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SUMMARY
This draft report provides an initial description of the program-
ming language X10. X10 is a single-inheritance class-based
object-oriented (OO) programming language designed for high-
performance, high-productivity computing on high-end com-
puters supporting ≈ 105 hardware threads and ≈ 1015 opera-
tions per second.

X10 is based on state-of-the-art object-oriented programming
languages and deviates from them only as necessary to support
its design goals. The language is intended to have a simple and
clear semantics and be readily accessible to mainstream OO pro-
grammers. It is intended to support a wide variety of concurrent
programming idioms.

This document provides an initial description of the language
and corresponds to the first implementation of the language.
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INTRODUCTION

Background

Bigger computational problems need bigger computers capable
of performing a larger number of operations per second. The era
of increasing performance by simply increasing clocking fre-
quency now seems to be behind us. It is becoming increasingly
difficult to mange chip power and heat. Instead, computer de-
signers are starting to look at scale out systems in which the sys-
tem’s computational capacity is increased by adding additional
nodes of comparable power to existing nodes, and connecting
nodes with a high-speed communication network.

A central problem with scale out systems is a definition of
the memory model, that is, a model of the interaction between
shared memory and simultaneous (read, write) operations on
that memory by multiple processors. The traditional “one oper-
ation at a time, to completion” model that underlies Lamport’s
notion of sequential consistency (SC) proves too expensive to
implement in hardware, at scale. Various models of relaxed con-
sistency have proven too difficult for programmers to work with.

One response to this problem has been to move to a fragmented
memory model. Multiple processors – each sequentially consis-
tent internally – are made to interact via a relatively language-
neutral message-passing format such as MPI [10]. This model
has enjoyed some success: several high-performance appli-
cations have been written in this style. Unfortunately, this
model leads to a loss of programmer productivity: the mesage-
passing format is integrated into the host language by means of
an application-programming interface (API), the programmer
must explicitly represent and manage the interaction between
multiple processes and choreograph their data exchange; large
data-structures (such as distributed arrays, graphs, hash-tables)
that are conceptually unitary must be thought of as fragmented
across different nodes; all processors must generally execute the
same code (in an SPMD fashion) etc.

One response to this problem has been the advent of the parti-
tioned global address space (GAS) model underlying languages
such as UPC, Titanium and Co-Array Fortran [2, 11]. These lan-
guages permit the programmer to think of a single computation
running across multiple processors, sharing a common address
space. All data resides at some processors, which is said to have
affinity to the data. Each processor may operate directly on the
data it contains but must use some indirect mechanism to access
or update data at other processors. Some kind of global barriers
are used to ensure that processors remain roughly in lock-step.

X10 is a modern object-oriented programming language in the
GAS family. The fundamental goal of X10 is to enable scal-
able, high-performance, high-productivity transformational pro-
gramming for high-end computers – for traditional numerical
computation workloads (such as weather simulation, molecular
dynamics, particle transport problems etc) as well as commer-
cial server workloads. X10 is based on state-of-the-art object-
oriented programming ideas primarily to take advantage of their

proven flexibility and ease-of-use for a wide spectrum of pro-
gramming problems. X10 takes advantage of several years of
research (e.g. in the context of the JavaTM Grande forum,
[8, 1]) on how to adapt such languages to the context of high-
performance numerical computing. Thus X10 provides support
for user-defined value types (such as int, float, complex
etc), supports a very flexible form of multi-dimensional arrays
(based on ideas in ZPL [3]) and supports IEEE-standard float-
ing point arithmetic. Some limited operator overloading is pro-
vided for a few “built in” classes in the x10.lang package.
Future versions of the language will support user-definable op-
erator overloading.

X10 introduces a flexible treatment of concurrency, distribution
and locality, within an integrated type system. X10 extends the
GAS model to the globally asynchronous, locally synchronous
(GALS) model originally developed in hardware and embed-
ded software research. X10 introduces places as an abstraction
for a computational context with a locally synchronous view of
shared memory. An X10 computation runs over a large col-
lection of places. Each place hosts some data and runs one
or more activities. Activities are extremely lightweight threads
of execution. An activity may synchronously (and atomically)
use one or more memory locations in the place in which it re-
sides, leveraging current symmetric multiprocessor (SMP) tech-
nology. It must spawn activities asynchronously to access or
update memory at other places. X10 provides weaker ordering
guarantees for inter-place data access, enabling applications to
scale. Immutable data needs no consistency management and
may be freely copied between places. An attempt to read an
uninitialized immutable location suspends until the location is
written into, thus permitting data-flow synchronization. One or
more clocks may be used to order activities running in multiple
places. (Multi-dimensional) Arrays may be distributed across
multiple places. Arrays support parallel collective operations.
A novel exception flow model ensures that exceptions thrown
by asynchronous activities can be caught at a suitable parent ac-
tivity. The type system tracks which memory accesses are local,
and marks non-local accesses as compile time errors. The pro-
grammer may introduce placecasts which verify the access is
local at runtime. Linking with native code is supported.

X10 is an experimental language. Several representative con-
current idioms have already found pleasant expression in X10.
We intend to develop several full-scale applications to get better
experience with the language, and revisit the design in the light
of this experience. Future versions of the language are expected
to support user-definable operators and permit the specification
of generic classes and methods.

Two papers have been published on X10. [9] presents a formal
semantics for the concurrency and distributed aspects of X10.
[4] presents some case studies, and discusses some X10 pro-
gramming idioms.
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DESCRIPTION OF THE LANGUAGE

1. Overview of X10
X10 may be thought of as (generic) Java less concurrency,
arrays and built-in types, plus places, activities, clocks, (dis-
tributed, multi-dimensional) arrays and value types. All these
changes are motivated by the desire to use the new language for
high-end, high-performance, high-productivity computing.

1.1. Places and activities

The central new concept in X10 is that of a place (§ 5). A place
may be thought of conceptually as a “virtual shared-memory
multi-processor”: a computational unit with a finite, though per-
haps dynamically varying, number of hardware threads and a
bounded amount of shared memory uniformly accessible by all
threads. An X10 program is intended to run on a wide range
of computers, from uniprocessors to large clusters of parallel
processors supporting millions of concurrent operations.

An X10 computation acts on data objects(§ 3.6) through the ex-
ecution of lightweight threads called activities(§ 6). Objects are
of two kinds. A scalar object has a small, statically fixed set
of fields, each of which has a distinct name. A scalar object
is located at a single place and stays at that place throughout
its lifetime. An aggregate object has many fields (the number
may be known only when the object is created), uniformly ac-
cessed through an index (e.g. an integer) and may be distributed
across many places. The distribution of an aggregate object re-
mains unchanged throughout the computation. X10 assumes an
underlying garbage collector will dispose of (scalar and aggre-
gate) objects and reclaim the memory associated with them once
it can be determined that these objects are no longer accessible
from the current state of the computation. (There are no opera-
tions in the language to allow a programmer to explicitly release
memory.)

X10 has a unified or global address space. This means that
an activity can reference objects at other places. However, an
activity may synchronously access data items only in the cur-
rent place (the place in which the activity is running). It may
atomically update one or more data items, but only in the cur-
rent place. Indeed, all accesses to mutable shared data must
occur from within an atomic section. To read a remote location,
an activity must spawn another activitiy asynchronously (§ 6.2).
This operation returns immediately, leaving the spawning activ-
ity with a future (§ 6.5) for the result. Similarly, remote location
can be written into only by asynchronously spawning an activity
to run at that location.

Throughout its lifetime an activity executes at the same place.
An activity may dynamically spawn activities in the current or
remote places.

Atomic sections X10 introduces statements of the form
atomic S where S is a statement. The type system ensures

that such a statement will dynamically access only local data.
(The statement may throw a BadPlaceException – but
only because of a failed place cast.) Such a statement is exe-
cuted by the activity as if in a single step during which all other
activities are frozen.

Asynchronous activities An asynchronous activity is created
by a statement async (P) S where P is a place expression
and S is a statement. Such a statement is executed by spawning
an activity at the place designated by P to execute statement S.

An asynchronous expression of type future<T> has the form
future (P) E where E is an expression of type T. It execut-
ess the expression E at the place P as an asynchronous activity,
immediately returning with a future. The future may later be
forced causing the activity to be blocked until the return value
has been computed by the asynchronous activity.

1.2. Clocks

The MPI style of coordinating the activity of multiple processes
with a single barrier is not suitable for the dynamic network of
(possibly diverse) activities in an X10 computation. Instead,
it becomes necessary to allow a computation to use multiple
barriers. X10 clocks (§ 7) are designed to offer the functionality
of multiple barriers in a dynamic context while still supporting
determinate, deadlock-free parallel computation.

Activities may use clocks to repeatedly detect quiescence of ar-
bitrary programmer-specified, data-dependent set of activities.
Each activity is spawned with a known set of clocks and may
dynamically create new clocks. At any given time an activity
is registered with zero or more clocks. It may register newly
created activities with a clock, un-register itself with a clock,
suspend on a clock or require that a statement (possibly involv-
ing execution of new async activities) be executed to completion
before the clock can advance. At any given step of the execution
a clock is in a given phase. It advances to the next phase only
when all its registered activities have quiesced (by executing a
continue operation on the clock), and all statements sched-
uled for execution in this phase have terminated. When a clock
advances, all its activities may now resume execution.

Thus clocks act as barriers for a dynamically varying collection
of activities. They generalize the barriers found in MPI style
program in that an activity may use multiple clocks simultane-
ously. Yet programs using clocks are guaranteed not to suffer
from deadlock. Clocks are also integrated into the X10 type sys-
tem, permitting variables to be declared so that they are final
in each phase of a clock.
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1.3. Interfaces and Classes

Programmers write X10 code by writing generic interfaces (§ 8)
and generic classes (§ 9). Generic interfaces and classes may
be defined over a collection of type parameters. Instances can
be created only from concrete classes; such a class has all its
type parameters (if any) instantiated with concrete classes and
concrete interfaces.

1.4. Scalar classes

An X10 scalar class (§ 9) has fields, methods and inner types (in-
terfaces, classes), subclasses another class, and implements one
or more interfaces. Thus X10 classes live in a single-inheritance
code hierarchy.

There are two kinds of scalar classes: reference classes (§ 9.1)
and value classes (§ 9.2).

A reference class typically has updatable fields. Objects of such
a class may not be freely copied from place to place. Methods
may be invoked on such an object only by an activity in the same
place.

A value class (§ 9.2) has no updatable fields (defined directly
or through inheritance), and allows no reference subclasses.
(Fields may be typed at reference classes, so may contain ref-
erences to objects with mutable state.) Objects of such a class
may be freely copied from place to place, and may be imple-
mented very efficiently. Methods may be invoked on such an
object from any place.

X10 has no primitive classes. However, the standard library
x10.lang supplies (final) value classes boolean, byte,
short, char, int, long, float, double, complex and
String. The user may defined additional arithmetic value
classes using the facilities of the language.

1.5. Arrays, Regions and Distributions

An X10 array is a function from a distribution (§ 10.2) to a base
type (which may itself be an array type).

A distribution is a map from a region (§ 10.1) to a subset of
places. A region is a collection of points or indices. For in-
stance, the region [0:200,1:100] specifies a collection of
two-dimensional points (i,j) with i ranging from 0 to 200
and j ranging from 1 to 100. Points are used in array index
expressions to pick out a particular array element.

Operations are provided to construct regions from other regions,
and to iterate over regions. Standard set operations, such as
union, disjunction and set difference are available for regions.

A primitive set of distributions is provided, together with oper-
ations on distributions. A sub-distribution of a distribution is
one which is defined on a smaller region and agrees with the

distribution at all points. The standard operations on regions are
extended to distributions.

In future versions of the language, a programmer may specify
new distributions, and new operations on distributions.

A new array can be created by restricting an existing array to a
sub-distribution, by combining multiple arrays, and by perform-
ing pointwise operations on arrays with the same distribution.

X10 allows array constructors to iterate over the underlying
distribution and specify a value at each item in the underly-
ing region. Such a constructor may spawn activities at multiple
places.

1.6. Nullable type constructor

X10 has a nullable type constructor which can be applied
uniformly to scalar (value or reference) and array types. This
type constructor returns a new type which adds a special value
null to the set of values of its argument type, unless the argu-
ment type already has this value.

1.7. Statements and expressions

X10 supports the standard set of primitive operations (assign-
ment, classcasts) and sequential control constructs (condition-
als, looping, method invocation, exception raising/catching) etc.

