "private"
-> "pure"”

-> "settable"
-> "setter"
-> "static"
-> "test"

-> "transient"
-> "value"
"var
-> "wrapped"

Whitespace Optional
->
-> wr

Whitespace Required
-> TOK_WHITESPACE w
-> TOK_NEWLINE w

Space Optional
->
-> sr

Space Required
-> TOK_WHITESPACE s

Required Newline embedded in
-> s TOK_NEWLINE w

Line break
-> nl
> s """ w

whitespace

409

Bibliography

[1] O. Agesen, L. Bak, C. Chambers, B.-W. Chang, U. Hizle, J.aldvey, R. B.

Smith, D. Ungar, and M. Wolczko. The Self Programmer’s Reference Manual
http://research.sun.com/self/release _4.0/Selt-4.0/manuals/Self-4.1-Pgmers-Ref.pdt
2000.

[2] E. Allen, V. Luchangco, and S. Tobin-Hochstadt. Encdatsd Upgradable Components, Mar. 2005.

[3] R. Blumofe and C. Leiserson. Scheduling multithreadechputations by work stealing. IRroceedings of the
35th Annual Symposium on Foundations of Computer Scielarea e, New Mexicopages 356—-368, Nov.
1994,

[4] R. D. Blumofe, C. F. Joerg, C. E. Leiserson, K. H. Randatid Y. Zhou. Cilk: An efficient multithreaded run-
time system. IrProceedings of the ACM Conference on Programming Languaggg and Implementation
pages 132-141, Montreal, Canada, 17-19 June 1998. ACM 28R otices.

[5] G. Bracha, G. Steele, B. Joy, and J. Goslidgva(TM) Language Specification, The (3rd Edition) (JavaeSe
Addison-Wesley Professional, July 2005.

[6] R. Cartwright and G. Steele. Compatible genericity with-time types for the Java Programming Language. In
OOPSLA1998.

[7] W. Clinger. Macros that work. IRroceedings of the ACM Symposium on Principles of Prograigisanguages
pages 155-162. ACM Press, 1991.

[8] S. Ducasse, O. Nierstrasz, N. Seh, R. Wuyts, and A. P. Black. Traits: A mechanism for finiged reuse.
ACM Trans. Program. Lang. Sys28(2):331-388, 2006.

[9] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic absican in scheme.Journal of LISP and Symbolic
Computation5(4):295-326, 1992.

[10] R.B.Findler, M. Latendresse, and M. Felleisen. Bebrlicontracts and behavioral subtypingB8EC/FSE-9:
Proceedings of the 8th European software engineering cenée held jointly with 9th ACM SIGSOFT interna-
tional symposium on Foundations of software engineemages 229-236. ACM Press, September 2001.

[11] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazye@ds: Implementing a Fast Parallel Cdiburnal of
Parallel and Distributed Computing7(1), Aug. 1996.

[12] A.lgarashi, B. Pierce, and P. Wadler. Featherweigi:JA minimal core calculus for Java and GJ. In L. Meiss-
ner, editor,Proceedings of the 1999 ACM SIGPLAN Conference on Objeietr@d Programming, Systems,
Languages & Applications (OOPSLA'99)olume 34(10), pages 132-146, N. Y., 1999.

[13] R. Kelsey, W. Clinger, and J. Rees. Revisedport on the algorithmic language Schem&CM SIGPLAN
Notices 33(9):26-76, 1998.

[14] X. Leroy, D. Doligez, J. Garrigue, D. Rmy, and J. Vouillo The Objective Caml System, release 3.08
http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08- refman.pdf | 2004.

410

http://research.sun.com/self/release_4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf
http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf

[15] J. Matthews, R. B. Findler, M. Flatt, and M. FelleisenVisual Environment for Developing Context-Sensitive
Term Rewriting Systems (system description). In V. van @ust editorRewriting Techniques and Applications,
15th International Conference, RTALUANCS 3091, pages 301-311, Valencia, Spain, June 3-5, Bjdthger.

[16] B. Meyer. Object-oriented Software ConstructioRrentice Hall, 1988.

[17] T. Millstein and C. Chambers. Modular statically typadltimethodslnformation and Computatiqri75(1):76—
118, May 2002.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueemnhe Definition of Standard ML (Revisedlhe MIT Press,
1997.

[19] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy taskatien: A technique for increasing the granularity of
parallel programs. Technical Report TM-449, MIT/LCS, 1991

[20] G. M. Morton. A computer oriented geodetic data baseandw technique in file sequencing. Technical report,
IBM Ltd., Mar. 1966.

[21] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Michelqud. Mihaylov, M. Schinz, E. Stenman, and M. Zenger.
The Scala Language Specificatidnttp://scala.epfl.ch/docul/files/ScalaReference.pdf |
2004.

[22] OpenMP Architecture Review Board. OpenMP Fortran Application Program Interface \Version 2.0
http://www.openmp.org/specs/mp-documents/fspec20 _bars.pdf |, Nov. 2000.