Place casts The programmer may use the standard classcast
mechanism (§ 11.4.1) to cast a value to a located type. A
BadPlaceException is thrown if the value is not of the
given type. This is the only language construct that throws a
BadPlaceException.

1.8. Translating MPI programs to X10

While X10 permits considerably greater flexibility in writing
distributed programs and data structures than MPI, it is instruc-
tive to examine how to translate MPI programs to X10.

Each separate MPI process can be translated into an X10 place.
Async activities may be used to read and write variables located
at different processes. A single clock may be used for barrier
synchronization between multiple MPI processes. X10 collec-
tive operations may be used to implement MPI collective op-
erations. X10 is more general than MPI in (a) not requiring
synchronization between two processes in order to enable one
to read and write the other’s values, (b) permitting the use of
high-level atomic sections within a process to obtain mutual ex-
clusion between multiple activities running in the same node
(c) permitting the use of multiple clocks to combine the expres-
sion of different physics (e.g. computations modeling blood
coagulation together with computations involving the flow of
blood), (d) not requiring an SPMD style of computation.
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1.9. Summary and future work

1.9.1. Design for scalability

X10 is designed for scalability. An activity may atomically ac-
cess only multiple locations in the current place. Unconditional
atomic sections are statically guaranteed to be non-blocking,
and may be implemented using non-blocking techniques that
avoid mutual exclusion bottlenecks. Dataflow synchronization
permits point-to-point coordination between reader/writer activ-
ities, obviating the need for barrier-based or lock-based syn-
chronization in many cases.

1.9.2. Design for productivity

X10 is designed for productivity.

Safety and correctness. Programs written in X10 are guar-
anteed to be statically type safe, memory safe and pointer safe.
Static type safety guarantees that at runtime a location contains
only those values who’s dynamic type satisfies the constraints
imposed by the location’s static type and every runtime oper-
ation performed on the value in a location is permitted by the
static type of the location.

Memory safety guarantees that an object may only access mem-
ory within its representation, and other objects it has a reference
to. X10 supports no pointer arithmetic, and bound-checks array
accesses dynamically if necessary. X10 uses dynamic garbage
collection to collect objects no longer referenced by the com-
putation. X10 guarantees that no object can retain a reference
to an object whose memory has been reclaimed. Further, X10
guarantees that every location is initialized at runtime before it
is read, and every value read from a location has previously been
written into that location.

Pointer safety guarantees that a null pointer exception cannot be
thrown by an operation on a value of a non-nullable type.

Because places are reflected in the type system, static type safety
also implies place safety: a location may contain references to
only those objects whose location satisfies the restrictions of the
static place type of the location.

X10 programs that use only clocks and unconditional atomic
sections are guaranteed not to deadlock. Unconditional atomic
sections are non-blocking, hence cannot introduce deadlocks
(assuming the implementation is correct).

Many concurrent programs can be shown to be determinate
(hence race-free) statically.

Integration. A key issue for any new programming language
is how well it can be integrated with existing (external) lan-
guages, system environments, libraries and tools.

We believe that X10, like Java, will be able to support a large
number of libraries and tools. An area where we expect future

versions of X10 to improve on Java like languages is native
integration (§ 11.5). Specifically, X10 will permit permit multi-
dimensional local arrays to be operated on natively by native
code.

1.9.3. Conclusion

X10 is considerably higher-level than thread-based languages
in that it supports dynamically spawning very lightweight activ-
ities, the use of atomic operations for mutual exclusion, and the
use of clocks for repeated quiescence detection.

Yet it is much more concrete than languages like HPF in that
it forces the programmer to explicitly deal with distribution of
data objects. In this the language reflects the designers belief
that issues of locality and distribution cannot be hidden from
the programmer of high-performance code in high-end comput-
ing. A performance model that distinguishes between computa-
tion and communication must be made explicit and transparent.1

At the same time we believe that the place-based type system
and support for generic programming will allow the X10 pro-
grammer to be highly productive; many of the tedious details of
distribution-specific code can be handled in a generic fashion.

We expect the next version of the language to be significantly in-
formed by experience in implementing and using the language.
We expect it to have constructs to support continuous program
optimization, and allow the programmer to provide guidance on
clustering places to (hardware) nodes. For instance, we may
introduce a notion of hierarchical clustering of places.

2. Lexical structure
In general, X10 follows Java rules [6, Chapter 3] for lexical
structure.

Lexically a program consists of a stream of white space, com-
ments, identifiers, keywords, literals, separators and operators.

Whitespace Whitespace follows Java rules [6, Chapter 3.6].
ASCII space, horizontal tab (HT), form feed (FF) and line ter-
minators constitute white space.

Comments Comments follows Java rules [6, Chapter 3.7].
All text included within the ASCII characters “/*” and “*/” is
considered a comment and ignored. All text from the ASCII
character “//” to the end of line is considered a comment and
ignored.

Identifiers Identifiers are defined as in Java.

1In this X10 is similar to more modern languages such as ZPL [3].
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Keywords X10 reserves the following keywords from
Java:

abstract break case catch
class const continue default
do else extends final
finally for goto if
implements import instanceof interface
native new package private
protected public return static
super switch this throw
throws try void while

(Note that the primitive types are no longer considered key-
words.)
X10 introduces the following keywords:

activitylocal async ateach atomic
await clocked current foreach
finish future here next
nullable or placelocal reference
value when

Literals X10 v0.4 defines literal syntax in the same way as
Java does.

Separators X10 has the following separators:
( ) { } [ ] ; , .

Operators X10 has the following operators:
=> < ! ˜ ? : == <=
>= != && || ++ -- + -

* / & | ˆ % << >>
>>> += -= *= /= &= |= ˆ=
%= <<= >>= >>> = ->

3. Types
X10 is a strongly typed object language: every variable and ex-
pression has a type that is known at compile-time. Further, X10
has a unified type system: all data items created at runtime are
objects (§ 3.6. Types limit the values that variables can hold,
and specify the places at which these values lie.

X10 supports two kinds of objects, reference objects and value
objects. Reference objects are instances of reference classes
(§ 9.1). They may contain mutable fields and must stay resi-
dent in the place in which they were created. Value objects are
instances of value classes (§ 9.2). They are immutable and may
be freely copied from place to place. Either reference or value
objects may be scalar (instances of a non-array class) or aggre-
gate (instances of arrays).

An X10 type is either a reference type or a value type. Each type
consists of a data type, which is a set of values, and a place type
which specifies the place at which the value resides. Types are
constructed through the application of type constructors (§ 3.1).

Types are used in variable declarations, casts, object creation,
array creation, class literals and instanceof expressions.1

A variable is a storage location (§ 3.5). All variables are initial-
ized with a value and cannot be observed without a value.

Variables whose value may not be changed after initialization
are called final variables (or sometimes constants). The pro-
grammer indicates that a variable is final by using the annota-
tion final in the variable declaration. Final variables play an
important role in X10, as we shall discuss below. For this rea-
son, X10 enforces the lexical restriction that all variables whose
name starts with an upper case letter are implicitly declare fi-
nal. (It is not an error to also explicitly declare such variables as
final.)

3.1. Type constructors

An X10 type is a pair specifying a datatype and a placetype.
Semantically, a datatype specifies a set of values and a placetype
specifies the set of places at which these values may live. Thus
taken together, a type specifies both the kind of value permitted
and its location.

509 Type ::= DataType PlaceTypeSpecifieropt
510 | nullable Type
511 | future < Type >
512 DataType ::= PrimitiveType
513 DataType ::= ClassOrInterfaceType
514 | ArrayType

For simplicity, this version of X10 does not permit the specifi-
cation of generic classes or interfaces. This is expected to be
remedied in future versions of the language.

Every class and interface definition in X10 defines a type with
the same name. Additionally, X10 specifies three type construc-
tors: nullable, the future, and array type constructors.
We discuss these constructors and place types in detail in the
secions that follow; here we briefly discss interface and class
declarations.

Interface declarations. An interface declaration specifies a
name, a list of extended interfaces, and constants (public
static final fields) and method signatures associated with
the interface. Each interface declaration introduces a type with
the same name as the declaration. Semantically, the data type
is the set of all objects which are instances of (value or refer-
ence) classes that implement the interface. A class implements
an interface if it says it does and if it implements all the methods
defined in the interface.

The interface declaration (§ 8) takes as argument one or more
interfaces (the extended interfaces), one or more type parameters

1In order to allow this version of the language to focus on the core new ideas,
X10 v0.4 does not have user-definable classloaders, though there is no technical
reason why they could not have been added.
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and the definition of constants and method signatures and the
name of the defined interface. Each such declaration introduces
a data type.

426 DataType ::= ClassOrInterfaceType
433 ClassOrInterfaceType ::= TypeName
13 ClassType ::= TypeName
15 TypeName ::= identifier
16 | TypeName . identifier

Reference class declarations. The reference class declara-
tion (§ 9.1) takes as argument a reference class (the extended
class), one or more interfaces (the implemented interfaces), the
definition of fields, methods and inner types, and returns a class
of the named type (§ 9.1). Each such declaration introduces a
data type. Semantically, the data type is the set of all objects
which are instances of (subclasses of) the class.

Value class declarations. The value class declaration (§ 9.2)
is similar to the reference class declaration except that it must
extend either a value class or a reference class that has no muta-
ble fields. It may be used to construct a value type in the same
way as a reference class declaration can be used to construct a
reference type.

3.2. The Nullable Type Constructor

X10 supports the prefix type constructor, nullable. For any
type T, the type nullable T contains all the values of type
T, and a special null value, unless T already contains null.
This value is designated by the literal null, which is special in
that it has the type nullable T for all types T.

The visibility of the type nullable T is the same as the vis-
ibility of T. The members of the type nullable T are the
same as those of type T. Note that because of this nullable
may not be regarded as a generic class; rather it is a special type
constructor.

This type constructor can be used in any type expression used to
declare variables (e.g. local variables, method parameters, class
fields, iterator parameters, try/catch parameters etc). It may be
applied to value types, reference types or aggregate types. It
may not be used in an extends clause or an implements
clause in a class or interface declaration. It may not be used in
a new expression – a new expression is used to construct

If T is a value (respectively, reference) type, then nullable
T is defined to be a value (respectively, reference) type.

An immediate consequence of the definition of nullable is
that for any type T, the type nullable nullable T is
equal to the type nullable T.

Any attempt to access a field or invoke a method on the value
null results in a NullPointerException.

An expression e of type nullable Tmay be checked for nul-
lity using the expression e==null. (It is a compile time error
for the static type of e to not be nullable T, for some T.)

Conversions null can be passed as an argument to a
method call whose corresponding formal parameter is of type
nullable T for some type T. (This is a widening reference
conversion, per [6, Sec 5.1.4].) Similarly it may be returned
from a method call of return type nullable T for some type
T.

For any value v of type T, the class cast expression
(nullable T) v succeeds and specifies a value of type
nullable T. This value may be seen as the “boxed” version
of v.

X10 permits the widening reference conversion from any type
T to the type nullable T1 if T can be widened to the type
T1. Thus, the type T is a subtype of the type nullable T.

Correspondingly, a value e of type nullable T can be cast
to the type T, resulting in a NullPointerException if e
is null and nullable T is not equal to T, and in the corre-
sponding value of type T otherwise. If T is a value type this may
be seen as the “unboxing” operator.

The expression (T) null throws a
ClassCastException if T is not equal to nullable T;
otherwise it returns null at type T. Thus it may be used to
check whether T=nullable T.

Arrays of nullary type The nullary type constructor may also
be used in (aggregate) instance creation expressions (e.g. new
(nullable T)[R]). In such a case T must designate a class.
Each member of the array is initialized to null, unless an ex-
plicit array initializer is specified.

Implementation notes A value of type nullable T may
be implemented by boxing a value of type T unless the value
is already boxed. The literal null may be represented as the
unique null reference.

Java compatibility Java provides a somewhat different treat-
ment of null. A class definition extends a nullable type to pro-
duce a nullable type, whereas primitive types such as int are
not nullable — the programmer has to explicitly use a boxed
version of int, Integer, to get the effect of nullable
int. Wherever Java uses a variable at reference type S, and
at runtime the variable may carry the value null, the X10
programmer should declare the variable at type nullable S.
However, there are many situations in Java in which a variable
at reference type S can be statically determined to not carry null
as a value. Such variables should be declared at type S in X10
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Design rationale The need for nullable arose because
X10 has value types and reference types, and arguably the abil-
ity to add a null value to a type is orthogonal to whether the
type is a value type or a reference type. This argues for the
notion of nullability as a type constructor.

The key question that remains is whether it should be possi-
ble to define “towers”, that is, define the type constructor in
such a way that nullable nullable T is distinct from
nullable T. Here one would think of nullable as a disjoint
sum type constructor that adds a value null to the interpreta-
tion of its argument type even if it already has that value. Thus
nullable nullable T is distinct from nullable T be-
cause it has one more null value. Explicit injection/projection
functions (of signature T -> nullable T to nullable T
->T) would need to be provided.

The designers of X10 felt that while such a definition might
be mathematically tenable, and programmatically interesting, it
was likely to be too confusing for programmers. More impor-
tantly, it would be a deviation from current practice that is not
forced by the core focus of X10 (concurrency and distribution).
Hence the decision to collapse the tower. As discussed below,
this results in no loss of expressiveness because towers can be
obtained through explicit programming.

Examples Consider the following class:

final value Box {
public nullable Object datum;
public Box(nullable Object v) { this.datum = v; }

}

Now one may use a variable x at type nullable Box to dis-
tinguish between the null at type nullable Box and at
type nullable Object. In the first case the value of x will
be null, in the second case the value of x.datum will be
null.

Such a type may be used to define efficient code for memoiza-
tion:

abstract class Memo {
(nullable Box)[] values;
Memo(int n) {
// initialized to all nulls
values = new (nullable Box)[n];

}
nullable Object compute(int key);
nullable Object lookup(int key) {
if (values[key] != null)
return values[key].datum;

V val = compute(key);
values[key] = new Box(val);
return val;
}

}

3.3. Future type constructor

For any type t, future<t> is a type:

424 Type ::= future < Type >

The type represents a value which when forced will return a
value of type t. Thus the type makes available the following
methods:

public Type force()

3.4. Array Type Constructors

X10 v0.4 does not have array class declarations (§ 10). This
means that user cannot define new array class types. Instead ar-
rays are created as instances of array types constructed through
the application of array type constructors (§ 10).

The array type constructor takes as argument a type (the base
type), an optional distribution (§ 10.2), and optionally either the
keyword reference or value (the default is reference):

18 ArrayType ::= Type [ ]
438 ArrayType ::= X10ArrayType
439 X10ArrayType ::= Type [ . ]
440 | Type reference [ . ]
441 | Type value [ . ]
442 | Type [ DepParameterExpr ]
443 | Type reference [ DepParameterExpr ]
444 | Type value [ DepParameterExpr ]

The array type Type[ ] is the type of all arrays of base type
Type defined over the distribution 0:N -> here for some
positive integer N.

The qualifier value (reference) specifies that the array is
a value(reference) array. The array elements of a value
array are all final.2If the qualifier is not specified, the array is
a reference array.

The array type Type reference [.] is the type of all (ref-
erence) arrays of basetype Type. Such an array can take on any
distribution, over any region. Similarly, Type value [.] is
the type of all value arrays of basetype Type.

X10 v0.4 also allows a distribution to be specified between
[ and ]. The distribution must be an expression of type
distribution (e.g. a final variable) whose value does
not depend on the value of any mutable variable.

Future extensions to X10 will support a more general syntax
for arrays which allows for the specification of dependent types,
e.g. double[:rank 3], the type of all arrays of double of
rank 3.

2Note that the base type of a value array can be a value class or a reference
class, just as the type of a final variable can be a value class or a reference
class.
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3.5. Variables

A variable of a reference data type reference R where R is
the name of an interface (possibly with type arguments) always
holds a reference to an instance of a class implementing the in-
terface R.

A variable of a reference data type R where R is the name of
a reference class (possibly with type arguments) always holds a
reference to an instance of the class R or a class that is a subclass
of R.

A variable of a reference array data type R [D] is always an ar-
ray which has as many variables as the size of the region under-
lying the distribution D. These variables are distributed across
places as specified by D and have the type R.

A variable of a nullary (reference or value) data type
nullable T always holds either the value (named by) null
or a value of type T (these cases are not mutually exclusive).

A variable of a value data type value R where R is the name
of an interface (possibly with type arguments) always holds ei-
ther a reference to an instance of a class implementing R or an
instance of a class implementing R. No program can distinguish
between the two cases.

A variable of a value data type R where R is the name of a value
class always holds a reference to an instance of R (or a class that
is a subclass of R) or an instance of R (or a class that is a subclass
of R). No program can distinguish between the two cases.

A variable of a value array data type V value [R] is always
an array which has as many variables as the size of the region R.
Each of these variables is immutable and has the type V.

X10 supports seven kinds of variables: final class variables (sta-
tic variables), instance variables (the instance fields of a class),
array components, method parameters, constructor parameters,
exception-handler parameters and local variables.

3.5.1. Final variables

A final variable satisfies two conditions:

• it can be assigned to at most once,

• it must be assigned to before use.

X10 follows Java language rules in this respect [6,
§4.5.4,8.3.1.2,16]. Briefly, the compiler must undertake a spe-
cific analysis to statically guarantee the two properties above.

3.5.2. Initial values of variables

Every variable declared at a type must always contain a value of
that type.

Every class variable must be initialized before it is read, through
the execution of an explicit initializer or a static block. Every

instance variable must be initialized before it is read, through
the execution of an explicit initializer or a constructor. An in-
stance variable declared at a nullable type (and not declared to
be final) is assumed to have an initializer which sets the value
to null.

Each method and constructor parameter is initialized to the
corresponding argument value provided by the invoker of the
method. An exception-handling parameter is initialized to the
object thrown by the exception. A local variable must be explic-
itly given a value by initialization or assignment, in a way that
the compiler can verify using the rules for definite assignment
[6, § 16].

3.6. Objects

An object is an instance of a scalar class or an array type. It is
created by using a class instance creation expression (§ 11.4) or
an array creation (§ 10.3) expression, such as an array initializer.
An object that is an instance of a reference (value) type is called
a reference (value) object.

All value and reference classes subclass from
x10.lang.Object. This class has one const field
location of type x10.lang.place. Thus all objects
in X10 are located (have a place). However, X10 permits
value objects to be freely copied from place to place because
they contain no mutable state. It is permissible for a read of
the location field of such a value to always return here
(§ 5.0.2); therefore no space needs to be allocated in the object
representation for such a field.

In X10 v0.4 a reference object stays resident at the place at
which it was created for its entire lifetime.

X10 has no operation to dispose of a reference. Instead the col-
lection of all objects across all places is globally garbage col-
lected.

X10 objects do not have any synchronization information
(e.g. a lock) associated with them. Thus the methods on
java.lang.Object for waiting/synchronizing/notification
etc are not available in X10. Instead the programmer should
use atomic blocks (§ 6.6) for mutual exclusion and clocks (§ 7)
for sequencing multiple parallel operations.

A reference object may have many references, stored in fields
of objects or components of arrays. A change to an object made
through one reference is visible through another reference. X10
mandates that all accesses to mutable objects shared between
multiple activities must occur in an atomic section (§6.6).

Note that the creation of a remote async activity (§ 6.2) A at P
may cause the automatic creation of references to remote objects
at P. (A reference to a remote object is called a remote object
reference, to a local object a local object reference.) For instance
A may be created with a reference to an object at P held in a
variable referenced by the statement in A. Similarly the return
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of a value by a future may cause the automatic creation of
a remote object reference, incurring some communication cost.
An X10 implementation should try to ensure that the creation of
a second or subsequent reference to the same remote object at a
given place does not incur any (additional) communication cost.

A reference to an object may carry with it the values of final
fields of the object. The implementation should try to ensure
that the cost of communicating the values of final fields of an
object from the place where it is hosted to any other place is not
incurred more than once for each target place.

X10 does not have an operation (such as Pascal’s “dereference”
operation) which returns an object given a reference to the ob-
ject. Rather, most operations on object references are transpar-
ently performed on the bound object, as indicated below. The
operations on objects and object references include:

• Field access (§ 11.4). An activity holding a reference to
a reference object may perform this operation only if the
object is local. An activity holding a reference to a value
object may perform this operation regardless of the loca-
tion of the object (since value objects can be copied freely
from place to place). The implementation should try to en-
sure that the cost of copying the field from the place where
the object was created to the referencing place will be in-
curred at most once per referencing place, according to the
rule for final fields discussed above.

• Method invocation (§ 11.4). An activity holding a refer-
ence to a reference object may perform this operation only
if the object is local. An activity holding a reference to a
value object may perform this operation regardless of the
location of the object (since value objects can be copied
freely). The X10 implementation must attempt to ensure
that the cost of copying enough relevant state of the value
object to enable this method invocation to succeed is in-
curred at most once for each value object per place.

• Casting (§ 11.4.1). An activity can perform this operation
on local or remote objects, and should not incur commu-
nication costs (to bring over type information) more than
once per place.

• instanceof operator (§ 11.4.2). An activity can per-
form this operation on local or remote objects, and should
not incur communication costs (to bring over type informa-
tion) more than once per place.

• The stable equality operator == and != (§ 11.4.3). An ac-
tivity can perform these operations on local or remote ob-
jects, and should not incur communication costs (to bring
over relevant information) more than once per place.

3.7. Built-in types

The package x10.lang provides a number of built-in class
and interface declarations that can be used to construct types.

3.7.1. The class Object

The class x10.lang.Object is a superclass of all other
classes. A variable of this type can hold a reference to an in-
stance of any scalar or array type.

package x10.lang;
public class Object {
public String toString() {...}
public boolean equals(Object o) {...}
public int hashCode() {...}

}

The method equals and hashCode are useful in hashtables,
and are defined as in Java. The default implementation of
equals is stable equality, § 11.4.3. This method may be over-
ridden in a (value or reference) subclass.

3.7.2. The class String

X10 supports strings as in Java. A string object is immutable,
and has a concatenation operator (+) available on it.

3.7.3. Arithmetic classes

Several value types are provided that encapsulate abstractions
(such as fixed point and floating point arithmetic) commonly
implemented in hardware by modern computers:

boolean byte short char
int long
double float

X10 v0.4 defines these data types in the same way as the Java
language. Specifically, a program may contain literals that stand
for specific instances of these classes. The syntax for literals is
the same as for Java (§ refLiterals).

Future Extensions. X10 may provide mechansims in the fu-
ture to permit the programmer to specify how a specific value
class is to be mapped to special hardware operations (e.g. along
the lines of [1]). Similarly, mechanisms may be provided to per-
mit the user to specify new syntax for literals.

3.7.4. Places, distributions, regions, clocks

X10 defines several other classes in the x10.lang package.
Please consult the API documentation for more details.

3.7.5. Java utility classes

X10 v0.4 programmers may import and use Java pack-
ages such as java.util, e.g. java.util.Set,
java.lang.System. X10 programs should not invoke
methods that use the wait/notify/notifyAll methods
on such objects, since this may interfere with X10 synchroniza-
tion. The implementation does not make imported Java classes
automatically extend x10.lang.Object.
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Future Extensions. The above represents an ad hoc integra-
tion of Java libraries into X10. It has the unfortunate conse-
quence that not every run-time value in an X10 program execu-
tion is an instance of a subclass of x10.lang.Object.

In the future a more principled and robust scheme will be
worked out. Such a scheme will need to attend to the integra-
tion of the Java and X10 type systems, and develop a notion of
place for Java objects.

3.8. Conversions and Promotions

X10 v0.4 supports Java’s conversions and promotions (iden-
tity, widening, narrowing, value set, assignment, method invo-
cation, string, casting conversions and numeric promotions) ap-
propriately modified to support X10’s built-in numeric classes
rather than Java’s primitive numeric types.

This decision may be revisited in future version of the language
in favor of a streamlined proposal for allowing user-defined
specification of conversions and promotions for value types, as
part of the syntax for user-defined operators.

4. Names and packages
X10 supports Java’s mechanisms for names and packages
[6, §6,§7], including public, protected, private and
package-specific access control.

X10 supports the following naming conventions. Names of
value classes should start with a lower-case leter, and those
of reference classes with an upper-case letter. X10 also sup-
ports the convention that fields, local variable names and method
parameter names that start with an uppercase letter are automat-
ically considered to be annotated with final.