[23] S. Peyton-Jonegiaskell 98 Language and Librarie€ambridge University Press, 2003.

[24] B. N. Taylor. Guide for the use of the international gystof units (si). Technical report, United States Depart-
ment of Commerce, National Institute of Standards and Telolgry, Apr. 1995.

[25] The Unicode ConsortiuniThe Unicode Standard, Version 4 Addison-Wesley, 2003.
[26] Java(TM) 2 Platform Standard Edition 6.0 API Specificathttp://download.java.net/jdk6/docs/api/index.ht

411

http://scala.epfl.ch/docu/files/ScalaReference.pdf
http://www.openmp.org/specs/mp-documents/fspec20_bars.pdf
http://download.java.net/jdk6/docs/api/index.html

	I Preliminaries
	Introduction
	Fortress in a Nutshell
	Organization

	Overview
	The Fortress Programming Environment
	Exports, Imports, and Linking Components
	Automatic Generation of APIs
	Rendering
	Some Common Types in Fortress
	Functions in Fortress
	Some Common Expressions in Fortress
	For Loops Are Parallel by Default
	Atomic Expressions
	Dimensions and Units
	Aggregate Expressions
	Comprehensions
	Summations and Products
	Tests and Properties
	Objects and Traits
	Features for Library Development

	II Fortress for Application Programmers
	Programs
	Evaluation
	Values
	Normal and Abrupt Completion of Evaluation
	Memory and Memory Operations
	Threads and Parallelism
	Environments
	Input and Output Actions

	Lexical Structure
	Characters
	Words
	Lines, Pages and Position
	ASCII Conversion
	Input Elements and Scanning
	Comments
	Whitespace Elements
	Special Reserved Words
	Character Literals
	String Literals
	Boolean Literals
	The Void Literal
	Numerals
	Operator Tokens
	Identifiers
	Special Tokens
	Rendering of Fortress Programs

	Declarations
	Kinds of Declarations
	Top-Level Variable Declarations
	Local Variable Declarations
	Local Function Declarations
	Matrix Unpasting

	Names
	Namespaces
	Reach and Scope of a Declaration
	Qualified Names

	Types
	Relationships between Types
	Trait Types
	Object Trait Types
	Tuple Types
	Arrow Types
	Bottom Type
	Types in the Fortress Standard Libraries
	Intersection and Union Types
	Type Aliases

	Traits
	Trait Declarations
	Method Declarations
	Abstract Field Declarations
	Method Contracts
	Value Traits

	Objects
	Object Declarations
	Field Declarations
	Value Objects
	Object Equivalence

	Static Parameters
	Type Parameters
	Nat and Int Parameters
	Bool Parameters
	Dimension and Unit Parameters
	Operator and Identifier Parameters
	Where Clauses

	Functions
	Function Declarations
	Function Applications
	Abstract Function Declarations
	Function Contracts

	Expressions
	Literals
	Identifier References
	Dotted Field Accesses
	Dotted Method Invocations
	Naked Method Invocations
	Function Calls
	Function Expressions
	Operator Applications
	Object Expressions
	Assignments
	Do Expressions
	Parallel Do Expressions
	Label and Exit
	While Loops
	For Loops
	Ranges
	Generators
	Summations and Other Reduction Expressions
	If Expressions
	Case Expressions
	Extremum Expressions
	Typecase Expressions
	Atomic Expressions
	Spawn Expressions
	Throw Expressions
	Try Expressions
	Static Expressions
	Aggregate Expressions
	Comprehensions
	Type Ascription
	Type Assumption
	Expression-like Functions

	Exceptions
	Causes of Exceptions
	Types of Exceptions
	Information of Exceptions

	Overloading and Multiple Dispatch
	Terminology and Notation
	Applicability to Named Functional Calls
	Applicability to Dotted Method Calls
	Applicability for Functionals with Varargs and Keyword Parameters
	Overloading Resolution

	Operators
	Operator Names
	Operator Precedence
	Operator Fixity
	Chained and Multifix Operators
	Enclosing Operators
	Conditional Operators
	Juxtaposition
	Overview of Operators in the Fortress Standard Libraries

	Conversions and Coercions
	Principles of Coercion
	Coercion Declarations
	Coercion Invocations
	Applicability with Coercion
	Coercion Resolution
	Restrictions on Coercion Declarations
	Coercions for Tuple and Arrow Types
	Automatic Widening

	Dimensions and Units
	Tests and Properties
	The Purpose of Tests and Properties
	Test Declarations
	Other Test Constructs
	Running Tests
	Test Suites
	Property Declarations

	Type Inference
	What Is Inferred
	Type Inference Procedure
	Finding ``Closest Expressible Types'' for Inferred Types

	Memory Model
	Principles
	Programming Discipline
	Read and Write Atomicity
	Ordering Dependencies among Operations