5. Places
An X10 place is a repository for data and activities. Each place
is to be thought of as a locality boundary: the activities running
in a place may access data items located at that place with the
efficiency of on-chip access. Accesses to remote places may
take orders of magnitude longer.

X10 provides a built-in value class, x10.lang.place; all
places are instances of this class. This class is final in X10
v0.4; future versions of the language may permit user-definable
places.

In X10 v0.4, the set of places available to a computation is de-
termined at the time that the program is run and remains fixed
through the run of the program. The number of places available
may be determined by reading (place.MAX PLACES). (This
number is specified from the command line/configuration infor-
mation; see associated README documentation.)

All scalar objects created during program execution are located
in one place, though they may be referenced from other places.

Aggregate objects (arrays) may be distributed across multiple
places using distributions.

The set of all places in a running instance of an X10 program
may be obtained through the const field place.places.
(This set may be used to define distributions, for instance,
§ 10.2.)

The set of all places is totally ordered. The first place may be
obtained by reading place.FIRST PLACE. The initial activ-
ity for an X10 computation starts in this place (§ 6.4). For any
place, the operationnext() returns the next place in the to-
tal order (wrapping around at the end). Further details on the
methods and fields available on this class may be obtained by
consulting the API documentation.

Static semantics. Variables of type placemust be initialized
and are implicitly final.

5.0.1. Place expressions

Any expression of type place is called a place expression. Ex-
amples of place expressions are this.location (the place
at which the current object lives), place.FIRST PLACE (the
first place in the system in canonical order).

Place expressions are used in the following contexts:

• As a target for an async activity or a future (§ 6.2).

• In a class cast expression (§ 11.4.1).

• In an instanceof expression (§ 11.4.2).

• In stable equality comparisons, at type place.

Like values of any other type, places may be passed as argu-
ments to methods, returned from methods, stored in fields etc.

5.0.2. here

X10 supports a special indexical constant1 here:

22 ExpressionName ::= here

The constant evaluates to the place at which the current activity
is running. Unlike other place expressions, this constant cannot
be used as the placetype of fields, since the type of a field should
be independent of the activity accessing it.

1An indexical constant is one whose value depends on its context of use.
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Example. The code:
public class F {

public void m( F a ) {
place OldHere = here;
async ( a ) {
System.out.println("OldHere == here:"

+ (OldHere == here));
}

}
public static void main(String[] s) {

new F().m(future( place.FIRST PLACE.next())
{ new F()}.force());

}
}

will print out true iff the computation was configured to start
with the number of places set to 1.

6. Activities
An X10 computation may have many concurrent activities “in
flight” at any give time. We use the term activity to denote a
dynamic execution instance of a piece of code (with references
to data). An activity is intended to execute in parallel with other
activities. An activity may be thought of as a very light-weight
thread. In X10 v0.4, an activity may not be interrupted, sus-
pended or resumed as the result of actions taken by any other
activity.

An activity is spawned in a given place and stays in that place
for its lifetime. An activity may be running, blocked on some
condition or terminated. When the statement associated with an
activity terminates normally, the activity terminates normally;
when it terminates abruptly with some reason R, the activity
terminates with the same reason (§ 6.1).

An activity may be long-running and may invoke recursive
methods (thus may have a stack associated with it). On the other
hand, an activity may be short-running, involving a fine-grained
operation such as a single read or write.

An activity may have an activitylocal heap accessible only to
the activity.

An activity may asynchronously and in parallel launch activities
at other places.

X10 distinguishes between local termination and global termi-
nation of a statement. The execution of a statement by an ac-
tivity is said to terminate locally when the activity has finished
all its computation related to that statement. (For instance the
creation of an asynchronous activity terminates locally when the
activity has been created.) It is said to terminate globally when it
has terminated locally and all activities that it may have spawned
at any place (if any) have, recursively, terminated globally.

An X10 computation is initiated as a single activity from the
command line. This activity is the root activity for the entire
computation. The entire computation terminates when (and only
when) this activity globally terminates. Thus X10 does not per-
mit the creation of so called “daemon threads” – threads that

outlive the lifetime of the root activity. We say that an X10
computation is rooted (§ 6.4).

Future Extensions. We may permit the initial activity to be a
daemon activity to permit reactive computations, such as web-
servers, that may not terminate.

6.1. The X10 rooted exception model

The rooted nature of X10 computations permits the definition
of a rooted exception model. In multi-threaded programming
languages there is a natural parent-child relationship between a
thread and a thread that it spawns. Typically the parent thread
continues execution in parallel with the child thread. Therefore
the parent thread cannot serve to catch any exceptions thrown
by the child thread.

The presence of a root activity permits X10 to adopt a differ-
ent model. In any state of the computation, say that an activity
A is a root of an activity B if A is an ancestor of B and A is
suspended at a statement (such as the finish statement § 6.3)
awaiting the termination of B (and possibly other activities).
For every X10 computation, the root-of relation is guaran-
teed to be a tree. The root of the tree is the root activity of the
entire computation. If A is the nearest root of B, the path from
A to B is called the activation path for the activity.1

We may now state the exception model for X10. An un-
caught exception propagates up the activation path to its near-
est root activity, where it may be handled locally or propagated
up the root-of tree when the activity terminates (based on
the semantics of the statement being executed by the activity).2

Thus, unlike concurrent languages such as Java no exception is
“thrown on the floor”.

6.2. Spawning an activity

Asynchronous activities serve as a single abstraction for sup-
porting a wide range of concurrency constructs such as message
passing, threads, DMA, streaming, data prefetching. (In gen-
eral, asynchronous operations are better suited for supporting
scalability than synchronous operations.)
An activity is created by executing the statement:

463 Statement ::= AsyncStatement
473 StatementNoShortIf ::= AsyncStatementNoShortIf
481 AsyncStatement ::=

async PlaceExpressionSingleListopt Statement
491 AsyncStatementNoShortIf ::=

async PlaceExpressionSingleListopt
StatementNoShortIf

1Note that depending on the state of the computation the activation path may
traverse activities that are running, suspended or terminated.

2In X10 v0.4 the finish statement is the only statement that marks its
activity as a root activity. Future versions of the language may introduce more
such statements.
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524 PlaceExpressionSingleListopt ::=
525 | PlaceExpressionSingleList
499 PlaceExpressionSingleList ::=

( PlaceExpression )
500 PlaceExpression ::= Expression

The place expression e is expected to be of type place, e.g.
here or place.FIRST PLACE or d[p] for some distribu-
tion d and point p (§ 5). If not, the compiler replaces e with
e.location. (Recall that every expression in X10 has a type;
this type is a subtype of the root class x10.lang.Object.
This class has a field location of type place recording the
place at which the value resides. See the documentation for
x10.lang.Object.)

Note specifically that the expression a[i] when used as a
place expression will evaluate to a[i].location, which
may not be the same place as a.distribution[i]. The
programmer must be careful to choose the right expression,
appropriate for the statement. Accesses to a[i] within
Statement should typically be guarded by the place expres-
sion a.distribution[i].

In many cases the compiler may infer the unique place at which
the statement is to be executed by an analysis of the types of the
variables occuring in the statement. (The place must be such
that the statement can be executed safetly, without generating a
BadPlaceException.) In such cases the programmer may
omit the place designator; the compiler will throw an error if it
cannot determine the unique designated place.3

An activity A executes the statement async (P) S by
launching a new activity B at the designated place, to exe-
cute the specified statement. The statement terminates locally
as soon as B is launched. The activation path for B is that of
A, augmented with information about the line number at which
B was spawned. B terminates normally when S terminates nor-
mally. It terminates abruptly if S throws an (uncaught) excep-
tion. The exception is propagated to A if A is a root activity
(see § 6.3), otherwise through A to A’s root activity. Note that
while an activity is running, exceptions thrown by activities it
has already generated may propagate through it up to its root
activity.

Multiple activities launched by a single activity at another place
are not ordered in any way. They are added to the pool of ac-
tivities at the target place and will be executed in sequence or
in parallel based on the local scheduler’s decisions. If the pro-
grammer wishes to sequence their execution s/he must use X10
constructs, such as clocks and finish to obtain the desired
effect. Further, the X10 implementations are not required to
have fair schedulers, though every implementation should make
a best faith effort to ensure that every activity eventually gets a
chance to make forward progress.

3X10 v0.4 does not specify a particular algorithm; this will be fixed in future
versions.

Static semantics. The statement in the body of an async is
subject to the restriction that it must be acceptable as the body
of a void method for an anoymous inner class declared at that
point in the code, which throws no checked exceptions. As such,
it may reference variables in lexically enclosing scopes (includ-
ing clock variables, § 7) provided that such variables are (im-
plicitly or explicitly) final.

6.3. Finish

The statement finish S converts global termination to local
termination and introduces a root activity.

468 Statement ::= FinishStatement
478 StatementNoShortif ::=

FinishStatementNoShortIf
488 FinishStatement ::= finish Statement
498 FinishStatementNoShortIf ::=

finish StatementNoShortIf

An activity A executes finish s by executing s. The exe-
cution of s may spawn other asynchronous activities (here or
at other places). Uncaught exceptions thrown or propagated
by any activity spawned by s are accumulated at finish s.
finish s terminates locally when all activities spawned by s
terminate globally (either abruptly or normally). If s terminates
normally, then finish s terminates normally and A contin-
ues execution with the next statement after finish s. If s
terminates abruptly, then finish s terminates abruptly and
throws a single exception formed from the collection of excep-
tions accumulated at finish s.

Thus a finish s statement serves as a collection point for
uncaught exceptions generated during the execution of s.

Note that repeatedly finishing a statement has no effect af-
ter the first finish: finish finish s is indistinguish-
able from finish s.

Interaction with clocks. finish s interacts with clocks
(§ 7).

While executing s, an activity must not spawn any clocked
asyncs. (Asyncs spawned during the execution of s may spawn
clocked asyncs.) A ClockUseException is thrown if (and
when) this condition is violated.

In X10 v0.4 this condition is checked dynamically; future ver-
sions of the language will introduce type qualifiers which permit
this condition to be checked statically.

Future Extensions. The semantics of finish S is conjunc-
tive; it terminates when all the activities created during the ex-
ecution of S (recursively) terminate. In many situations (e.g.
nondeterministic search) it is natural to require a statement to
terminate when any one of the activities it has spawned suc-
ceeds. The other activities may then be safely aborted. Future
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versions of the language may introduce a finishone S con-
struct to support such speculative or nondeterministic computa-
tion.

6.4. Initial activity

An X10 computation is initiated from the command line
on the presentation of a classname C. The class must have
a public static void main(String[] a) method,
otherwise an exception is thrown and the computation termi-
nates. The single statement

finish async (place.FIRST PLACE) {
C.main(s);

}

is executed where s is an array of strings created from command
line arguments. This single activity is the root activity for the
entire computation. (See § 5 for a discussion of placs.)

6.5. Asynchronous Expression and Futures

X10 provides syntactic support for asynchronous expressions,
also known as futures:

511 Primary ::= FutureExpression
515 FutureExpression ::=

future PlaceExpressionSingleListopt
Expression

Intuitively such an expression evaluates its body asynchronously
at the given place. The resulting value may be obtained from the
future returned by this expression, by using the force opera-
tion.

In more detail, in an expression future(Q)e, the place ex-
pression Q is treated as in an async statement. e is an expres-
sion of some type T. e may reference only those variables in the
enclosing lexical environment which are declared to be final.
If the type of e is T then the type of future (Q)e is
future<T>. This type future<T> is defined as if by:

public interface future<T> {
T force();
boolean forced();

}

(Here we use the syntax for generic classes. X10 v0.4 does not
support generic classes in their full generality. In particular, the
user may not define generic classes. This is reserved for future
extensions to the language.)

Evaluation of future (Q)e terminates locally with the cre-
ation of a value f of type future<T>. This value may be
stored in objects, passed as arguments to methods, returned from
method invocation etc.

At any point, the method forced may be invoked on f. This
method returns without blocking, with the value true if the

asynchronous evaluation of e has terminated globally and with
the value false if it has not.

The method invocation force on f blocks until the asynchro-
nous evaluation of e has terminated globally. If the evaluation
terminates successfully with value v, then the method invoca-
tion returns v. If the evaluation terminates abruptly with excep-
tion z, then the method throws exception z. Multiple invoca-
tions of force (by this or any other activity) do not result in
multiple evaluations of e. The results of the first evaluation are
stored in the future f and used to respond to all force queries.

future<T> promise
= future (a.distribution[3]) { a[3] };

T value = promise.force();

6.5.1. Implementation notes

Futures are provided in X10 for convenience; they may be pro-
grammed using latches, async and finish as described in
§ 6.6.3.

6.6. Atomic blocks

Languages such as Java use low-level synchronization locks to
allow multiple interacting threads to coordinate the mutation of
shared data. X10 eschews locks in favor of a very simple high-
level construct, the atomic block.

A programmer may use atomic blocks to guarantee that invari-
ants of shared data-structures are maintained even as they are
being accessed simultaneously by multiple activities running in
the same place.

6.6.1. Unconditional atomic blocks

The simplest form of an atomic block is the unconditional
atomic block:

461 Statement ::= AtomicStatement
474 StatementNoShortIf ::=

AtomicStatementNoShortIf
482 AtomicStatement ::= atomic Statement
492 AtomicStatementNoShortIf ::=

atomic StatementNoShortIf
445 MethodModifier ::= atomic

For the sake of efficient implementation X10 v0.4 requires that
the atomic block be analyzable, that is, the set of locations that
are read and written by the BlockStatement are bounded
and determined statically.4 The exact algorithm to be used by
the compiler to perform this analysis will be specified in future
versions of the language.

4A static bound is a constant that depends only on the program text, and is
independent of any runtime parameters.
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Such a statement is executed by an activity as if in a single step
during which all other concurrent activities in the same place
are suspended. If execution of the statement may throw an ex-
ception, it is the programmer’s responsibility to wrap the atomic
block within a try/finally clause and include undo code in
the finally clause. Thus the atomic statement only guarantees
atomicity on successful execution, not on a faulty execution.

We allow methods of an object to be annotated with atomic.
Such a method is taken to stand for a method whose body is
wrapped within an atomic statement.

Atomic blocks are closely related to non-blocking synchroniza-
tion constructs [7], and can be used to implement non-blocking
concurrent algorithms.

Static semantics and dynamic checks. In atomic s, s
may include method calls, conditionals etc. It may not include
an async activity. It may not include any statement that may
potentially block at runtime (e.g. when, force operations,
next operations on clocks, finish).

Limitation: Not checked in the current implementation.

All locations accessed in an atomic block must reside here
(§ 5.0.2). A BadPlaceException is thrown if (and when)
this condition is violated.

Consequences. Note an important property of an (uncondi-
tonal) atomic block:

atomic {s1 atomic s2} = atomic {s1 s2} (6.1)

Further, an atomic block will eventually terminate successfully
or thrown an exception; it may not introduce a deadlock.

Example

The following class method implements a (generic) compare
and swap (CAS) operation:

// target defined in lexically enclosing environment.
public atomic boolean CAS( Object old,

Object new) {
if (target.equals(old)) {
target = new;
return true;

}
return false;

}

6.6.2. Conditional atomic blocks

Conditional atomic blocks are of the form:

465 Statement ::= WhenStatement
475 StatementNoShortIf ::= WhenStatementNoShortIf
483 WhenStatement ::=

when ( Expression ) Statement
484 | WhenStatement

or ( Expression ) Statement

In such a statement the one or more expressions are called
guards and must be boolean expressions. The statements are
the corresponding guarded statements. The first pair of expres-
sion and statement is called the main clause and the additional
pairs are called auxiliary clauses. A statement must have a main
clause and may have no auxiliary clauses.

An activity executing such a statement suspends until such time
as any one of the guards is true in the current state. In that
state, the statement corresponding to the first guard that is true
is executed. The checking of the guards and the execution of the
corresponding guarded statement is done atomically.

X10 does not guarantee that a conditional atomic block will
execute if its condition holds only intermmitently. For, based
on the vagaries of the scheduler, the precise instant at which
a condition holds may be missed. Therefore the programmer
is advised to ensure that conditions being tested by conditional
atomic blocks are eventually stable, i.e. they will continue to
hold until the block executes (the action in the body of the block
may cause the condition to not hold any more).

Rationale: The guarantee provided by wait/notify in Java is
no stronger. Indeed conditional atomic blocks may be thought of as a
replacement for Java’s wait/notify functionality.

We note two common abbreviations. The statement when
(true) S is behaviorally identical to atomic S: it never
suspends. Second, when (c) {;} may be abbreviated to
await(c); – it simply indicates that the thread must await
the occurrence of a certain condition before proceeding. Fi-
nally note that a when statement with multiple branches is be-
haviorally identical to a when statement with a single branch
that checks the disjunction of the condition of each branch, and
whose body contains an if/then/else checking each of the
branch conditions.

Static semantics. For the sake of efficient implementation
certain restrictions are placed on the guards and statements in
a conditional atomic block.

Guards are required not to have side-effects, not to spawn asyn-
chronous activities and to have a statically determinable upper
bound on their execution. These conditions are expected to be
checked statically by the compiler.

The body of a when statement must satisfy the conditions for
the body of an atomic block.

Note that this implies that guarded statements are required to
be flat, that is, they may not contain conditional atomic blocks.
(The implementation of nested conditional atomic blocks may
require sophisticated operational techniques such as rollbacks.)
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Sample usage. There are many ways to ensure that a guard is
eventually stable. Typically the set of activities are divided into
those that may enable a condition and those that are blocked on
the condition. Then it is sufficient to require that the threads
that may enable a condition do not disable it once it is enabled.
Instead the condition may be disabled in a guarded statement
guarded by the condition. This will ensure forward progress,
given the weak-fairness guarantee.

6.6.3. Examples

Bounded buffer. The following class shows how to imple-
ment a bounded buffer of size 1 in X10 for repeated commu-
nication between a sender and a receiver.

class OneBuffer {
nullable Object datum = null;
boolean filled = false;
public
void send(Object v) {
when ( !filled ) {
this.datum = v;
this.filled = true;

}
}
public
Object receive() {
when ( filled ) {
Object v = datum;
datum = null;
filled = false;
return v;

}
}

}

Implementing a future with a latch. The following class
shows how to implement a latch. A latch is an object that is
initially created in a state called the unlatched state. During its
lifetime it may transition once to a forced state. Once forced,
it stays forced for its lifetime. The latch may be queried to de-
termine if it is forced, and if so, an associated value may be re-
trieved. Below, we will consider a latch set when some activity
invokes a setValue method on it. This method provides two
values, a normal value and an exceptional value. The method
force blocks until the latch is set. If an exceptional value was
specified when the latch was set, that value is thrown on any at-
tempt to read the latch. Otherwise the normal value is returned.

public interface future {
boolean forced();
Object force();

}
public class Latch implements future {
protected boolean forced = false;
protected nullable boxed result = null;
protected nullable exception z = null;

public atomic
boolean setValue( nullable Object val ) {
return setValue( val, null);

}
public atomic
boolean setValue( nullable exception z ) {

return setValue( null, z);
}
public atomic
boolean setValue( nullable Object val,

nullable exception z ) {
if ( forced ) return false;
// these assignment happens only once.
this.result = val;
this.z = z;
this.forced = true;
return true;

}
public atomic boolean forced() {

return forced;
}
public Object force() {

when ( forced ) {
if (z != null) throw z;
return result;

}
}

}

Latches, aync operations and finish operations may be used
to implement futures as follows. The expression future(P)
{e} can be translated to:

new RunnableLatch() {
public Latch run() {

Latch L = new Latch();
async ( P ) {

Object X;
try {

finish X = e;
async ( L ) {

L.setValue( X );
}

} catch ( exception Z ) {
async ( L ) {
L.setValue( Z );

}
}

}
return l;

}
}.run()

Here we assume that RunnableLatch is an interface defined
by:

public interface RunnableLatch {
Latch run();

}

We use the standard Java idiom of wrapping the core transla-
tion inside an inner class definition/method invocation pair (i.e.
new RunnableLatch() .....run()) so as to keep the
resulting expression completely self-contained, while executing
statements inside the evaluation of an expression.

Execution of a future(P) {e} causes a new latch to be cre-
ated, and an async activity spawned at P. The activity at-
tempts to finish the assigned x = e, where x is a local vari-
able. This may cause new activities to be spawned, based on
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e. If the assignment terminates successfully, another activity is
spawned to invoke the setValue method on the latch. Excep-
tions thrown by these activities (if any) are accumulated at the
finish statement and thrown after global termination of all
activities spawned by x=e. The exception will be caught by the
catch clause and stored with the latch.

A future to execute a statement. Consider an expression
onFinish {S}. This should return a boolean latch which
should be forced when S has terminated globally. Unlike
finish S, the evaluation of onFinish {S} should locally
terminate immediately, returning a latch. The latch may be
passed around in method invocations and stored in objects. An
activity may perform force/forced method invocations on
the latch whenever it desires to determine whether S has termi-
nated.

Such an expression can be written as:

new RunnableLatch() {
public Latch run() {

Latch L = new Latch();
async ( here ) {

try {
finish S;
L.setValue( true );

} catch ( exception Z ) {
L.setValue( Z );

}
}
return L;

}
}.run()

6.7. Iteration

We introduce k-dimensional versions of iteration operations
for and foreach:

189 Statement ::= ForStatement
206 StatementNoShortIf ::=

ForStatementNoShortIf
236 ForStatement ::= EnhancedForStatement
239 ForStatementNoShortIf ::=

EnhancedForStatementNoShortIf
466 Statement ::= ForEachStatement
476 StatementNoShortIf ::=

ForEachStatementNoShortIf
487 EnhancedForStatement ::=

for ( FormalParameter : Expression )
Statement

487 EnhancedForStatementNoShortIf ::=
for ( FormalParameter : Expression )

StatementNoShortIf
485 ForEachStatement ::=

foreach ( FormalParameter : Expression )
Statement

495 ForEachStatementNoShortIf ::=
foreach ( FormalParameter : Expression )
StatementNoShortIf

In both statements, the expression is intended to be of type
region. Expressions e of type distribution and array
are also accepted, and treated as if they were e.region. The
compiler throws a type error in all other cases.

The formal parameter must be of type point. Exploded syntax
may be used (§ 11.3). The parameter is considered implicitly
final, as are all the exploded variables.

An activity executes a for statement by enumerating the points
in the region in canonical order. The activity executes the body
of the loop with the formal parameter(s) bound to the given
point. If the body locally terminates successfully, the activity
continues with the next iteration, terminating successfully when
all points have been visited. If an iteration throws an excep-
tion then the for statement throws an exception and terminats
abruptly.

An activity executes a foreach statement in a similar fashion
except that separate async activities are launched in parallel
in the local place for each point in the region. The statement
terminates locally when all the activities have been spawned.
It never throws an exception, though exceptions thrown by the
spawned activities are propagated through to the root activity.

In a similar fashion we introduce the syntax:

467 Statement ::= AtEachStatement
477 StatementNoShortIf ::=

AtEachStatementNoShortIf
486 AtEachStatement ::=

ateach ( FormalParameter : Expression )
Statement

496 AtEachStatementNoShortIf ::=
ateach ( FormalParameter : Expression )

StatementNoShortIf

Here the expression is intended to be of type distribution.
Expressions e of type array are also accepted, and treated as
if they were e.distribution. The compiler throws a type
error in all other cases. This statement differs from foreach
only in that each activity is spawned at the place specified
by the distribution for the point. That is, ateach( point
p[i1,...,ik]: A) S may be thought of as standing
for:

foreach (point p[i1,...,ik] : A)
async (A.distribution[p]) {S}

7. Clocks
The standard library for X10, x10.lang defines a final
value class, clock intended for repeated quiescence de-
tection of arbitrary, data-dependent collection of activities.
Clocks are a generalization of barriers. They permit dynam-
ically created activities to register and deregister. An activity
may be registered with multiple clocks at the same time. In
particular, nested clocks are permitted: an activity may create a
nested clock and within one phase of the outer clock schedule
activities to run to completion on the nested clock. Neverthless
the design of clocks ensures that deadlock cannot be introduced
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by using clock operations, and that clock operations do not in-
troduce any races.

This chapter describes the syntax and semantics of clocks and
statements in the language that have parameters of type clock.

The key invariants associated with clocks are as follows. At any
stage of the computation, a clock has zero or more registered
activities. An activity may perform operations only on those
clocks it is registered with (these clocks constitute its clock set).
An activity is registered with one or more clocks when it is cre-
ated. During its lifetime the only additional clocks it is regis-
tered with are exactly those that it creates. In particular it is not
possible for an activity to register itself with a clock it discovers
by reading a data-structure.