	Components and APIs
	Overview
	Components
	APIs
	Tests in Components and APIs
	Type Inference for Components
	Initialization Order for Components
	Basic Fortress Operations
	Advanced Features of Fortress Operations

	III Fortress APIs and Documentation for Application Programmers
	Objects
	The Trait Fortress.Core.Object

	Booleans and Boolean Intervals
	The Trait Fortress.Core.Boolean
	The Trait Fortress.Standard.BooleanInterval
	Top-level BooleanInterval Values

	Numbers
	Rational Numbers

	Negated Relational Operators
	Negated Relational Operators

	Exceptions
	The Trait Fortress.Standard.Exception
	The Trait Fortress.Standard.CheckedException
	The Trait Fortress.Standard.UncheckedException

	Threads
	The Trait Fortress.Standard.Thread

	Dimensions and Units
	Fortress.SIUnits
	Fortress.EnglishUnits
	Fortress.InformationUnits

	Tests
	The Object Fortress.Standard.TestSuite
	Test Functions

	Convenience Functions and Types
	Convenience Functions
	Convenience Types

	IV Fortress for Library Writers
	Parallelism and Locality
	Regions
	Distributed Arrays
	Abortable Atomicity
	Shared and Local Data
	Distributions
	Early Termination of Threads
	Placing Threads
	Use and Definition of Generators

	Overloaded Functional Declarations
	Principles of Overloading
	Subtype Rule
	Incompatibility Rule
	More Specific Rule
	Coercion and Overloading Resolution

	Operator Declarations
	Infix/Multifix Operator Declarations
	Prefix Operator Declarations
	Postfix Operator Declarations
	Nofix Operator Declarations
	Bracketing Operator Declarations
	Subscripting Operator Method Declarations
	Subscripted Assignment Operator Method Declarations
	Conditional Operator Declarations
	Big Operator Declarations

	Dimensions and Units Declarations
	Dimensions Declarations
	Units Declarations
	Abbreviating Dimension and Unit Declarations
	Absorbing Units

	Support for Domain-Specific Languages
	Definitions of Syntax Expanders
	Declarations of Syntax Expanders
	Restrictions on Delimiters
	Processing Syntax Expanders
	Expanders for Fortress

	V Fortress APIs and Documentation for Library Writers
	Algebraic Constraints
	Predicates and Equivalence Relations
	Partial and Total Orders
	Operators and Their Properties
	Monoids, Groups, Rings, and Fields
	Boolean Algebras

	Numbers
	The Trait Fortress.Standard.RationalQuantity
	The Trait Fortress.Standard.TotalComparison
	Top-level Total Comparison Values
	The Trait Fortress.Standard.Comparison
	Top-level Comparison Value

	Components and APIs
	Memory Sequences and Binary Words
	The Trait Fortress.Core.LinearSequence
	Constructing Linear Sequences
	The Trait Fortress.Core.HeapSequence
	Constructing Heap Sequences
	The Trait Fortress.Core.BinaryWord
	The Trait Fortress.Core.BinaryEndianWord
	The Trait Fortress.Core.BasicBinaryOperations
	The Trait Fortress.Core.BasicBinaryWordOperations
	The Trait Fortress.Core.BinaryLinearEndianSequence
	The Trait Fortress.Core.BinaryEndianLinearEndianSequence
	The Trait Fortress.Core.BinaryHeapEndianSequence
	The Trait Fortress.Core.BinaryEndianHeapEndianSequence
	The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations

	VI Appendices
	Fortress Calculi
	Basic Core Fortress
	Syntax
	Dynamic Semantics
	Static Semantics

	Core Fortress with Where Clauses
	Syntax
	Dynamic Semantics
	Static Semantics

	Core Fortress with Overloading
	Syntax
	Dynamic Semantics
	Static Semantics

	Acyclic Core Fortress with Field Definitions
	Syntax
	Dynamic Semantics
	Static Semantics

	Overloaded Functional Declarations
	Proof of Coercion Resolution for Functions
	Proof of Overloading Resolution for Functions

	Components and APIs
	Rendering of Fortress Identifiers
	Support for Unicode Input in ASCII
	Word Pasting across Line Breaks
	Preprocessing of Names of Unicode Characters

	Operator Precedence, Chaining, and Enclosure
	Bracket Pairs for Enclosing Operators
	Vertical-Line Operators
	Arithmetic Operators
	Multiplication and Division
	Addition and Subtraction
	Miscellaneous Arithmetic Operators
	Set Intersection, Union, and Difference
	Square Arithmetic Operators
	Curly Arithmetic Operators

	Relational Operators
	Equivalence and Inequivalence Operators
	Plain Comparison Operators
	Set Comparison Operators
	Square Comparison Operators
	Curly Comparison Operators
	Triangular Comparison Operators
	Chickenfoot Comparison Operators
	Miscellaneous Relational Operators

	Boolean Operators
	Other Operators

	Concrete Syntax
	Generated Concrete Syntax