An activity may perform the following operations on a clock
c. It may unregister with c by executing c.drop();. After
this, it may perform no further actions on c for its lifetime. It
may check to see if it is unregistered on a clock. It may reg-
ister a newly forked activity with c. It may resume the clock
by executing c.resume();. This indicates to c that it has
finished posting all statements it wishes to perform in the cur-
rent phase. Finally, it may block (by executing next;) on all
the clocks that it is registered with. (This operation implicitly
resume’s all clocks for the activity.) It will resume from this
statement only when all these clocks are ready to advance to the
next phase.

A clock becomes ready to advance to the next phase when
every activity registered with the clock has executed at least one
resume operation on that clock and all statements posted for
completion in the current phase have been completed.

Though clocks introduce a blocking statement (next) an im-
portant property of X10 is that clocks cannot introduce dead-
locks. That is, the system cannot reach a quiescent state (in
which no activity is progressing) from which it is unable to
progress. For, before blocking each activity resumes all clocks
it is registered with. Thus if a configuration were to be stuck
(that is, no activity can progress) all clocks will have been re-
sumed. But this implies that all activities blocked on next may
continue and the configuration is not stuck. The only other pos-
sibility is that an activity may be stuck on finish. But the
interaction rule between finish and clocks (§ 6.3) guarantees
that this cannot cause a cycle in the wait-for graph. A more
rigorous proof may be found in [9].

7.1. Clock operations

The special statements introduced for clock operations are listed
below.

462 Statement ::= ClockedStatement
472 StatementNoShortIf ::=

ClockedStatementNoShortIf
480 ClockedStatement ::=

clocked ( ClockList ) Statement
490 ClockedStatementNoShortIf ::=

clocked ( ClockList )

StatementNoShortIf
501 NextStatement ::= next ;

Note that x10.lang.clock provides several useful methods
on clocks (e.g. drop).

7.1.1. Creating new clocks

Clocks are created using the nullary constructor for
x10.lang.clock via a factory method:

clock timeSynchronizer = clock.factory.clock();

All clocked variables are implicitly final. The initializer for
a local variable declaration of type clock must be a new
clock expression. Thus X10 does not permit aliasing of clocks.
Clocks are created in the place global heap and hence outlive
the lifetime of the creating activity. Clocks are instances of
value classes, hence may be freely copied from place to place.
(Clock instances typically contain references to mutable state
that maintains the current state of the clock.)

The current activity is automatically registered with the newly
created clock. It may deregister using the drop method on
clocks (see the documentation of x10.lang.clock). All ac-
tivities are automatically deregistered from all clocks they are
registered with on termination (normal or abrupt).

7.1.2. Registering new activities on clocks

The programmer may specify which clocks a new activity is to
be registered with using the clocked clause.

An activity may transmit only those clocks that is reg-
istered with and has not quiesced on (§ 7.1.3). A
ClockUseException is thrown if (and when) this condition
is violated.

An activity may check that it is registered on a clock c by exe-
cuting:

c.registered()

This call returns the boolean value true iff the activity is
registered on c; otherwise it returns false.

Note. X10 does not contain a “register” statement that would
allow an activity to discover a clock in a datastructure and reg-
ister itself on it. Therefore, while clocks may be stored in a
datastructure by one activity and read from that by another, the
new activity cannot “use” the clock unless it is already regis-
tered with it.
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7.1.3. Resuming clocks

X10 permits split phase clocks. An activity may wish to indi-
cate that it has completed whatever work it wishes to perform
in the current phase of a clock c it is registered with, without
suspending all activity. It may do so by executing the method
invocation:

c.resume();

An activity may invoke this method only on a clock it
is registered with, and has not yet dropped (§ 7.1.5). A
ClockUseException is thrown if (and when) this condition
is violated. Nothing happens if the activity has already invoked
a resume on this clock in the current phase. Otherwise execu-
tion of this statement indicates that the activity will not transmit
c to an async (through a clocked clause), until it terminates,
drops c or executes a next.

7.1.4. Advancing clocks

An activity may execute the statement

next;

Execution of this statement blocks until all the clocks that the
activity is registered with (if any) have advanced. (The activity
implicitly issues a resume on all clocks it is registered with
before suspending.)

An X10 computation is said to be quiescent on a clock c if
each activity registered with c has resumed c. Note that once
a computation is quiescent on c, it will remain quiescent on c
forever (unless the system takes some action), since no other
activity can become registered with c. That is, quiescence on a
clock is a stable property.

Once the implementation has detected quiecence on c, the
system marks all activities registered with c as being able to
progress on c. An activity blocked on next resumes execution
once it is marked for progress by all the clocks it is registered
with.

7.1.5. Dropping clocks

An activity may drop a clock by executing:

c.drop();

The activity is no longer considered registered with this clock.
A ClockUseException is thrown if the activity has already
dropped c.

7.1.6. Program equivalences

From the discussion above it should be clear that the following
equivalences hold:

c.resume(); next; = next; (7.1)
c.resume(); d.resume(); = d.resume(); c.resume();(7.2)
c.resume(); c.resume(); = c.resume(); (7.3)

Note that next; next; is not the same as next;. The first
will wait for clocks to advance twice, and the second once.

8. Interfaces
X10 v0.4 interfaces are essentially the same Java interfaces
[6, §9]. An interface primarily specifies signatures for public
methods. It may extend multiple interfaces.

Future version of X10 will introduce additional structure in in-
terface definitions that will allow the programmer to state ad-
ditional properties of classes that implement that interface. For
instance a method may be declared pure to indicate that its
evaluation cannot have any side-effects. A method may be de-
clared local to indicate that its execution is confined purely to
the current place (no communication with other places). Sim-
ilarly, behavioral properties of the method as they relate to the
usage of clocks of the current activity may be specified.

9. Classes
X10 classes are essentially the same as Java classes [6, §8].
Classes are structured in a single-inheritance code hierarchy,
may implement multiple interfaces, may have static and instance
fields, may have static and instance methods, may have con-
structors, may have static and instance initializers, may have
static and instance inner classes and interfaces. X10 does not
permit mutable static state, so the role of static methods and ini-
tializers is quite limited. Instead programmers should use sin-
gleton classes to carry mutable static state.

Method signatures may specify checked exceptions. Method
definitions may be overridden by subclasses; the overriding
definition may have a declared return type that is a subclass
of the return type of the definition being overridden. Mul-
tiple methods with the same name but different signatures
may be provided on a class (ad hoc polymorphism). The
public/private/protected/package-protected access modification
framework may be used.

Because of its different concurrency model, X10 does not sup-
port transient and volatile field modifiers.

9.1. Reference classes

A reference class is declared with the optional keyword
reference preceding class in a class declaration. Refer-
ence class declarations may be used to construct reference types
(§ 3.1). Reference classes may have mutable fields. Instances of
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a reference class are always created in a fixed place and in X10
v0.4 stay there for the lifetime of the object. (Future versions
of X10 may support object migration.) Variables declared at a
reference type always store a reference to the object, regardless
of whether the object is local or remote.

9.2. Value classes

X10 singles out a certain set of classes for additional support.
A class is said to be stateless if all of its fields are declared to
be final (§ 3.5.1), otherwise it is stateful. (X10 has syntax
for specifying an array class with final fields, unlike Java.) A
stateless (stateful) object is an instance of a stateless (stateful)
class.

X10 allows the programmer to signify that a class (and all its
descendents) are stateless. Such a class is called a value class.
The programmer specifies a value class by prefixing the modi-
fier value before the keyword class in a class declaration.
(A class not declared to be a value class will be called a ref-
erence class.) Each instance field of a value class is treated as
final. It is legal (but neither required nor recommended) for
fields in a value class to be declared final. For brevity, the X10
compiler allows the programmer to omit the keyword class
after value in a value class declaration.

447 ClassDeclaration ::= ValueClassDeclaration
448 ValueClassDeclaration ::=

ClassModifiersopt value identifier Superopt
Interfacesopt ClassBody

449 | ClassModifiersopt value class identifier
Superopt Interfacesopt ClassBody

The nullable type-constructor (§ 3.2) can be used to declare
variables whose value may be null or a value type.

Stable equality for value types is defined through a deep walk,
bottoming out in fields of reference types (§ 11.4.3).

Static semantics. It is a compile-time error for a value class
to inherit from a stateful class or for a reference class to inherit
from a value class. All fields of a value class are implicitly
declared final.

9.2.1. Representation

Since value objects do not contain any updatable locations, they
can be freely copied from place to place. An implementation
may use copying techniques even within a place to implement
value types, rather than references. This is transparent to the
programmer.

More explicitly, X10 guarantees that an implementation must
always behave as if a variable of a reference type takes up as
much space as needed to store a reference that is either null or
is bound to an object allocated on the (appropriate) heap. How-
ever, X10 makes no such guarantees about the representation of

a variable of value type. The implementation is free to behave
as if the value is stored “inline”, allocated on the heap (and a
reference stored in the variable) or use any other scheme (such
as structure-sharing) it may deem appropriate. Indeed, an im-
plementation may even dynamically change the representation
of an object of a value type, or dynamically use different repre-
sentations for different instances (that is, implement automatic
box/unboxing of values).

Implementations are strongly encouraged to implement value
types as space-efficiently as possible (e.g. inlining them or pass-
ing them in registers, as appropriate). Implementations are ex-
pected to cache values of remote final value variables by default.
If a value is large, the programmer may wish to consider spawn-
ing a remote activity (at the place the value was created) rather
than referencing the containing variable (thus forcing it to be
cached).

9.2.2. Example

A functional LinkedList program may be written as follows:

value LinkedList {
Object first;
nullable LinkedList rest;
public

LinkedList(Object first) {
this(first, null);

}
public
LinkedList(Object first,

nullable LinkedList rest) {
this.first = first;
this.rest = rest;

}
public
Object first() {
return first;

}
public
nullable LinkedList rest() {
return rest;

}
public
LinkedList append(LinkedList l) {
return (this.rest == null)

? new LinkedList(this.first, l)
: this.rest.append(l);

}
}

Similarly, a Complex class may be implemented as fol-
lows:

value Complex {
double re;
double im;
public

Complex(double re, double im) {
this.re=re;
this.im=im;

}
public Complex add(Complex other) {
return new Complex(this.re+other.re,

this.im+other.im);
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}
public Complex mult(Complex other) {
return new Complex(this.reˆ2-other.reˆ2,

2*this.im*other.im);
}
...

}

9.3. Method annotations

9.3.1. atomic annotation

A method may be declared atomic.
445 MethodModifier ::= atomic

Such a method is treated as if the statement in its body is
wrapped implicitly in an atomic statement.

10. Arrays
An array is a mapping from a distribution to a range data type.
Multiple arrays may be declared with the same underlying dis-
tribution.

Each array has a field a.distribution which may be used
to obtain the underlying distribution.

The distribution underlying an array a may be obtained through
the field a.distribution.

10.1. Regions

A region is a set of indices (called points). X10 provides a built-
in value class, x10.lang.region, to allow the creation of
new regions and to perform operations on regions. This class is
final in X10 v0.4; future versions of the language may permit
user-definable regions. Since regions play a dual role (values as
well as types), variables of type regionmust be initialized and
are implicitly final. Regions are first-class objects – they may
be stored in fields of objects, passed as arguments to methods,
returned from methods etc.

Each region R has a constant rank, R.rank, which is a non-
negative integer. The literal [] represents the empty region and
has rank 0.
Here are several examples of region declarations:

region Null = []; // Empty 0-dimensional region
region R1 = 1:100; // 1-dim region with extent 1..100.
region R1 = [1:100]; // Same as above.
region R2 = [0:99, -1:MAX HEIGHT];
region R3 = region.factory.upperTriangular(N);
region R4 = region.factory.banded(N, K);

// A square region.
region R5 = [E, E];

// Same region as above.
region R6 = [100, 100];

// Represents the intersection of two regions

region AandB = A && B;
// represents the union of two regions

region AOrB = A || B;

A region may be constructed using a comma-separated list of
regions (§ 11.2) within square brackets, as above and represents
the Cartesian product of each of the arguments. The bound of
a dimension may be any final variable of a fixed-point numeric
type. X10 v0.4 does not support hierarchical regions.

Various built-in regions are provided through factory methods
on region. For instance:

• region.factory.upperTriangular(N) returns
a region corresponding to the non-zero indices in an upper-
triangular N x N matrix.

• region.factory.lowerTriangular(N) returns
a region corresponding to the non-zero indices in a lower-
triangular N x N matrix.

• region.banded(N, K) returns a region correspond-
ing to the non-zero indices in a banded N x N matrix
where the width of the band is K

All the points in a region are ordered canonically by the lexico-
graphic total order. Thus the points of a region R=[1:2,1:2]
are ordered as

(1,1), (1,2), (2,1), (2,2)

Sequential iteration statements such as for (§ 6.7) iterate over
the points in a region in the canonical order.

A region is said to be convex if it is of the form [T1,...,
Tk] for some set of enumerations Ti. Such a region satisfies
the property that if two points p1 and p3 are in the region, then so
is every point p2 between them. (Note that ||may produce non-
convex regions from convex regions, e.g. [1,1] || [3,3]
is a non-convex region.)

For each region R, the convex closure of R is the smallest convex
region enclosing R. For each integer i less than R.rank, the
term R[i] represents the enumeration in the ith dimension of
the convex closure of R. It may be used in a type expression
wherever an enumeration may be used.

10.1.1. Operations on Regions

Various non side-effecting operators (i.e. pure functions) are
provided on regions. These allow the programmer to express
sparse as well as dense regions.

Let R be a region. A subset of R is also called a sub-region.

Let R1 and R2 be two regions.

R1 && R2 is the intersection of R1 and R2.

R1 || R2 is the union of the R1 and R2.

R1 - R2 is the set difference of R1 and R2.

Two regions are equal (==) if they represent the same set of
points.
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10.2. Distributions

A distribution is a mapping from a region to a set of places. X10
provides a built-in value class, x10.lang.distribution,
to allow the creation of new distributions and to perform op-
erations on distributions. This class is final in X10 v0.4;
future versions of the language may permit user-definable dis-
tributions. Since distributions play a dual role (values as well as
types), variables of type distribution must be initialized
and are implicitly final.

The rank of a distribution is the rank of the underlying region.

region R = [1:100]
distribution D = distribtion.factory.block(R);
distribution D = distribution.factory.cyclic(R);
distribution D = R -> here;
distribution D = distribution.factory.random(R);

Let D be a distribution. D.region denotes the underlying re-
gion. D.places is the set of places constituting the range of
D (viewed as a function). Given a point p, the expression D[p]
represents the application of D to p, that is, the place that p is
mapped to by D. The evaluation of the expression D[p] throws
an ArrayIndexOutofBoundsException if p does not
lie in the underlying region.

When operated on as a distribution, a region R implicitly be-
haves as the distribution mapping each item in R to here (i.e.
R->here, see below). Conversely, when used in a context ex-
pecting a region, a distribution D should be thought of as stand-
ing for D.region.

10.2.1. Operations returning distributions

Let R be a region, Q a set of places {p1,...,pk} (enumerated
in canonical order), and P a place. All the operations described
below may be performed on distribution.factory.

Unique distribution The distribution unique(Q) is the
unique distribution from the region 1:k to Q mapping each
point i to pi.

Constant distributions. The distribution R->P maps every
point in R to P.

Block distributions. The distribution block(R, Q) dis-
tributes the elements of R (in order) over the set of places Q
in blocks as follows. Let p equal |R| div N and q equal |R|
mod N, where N is the size of Q, and |R| is the size of R. The
first q places get successive blocks of size (p + 1) and the re-
maining places get blocks of size p.

The distribution block(R) is the same distribution as
block(R, place.places).

Cyclic distributions. The distribution cyclic(R, Q) dis-
tributes the points in R cyclically across places in Q in order.

The distribution cyclic(R) is the same distribution as
cyclic(R, place.places).

Thus the distribution cyclic(place.MAX PLACES) pro-
vides a 1 − 1 mapping from the region place.MAX PLACES
to the set of all places and is the same as the distribution
unique(place.places).

Block cyclic distributions. The distribution
blockCyclic(R, N, Q) distributes the elements of
R cyclically over the set of places Q in blocks of size N.

Arbitrary distributions. The distribution
arbitrary(R,Q) arbitrarily allocates points in R to Q.
As above, arbitrary(R) is the same distribution as
arbitrary(R, place.places).

Domain Restriction. If D is a distribution and R is a sub-
region of D.domain, then D | R represents the restriction of
D to R. The compiler throws an error if it cannot determine that
R is a sub-region of D.domain.

Range Restriction. If D is a distribution and P a place expres-
sion, the term D | P denotes the sub-distribution of D defined
over all the points in the domain of D mapped to P.

Note that D | here does not necessarily contain adjacent
points in D.region. For instance, if D is a cyclic distribu-
tion, D | here will typically contain points that are P apart,
where P is the number of places. An implementation may find a
way to still represent them in contiguous memory, e.g. using a
complex arithmetic function to map from the region index to an
index into the array.

10.2.2. User-defined distributions

Future versions of X10 may provide user-defined distributions,
in a way that supports static reasoning.

10.2.3. Operations on Distributions

A sub-distribution of D is any distribution E defined on some
subset of the domain of D, which agrees with D on all points in
its domain. We also say that D is a super-distribution of E. A
distribution D1 is larger than D2 if D1 is a super-distribution of
D2.

Let D1 and D2 be two distributions.

Intersection of distributions. D1 && D2, the intersection of
D1 and D2, is the largest common sub-distribution of D1 and
D2.
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Asymmetric union of distributions. D1.overlay(D2, the
asymmetric union of D1 and D2, is the distribution whose do-
main is the union of the regions of D1 and D2, and whose value
at each point p in its domain is D2[p] if p lies in D.domain
otherwise it is D1[p]. (D1 provides the defaults.)

Disjoint union of distributions. D1 || D2, the disjoint
union of D1 and D2, is defined only if the domains of D1 and
D2 are disjoint. Its value is D1.overlay(D2) (or equiva-
lently D2.overlay(D1). (It is the least super-distribution of
D1 and D2.)

Difference of distributions. D1 - D2 is the largest sub-
distribution of D1 whose domain is disjoint from that of D2.

10.2.4. Example

double[D] dotProduct(T[D] a, T[D] b) {
return (new T[1:D.places] (point j) {

return (new T[D | here] (point i) {
return a[i]*b[i];

}).sum();
}).sum();

}

This code returns the inner product of two T vectors defined over
the same (otherwise unknown) distribution. The result is the
sum reduction of an array of T with one element at each place in
the range of D. The value of this array at each point is the sum
reduction of the array formed by multiplying the corresponding
elements of a and b in the local sub-array at the current place.

10.3. Array initializer

450 ArrayCreationExpression ::=
new ArrayBaseType Unsafeopt []
ArrayInitializer

451 | new ArrayBaseType Unsafeopt
[ Expression ]

452 | new ArrayBaseType Unsafeopt
[ Expression ] Expression

453 | new ArrayBaseType Unsafeopt
[ Expression ]
(FormalParameter) MethodBody

454 | new ArrayBaseType value Unsafeopt
[ Expression ]

455 | new ArrayBaseType value Unsafeopt
[ Expression ] Expression

456 | new ArrayBaseType value Unsafeopt
[ Expression ]
( FormalParameter ) MethodBody

457 ArrayBaseType ::= PrimitiveType
458 | ClassOrInterfaceType
530 Unsafeopt ::=
531 | unsafe

An array may be declared unsafe if it is intended to be al-
located in an unmanaged region (e.g. for communication with
native code). A value array is an immutable array. An array
creation must take either an int as an argument or a distribu-
tion. In the first case an array is created over the distribution
[0:N-1]-> here; in the second over the given distribution.

An array creation operation may also specify an initializer using
the abbreviated formalparameter/methodbody functional syn-
tax. The formal parameter may contain exploded parameters
(Section 11.3). The function is applied in parallel at all points in
the domain of the distribution. The array construction operation
terminates locally only when the array has been fully created
and initialized (at all places in the range of the distribution).
For instance:

int[.] data
= new int[1000->here]

new intArray.pointwiseOp(){
public int apply(point p[i]){
return i;

}
};

int[.] data2
= new int value [[1:1000,1:1000]->here]

(point p[i,j]){ return i*j; };

The first declaration stores in data a reference to a mutable
array with 1000 elements each of which is located in the same
place as the array. Each array component is initialized to i.

The second declaration stores in data2 an (immutable) 2-d ar-
ray over [1:1000, 1:1000] initialized with i*j at point
[i,j]. It uses a more abbreviated form to specify the array
initializer function.
Other examples:

int[.] data
= new int[1000](point [i]){return i*i;};

float[D] d
= new float[D] (point [i]){return 10.0*i;};

float[D] result
= new float[D]
(point [i,j]) {return i + j; };

10.4. Operations on arrays

In the following let a be an array with distribution D and base
type T. a may be mutable or immutable, unless indicated other-
wise.

10.4.1. Element operations

The value of a at a point p in its region of definition is ob-
tained by using the indexing operation a[p]. This operation
may be used on the left hand side of an assignment operation to
update the value. The operator assignments a[i] op= e are
also available in X10.
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10.4.2. Constant promotion

For a distribution D and a constant or final variable v of type
T the expression new T[D](point p) { return v;} D
v denotes the mutable array with distribution D and base type T
initialized with v.

10.4.3. Restriction of an array

Let D1 be a sub-distribution of D. Then a | D1 represents the
sub-array of a with the distribution D1.

Recall that a rich set of operators are available on distributions
(§ 10.2) to obtain sub-distributions (e.g. restricting to a sub-
region, to a specific place etc).

10.4.4. Assembling an array

Let a1,a2 be arrays of the same base type T defined over dis-
tributions D1 and D2 respectively. Assume that both arrays are
value or reference arrays.

Assembling arrays over disjoint regions If D1 and D2 are
disjoint then the expression a1 || a2 denotes the unique ar-
ray of base type T defined over the distribution D1 || D2 such
that its value at point p is a1[p] if p lies in D1 and a2[p] oth-
erwise. This array is a reference (value) array if a1 is.

Overlaying an array on another The expression
a1.overlay(a2) (read: the array a1 overlaid with
a2) represents an array whose underlying region is the union of
that of a1 and a2 and whose distribution maps each point p in
this region to D2[p] if that is defined and to D1[p] otherwise.
The value a1.overlay(a2)[p] is a2[p] if it is defined
and a1[p] otherwise.

This array is a reference (value) array if a1 is.

The expression a1.update(a2) updates the array a1 in
place with the result of a1.overlay(a2).

10.4.5. Global operations

Pointwise operations Suppose that m is an operation defined
on type T that takes an argument of type S and returns a value
of type R. Such an operation can be lifted pointwise to operate
on a T array and an S array defined over the same distribution D
to return an R array defined over D, using the lift operation,
a.lift(f, b).

Reductions Let f be a binaryOp defined on type T (e.g.
see the specification of the classes x10.lang.intArray).
Let a be a value or reference array over base type T. Then the
operation a.reduce(f) returns a value of type T obtained by
performing m on all points in a in some order, and in parallel.

This operation involves communication between the places over
which the array is distributed. The X10 implementation guaran-
tees that only one value of type T is communicated from a place
as part of this reduction process.

Scans Let m be a reduction operator defined on type T. Let a
be a value or reference array over base type T and distribution
D. Then the operation a||m() returns an array of base type
T and distribution D whose ith element (in canonical order) is
obtained by performing the reduction m on the first i elements
of a (in canonical order).

This operation involves communication between the places over
which the array is distributed. The X10 implementation will
endeavour to minimize the communication between places to
implement this operation.

Other operations on arrays may be found in
x10.lang.intArray and other related classes.

11. Statements and Expressions
X10 inherits all the standard statements of Java, with the ex-
pected semantics:

EmptyStatement LabeledStatement
ExpressionStatement IfStatement
SwitchStatement WhileDo
DoWhile ForLoop
BreakStatement ContinueStatement
ReturnStatement ThrowStatement
TryStatement

We focus on the new statements in X10.

11.1. Assignment

X10 supports assignment l = r to array variables. In this case
r must have the same distribution D as l. This statement in-
volves control communication between the sites hosting D. Each
site performs the assignment(s) of array components locally.
The assignment terminates when assignment has terminated at
all sites hosting D.

11.2. Point and region construction

X10 specifies a simple syntax for the construction of points and
regions.

281 ArgumentList ::= Expression
282 | ArgumentList , Expression
512 Primary ::= [ ArgumentList ]
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Each element in the argument list must be either of type int
or of type region. In the former case the expression [
a1,..., ak ] is treated as syntactic shorthand for

point.factory.point(a1,..., ak)

and in the latter case as shorthand for
region.factory.region(a1,..., ak)

11.3. Exploded variable declarations

X10 permits a richer form of specification for variable declara-
tors in method arguments, local variables and loop variables (the
“exploded” or destructuring syntax).

81 VariableDeclaratorId ::=
identifier [ IdentifierList ]

82 | [ IdentifierList ]

In X10 v0.4 the VariableDeclaratorId must be de-
clared at type x10.lang.point. Intuitively, this syntax al-
lows a point to be “destructured” into its corresponding int
indices in a pattern-matching style. The kth identifier in the
IdentifierList is treated as a final variable of type int
that is initialized with the value of the kth index of the point. The
second form of the syntax (Rule 82) permits the specification of
only the index variables.

Future versions of the language may allow destructuring syntax
for all value classes.

Example. The following example succeeds when exe-
cuted.

public class Array1Exploded {
public int select(point p[i,j], point [k,l]) {

return i+k;
}
public boolean run() {
distribution d = [1:10, 1:10] -> here;
int[.] ia = new int[d];
for(point p[i,j]: [1:10,1:10]) {

if(ia[p]!=0) return false;
ia[p] = i+j;

}
for(point p[i,j]: d) {
point q1 = [i,j];
if (i != q1[0]) return false;
if ( j != q1[1]) return false;
if(ia[i,j]!= i+j) return false;
if(ia[i,j]!=ia[p]) return false;
if(ia[q1]!=ia[p]) return false;

}
if (! (4 == select([1,2],[3,4]))) return false;
return true;

}

public static void main(String args[]) {
boolean b= (new Array1Exploded()).run();
System.out.println("++++++ "

+ (b? "Test succeeded."
:"Test failed."));

System.exit(b?0:1);

}
}

11.4. Expressions

X10 inherits all the standard expressions of Java [6, § 15] – as
modified to permit generics [5] – with the expected semantics,
unless otherwise mentioned below:

Assignment MethodInvocation
Cast Class
ClassInstanceCreationExpression FieldAccessExpression
ArrayCreationExpression ArrayAccessExpression
PostfixExpression PrefixExpression
InfixExpression UnaryOperators
MultiplicativeOperators AdditiveOperators
ShiftOperators RelationalOperators
EqualityOperators BitwiseOperators
ConditionalOperators AssignmentOperators

Expressions are evaluated in the same order as they would in
Java (primarily left-to-right).

We focus on the expressions in X10 which have a different se-
mantics.

11.4.1. The classcast operator

The classcast operation may be used to cast an expression to a
given type:

306 UnaryExpressionNotPlusMinus ::=
CastExpression

506 CastExpression ::=
( Type ) UnaryExpressionNotPlusMinus

The result of this operation is a value of the given type if the cast
is permissible at runtime. Both the data type and place type of
the value are checked. Data type conversion is checked accord-
ing to the rules of the Java language (e.g.[6, §5.5]). If the value
cannot be cast to the appropriate data type, a ClassCast ex-
ception is thrown. Otherwise, if the value cannot be cast to the
appropriate place type a BadPlaceException is thrown.

Any attempt to cast an expression of a reference type to a value
type (or vice versa) results in a compile-time error. Some casts –
such as those that seek to cast a value of a subtype to a supertype
– are known to succeed at compile-time. Such casts should not
cause extra computational overhead at runtime.

11.4.2. instanceof operator

This operator takes two arguments; the first should be
a RelationalExpression and the second a Type.
At run time, the result of this operator is true if the
RelationalExpression can be cast to Type without a
ClassCastException being thrown. Otherwise the result
is false.
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11.4.3. Stable equality.

Reference equality (==, !=) is replaced in X10 by the notion
of stable equality so that it can apply uniformly to value and
reference types.

Two values may be compared with the infix predicate ==. The
call returns the value true if and only if no action taken by any
user program can distinguish between the two values. In more
detail the rules are as follows.

If the values have a reference type, then both must be references
to the same object (even if the object has no mutable fields).

If the values have a value type then they must be structurally
equal, that is, they must be instances of the same value class or
value array data type and all their fields or components must be
==.

If one of the values is null then the predicate succeeds iff the
other value is also null.

The predicate != returns true (false) on two arguments if
and only if the predicate == returns false (true) on the same
arguments.

The predicates == and != may not be overridden by the pro-
grammer.

11.5. Linking with native code

X10 v0.4 supports a simple facility to permit the efficient intra-
thread communication of an array of primitive type to code writ-
ten in the language C. The array must be a “local” array. The pri-
mary intent of this design is to permit the reuse of native code
that efficiently implements some numeric array/matrix calcula-
tion.

Future language releases are expected to support similar bind-
ings to FORTRAN, and to support parallel native processing of
distributed X10 arrays.
The interface consists of two parts. First, an array intended to
be communicated to native code must be created as an unsafe
array:

450 ArrayCreationExpression ::=
new ArrayBaseType Unsafeopt [ ]
ArrayInitializer

451 | new ArrayBaseType Unsafeopt [ Expression ]
452 | new ArrayBaseType Unsafeopt

[ Expression ] Expression
453 | new ArrayBaseType Unsafeopt [ Expression ]

( FormalParameter ) MethodBody
454 | new ArrayBaseType value

Unsafeopt [ Expression ]
455 | new ArrayBaseType value

Unsafeopt [ Expression ] Expression
456 | new ArrayBaseType value

Unsafeopt [ Expression ]
( FormalParameter ) MethodBody

530 Unsafeopt ::=
531 | unsafe

Unsafe arrays can be of any dimension. However, X10 v0.4
requires that unsafe arrays be of a primitive type, and local (i.e.
with an underlying distribution that maps all elements in its re-
gion to here).

Unsafe arrays are allocated in a special array of memory that
permits their efficient transmission to natively linked code.
Second, the X10 programmer may specify that certain meth-
ods are to be implemented natively by using the keyword
extern:

446 MethodModifier ::= extern

Such a method must have the statement “;” as its body. X10
v0.4 requires that the method be static; this restriction is
likely to be lifted in the future. Primitive types in the method
argument are translated to their corresponding JNI type (e.g.
float is translated to jfloat, double to jdouble etc).
The only non-primitive type permitted in an extern method is
an (unsafe) array. This is passed at type jlong as an eight byte
address into the unsafe region which contains the data for the
array. (jlong is not the same as long on 32-bit machines.)

Since only the starting address of an array is passed, if the array
is multidimensional, the user must explicitly communicate (or
have a guarantee of) the rank of the passed array, and must either
typecast or explicitly code the address calculation. Note that all
X10 arrays are created in row-major order, and so any native
routine must also access them in the same order.

For each class C that contains an extern method, the X10
compiler generates a text file C x10stub.c. This file contains
generated C stub functions which are called from the extern
routines. The name of the stub function is derived from the
name of the externmethod. If the method is C.process(),
the stub function will be Java C C process(). The name
is suffixed with the signature of the method if the method is
overloaded.

The programmer must write C code to implement the native
method, using the methods in the C stub file to call the actual
native method. The programmer must compile these files and
link them into a dynamically linked library (DLL). Note that the
jni.h header file must be in the include path. The program-
mer must ensure this library is loaded by the program before the
method is called e.g. add a System.loadlibrary call (in a
static initializer of the X10 class).

Example. The following class illustrates the use of unsafe
and native linking.

public class IntArrayExternUnsafe {
public static extern

void process(int [.] yy, int size);
static System.loadLibrary("IntArrayExternUnsafe");
public static void main(String args[]) {

boolean b= (new IntArrayExternUnsafe()).run();
System.out.println("++++++ Test "

+(b?"succeeded.":"failed."));
System.exit(b?0:1);

}
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public boolean run(){
int high = 10;
boolean verified=false;
distribution d= (0:high) -> here;
int [.] y = new int unsafe[d];
for( int j=0;j < 10;++j)

y[j] = j;
process(y,high);
for(int j=0;j < 10;++j){
int expected = j+100;
if(y[j] != expected){
System.out.println("y["+j+"]="

+y[j]+" != "+expected);
return false;
}

}
return true;

}
}

The programmer may then write the C code thus:
void IntArrayExternUnsafe process(jlong yy,

signed int size){
int i;
int* array = (int *)(long)yy;
for(i = 0;i < size;++i){
array[i] += 100;

}
}
/* automatically generated in x10stub.c*/
void
Java IntArrayExternUnsafe IntArrayExternUnsafe process
(JNIEnv *env, jobject obj,jlong yy,jint size){
IntArrayExternUnsafe process(yy,size);

}

This code may be linked with the stub file (or textually placed
in it). The programmer must then compile and link the C code
and ensure that the DLL is on the appropriate classpath.

EXAMPLE

This example illustrates 2-d Jacobi iteration.

public class Jacobi {
const int N=6;
const double epsilon = 0.002;
const double epsilon2 = 0.000000001;
const region R = [0:N+1, 0:N+1];
const region RInner= [1:N, 1:N];
const distribution D = distribution.factory.block(R);
const distribution DInner = D | RInner;
const distribution DBoundary = D - RInner;
const int EXPECTED ITERS=97;
const double EXPECTED ERR=0.0018673382039402497;

double[D] B = new double[D] (point p[i,j])
{return DBoundary.contains(p)

? (N-1)/2 : N*(i-1)+(j-1);};

public boolean run() {
int iters = 0;
double err;
while(true) {
double[.] Temp =

new double[DInner] (point [i,j])

{return (read(i+1,j)+read(i-1,j)
+read(i,j+1)+read(i,j-1))/4.0;};

if((err=((B | DInner) - Temp).abs().sum())
< epsilon)
break;

B.update(Temp);
iters++;

}
System.out.println("Error="+err);
System.out.println("Iterations="+iters);
return Math.abs(err-EXPECTED ERR)<epsilon2

&& iters==EXPECTED ITERS;
}
public double read(final int i, final int j) {

return future(D[i,j]) B[i,j].force();
}
public static void main(String args[]) {

boolean b= (new Jacobi()).run();
System.out.println("++++++ "

+ (b? "Test succeeded."
:"Test failed."));

System.exit(b?0:1);
}

}
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CHANGES FROM V0.32

This is the first reference manual that corresponds to a work-
ing implementation. As such a number of details missing from
v0.32 have been spelt out. A number of mistakes have been
corrected, and clarifications added.

The semantics of exception handling across asynchronous ac-
tivities has been clarified.

Exploded syntax has been introduced to make it convenient to
destructure points.

Arrays are implemented at all built-in types as well as at all
user-defined types.

11.5.1. Limitations

• All the static semantics rules are not yet implemented.
Thus if your program is already correct, it will execute cor-
rectly. If it is not correct, it may still execute and give a
result. Specifically, the implementation does not yet check
local annotations.

• The implementation does not support a way to specify just
the rank of an array in its type.

• Arrays of arrays (“jagged” arrays) are not yet implemented.

• Local, 1-d, 0-based arrays do not currently support all the
functionality of more general arrays. (They are optimized
through to Java arrays.)

X10 v0.4 does not formally define a model for interoperability
with Java. The following guidelines may be used temporarily:

• Java classes may be imported.

• Confine the use of Java to system classes, e.g.
System.out for I/O.

• Do not use synchronized keyword, or create new
java.lang.Threads.

• Java objects may be created. These are “placeless”. Do
not use such an object as an argument to async, or wherever
a placeful value is expectd.

11.5.2. Future work

Language needs to be extended to support generic types, with
type and value parameters.

Language needs to be extended to support type inference.

Language needs to be extended to support implicit syntax.
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clocked statements, 18
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block, 22
block cyclic, 22
constant, 22
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user-defined, 22
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extern, 25

final variable, 9
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here, 11
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keyword, 5

local
local, 20

locality condition, 14
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nullary constructor, 10

Object, 10

packages, 11
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place.location, 10
places, 11

scoped, 8
shared, 8
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lowerTriangular, 21
set difference, 22
sub-region, 22
union, 22
upperTriangular, 21

remote method invocation, 16
root activity, 12

statements, 24
sub-distribution, 22
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type constructors, 6
types, 5

Upper case convention, 11
Upper-case Convention, 6

variable
final, 9

variable declarator
exploded, 24

variables, 9

whitespace, 5

X10 productions, 28
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